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Abstract
SHARK is an object-oriented library for the design of adaptive systems. It comprises methods for
single- and multi-objective optimization (e.g., evolutionary and gradient-based algorithms) as well
as kernel-based methods, neural networks, and other machine learning techniques.
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1. Overview

SHARK is a modular C++ library for the design and optimization of adaptive systems. It serves as
a toolbox for real world applications and basic research in computational intelligence and machine
learning. The library provides methods for single- and multi-objective optimization, in particular
evolutionary and gradient-based algorithms, kernel-based learning methods, neural networks, and
many other machine learning techniques. Its main design criteria are flexibility and speed. Here
we restrict the description of SHARK to its core components, albeit the library contains plenty of
additional functionality. Further information can be obtained from the HTML documentation and
tutorials. More than 60 illustrative example programs serve as starting points for using SHARK.

2. Basic Tools—Rng, Array, and LinAlg

The library provides general auxiliary functions and data structures for the development of machine
learning algorithms. The Rng module generates reproducible and platform independent sequences
of pseudo random numbers, which can be drawn from 14 predefined discrete and continuous para-
metric distributions. The Array class provides dynamical array templates of arbitrary type and di-
mension as well as basic operations acting on these templates. LinAlg implements linear algebra
algorithms such as matrix inversion and singular value decomposition.

3. ReClaM—Regression and Classification Methods

The goal of the ReClaM module is to provide machine learning algorithms for supervised classi-
fication and regression in a unified, modular framework. It is built like a construction kit, where
the main building blocks are adaptive data processing models, error functions, and optimization
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model(...)
modelDerivative(...)
generalDerivative(...)
getParameter(...)
setParameter(...)

Array<double> parameter

 

error(...)
errorDerivative(...)

 

init(...)
optimize(...)
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Figure 1: Almost all ReClaM objects are inherited from one of the three base classes Model,
ErrorFunction, and Optimizer. The optimizer has access to the parameter vector w
of the model f : R

n ×R
p → R

m, (x,w) 7→ fw(x), to minimize a scalar error function E.
For gradient-based optimization, the error function provides the derivative dE/dw based
on d f /dw. In many cases we can speed up the computation of dE/dw by a factor of m
by using aT d f /dw, where a is a vector of coefficients dependent on the error function.

algorithms (see Figure 1). The superclasses representing these components communicate through
fixed interfaces. Problem definition and solution are clearly separated. A problem is defined by a
model defining a parametric family of candidate hypotheses, and a possibly regularized error func-
tion to minimize (and, of course, sample data). It is usually solved with an (iterative) optimization
algorithm, which adapts the model parameters in order to minimize the error function evaluated on
the given data set. Additional error functions and data sets can then be used to test the resulting
performance. This clear structure makes ReClaM easy to use and extend.

ReClaM focuses on kernel methods and neural networks. It offers a variety of predefined net-
work models including feed-forward and recurrent multi-layer perceptron networks, radial basis
function networks, and CMACs. Several gradient-based optimization algorithms are available for
network training and general purpose optimization including the conjugate gradient method, the
BFGS algorithm, and improved Rprop (Igel and Hüsken, 2003).

In the remainder of this section we present the realization of kernel-based learning in more
detail. The library offers kernelized versions of several learning machines from nearest neighbor
classifiers and simple Gaussian processes to different flavors of support vector machines. These
algorithms operate on general kernel objects and users can supply new kernel functions easily. At
the time of writing, ReClaM provides the fastest support vector machine (SVM) implementation for
dense large-scale learning problems. The SVM training automatically switches between the most
efficient SMO-like algorithms available depending on the current problem size (Fan et al., 2005;
Glasmachers and Igel, 2006).

On top of these models, ReClaM defines meta-models for model selection of kernel and regular-
ization parameters. It offers more objective functions and optimization methods for model selection
than any other library. Objective functions include leave-one-out and cross validation errors, radius-
margin quotient, kernel-target alignment, and the span bound (Chapelle et al., 2002; Glasmachers
and Igel, 2005; Igel et al., 2007a). For optimization, nested grid-search and evolutionary kernel
learning are supported, and efficient gradient-based optimization is available whenever possible.
For both model training and model selection, we make use of ReClaM’s superclass architecture to
describe and solve the optimization problems. For example, a gradient-based optimization algorithm
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may decrease a radius-margin quotient in order to adapt the hyperparameters of an SVM, where in
each iteration an SVM model is trained by a special quadratic program optimizer to determine the
margin.

To reduce the complexity of SVMs and Gaussian processes after training, algorithms for ap-
proximating the solutions in feature space are implemented (Romdhani et al., 2004; Suttorp and
Igel, 2007).

4. EALib and MOO-EALib—Evolutionary Single- and Multi-objective Optimization

The evolutionary algorithms module (EALib) implements classes for stochastic direct optimization
using evolutionary computing, in particular genetic algorithms and evolution strategies (ESs). Evo-
lutionary algorithms (EAs) maintain populations (i.e., multi-sets) of candidate solutions. In the
EALib structure, instances of the class Population contain instances of Individual consisting of
one or more Chromosomes, which can have different types. Numerous variation (i.e., mutation and
recombination) operators for different types of chromosomes, for example real-valued or binary
vectors, are available. The user has the choice between many different deterministic and stochastic
selection mechanisms operating on population level.

The MOO-EALib extends the EALib to evolutionary multi-objective (i.e., vector valued) opti-
mization (EMO). The goal of EMO is usually to approximate the set of Pareto-optimal solutions,
where a solution is Pareto-optimal if it cannot be improved in one objective without getting worse
in another one. To our knowledge, the MOO-EALib module makes SHARK one of the most compre-
hensive libraries for EMO. The efficient implementation of measures for quantifying the quality of
sets of candidate solutions is a strong argument for the MOO-EALib.

In SHARK we put an emphasis on variable-metric ESs for real-valued optimization. Thus, the
most recent implementation of the covariance matrix adaptation ES (CMA-ES; Hansen et al., 2003)
and its EMO counterpart (Igel et al., 2007b) are included. We do not know any C++ toolbox for
EAs that comes close to the EALib in terms of flexibility and quality of algorithms for continuous
optimization.

5. Availability and Requirements

The C++ source code is available from http://shark-project.sourceforge.net under GNU
Public License and compiles under MS Windows, Linux, Solaris, and MacOS X. No third-party
libraries are required, except Qt and Qwt for graphical examples.
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