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Abstract

Although neural networks have shown impressive results in a multitude of application do-
mains, the “black box” nature of deep learning and lack of confidence estimates have led
to scepticism, especially in domains like medicine and physics where such estimates are
critical. Research on uncertainty quantification (UQ) has helped elucidate the reliability
of these models, but existing implementations of these UQ methods are sparse and difficult
to reuse. To this end, we introduce Lightning UQ Box, a PyTorch-based Python library
for deep learning-based UQ methods powered by PyTorch Lightning. Lightning UQ Box
supports classification, regression, semantic segmentation, and pixelwise regression appli-
cations, and UQ methods from a variety of theoretical motivations. With this library, we
provide an entry point for practitioners new to UQ, as well as easy-to-use components and
tools for scalable deep learning applications.

Keywords: Uncertainty Quantification, Bayesian Deep Learning, Conformal Prediction,
Deep Learning, PyTorch

1. Introduction

Deep learning is increasingly being applied in a variety of application domains that require
decision making under uncertainty. Examples include medical applications like tumor seg-
mentation (Abdullah et al., 2022), Earth observation cases, in particular natural disaster
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response (Schumann et al., 2016), robotics (Sanket et al., 2023), and healthcare (Seoni et al.,
2023). These applications demand reliable predictive uncertainty estimates which neural
networks usually do not provide by default. Numerous uncertainty quantification (UQ)
approaches for neural networks have been proposed (Gawlikowski et al., 2023). However,
to adequately evaluate the efficacy of these methods for various applications, a common
modeling framework is necessary to foster the reproducibility of experiments, provide a
fair evaluation, and make UQ methods more easily accessible to various research domains.
Multiple open-source implementations and frameworks for uncertainty quantification in
deep learning are available (Lee et al., 2022; Esposito, 2020; Krishnan et al., 2022; Detom-
maso et al., 2024; Lafage and Laurent, 2024), often focusing on specific tasks or leaving out
specific types of methods, e.g., Bayesian Deep Learning, or without the modularity and
flexibility provided by a framework such as PyTorch Lightning. In a recent position paper,
Papamarkou et al. (2024) state that “There is a demand for user-friendly software that
facilitates the integration of BDL [Bayesian Deep Learning] into various projects”. Light-
ning UQ Box 1 aims to fill this gap, but simultaneously it does not limit itself to Bayesian
frameworks but instead includes UQ methods from a diverse set of theoretical underpin-
nings across current research focuses, for example, conformal prediction (Angelopoulos
et al., 2023).

2. Library Design
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Figure 1: The structure of Lightning UQ Box. The experiments can be built and evaluated
at scale or manually tailored to specific use cases. For large experiments at scale, only a
dataset and a configuration file have to be provided.

1. Lightning UQ Box GitHub repository and documentation
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The PyTorch ecosystem (Paszke et al., 2019) has enabled tremendous progress in various
application domains. Lightning UQ Box is built on top of PyTorch Lightning (Falcon,
2019) with a focus on reproducibility and scalability of deep learning experiments under a
modular design. PyTorch Lightning asks the user to organize code in a more structured
way regarding training and evaluation steps, additionally removes boilerplate code, and
separates dataset and model logic under different modules. To this end, every supported
UQ method and task combination in Lightning UQ Box is a LightningModule that can
leverage the training capabilities of PyTorch Lightning, such as automatic logging, mixed
precision training, multi-GPU training, etc. to run experiments. The modular design
is visualized in Figure 1. Through its enforced code organization, a LightningModule

clearly defines what a given UQ method does during training, validation, and prediction
and is easy to follow in the code files. This can more clearly highlight differences and
commonalities not just between different methods, but also among different prediction
tasks for any particular method. The modular design allows a straightforward extension to
new tasks or new UQ methods that arise in this active research field and further simplifies
community contributions.

2.1 Feature Highlights

Breadth of Methods Uncertainty Quantification in neural networks has been approached
from various theoretical underpinnings (Gawlikowski et al., 2023) and Lightning UQ Box re-
flects this through the variety of methods it supports from the various categorized perspec-
tives, such as Bayesian, conformal prediction, evidential deep learning, generative models,
or post-hoc calibration methods.2

Backbone Agnostic A core design principle of Lightning UQ Box is that the imple-
mented models are “backbone” agnostic, meaning that users can bring their custom Py-
Torch architecture or pretrained models from libraries like timm (Wightman, 2019), on top
of which the selected UQ method will be applied without the user having to customize their
model for different UQ methods. Selected model parts can also be frozen during training,
which has potential applications of equipping large scale foundation models with UQ, for
example through last-layer UQ fine tuning (Papamarkou et al., 2024).

Minimization of Boilerplate Code The modular design of PyTorch Lightning sig-
nificantly reduces the amount of boilerplate code and allows fast experiment setup and
iteration. The UQ Box can further seamlessly be used with existing Lightning pipelines.

Modern Bayesian Methods A common criticism of BNNs is that they are expensive
to train and do not scale to large data problems (Papamarkou et al., 2024). The supported
Bayesian UQ methods are made scalable to larger data regimes with partially stochastic
variants (Sharma et al., 2023), that are also supported for Laplace (Daxberger et al.,

2. See the documentation page or repository README for a complete overview of supported methods
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2021a), SWAG (Maddox et al., 2019), and MC-Dropout (Gal and Ghahramani, 2016).
This allows for flexible hybrid approaches like last-layer or subnetwork approximations
(Daxberger et al., 2021b). Furthermore, we support Deep Kernel Learning (DKL) (Wilson
et al., 2016), Spectral-Normalized Gaussian Processes (SNGP) (Liu et al., 2020), and Deep
Deterministic Uncertainty (DDU) (Van Amersfoort et al., 2020) as hybrid approaches.

Reproducibility Several works postulated that machine learning finds itself in a repro-
ducibility crisis across application domains (Kapoor and Narayanan, 2023). In a related
article in life sciences, Heil et al. (2021) state “The gold standard for reproducibility re-
quires the entire analysis to be reproducible with a single command”. Lightning UQ Box
works towards this goal by supporting configuration of experiments with simple configura-
tion files, as well as the Lightning command line interface (CLI). For example, the required
configurations to run a partially stochastic BNN or Deep Kernel Learning model based
on the timm library ResNet18 implementation on the EuroSAT dataset from torchgeo is
shown in Figure 2. For more examples, see the Lightning-UQ-Box documentation page.

1 uq_method:

2 _target_: BNN_VI_ELBO_Classification

3 model:

4 _target_: timm.create_model

5 model_name: resnet18

6 in_chans: 13

7 num_classes: 10

8 criterion:

9 _target_: torch.nn.CrossEntropyLoss

10 num_mc_samples_train: 3

11 num_mc_samples_test: 25

12 stochastic_module_names: [’layer4 .1.conv1 ’,

’layer4 .1.conv2 ’, ’fc ’]

13
14 datamodule:

15 _target_: torchgeo.datamodules.EuroSATDataModule

16 batch_size: 64

17 download: True

18
19 trainer:

20 _target_: lightning.Trainer

21 max_epochs: 40

1 model:

2 _target_: DKLClassification

3 feature_extractor:

4 _target_: timm.create_model

5 model_name: resnet18

6 num_classes: 8 # num latent features

7 gp_kernel: "RBF"

8 n_inducing_points: 5

9 input_size: 64

10 num_classes: 10

11
12 datamodule:

13 _target_: torchgeo.datamodules.EuroSATDataModule

14 batch_size: 64

15 download: True

16
17 trainer:

18 _target_: lightning.Trainer

19 max_epochs: 40

20 gradient_clip_val: 1.0

21 accumulate_grad_batches: 2

Figure 2: Example YAML files that configure (left) a partially stochastic BNN based on
a timm ResNet18 model implementation and (right) the same ResNet18 as Deep Kernel
Learning model for training on the EuroSAT classification dataset from the geospatial
PyTorch domain library TorchGeo (Stewart et al., 2022).

Introduction and Tutorials A great emphasis has been placed on providing an entry
point to UQ for practitioners from various domains. To this end, we include more than 30
tutorials as Jupyter Notebooks (Kluyver et al., 2016) in the accompanying documentation
page that explain the theoretical framework and demonstrate their application to common
toy datasets.

4

https://lightning-uq-box.readthedocs.io/en/latest/


Lightning UQ Box

3. Conclusion

We introduce Lightning UQ Box, a PyTorch framework built on PyTorch Lightning for UQ
in deep learning. By offering a comprehensive set of methods across theoretical frameworks
that can be scaled to common problems from different domains, the toolbox allows prac-
titioners to easily and fairly compare these approaches. Together with detailed tutorials,
we hope that the library can provide an entry point for people interested in UQ, support
large scale experiments across methods and perhaps foster new research ideas.
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Hernández-Lobato. Bayesian deep learning via subnetwork inference. In International
Conference on Machine Learning, pages 2510–2521. PMLR, 2021b.

Gianluca Detommaso, Alberto Gasparin, Michele Donini, Matthias Seeger, Andrew Gordon
Wilson, and Cedric Archambeau. Fortuna: A library for uncertainty quantification in
deep learning. Journal of Machine Learning Research, 25(238):1–7, 2024.

Piero Esposito. BLiTZ - Bayesian Layers in Torch Zoo (a Bayesian deep learing library for
Torch). https://github.com/piEsposito/blitz-bayesian-deep-learning/, 2020.

William A. Falcon. PyTorch Lightning. https://github.com/Lightning-AI/

pytorch-lightning, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning,
pages 1050–1059. PMLR, 2016.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias
Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher,
et al. A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56
(Suppl 1):1513–1589, 2023.

5

https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/Lightning-AI/pytorch-lightning


Lehmann, Gottschling, Gawlikowski, Stewart, Depeweg, and Nalisnick

Benjamin J. Heil, Michael M. Hoffman, Florian Markowetz, Su-In Lee, Casey S. Greene,
and Stephanie C. Hicks. Reproducibility standards for machine learning in the life
sciences. Nature Methods, 18(10):1132–1135, 2021.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in machine-
learning-based science. Patterns, 4(9), 2023.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bus-
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