
Journal of Machine Learning Research 23 (2022) 1-18 Submitted 11/21; Revised 6/22; Published 7/22

CleanRL: High-quality Single-file Implementations of Deep
Reinforcement Learning Algorithms

Shengyi Huang1 costa.huang@outlook.com

Rousslan Fernand Julien Dossa2 doss@ai.cs.kobe-u.ac.jp

Chang Ye3 c.ye@nyu.edu

Jeff Braga1 jeffreybraga@gmail.com

Dipam Chakraborty4 dipamc77@gmail.com

Kinal Mehta5 kinal.mehta11@gmail.com

João G.M. Araújo6 joaoguilhermearujo@gmail.com
1College of Computing and Informatics, Drexel University, USA
2Graduate School of System Informatics, Kobe University, Japan
3Tandon School of Engineering, New York University, USA
4AIcrowd
5International Institute of Information Technology, Hyderabad
6Cohere

Editor: Joaquin Vanschoren

Abstract

CleanRL is an open-source library that provides high-quality single-file implementations of
Deep Reinforcement Learning (DRL) algorithms. These single-file implementations are self-
contained algorithm variant files such as dqn.py, ppo.py, and ppo atari.py that individ-
ually include all algorithm variant’s implementation details. Such a paradigm significantly
reduces the complexity and the lines of code (LOC) in each implemented variant, which
makes them quicker and easier to understand. This paradigm gives the researchers the most
fine-grained control over all aspects of the algorithm in a single file, allowing them to proto-
type novel features quickly. Despite having succinct implementations, CleanRL’s codebase
is thoroughly documented and benchmarked to ensure performance is on par with reputable
sources. As a result, CleanRL produces a repository tailor-fit for two purposes: 1) under-
standing all implementation details of DRL algorithms and 2) quickly prototyping novel
features. CleanRL’s source code can be found at https://github.com/vwxyzjn/cleanrl.

Keywords: deep reinforcement learning, single-file implementation, open-source

1. Introduction

In recent years, Deep Reinforcement Learning (DRL) algorithms have achieved great suc-
cess in training autonomous agents for tasks ranging from playing video games directly from
pixels to robotic control (Mnih et al., 2013; Lillicrap et al., 2016; Schulman et al., 2017). At
the same time, open-source DRL libraries also flourish in the community (Raffin et al., 2021;
Liang et al., 2018; D’Eramo et al., 2020; Fujita et al., 2021; Weng et al., 2021). Many of
them have adopted good modular designs and fostered vibrant development communities.
Nevertheless, understanding all the implementation details of an algorithm remains difficult

c©2022 Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and João G.M. Araújo.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/21-1342.html.

https://github.com/vwxyzjn/cleanrl
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/21-1342.html


Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

Figure 1: Filediff in Visual Studio Code: left click select ppo atari.py then cmd/ctrl + left
click select ppo continuous action.py to highlight neural network architecture
differences of PPO when applying to Atari games and MuJoCo tasks.

because these details are spread to different modules. However, understanding these imple-
mentation details is essential because they could significantly affect performance (Engstrom
et al., 2020).

In this paper, we introduce CleanRL, a DRL library based on single-file implementa-
tions to help researchers understand all the details of an algorithm, prototype new features,
analyze experiments, and scale the experiments with ease. CleanRL is a non-modular li-
brary. Each algorithm variant in CleanRL is self-contained in a single file, in which the
lines of code (LOC) have been trimmed to the bare minimum. Along with succinct im-
plementations, CleanRL’s codebase is thoroughly documented and benchmarked to ensure
performance is on par with reputable sources. For example, our Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) implementation with Atari games is a single file
ppo atari.py using only 337 LOC, yet it closely matches openai/baselines’ PPO per-
formance in the game breakout (Appendix A), making it much easier to understand the
algorithm in one go. In contrast, the researchers using modular DRL libraries often need to
understand the modular design (usually 7 to 20 files) which can contain thousands of LOC.
As a result, CleanRL is tailor-fit for two purposes: 1) understanding all implementation
details of DRL algorithms and 2) quickly prototyping novel features.

2. Single-file Implementations

Despite the many features modular DRL libraries offer, understanding all the relevant code
of an algorithm is a non-trivial effort. As an example, running the PPO model in Atari
games using Stable Baselines 3 (SB3) with a debugger involves jumping back and forth
between 20 python files that comprise 4000+ LOC (Raffin et al., 2021) (Appendix B). This
makes it difficult to understand how the algorithm works due to the sheer amount of code

2



CleanRL: High-quality Single-file Implementations of DRL Algorithms

and its complex structure. This is a problem because even small implementation details
can have a large impact on the performance of deep RL algorithms (Engstrom et al., 2020),
and understanding them has become increasingly important.

CleanRL makes it much easier to understand implementation details with a simple idea
— putting all implementation details of an algorithm variant into a single file. We call
this practice “single-file implementations.” Single-file implementations allow us to focus on
implementing a specific variant without worrying about handling special cases. Also, for
utilities that are not relevant to the algorithm itself, like logging and plotting, we import
third-part libraries. As a result, CleanRL produces a codebase with an order of magnitude
fewer LOC for each algorithm variant. For example, we have a:

1. ppo.py (321 LOC) for the classic control environments, such as CartPole-v1,

2. ppo atari.py (337 LOC) for the Atari environments (Bellemare et al., 2013),

3. ppo continuous action.py (331 LOC) for the robotics environments (e.g., MuJoCo,
PyBullet) with continuous action spaces (Schulman et al., 2017).

The single-file implementations have the following benefits.

Transparent learning experience It becomes easier to recognize all aspects of the
code in one place. By looking at ppo.py, it is straightforward to recognize the core imple-
mentation details of PPO. It also becomes easier to identify the difference between algorithm
variants via filediff. For example, comparing ppo.py with ppo atari.py shows a 30 LOC
difference required to add environment prepossessing and modify neural networks. Mean-
while, another comparison with ppo continuous action.py shows a 25 LOC difference
required to use normalization and account for continuous action space. See Figure 1 as an
example. Being able to display the variant’s differences explicitly has helped us explain 37
implementation details of PPO (Huang et al., 2022).

Better debug interactivity Everything is located in a single file, so when debugging,
the user does not need to browse different modules like in modular libraries. Additionally,
most variables in the files exist in the global Python name scope. This means the researchers
can use Ctrl+C to stop the program execution and check most variables and their shapes
in the interactive shell (Appendix C). This is more convenient than using the Python’s
debugger, which only shows the variables in a specific name scope like in a function.

Painless performance attribution If a new version of our algorithm has obtained a
higher performance, we know the exact single file which is responsible for the performance
improvement. To attribute the performance improvement, we can simply do a filediff be-
tween the current and past versions, and every line of code change is made explicit to us.
In comparison, two different versions of modular RL libraries usually involve dozens of file
changes, which are more difficult to compare.

Faster prototyping experience CleanRL gives researchers fine-grained control to
everything related to the algorithm in a single file, hence making it efficient to develop
prototypes without having to subclass like in other modular RL libraries. As an example,
invalid action masking (Huang and Ontañón, 2022) is a common technique used in games
with large, parameterized action spaces. With CleanRL, it takes about 40 LOC to imple-
ment (Huang et al., 2022, Sec. 4), whereas in other libraries it could take substantially

3



Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

more LOC (e.g., more than 600 LOC, excluding the test cases1) because of overhead such
as re-factoring the functional arguments and making more general classes.

Because of these benefits, we have also implemented single-file implementations for Deep
Q-learning (Mnih et al., 2013), Categorical Deep Q-learning (Bellemare et al., 2017), Deep
Deterministic Policy Gradient (Lillicrap et al., 2016), Twin-delayed Deep Deterministic
Policy Gradient (Fujimoto et al., 2018), Soft Actor-cirtic (Haarnoja et al., 2018a), Phasic
Policy Gradient (Cobbe et al., 2021), and Random Network Distillation (Burda et al., 2019).

Despite of these benefits of single-file implementations, one downside is the excessive
amount of duplicate code. To help reduce the maintenance overhead, we have adopted a
series of developmental tools to automatically format code, pin dependencies, scale experi-
ments with cloud providers, etc (Appendix D).

3. Documentation and Benchmark

All CleanRL’s single-file implementations are thoroughly documented and benchmarked in
our main documentation site (https://docs.cleanrl.dev/). For each single-file imple-
mentation, we document the original paper and relevant information, usage, an explanation
of logged metrics, note-worthy implementation details, and benchmark results which include
learning curves, a table comparing performance against reputable sources when applicable,
and links to the tracked experiments. In particular, the benchmark experiments are tracked
with Weights and Biases (Biewald, 2020), which allows the users to interactively explore
other tracked data such as system metrics, hyperparameters, and the agents’ gameplay
videos. For convenience, we have included tables comparing the performance of CleanRL’s
single-file implementations against reputable sources when applicable (Appendix A).

4. When to Use CleanRL

CleanRL has its own set of pros and cons like other popular modular RL libraries. For
example, modular DRL libraries, such as SB3, offer a friendly end user API — if an end
user does not know much about DRL but wants to apply PPO in their tasks, SB3 would
be a great fit. Among many other benefits, SB3 makes it easy to configure different compo-
nents. CleanRL does not have a friendly end user API like agent.learn(), but it exposes
all implementation details and is easy to read, debug, modify for research, and study RL.
Comparatively, CleanRL is well-suited for researchers who need to understand all imple-
mentation details of DRL algorithms, and prototype novel features quickly.

CleanRL complements the DRL research community with a unique developing experi-
ence. In fact, there is a win-win situation for CleanRL and SB3: “prototype with CleanRL
and port to SB3 for wider adoption in the community.” CleanRL’s codebase often allows
researchers to prototype specialized features much quicker. As shown above, the invalid ac-
tion masking technique with PPO takes ∼40 LOC to implement. Once we have rigorously
validated this technique, our results and analysis will provide concrete guidance for porting
this technique to SB3, which enable our technique to reach a wider range of audience given
SB3’s friendly end user APIs.

1. See https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/25.

4

https://docs.cleanrl.dev/
https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/pull/25


CleanRL: High-quality Single-file Implementations of DRL Algorithms

Acknowledgments

We thank Santiago Ontañón for providing helpful feedback and Angela Steyn for proofread-
ing the paper. We thank Google’s TPU Research Cloud (TRC) for supporting TPU related
experiments. Also, we thank the following people for their open-source contributions:

1. @adamcakg: refactor class arguments (#34)

2. Jordan Terry: fix the bibtex entry (#44).

3. Michael Lu: fix links in the docs (#48)

4. Felipe Martins: fix links in the docs (#54)

5. @chutaklee: refactor TD3 class initialization (#37)

6. Ram Rachum: use correct python exception clause (#205)

7. Alexander Nikulin: fix reward normalization wrapper (#209)

8. Ben Trevett: refactor replay buffer (#36)

9. @ElliotMunro200: specify correct python version requirement (#177)

10. Helge Spieker: fix typos (#45)

5

https://github.com/adamcakg
https://github.com/vwxyzjn/cleanrl/pull/34
https://twitter.com/j_k_terry
https://github.com/vwxyzjn/cleanrl/pull/44
https://sudo-michael.github.io/
https://github.com/vwxyzjn/cleanrl/pull/48
https://github.com/FelipeMartins96
https://github.com/vwxyzjn/cleanrl/pull/54
https://github.com/chutaklee
https://github.com/vwxyzjn/cleanrl/pull/37
http://r.rachum.com
https://github.com/vwxyzjn/cleanrl/pull/205
https://vk.com/hiowl
https://github.com/vwxyzjn/cleanrl/pull/209
https://github.com/bentrevett
https://github.com/vwxyzjn/cleanrl/pull/36
https://github.com/ElliotMunro200
https://github.com/vwxyzjn/cleanrl/pull/177
https://hspieker.de/
https://github.com/vwxyzjn/cleanrl/pull/45


Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

Appendix A. Benchmark experiments

Like mentioned in the Section 3, we rigorously benchmark our single-file implementations
to validate their quality. Below are the tables that compare performance against reputable
resources when applicable, where the reported numbers are the final average episodic returns
of at least 3 random seeds. For more detailed information, see the main documentation site
(https://docs.cleanrl.dev/).

A.1 Proximal Policy Optimization Variants and Performance

The following table reports the final episodic returns obtained by the agent in Gym’s classic
control tasks (Brockman et al., 2016):

Environment ppo.py openai/baselies’ PPO (Huang et al., 2022)

CartPole-v1 492.40 ± 13.05 497.54 ± 4.02
Acrobot-v1 -89.93 ± 6.34 -81.82 ± 5.58
MountainCar-v0 -200.00 ± 0.00 -200.00 ± 0.00

The following tables report the final episodic returns obtained by the agent in Gym’s Atari
tasks (Brockman et al., 2016; Bellemare et al., 2013):

Environment ppo atari.py openai/baselies’ PPO (Huang et al., 2022)[ˆ1]

BreakoutNoFrameskip-v4 416.31 ± 43.92 406.57 ± 31.554
PongNoFrameskip-v4 20.59 ± 0.35 20.512 ± 0.50
BeamRiderNoFrameskip-v4 2445.38 ± 528.91 2642.97 ± 670.37

Environment ppo atari lstm.py openai/baselies’ PPO (Huang et al., 2022)

BreakoutNoFrameskip-v4 128.92 ± 31.10 138.98 ± 50.76
PongNoFrameskip-v4 19.78 ± 1.58 19.79 ± 0.67
BeamRiderNoFrameskip-v4 1536.20 ± 612.21 1591.68 ± 372.95

Environment ppo atari multigpu.py (160 mins) ppo atari.py (215 mins)

BreakoutNoFrameskip-v4 429.06 ± 52.09 416.31 ± 43.92
PongNoFrameskip-v4 20.40 ± 0.46 20.59 ± 0.35
BeamRiderNoFrameskip-v4 2454.54 ± 740.49 2445.38 ± 528.91

The following table reports the final episodic returns obtained by the agent in Gym’s Mu-
JoCo tasks (Brockman et al., 2016; Todorov et al., 2012):

6

https://docs.cleanrl.dev/


CleanRL: High-quality Single-file Implementations of DRL Algorithms

Environment ppo continuous action.py openai/baselies’ PPO (Huang et al., 2022)

Hopper-v2 2231.12 ± 656.72 2518.95 ± 850.46
Walker2d-v2 3050.09 ± 1136.21 3208.08 ± 1264.37
HalfCheetah-v2 1822.82 ± 928.11 2152.26 ± 1159.84

The following table reports the final episodic returns obtained by the agent in EnvPool’s
Atari tasks (Brockman et al., 2016; Bellemare et al., 2013; Weng et al., 2022):

Environment ppo atari envpool.py (80 mins) ppo atari.py (220 mins)

Breakout 389.57 ± 29.62 416.31 ± 43.92
Pong 20.55 ± 0.37 20.59 ± 0.35
BeamRider 2039.83 ± 1146.62 2445.38 ± 528.91

The following table reports the final episodic returns obtained by the agent in Procgen
tasks (Cobbe et al., 2020):

Environment ppo procgen.py openai/baselies’ PPO (Huang et al., 2022)

StarPilot 31.40 ± 11.73 33.97 ± 7.86
BossFight 9.09 ± 2.35 9.35 ± 2.04
BigFish 21.44 ± 6.73 20.06 ± 5.34

The following table reports the final episodic returns obtained by the agent in Isaac Gym (Makoviy-
chuk et al., 2021):

Environment ppo continuous action isaacgym.py

(160 mins)
Denys88/rl games (215 mins)

Cartpole (40s) 413.66 ± 120.93 417.49 (30s)
Ant (240s) 3953.30 ± 667.086 5873.05
Humanoid (350s) 2987.95 ± 257.60 6254.73
Anymal (317s) 29.34 ± 17.80 62.76
BallBalance (160s) 161.92 ± 89.20 319.76
AllegroHand (200m) 762.93 ± 427.92 3479.85
ShadowHand (130m) 427.16 ± 161.79 5713.74

The following table reports the final episodic length instead of episodic return obtained by
the agent in PettingZoo (Terry et al., 2021):

Environment ppo pettingzoo ma atari.py (160 mins)

pong v3 4153.60 ± 190.80
surround v2 3055.33 ± 223.68
tennis v3 14538.02 ± 7005.54

7

https://github.com/Denys88/rl_games


Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

A.2 Deep Deterministic Policy Gradient Variants and Performance

The following tables report the final episodic returns obtained by the agent in Gym’s Mu-
JoCo tasks (Brockman et al., 2016; Todorov et al., 2012):

Environment ddpg continuous action.py OurDDPG.py (Fujimoto
et al., 2018, Tab. 1)

DDPG.py using settings
from (Lillicrap et al.,
2016) in (Fujimoto
et al., 2018, Tab. 1)

HalfCheetah 9382.32 ± 1395.52 8577.29 3305.60
Walker2d 1598.35 ± 862.66 3098.11 1843.85
Hopper 1313.43 ± 684.46 1860.02 2020.46

Environment ddpg continuous action jax.py

(RTX 3060)
ddpg continuous action jax.py

(VM w/ TPU)

HalfCheetah 9910.53 ± 673.49 9790.72 ± 1494.85
Walker2d 1397.60 ± 677.12 1314.83 ± 689.71
Hopper 1603.5 ± 727.281 1602.20 ± 696.11

ddpg continuous action.py

(RTX 2060)

HalfCheetah 9382.32 ± 1395.52
Walker2d 1598.35 ± 862
Hopper 1313.43 ± 684.46

A.3 Twin-Delayed Deep Deterministic Policy Gradient Variants and
Performance

The following tables report the final episodic returns obtained by the agent in Gym’s Mu-
JoCo tasks (Brockman et al., 2016; Todorov et al., 2012):

Environment td3 continuous action.py TD3.py (Fujimoto et al., 2018, Tab. 1)

HalfCheetah 9018.31 ± 1078.31 9636.95 ± 859.065
Walker2d 4246.07 ± 1210.84 4682.82 ± 539.64
Hopper 3391.78 ± 232.21 3564.07 ± 114.74

8

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py
https://github.com/sfujim/TD3/blob/master/OurDDPG.py
https://github.com/sfujim/TD3/blob/master/DDPG.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py


CleanRL: High-quality Single-file Implementations of DRL Algorithms

Environment td3 continuous action jax.py

(RTX 3060)
td3 continuous action jax.py

(VM w/ TPU)

HalfCheetah 9099.93 ± 1171.83 9127.81 ± 965.42
Walker2d 2874.39 ± 1684.57 3519.38 ± 368.02
Hopper 3382.66 ± 242.52 3126.40 ± 558.93

td3 continuous action.py

(RTX 2060)

HalfCheetah 9018.31 ± 1078.31
Walker2d 4246.07 ± 1210.84
Hopper 3391.78 ± 232.21

A.4 Soft Actor-Critic Variant and Performance

The following table reports the final episodic returns obtained by the agent in Gym’s Mu-
JoCo tasks (Brockman et al., 2016; Todorov et al., 2012):

Environment sac continuous action.py Haarnoja et al. (2018b)

HalfCheetah-v2 10310.37 ± 1873.21 ∼11,250
Walker2d-v2 4418.15 ± 592.82 ∼4,800
Hopper-v2 2685.76 ± 762.16 ∼3,250

A.5 Phasic Policy Gradient Variant and Performance

The following table reports the final episodic returns obtained by the agent in Procgen
tasks (Cobbe et al., 2020):

Environment ppg procgen.py ppo procgen.py openai/phasic-policy-gradient

Starpilot (easy) 35.19 ± 13.07 33.15 ± 11.99 42.01 ± 9.59
Bossfight (easy) 10.34 ± 2.27 9.48 ± 2.42 10.71 ± 2.05
Bigfish (easy) 27.25 ± 7.55 22.21 ± 7.42 15.94 ± 10.80

9

https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action_jax.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ddpg_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py


Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

A.6 Deep Q-learning Variants and Performance

The following tables report the final episodic returns obtained by the agent in Gym’s Atari
tasks (Brockman et al., 2016; Bellemare et al., 2013):

Environment dqn atari.py

10M steps
Mnih et al. (2015)
50M steps

Hessel et al. (2018,
Fig. 5)

BreakoutNoFrameskip-v4 366.928 ± 39.89 401.2 ± 26.9 ∼230 (10M steps)
∼300 (50M steps)

PongNoFrameskip-v4 20.25 ± 0.41 18.9 ± 1.3 ∼20 (10M steps)
∼20 (50M steps)

BeamRiderNoFrameskip-v4 6673.24 ± 1434.37 6846 ± 1619 ∼6000 (10M steps)
∼7000 (50M steps)

Environment dqn atari jax.py

10M steps
dqn atari.py

10M steps
Mnih et al. (2015)
50M steps

BreakoutNoFrameskip-v4 377.82 ± 34.91 366.928 ± 39.89 401.2 ± 26.9
PongNoFrameskip-v4 20.43 ± 0.34 20.25 ± 0.41 18.9 ± 1.3
BeamRiderNoFrameskip-v4 5938.13 ± 955.84 6673.24 ± 1434.37 6846 ± 1619

The following tables report the final episodic returns obtained by the agent in Gym’s classic
control tasks (Brockman et al., 2016):

Environment dqn.py

CartPole-v1 488.69 ± 16.11
Acrobot-v1 -91.54 ± 7.20
MountainCar-v0 -194.95 ± 8.48

Environment dqn jax.py dqn.py

CartPole-v1 499.84 ± 0.24 488.69 ± 16.11
Acrobot-v1 -89.17 ± 8.79 -91.54 ± 7.20
MountainCar-v0 -173.71 ± 29.14 -194.95 ± 8.48

10



CleanRL: High-quality Single-file Implementations of DRL Algorithms

A.7 Categorical Deep Q-learning Variants and Performance

The following table reports the final episodic returns obtained by the agent in Gym’s Atari
tasks (Brockman et al., 2016; Bellemare et al., 2013):

Environment c51 atari.py

10M steps
Bellemare et al.
(2013, Fig. 14)
50M steps

Hessel et al. (2018,
Fig. 5)

BreakoutNoFrameskip-v4 461.86 ± 69.65 748 ∼500 (10M steps)
∼600 (50M steps)

PongNoFrameskip-v4 19.46 ± 0.70 20.9 ∼20 (10M steps)
∼20 (50M steps)

BeamRiderNoFrameskip-v4 9592.90 ± 2270.15 14,074 ∼12000 (10M steps)
∼14000 (50M steps)

The following table reports the final episodic returns obtained by the agent in Gym’s classic
control tasks (Brockman et al., 2016):

Environment c51.py

CartPole-v1 481.20 ± 20.53
Acrobot-v1 -87.70 ± 5.52
MountainCar-v0 -166.38 ± 27.94

A.8 Random Network Distillation

The following table reports the final episodic returns obtained by the agent in Gym’s Atari
tasks (Brockman et al., 2016; Bellemare et al., 2013):

Environment ppo rnd envpool.py Burda et al. (2019)

MontezumaRevenge-v5 7100 (1 seed) 8152 (3 seeds)

11



Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

Appendix B. Stepping Through Stable-baselines 3 Code with a Debugger

In this section, we attempt to run the following Stable-baselines 3 (v1.5.0)2 code with a
debugger to identify the related modules.

from stable_baselines3.common.env_util import make_atari_env

from stable_baselines3.common.vec_env import VecFrameStack

from stable_baselines3 import PPO

env = make_atari_env('PongNoFrameskip-v4', n_envs=4, seed=0)

env = VecFrameStack(env, n_stack=4)

model = PPO('CnnPolicy', env, verbose=1)

model.learn(total_timesteps=25_000)

Here is the list of the related python files and their lines of code (LOC):

1. stable baselines3/ppo/ppo.py — 315 LOC, 51 lines of docstring (LOD)

2. stable baselines3/common/on policy algorithm.py — 280 LOC, 49 LOD

3. stable baselines3/common/base class.py — 819 LOC, 231 LOD

4. stable baselines3/common/utils.py — 506 LOC, 195 LOD

5. stable baselines3/common/env util.py — 157 LOC, 43 LOD

6. stable baselines3/common/atari wrappers.py — 249 LOC, 84 LOD

7. stable baselines3/common/vec env/ init .py — 73 LOC, 24 LOD

8. stable baselines3/common/vec env/dummy vec env.py — 126 LOC, 25 LOD

9. stable baselines3/common/vec env/base vec env.py — 375 LOC, 112 LOD

10. stable baselines3/common/vec env/util.py — 77 LOC, 31 LOD

11. stable baselines3/common/vec env/vec frame stack.py — 65 LOC, 14 LOD

12. stable baselines3/common/vec env/stacked observations.py — 267 LOC, 74 LOD

13. stable baselines3/common/preprocessing.py — 217 LOC, 68 LOD

14. stable baselines3/common/buffers.py — 770 LOC, 183 LOD

15. stable baselines3/common/policies.py — 962 LOC, 336 LOD

16. stable baselines3/common/torch layers.py — 318 LOC, 97 LOD

17. stable baselines3/common/distributions.py — 700 LOC, 228 LOD

2. https://github.com/DLR-RM/stable-baselines3/releases/tag/v1.5.0

12

https://github.com/DLR-RM/stable-baselines3/releases/tag/v1.5.0


CleanRL: High-quality Single-file Implementations of DRL Algorithms

18. stable baselines3/common/monitor.py — 240 LOC, 76 LOD

19. stable baselines3/common/logger.py — 640 LOC, 201 LOD

20. stable baselines3/common/callbacks.py — 603 LOC, 150 LOD

The total LOC involved is 7759. Notice we have labeled the popular utilities such as vec-
torized environments, Atari environment pre-processing wrappers, and episode statistics
recording code with the blue color. This means the total LOC related to core PPO imple-
mentation not counting the blue color files and lines of docstring is 4498.

Appendix C. Interactive Shell

In CleanRL, we have put most of the variables in the global python name scope. This makes
it easier to inspect the variables and their shapes. The following figure shows a screenshot
of the Spyder editor 3, where the code is on the left and the interactive shell is on the right.
In the interactive shell, we can easily inspect the variables for debugging purposes without
modifying the code.

3. https://www.spyder-ide.org/

13

https://www.spyder-ide.org/


Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

Appendix D. Maintaining Single-file Implementations

Despite the many benefits that single-file implementations offer, one downside is excessive
amount of duplicate code, which makes them difficult to maintain. To help address this
challenge, we have adopted a series of development tools to reduce maintenance burden.
These tools are:

1. poetry (https://python-poetry.org/): poetry is a dependency management tool
that helps resolve and pins dependency versions. We use poetry to improve repro-
ducibility and provide a smooth dependency installation experience. See our instal-
lation documentation (https://docs.cleanrl.dev/get-started/installation/)
for more detail.

2. pre-commit (https://pre-commit.com/): pre-commit is a tool that helps us au-
tomate a sequence of short tasks (called pre-commit “hooks”) such as code for-
matting. In particular, we always use the following hooks when submitting code
to the main repository. See https://github.com/vwxyzjn/cleanrl/blob/master/

CONTRIBUTING.md for more information.

(a) pyupgrade (https://github.com/asottile/pyupgrade): pyupgrade upgrades
syntax for newer versions of the language.

(b) isort (https://github.com/PyCQA/isort): isort sorts imported dependencies
according to their type (e.g, standard library vs third-party library) and name.

(c) black (https://black.readthedocs.io/en/stable/): black enforces an uni-
form code style across the codebase.

(d) autoflake (https://github.com/PyCQA/autoflake): autoflake helps remove
unused imports and variables.

(e) codespell (https://github.com/codespell-project/codespell): codespell
helps avoid common incorrect spelling.

3. Docker (https://www.docker.com/): docker helps us package the code into a con-
tainer which can be used to orchestrate training in a reproducible way.

(a) AWS Batch (https://aws.amazon.com/batch/): Amazon Web Services Batch
could leverage our built containers to run thousands experiments concurrently.

(b) We have built utilities to help package code into a container and submit to AWS
Batch using a few lines of command. In 2020 alone, the authors have run over
50,000+ hours of experiments using this workflow. See https://docs.cleanrl.
dev/cloud/installation/ for more documentation.

14

https://python-poetry.org/
https://docs.cleanrl.dev/get-started/installation/
https://pre-commit.com/
https://github.com/vwxyzjn/cleanrl/blob/master/CONTRIBUTING.md
https://github.com/vwxyzjn/cleanrl/blob/master/CONTRIBUTING.md
https://github.com/asottile/pyupgrade
https://github.com/PyCQA/isort
https://black.readthedocs.io/en/stable/
https://github.com/PyCQA/autoflake
https://github.com/codespell-project/codespell
https://www.docker.com/
https://aws.amazon.com/batch/
https://docs.cleanrl.dev/cloud/installation/
https://docs.cleanrl.dev/cloud/installation/


CleanRL: High-quality Single-file Implementations of DRL Algorithms

Appendix E. W&B Editing Panel

A screenshot of the W&B panel that allows the the users to change smoothing weight, add
panels to show different metrics like losses, visualize the videos of the agents’ gameplay,
filter, group, sort, and search for desired experiments.

5. Group experiments by
attributes

3. Filter out experiments

2. Slider to check out videos
in different stages of training

1. Extra settings of the
charts on smoothing weight,
error bars, colors, and
others.

8. Search experiment by
name

6. Select run set from
projects (allow merging

runs from multiple
projects)

9. Runtime of a specific
experiment

4. Add other charts (e.g.
losses)

7. Sort experiments by
attributes

Appendix F. Author Contributions

• Shengyi Huang and Rousslan Fernand Julien Dossa co-founded CleanRL and
has led its overall development.

• Chang Ye contributed a prototype with Random Network Distillation (Burda et al.,
2019).

• Shengyi Huang, Rousslan Fernand Julien Dossa, and Chang Ye are the main
code reviewers and maintainers.

• Jeff Braga contributed hundreds of hours of tracked experiments in Weights and
Biases and submitted various codebase improvements.

• Dipam Chakraborty contributed the Phasic Policy Gradient implementation.

• Kinal Mehta contributed the Deep Q-learning implementation with JAX.

• João G.M. Araújo contributed the Twin-Delayed Deep Deterministic Policy Gra-
dient implementation with JAX.

15



Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

• Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga,
Dipam Chakraborty, Kinal Mehta, João G.M. Araújo wrote the paper.

References

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment:
An Evaluation Platform for General Agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional Perspective on Rein-
forcement Learning. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017, volume 70 of Proceedings of Machine Learning Research, pages 449–458.
PMLR, 2017. URL http://proceedings.mlr.press/v70/bellemare17a.html.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.

wandb.com/. Software available from wandb.com.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=H1lJJnR5Ym.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural gener-
ation to benchmark reinforcement learning. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 2048–2056. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/cobbe20a.html.

Karl W Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradi-
ent. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Re-
search, pages 2020–2027. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.

press/v139/cobbe21a.html.

Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, and Jan Peters. Mush-
roomrl: Simplifying reinforcement learning research. Journal of Machine Learning Re-
search, 2020.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation Matters in Deep RL: A Case Study on
PPO and TRPO. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:

//openreview.net/forum?id=r1etN1rtPB.

16

http://proceedings.mlr.press/v70/bellemare17a.html
https://www.wandb.com/
https://www.wandb.com/
https://openreview.net/forum?id=H1lJJnR5Ym
https://proceedings.mlr.press/v119/cobbe20a.html
https://proceedings.mlr.press/v139/cobbe21a.html
https://proceedings.mlr.press/v139/cobbe21a.html
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB


CleanRL: High-quality Single-file Implementations of DRL Algorithms

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation
Error in Actor-Critic Methods. In Jennifer G. Dy and Andreas Krause, editors, Pro-
ceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1582–1591. PMLR, 2018. URL http://proceedings.

mlr.press/v80/fujimoto18a.html.

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl:
A deep reinforcement learning library. Journal of Machine Learning Research, 22(77):
1–14, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1856–
1865. PMLR, 2018a. URL http://proceedings.mlr.press/v80/haarnoja18b.html.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905, 2018b.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 32(1), Apr. 2018. URL https://ojs.aaai.org/index.php/AAAI/

article/view/11796.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy
gradient algorithms. In Roman Barták, Fazel Keshtkar, and Michael Franklin, editors,
Proceedings of the Thirty-Fifth International Florida Artificial Intelligence Research So-
ciety Conference, FLAIRS 2022, Hutchinson Island, Jensen Beach, Florida, USA, May
15-18, 2022, 2022. doi: 10.32473/flairs.v35i.130584. URL https://doi.org/10.32473/

flairs.v35i.130584.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In
ICLR Blog Track, 2022. URL https://iclr-blog-track.github.io/2022/03/25/

ppo-implementation-details/.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,
Joseph Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for Distributed
Reinforcement Learning. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pages 3059–3068. PMLR, 2018. URL http://proceedings.mlr.press/v80/

liang18b.html.

17

http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://ojs.aaai.org/index.php/AAAI/article/view/11796
https://doi.org/10.32473/flairs.v35i.130584
https://doi.org/10.32473/flairs.v35i.130584
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://proceedings.mlr.press/v80/liang18b.html
http://proceedings.mlr.press/v80/liang18b.html


Huang, Dossa, Ye, Braga, Chakraborty, Mehta, and Araújo

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-
ence Track Proceedings, 2016. URL http://arxiv.org/abs/1509.02971.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State.
Isaac gym: High performance GPU based physics simulation for robot learning. In Thirty-
fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=fgFBtYgJQX_.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning.
ArXiv preprint, abs/1312.5602, 2013. URL https://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig
Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518:529–533, 2015.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/

papers/v22/20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. ArXiv preprint, abs/1707.06347, 2017. URL https:

//arxiv.org/abs/1707.06347.

J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sulli-
van, Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al.
Pettingzoo: Gym for multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:15032–15043, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library.
arXiv preprint arXiv:2107.14171, 2021.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk,
Zichen Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan.
Envpool: A highly parallel reinforcement learning environment execution engine. arXiv
preprint arXiv:2206.10558, 2022.

18

http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=fgFBtYgJQX_
https://arxiv.org/abs/1312.5602
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

	Introduction
	Single-file Implementations
	Documentation and Benchmark
	When to Use CleanRL
	Benchmark experiments
	Proximal Policy Optimization Variants and Performance
	Deep Deterministic Policy Gradient Variants and Performance
	Twin-Delayed Deep Deterministic Policy Gradient Variants and Performance
	Soft Actor-Critic Variant and Performance
	Phasic Policy Gradient Variant and Performance
	Deep Q-learning Variants and Performance
	Categorical Deep Q-learning Variants and Performance
	Random Network Distillation

	Stepping Through Stable-baselines 3 Code with a Debugger
	Interactive Shell
	Maintaining Single-file Implementations
	W&B Editing Panel
	Author Contributions

