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Abstract

Identifying changes in model parameters is fundamental in machine learning and statistics.
However, standard changepoint models are limited in expressiveness, often addressing uni-
dimensional problems and assuming instantaneous changes. We introduce change surfaces
as a multidimensional and highly expressive generalization of changepoints. We provide a
model-agnostic formalization of change surfaces, illustrating how they can provide variable,
heterogeneous, and non-monotonic rates of change across multiple dimensions. Addition-
ally, we show how change surfaces can be used for counterfactual prediction. As a concrete
instantiation of the change surface framework, we develop Gaussian Process Change Sur-
faces (GPCS). We demonstrate counterfactual prediction with Bayesian posterior mean and
credible sets, as well as massive scalability by introducing novel methods for additive non-
separable kernels. Using two large spatio-temporal datasets we employ GPCS to discover
and characterize complex changes that can provide scientific and policy relevant insights.
Specifically, we analyze twentieth century measles incidence across the United States and
discover previously unknown heterogeneous changes after the introduction of the measles
vaccine. Additionally, we apply the model to requests for lead testing kits in New York
City, discovering distinct spatial and demographic patterns.
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1. Introduction

Detecting and modeling changes in data is critical in statistical theory, scientific discovery,
and public policy. For example, in epidemiology, detecting changes in disease dynamics
can provide information about when and where a vaccination program becomes effective.
In dangerous professions such as coal mining, changes in accident occurrence patterns can
indicate which regulations impact worker safety. In city governance, policy makers may be
interested in how requests for health services change across space and over time.

Changepoint models have a long history in statistics, beginning in the mid-twentieth
century, when methods were first developed to identify changes in a data generating process
(Page, 1954; Horváth and Rice, 2014). The primary goal of these models is to determine if
a change in the distribution of the data has occurred, and then to locate one or more points
in the domain where such changes occur. While identifying these changepoints is an im-
portant result in itself, changepoint methods are also frequently applied to other problems
such as outlier detection or failure analysis (Reece et al., 2015; Tartakovsky et al., 2013;
Kapur et al., 2011). Different changepoint methods are distinguished by the diversity of
changepoints they are able to detect and the complexity of the underlying data. The sim-
plest models consider mean shifts between functional regimes (Chernoff and Zacks, 1964;
Killick et al., 2012), while others consider changes in the covariance structure or higher
order moments (Keshavarz et al., 2018; Ross, 2013; James and Matteson, 2013). A regime
is a particular data generating process or underlying function that is separated from other
underlying processes or functions by changepoints. Additionally, there is a fundamental
distinction between changepoint models that identify changes sequentially using online al-
gorithms, and those that analyze data retrospectively to find one or more changes in past
data (Brodsky and Darkhovsky, 2013; Chen and Gupta, 2011). Finally, changepoint meth-
ods may be fully parametric, semi-parametric, or nonparametric (Ross, 2013; Guan, 2004).
For additional discussion of changepoints beyond the scope of this paper, readers may con-
sider the literature reviews in Aue and Horváth (2013), Ivanoff and Merzbach (2010), and
Aminikhanghahi and Cook (2017).

Yet nearly all changepoint methods described in the statistics and machine learning
literature consider system perturbations as discrete changepoints. This literature seeks to
identify instantaneous differences in parameter distributions. The advantage of such models
is that they provide definitive assessments of the location of one or more changepoints. This
approach is reasonable, for instance, when considering catastrophic events in a mechanical
system, such as the effect of a car crash on various embedded sensor readings. Yet the
challenge with these models is that real world systems rarely exhibit a clear binary transition
between regimes. Indeed, in many applications, such as in biological science, instantaneous
changes may be physically impossible. While a handful of approaches consider non-discrete
changepoints (e.g., Wilson et al., 2012; Wilson, 2014; Lloyd et al., 2014) they still require
linear, monotonic, one-dimensional, and, in practice, relatively quick changes. Existing
models do not provide the expressiveness necessary to model complex changes.

Additionally, applying changepoints to multiple dimensions, such as spatio-temporal
data, is theoretically and practically non-trivial. Previous literature, exemplified by Guin-
ness et al. (2013), use jump processes for changes in spatio-temporal data. Jump processes
can model abrupt, non-discrete changes in the multivariate data. Yet as Guinness et al.
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(2013) note, their model requires careful, application-dependent parametric choices which
severely limit generalizability. Alternatively, Majumdar et al. (2005) model discrete spatio-
temporal changepoints with three additive Gaussian processes: one for t ≤ t0, one for t > t0,
and one for all t. Nicholls and Nunn (2010) use a Bayesian onset-field process on a lattice to
model the spatio-temporal distribution of human settlement on the Fiji islands. However,
both the models in these two papers are limited to considering discrete changepoints.

1.1. Main contributions

In this paper, we introduce change surfaces as expressive, multidimensional generalizations
of changepoints. We present a model-agnostic formulation of change surfaces and instantiate
this framework with scalable Gaussian process models. The resulting model is capable
of automatically learning expressive covariance functions and a sophisticated continuous
change surface. Additionally, we derive massively scalable inference procedures, as well as
counterfactual prediction techniques. Finally, we apply the proposed methods to a wide
variety of numerical data and complex human systems. In particular, we:

1. Introduce change surfaces as multidimensional and highly flexible generalizations of
changepoint modeling.

2. Introduce a procedure which allows one to specify background functions and change
functions, for more powerful inductive biases and added interpretability.

3. Provide a new framework for counterfactual prediction using change surfaces.

4. Present the Gaussian Process Change Surface model (GPCS) which models change
surfaces with highly flexible Random Kitchen Sink (Rahimi and Recht, 2007) features.

5. Develop massively scalable additive, non-stationary, non-separable kernels by using
the Weyl inequality (Weyl, 1912) and novel Kronecker methods. In addition we inte-
grate our approach into the recent KISS-GP framework (Wilson and Nickisch, 2015).
The resulting approach is the first scalable Gaussian process multidimensional change-
point model.

6. Describe a novel initialization method for spectral mixture kernels (Wilson and Adams,
2013) by fitting a Gaussian mixture model to the Fourier transform of the data. This
method provides good starting values for hyperparameters of expressive stationary
kernels, allowing for successful optimization over a multimodal parameter space.

7. Demonstrate that the GPCS approach is robust to misspecification, and automatically
discourages extraneous model complexity, leading to the discovery of interpretable
generative hypotheses for the data.

8. Perform counterfactual prediction in complex real world data with posterior mean
and covariance estimates for each point in the input domain.

9. Use GPCS for discovering and characterizing continuous changes in large observational
data. We demonstrate our approach on a recently released public health dataset
providing new insight that suggests how the effect of the 1963 measles vaccine may
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have varied over space and time in the United States. Additionally, we apply the
model to requests for lead testing kits in New York City from 2014-2016. The results
illustrate distinct spatial patterns in increased concern about lead-tainted water.

1.2. Outline

The paper is divided into three main units.
Section 2 formally introduces the notion of change surfaces as a multidimensional, ex-

pressive generalization of changepoints. We discuss a variant of change surfaces in section
2.1 and detail how to use change surfaces for counterfactual prediction in section 2.2. The
discussion of change surfaces in this unit is method-agnostic, and should be relevant to
experts from a wide variety of statistical and machine learning disciplines. We emphasize
the novel contribution of this framework to the general field of change detection.

Section 3 presents the Gaussian Process Change Surface (GPCS) as a scalable method
for change surface modeling. We review Gaussian process basics in section 3.1. We specify
the GPCS model in section 3.2. Counterfactual predictions with GPCS are derived in
section 3.3. Scalable inference using novel Kronecker methods are presented in section 3.4,
and we describe a novel initialization technique for expressive Gaussian process kernels in
section 3.5.

Section 4 demonstrates GPCS on out-of-class numerical data and complex spatio-
temporal data. We describe our numerical setup in section 4.1 presenting results for poste-
rior prediction, change surface identification, and counterfactual prediction. We present a
one-dimensional application of GPCS on coal mining data in section 4.2 including a com-
parison to state-of-the-art changepoint methods. Moving to spatio-temporal data, we apply
GPCS to model requests for lead testing kits in New York City in section 4.3 and discuss
the policy relevant conclusions. Additionally, we use GPCS to model measles incidence in
the United States in section 4.4 and discuss scientifically relevant insights.

Finally, we conclude with summary remarks in section 5.

2. Change surfaces

In human systems and scientific phenomena we are often confronted with changes or per-
turbations which may not immediately disrupt an entire system. Instead, changes such
as policy interventions and natural disasters take time to affect deeply ingrained habits or
trickle through a complex bureaucracy. The dynamics of these changes are non-trivial, with
sophisticated distributions, rates, and intensity functions. Using expressive models to fully
characterize such changes is essential for accurate predictions and scientifically meaningful
results. For example, in the spatio-temporal domain, changes are often heterogeneously
distributed across space and time. Capturing the complexity of these changes provides
useful insights for future policy makers enabling them to better target or structure policy
interventions.

In order to provide the expressive capability for such models, we introduce the notion
of a change surface as a generalization of changepoints. We assume data are (x, y), where
x = {x1, . . . , xn}, xi ∈ RD, are inputs or covariates, and y = {y1, . . . , yn}, yi ∈ R, are
outputs or response variables indexed by x. A change surface defines transitions between
latent functions f1, . . . , fr defining r regimes in the data. Unlike with changepoints, we
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do not require that the transitions be discrete. Instead we define r warping functions
s(x) = [s1(x), . . . , sr(x)] where si(x) : RD → [0, 1], which have support over the entire
domain of x. Importantly, these warping functions have an inductive bias towards {0, 1}
creating a soft mutual exclusivity between the functions. We define the canonical form of a
change surface as

y(x) = s1(x)f1(x) + · · ·+ sr(x)fr(x) + ε

s.t.
r∑
i=1

si(x) = 1

si(x) ≥ 0

(1)

where ε(x) is noise. Each si(x) defines how the coverage of fi(x) varies over the input
domain. Where si(x) ≈ 1, fi(x) dominates and primarily describes the relationship between
x and y. In cases where there is no i such that si(x) ≈ 1, a number of functions are dominant
in defining the relationship between x and y. Since s(x) has a strong inductive bias towards
1 or 0, the regions with multiple dominant functions are transitory and often the areas of
interest. Therefore, we can interpret how the change surface develops and where different
regimes dominate by evaluating each s(x) over the input domain.

f1(x)

f2 (x)

s1(x) = 0.5
Region of 
significant 

change 

Figure 1: Two-dimensional depiction of the change surface model where f1(x) is drawn
in orange and f2(x) is drawn in blue. The region in purple depicts an area of transition
between the two functions. The dashed line represents the domain where s1(x) = 0.5.

Figure 1 depicts a two-dimensional change surface model where latent f1(x) is drawn in
orange and latent f2(x) is drawn in blue. In those areas the first warping function, s1(x), is
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nearly 1 and 0 respectively. The region in purple depicts an area of transition between the
two functions. We would expect that s1(x) ≈ 0.5 in this region since both latent functions
are active.

In many applications we can imagine that a latent background function, f0(x), exists
that is common to all data regimes. One could reparametrize the model in Eq. (1) by
letting each latent regime be a sum of two functions: f0(x) + fi(x). Thus each regime
compartmentalizes into f0(x), a common background function, and fi(x), a regime-specific
latent function. This provides a generalized change surface model,

y(x) = f0(x) + s1(x)f1(x) + · · ·+ sr(x)fr(x) + ε(x). (2)

et even with the f0(x) background function, the inductive bias towards {0, 1} is still critical
to ensure that each function in the change surface models a distinct regime in the data. At
the boundary when si(x) is 0 or 1 for any x then the model describes discrete multivariate
changepoints (see more about comparing change surfaces to changepoints in the section
below). Alternatively, when si(x) is a constant value for all x then the model describes a
constant mixture without change regions.

Change surfaces can be considered particular types of adaptive mixture models (e.g.,
Wilson et al., 2012), where s(x) are mixture weights in a simplex that have a strong in-
ductive bias towards discretization. There are multiple ways to induce this bias towards
discretization. For example, one can choose warping functions s(x) which have sharp tran-
sitions between 0 and 1, such as the logistic sigmoid function. With multiple functions,
r ≥ 2, we can also explicitly penalize the warping functions from having similar values.
Since each of these warping functions are constrained to be in [0, 1] this penalty would tend
move their values towards 0 or 1. More generally, in the case of multiple functional regimes,
we can penalize s(x) from being far from {0, 1}. For example, we could place a prior over
s(x) with a heavy weight on 1 and 0.

Comparison to changepoint models: The flexibility of s(x) defines the complexity of
the change surface. In the simplest case, xi ∈ R1, s(x) ∈ {0, 1}, and the change surface re-
duces to a univariate changepoint used in much of the changepoint literature. Alternatively,
if we consider x ∈ R1, s(x) = σ(x) the change surface is a smooth univariate changepoint
with a fixed rate of change. Such a model only permits a monotonic rate of change and
single changepoint.

We illustrate the difference between the warping functions, s(x), of a change surface
model and standard changepoint methods in Figure 2. The top plot shows unidimensional
data with a clear change between two sinusoids. The subsequent plots represent the changes
modeled in a discrete changepoint, sigmoid changepoint, and change surface model respec-
tively. The changepoint model can only identify a change at a point in time, and the sigmoid
changepoint is a special case of a change surface constrained to a fixed rate of change. How-
ever, a general change surface can model gradual changes as well as non-monotonic changes,
providing a much richer representation of the data’s dynamics, and seamlessly extending to
multidimensional data.

Expressive change surfaces consider regimes as overlapping elements in the domain.
They can illustrate if certain changes occur more slowly or quickly, vary over particular
subpopulations, or change rapidly in certain regions of the input domain. Such insights are
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Figure 2: Unidimensional comparison of changepoint and change surface methods. In each
column, the top plot shows unidimensional data with a clear change between two sinusoids.
The subsequent plots represent the warping functions of a discrete changepoint, sigmoid
changepoint, and change surface model.

not provided by standard changepoint models but are critical for understanding policy in-
terventions or scientific processes. Table 1 compares some of the limitations of changepoints
with the added flexibility of change surfaces.

Table 1: Comparison of changepoint limitations to change surface flexibility.

Changepoints limited by: Change surfaces allow for:

Considering unidimensional, often
temporal-only problems

Multidimensional inputs with heterogeneous
changes across the input dimensions. Indeed, we
apply change surfaces to 3-dimensional, spatio-
temporal problems in section 4.

Detecting discrete or near-discrete
changes in parameter distribution

Warping functions, s(x), can be defined flexi-
bly to allow for discrete or continuous changes
with variable, and even non-monotonic rates of
change.

Not simultaneously modeling the la-
tent functional regimes

Learning si(x) and fi(x) in Equation (1) to si-
multaneously model the change surface and un-
derlying functional regimes.

Yet the flexibility required by change surfaces as applied to real data sets might seem
difficult to instantiate with any particular model. Indeed, machine learning methods are
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often desired to be expressive, interpretable, and scalable to large data. To address this
challenge we introduce the Gaussian Process Change Surface (GPCS) in section 3 which
uses Gaussian process priors with flexible kernels to provide rich modeling capability, and
a novel scalable inference scheme to permit the method to scale to massive data.

2.1. Change surface background model

In certain applications we are interested in modeling how a change occurs concurrent with
a background function which is common to all regimes. For example, consider urban crime.
If a police department staged a prolonged intervention in one sector of the city, we expect
that some of the crime dynamics in that sector might change. However, seasonal and other
weather-related patterns may remain the same throughout the entire city. In this case we
want a model to identify and isolate those general background patterns as well as one or
more clearly interpretable functions representing regions of change from the background
distribution.

We can accommodate such a model as a special case of the generalized change surface
from Eq. (2). Each latent function is modeled as f0(x) + fi(x) where f0(x) models “back-
ground” dynamics, and fi(x) models each change function. Since changes do not necessarily
persist over the entire domain, we fix fr(x) = 0, and allow

∑r−1
i=1 si(x) ≤ 1. This approach

results in the following change surface background model :

y(x) = f0(x) + s1(x)f1(x) + · · ·+ sr−1(x)fr−1(x) + ε

s.t.

r−1∑
i=1

si(x) ≤ 1

si(x) ≥ 0

(3)

Figure 3 presents a two-dimensional representation of the change surface and change surface
background models. The data depicted comes from the numerical experiments in section
4.1.

yf1(x) f2(x)s1(x) s2(x)

yf0(x) f1(x)s1(x)

yf1(x) f2(x)s1(x) s2(x)

yf0(x) f1(x)s1(x)

CS 
model:

CS Background 
model:

yf1(x) f2(x)s1(x) s2(x)

yf0(x) f1(x)s1(x)

Figure 3: Two-dimensional representation of the change surface model (Eq. 1) and change
surface background model (Eq. 3).
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The explicit decomposition into background and change functions is valuable, for in-
stance, if we wish to model counterfactuals: we want to know what the data in a region
might look like had there been no change. The decomposition also enables us to interpret
the precise effect of each change. Moreover, from a statistical perspective, the decomposi-
tion allows us to naturally encode inductive biases into the change surface model, allowing
meaningful a priori statistical dependencies between each region. In the particular case of
r = 2, the change surface background model has the form y(x) = f0(x) + s1(x)f1(x), where
f1(x) is the only change function modulated by a change surface, s1(x) ∈ [0, 1]. This corre-
sponds to observation studies or natural experiments where a single change is observed in
the data. We explore this special case further in our discussion of counterfactual prediction,
in section 2.2.

Finally, for any change surface or change surface background model, it is critical that
the model not overfit the data due to a proliferation of parameters, which could lead to
erroneously detected changes even when no dynamic change is present. We discuss one
strategy for preventing overfitting through the use of Gaussian processes in section 3.

2.2. Counterfactual prediction

By simultaneously characterizing the change surface, s(x), and the underlying generative
functions, f(x), change surface models allow us to ask questions about how the data would
have looked had there been only one latent function. In other words, change surface models
allow us to consider counterfactual questions.

For example, in section 4.4 we consider measles disease incidence in the United States
in the twentieth century. The measles vaccine was introduced in 1963, radically changing
the dynamics of disease incidence. Counterfactual studies such as van Panhuis et al. (2013)
attempt to estimate how many cases of measles there would have been in the absence of the
vaccine. To be clear, since change surface models do not consider explicit indicators of an
intervention, they do not directly estimate the counterfactual with respect to a particular
treatment variable such as vaccination. Instead, they identify and characterize changes
in the data generating process that may or may not correspond to a known intervention.
The change surface counterfactuals estimate the y values for each functional regime in the
absence of the change identified by the change surface model. In cases where the discovered
change surface does correspond to a known intervention of interest, domain experts may
interpret the change surface predictions as a counterfactual “what if” that intervention
and any contemporaneous changes in the data generating process (note that we cannot
disentangle these causal factors without explicit intervention labels) did not occur.

Counterfactuals are typically studied in econometrics. In observational studies econome-
tricians try to measure the effect of a “treatment” over some domain. Econometric models
often measure simple features of the intervention effect, such as the expected value of the
treatment over the entire domain, also known as the average treatment effect. A nascent
body of work considers machine learning approaches to provide counterfactual prediction in
complex data (Athey and Imbens, 2006; Brodersen et al., 2015; Johansson et al., 2016; Hart-
ford et al., 2016), as well as richer measures of the intervention effect (Athey and Imbens,
2006; McFowland et al., 2016). Recent work by Schulam and Saria (2017) uses Gaussian
processes for trajectory counterfactual prediction over time. However, these methods gen-
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erally follow a common framework using the potential outcomes model, which assumes that
each observation is observed with a discrete treatment (Rubin, 2005; Holland, 1986). With
discrete treatments a unit, x, is either intervened upon or not intervened upon — there are
no partial interventions. For example, in a medical study a patient may be given a vaccina-
tion, or given a placebo. Such discretization is similar to a traditional changepoint model
where s(x) ∈ {0, 1} can only be in one of two states. Yet discrete states prove challenging
in practical applications where units may be partially treated or affected through spillover.
For example, there may be herd effects in vaccinations whereby a person’s neighbor being
vaccinated reduces the risk of infection to the person. Certain econometric models attempt
to account for partial treatment such as treatment eligibility (Abadie et al., 2002), where
partial treatments are induced by defining proportions of the population that could po-
tentially be treated. Yet a model that directly enables and estimates continuous levels of
treatment may be more natural in such cases.

Counterfactuals using change surfaces. Change surface models enable counterfactual
prediction in potentially complex data through the expressive parameterization of the latent
functions, f1(x), . . . , fr(x). Determining the individual function value fi(x) over the input
domain is equivalent to determining the counterfactual of fi(x) in the absence of all other
latent functions. We can compute counterfactual estimates for latent functions in either the
regular change surface model or the change surface background model. In the latter case,
if r = 2 recall that the model takes the form y = f0(x) + s1(x)f1(x) + ε. Determining the
counterfactual for f0(x) provides an estimate for the data without the detected change, while
the counterfactual for f1(x) estimates the effect of that change across the entire regime.

f1(x)

f2 (x) f1(X)

Figure 4: Two-dimensional depiction of change surface counterfactual prediction. The left
panel illustrates the change surface of Figure 1. The right image depicts the counterfactual
of f1 over the entire domain, X, representing what the observed data could look like in
the absence of an intervention. The darker shading of the picture depicts larger posterior
uncertainty.

For example, Figure 4 depicts the counterfactual of f1 from Figure 1, where f1 is pre-
dicted over the entire regime, X. The darker shading of the picture depicts larger posterior
uncertainty. As we move toward the right portion of the plot, away from data regions where
f1 was active, we have greater uncertainty in our counterfactual predictions.
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Computing counterfactuals for each fi(x) provides insight into the effect of a change
on the various regimes. When combined with domain expertise, these models may also
be useful for estimating the treatment effect of specific variables. Additionally, given a
Bayesian formulation of the change surface, such as that proposed in section 3, we can
compute the full posterior distribution over the counterfactual prediction rather than just
a point estimate. Finally, since change surfaces model all data points as a combination of
latent functions, we do not assume that observed data comes from a particular treatment
or control. Rather we learn the contribution of each functional regime to each data point.

Some simple changepoint models could, in theory, provide the ability for counterfactual
prediction between regimes. But since changepoint models consider each regime either com-
pletely or nearly independently of other regimes, there is no information shared between
regimes. This lack of information sharing across regimes makes accurate counterfactual pre-
diction challenging without strong assumptions about the data generating process. Indeed,
to our knowledge there is no previous literature using changepoint models for counterfactual
prediction.

Assumptions in change surface counterfactuals: Change surface models identify
changing data dynamics without explicitly considering intervention labels. Instead, coun-
terfactuals of the functional regimes are computed with respect to the change surface labels,
s(x). Thus these counterfactuals estimate the value of functional regimes in the absence of
those changes but do not necessarily represent counterfactual estimates of any particular
variable. The interpretation of these counterfactuals as estimates for each functional regime
in the absence of a specific known intervention requires identification of the correct change
surface, i.e.:

• The intervention induces a change in the data generation process that cannot be
modeled with a single latent functional regime.

• The magnitude of the change is large enough to be detected.

• The change surface model is sufficiently flexible to accurately characterize this change.

• The change surface model does not overfit the data to erroneously identify a change.

Moreover, the resulting counterfactual estimates do not rule out the possibility that other
changes in the data generating process occur contemporaneously with the intervention of
interest. As such, these counterfactuals are most naturally interpreted as estimating what
the data would look like in the absence of the intervention and any other contemporaneous
changes. Disentangling these multiple potential causal factors would require additional data
about both the intervention and other potential causes.

Change surface counterfactual predictions can provide immense value in practical set-
tings. Although in some datasets explicit intervention labels are available, many observa-
tional datasets do not have such labels. Learning a change surface effectively provides a
real-valued label that can be used to predict counterfactuals. Even when the approximate
boundaries of an intervention are known, change surface modeling can still provide an im-
portant advantage since the intervention labels may not capture the true complexity of the
data. For example, knowing the date that the measles vaccine was introduced does not
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account for regional variation in vaccine distribution and uptake (see section 4.4). Both ob-
servational studies and randomized control trials suffer from partial treatment or spillover,
where an intervention on one agent or region secondarily affects a non-intervened agent or
region. For example, increasing policing in one area of the city may displace crime from
the intervened region to other areas of the city (Verbitsky-Savitz and Raudenbush, 2012).
This effect violates the Stable Unit Treatment Value Assumption, which is the basis for
many estimation techniques in economics (Rubin, 1986). By using the assumed boundaries
of an intervention as a prior over s(x), a change surface model can discover if, and where,
spillover occurs. This spillover will be captured as a non-discrete change and can aid both
in interpretability of the results and counterfactual prediction. In all these cases change
surface counterfactuals may lead to more believable counterfactual predictions by using a
real valued change surface to directly model spillover and interventions.

3. Gaussian Process Change Surfaces (GPCS)

We exemplify the general concept of change surfaces using Gaussian processes (e.g., Ras-
mussen and Williams, 2006). We emphasize that our change surface formulations from
section 2 are not limited to a certain class of models. Yet Gaussian processes offer a com-
pelling instantiation of change surfaces since they can flexibly model non-linear functions,
seamlessly extend to multidimensional and irregularly sampled data, and provide naturally
interpretable parameters. Perhaps most importantly, due to the Bayesian Occam’s Ra-
zor principle (Rasmussen and Ghahramani, 2001; MacKay, 2003; Rasmussen and Williams,
2006; Wilson et al., 2014), Gaussian processes do not in general overfit the data, and ex-
traneous model components are automatically pruned. Indeed, even though we develop a
rich change surface model with multiple mixture parameters, our results below demonstrate
that the model does not spuriously identify change surfaces in data.

Gaussian processes have been previously used for nonparametric changepoint modeling.
Saatçi et al. (2010) extend the sequential Bayesian Online Changepoint Detection algorithm
(Adams and MacKay, 2007) by using a Gaussian process to model temporal covariance
within a particular regime. Similarly, Garnett et al. (2009) provide Gaussian processes for
sequential changepoint detection with mutually exclusive regimes. Moreover, Keshavarz
et al. (2018) prove asymptotic convergence bounds for a class of Gaussian process change-
point detection but are restricted to considering a single abrupt change in one-dimensional
data. Focusing on anomaly detection, Reece et al. (2015) develop a non-stationary kernel
that could conceivably be used to model a changepoint in covariance structure. However,
as with most of the changepoint models discussed in section 1, these models all focus on
discrete changepoints, where regimes defined by distinct Gaussian processes change instan-
taneously.

A small collection of pioneering work has briefly considered the possibility of Gaussian
processes with sigmoid changepoints (Wilson, 2014; Lloyd et al., 2014). Yet these models
rely on sigmoid transformations of linear functions which are restricted to fixed rates of
change, and are demonstrated exclusively on small, one-dimensional time series data. They
cannot expressively characterize non-linear changes or feasibly operate on large multidimen-
sional data.
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The limitations of these models reflect a common criticism that Gaussian processes are
unable to convincingly respond to changes in covariance structure. We propose addressing
this deficiency by modeling change surfaces with Gaussian processes. Thus our work both
demonstrates a generalization of changepoint models and an enhancement to the expressive
power of Gaussian processes.

3.1. Gaussian processes overview

We provide a brief review of Gaussian processes. More detail can be found in Rasmussen
and Williams (2006), Schölkopf and Smola (2002), and MacKay (1998).

Consider data, (x, y), as in section 2, where x = {x1, . . . , xn}, xi ∈ RD, are inputs or
covariates, and y = {y1, . . . , yn}, yi ∈ R are outputs or response variables indexed by x. We
assume that y is generated from x by a latent function with a Gaussian process prior (GP)
and Gaussian noise. In particular,

y = f(x) + ε (4)

f(x) ∼ GP(µ(x), k(x, x′)) (5)

ε ∼ N (0, σ2ε ) (6)

A Gaussian process is a nonparametric prior over functions completely specified by mean
and covariance functions. The mean function, µ(x), is the prior expectation of f(x), while
the covariance function, k(x, x′), is a positive semidefinite kernel that defines the covariance
between function values f(x) and f(x′).

µ(x) = E[f(x)] (7)

k(x, x′) = cov(f(x), f(x′)) (8)

Any finite collection of function values is normally distributed [f(x1)...f(xp)] ∼ N (µ(x),K)
where p× p matrix Ki,j = k(xi, xj). Thus we can draw samples from a Gaussian process at
a finite set of points by sampling from a multivariate Gaussian distribution. In this paper
we generally consider µ(x) = 0 and concentrate on the covariance function. The choice of
kernel is particularly important in Gaussian process applications since the kernel defines
the types of correlations encoded in the Gaussian process. For example, a common kernel
choice is a Radial Basis Function (RBF), also known as a Gaussian kernel,

k(x, x′) = s2 exp[−(x− x′)TV −1(x− x′)/2] (9)

where s2 is the signal variance and V is a diagonal matrix of bandwidths. The RBF kernel
implies that nearby values are more highly correlated. While this may be true in many
applications, it would be inappropriate for data with significant periodicity. In such cases a
periodic kernel would be more fitting. We consider more expressive kernel representations
in section 3.2.2. This formulation of Gaussian processes naturally accommodates inputs x
of arbitrary dimensionality.

Prediction with Gaussian processes Given a set of kernel hyperparameters, θ, and
data, (x, y), we can derive a closed form expression for the predictive distribution of f(x∗)
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evaluated at points x∗,

f(x∗)|θ, x, y, x∗ ∼ N
(
k(x∗, x)[k(x, x) + σ2ε I]−1(y − µ(x)) + µ(x∗),

k(x∗, x∗)− k(x∗, x)[k(x, x) + σ2ε I]−1k(x, x∗)
) (10)

The predictive distribution provides posterior mean and variance estimates that can be
used to define Bayesian credible sets. Thus Gaussian process prediction is useful both for
estimating the value of a function at new points, x∗, and for deriving a function’s distribution
in the domain, x, for which we have data.

Learning Gaussian process hyperparameters In order to learn kernel hyperparam-
eters we often desire to optimize the marginal likelihood of the data conditioned on the
kernel hyperparameters, θ, and inputs, x.

p(y|θ, x) =

∫
p(y|f, x)p(f |θ)df (11)

Thus we choose the kernel which maximizes the likelihood that the observed data is gen-
erated by the Gaussian process prior with hyperparameters θ. In the case of a Gaussian
observation model we can express the log marginal likelihood as,

log p(y|θ, x) = −1

2
log |K + σ2ε I| −

1

2
(y − µ(x))T (K + σ2ε I)−1(y − µ(x)) + constant (12)

However, solving linear systems and log determinants involving the n×n covariance matrix
K which incurs O(n3) computations and O(n2) memory, for n training points, using stan-
dard approaches based on the Cholesky decomposition (Rasmussen and Williams, 2006).
These computational requires are prohibitive for many applications, particularly in public
policy — the focus of this paper — where it is normal to have more than few thousand train-
ing points. Accordingly, we develop alternative scalable inference procedures, presented in
section 3.4, which enable tractability on much larger datasets.

3.2. Model specification

Change surface data consists of latent functions f1, . . . , fr defining r regimes in the data.
The change surface defines the transitions between these functions. We could initially
consider an input-dependent mixture model such as in Wilson et al. (2012),

y(x) = w1(x)f1(x) + · · ·+ wr(x)fr(x) + ε (13)

where the weighting functions, wi(x) : RD → R1, describe the mixing proportions over the
input domain. However, for data with changing regimes we are particularly interested in
latent functions that exhibit some amount of mutual exclusivity.

We induce this partial discretization with σ(z) : Rr → [0, 1]r. These functions have
support over the entire real line, but a range in [0, 1] and concentrated towards 0 and 1.
Thus, each wi(x) in Eq. (13) becomes σi(w(x)), where w(x) = [w1(x), .., wr(x)]. Addi-
tionally, we choose σ(z) such that it produces a convex combination over the weighting
functions,

∑r
i=1 σi(w(x)) = 1. In this way, each wi(x) defines the strength of latent fi over
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the domain, while σ(z) normalizes these weights to induce weak mutual exclusivity. Thus
considering the general model of change surfaces in Eq. (1) we define each warping function
as si(x) = σi(w(x)).

A natural choice for flexible change surfaces is to let σ(z) be the softmax function.
In this way the change surface can approximate a Heaviside step function, corresponding
to the sharp transitions of standard changepoints, or more gradual changes. For r latent
functions, the resulting warping function is:

si(x) = σi(w(x)) = softmax(w(x))i =
exp(wi(x))∑r
j=1 exp(wj(x))

(14)

The Gaussian process change surface (GPCS) model is thus

y(x) = σ1(w(x))f1(x) + · · ·+ σr(w(x))fr(x) + ε (15)

where each fi is drawn from a Gaussian process. Importantly, we expect that each Gaussian
process, fi(x), will have different hyperparameter values corresponding to different dynamics
in the various regimes.

Since a sum of Gaussian processes is a Gaussian process, we can re-write Eq. (15) as
y(x) = f(x) + ε, where f(x) has a single Gaussian process prior with covariance function,

k(x, x′) = σ1(w(x))k1(x, x
′)σ1(w(x′)) + · · ·+ σr(w(x))kr(x, x

′)σr(w(x′)) (16)

In this form we can see that σ1(w(x)) . . . σr(w(x)) induce non-stationarity since they are
dependent on the input x. Thus, even if we use stationary kernels for all ki, GPCS obser-
vations follow a Gaussian process with a flexible, non-stationary kernel.

3.2.1. Design choices for w(x)

The functional form of w(x) determines how changes can occur in the data, and how many
can occur. For example, a linear parametric weighting function,

w(x) = β0 + βT1 x (17)

only permits a single linear change surface in the data. Yet even this simple model is more
expressive than discrete changepoints since it permits flexibility in the rate of change and
extends to change regions in RD.

In order to develop a general framework, we introduce a flexible w(x) that is formed as a
finite sum of Random Kitchen Sink (RKS) features which map the D dimensional input x to
an m dimensional feature space. We use RKS features from a Fourier basis expansion with
Gaussian parameters and employ marginal likelihood optimization to learn the parameters
of this expansion. Similar expansions have been used to efficiently approximate flexible
non-parametric Gaussian processes (Lázaro-Gredilla et al., 2010; Rahimi and Recht, 2007).

Using m RKS features, w(x) is defined as,

w(x) =

m∑
i=1

ai cos(ωTi xi + bi) (18)
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where we initially sample,

ai ∼ N (0,
σ0
m
I) (19)

ωi ∼ N (0,
1

4π2
Λ−1) (20)

bi ∼ Uniform(0, 2π) (21)

Initialization of hyperparameters σ0 and diagonal matrix of length-scales, Λ = diag(l21, . . . , l
2
D),

is discussed in section 3.5.

Experts with domain knowledge can specify a parametric form for w(x) other than
RKS features. Such specification can be advantageous, requiring relatively few, highly in-
terpretable parameters to optimize. For example, in an industrial setting where we are
modeling failure of parts in a factory we could define w(x) such that it was monotonically
increasing since machine parts do not self-repair. This bias could take the form of a lin-
ear function as in Equation (17). Note that since parameters are learned from data, the
functional form of w(x) does not require prior knowledge about if or where changes occur.

3.2.2. Kernel specification

Each latent function is specified by a kernel with its own set of hyperparameters. By
design, each ki may be of a different form. For example, one function may have a Matérn
kernel, another a periodic kernel, and a third an exponential kernel. Such specification is
useful when domain knowledge provides insight into the covariance structure of the various
regimes.

In order to maintain maximal generality and expressivity, we develop GPCS using mul-
tidimensional spectral mixture kernels (Wilson and Adams, 2013) where x ∈ RD.

kSM(x, x′) =

Q∑
q=1

ωq cos(2π(x− x′)Tµq)
D∏
d=1

exp(−2π2(x(d) − x′(d))2v(d)q ) (22)

This kernel is derived via spectral densities that are scale-location mixtures of Q Gaussians.

Each component in this mixture has mean µq ∈ RD, covariance matrix diag(v
(1)
q , ..., v

(D)
q ),

and signal variance parameter ωq ∈ R1. With a sufficiently large Q, spectral mixture
kernels can approximate any stationary kernel, providing the flexibility to capture complex
patterns over multiple dimensions. These kernels have been used in pattern prediction,
outperforming complex combinations of standard stationary kernels (Wilson et al., 2014).

Previous work on Gaussian processes changepoint modeling has typically been restricted
to RBF (Saatçi et al., 2010; Garnett et al., 2009) or exponential kernels (Majumdar et al.,
2005). However, expressive covariance functions are particularly critical for modelling mul-
tidimensional and spatio-temporal data – a key application for change surfaces – where
structure is often complex and unknown a priori.

Initializing and training expressive kernels is often challenging. We propose a practical
initialization procedure in section 3.5, which can be used quite generally to help learn flexible
kernels.
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3.2.3. GPCS background model

Following section 2.1 we extend GPCS to the “GPCS background model.” For this model
we add a latent background function, f0(x), with an independent Gaussian process prior.
Using the same choices for expressive w(x) and covariance functions, we define the GPCS
background model as,

y(x) = f0(x) + σ1(w(x))f1(x) + · · ·+ σr−1(w(x))fr−1(x) + ε (23)

Recall that in this model we set fr(x) = 0. Additionally, since we continue to enforce∑r
i=1 σi(w(x)) = 1, thus

∑r−1
i=1 σi(w(x)) ≤ 1.

This model effectively places different priors on the background and change regions, as
opposed to the the standard GPCS model which places the same GP prior on each regime.
The different priors in the GPCS background model reflect an intentional inductive bias
which could be advantageous in certain domain settings, such as policy interventions, as
discussed in section 2.1 above.

3.3. GPCS Counterfactual Prediction

We consider counterfactuals when using two latent functions in a GPCS, f1(x) and f2(x).
This two-function setup addresses a typical setting for counterfactual prediction when con-
sidering two alternatives. The derivations below can be extended to multiple functional
regimes. As discussed above, we note that change surface counterfactuals are only valid
with respect to the regimes of the data as identified by GPCS. Subsequent analysis and
domain expertise are necessary to make any further claims about the relationship between
an identified change surface and some latent intervention.

In counterfactual prediction we wish to infer the value of f1(x) and f2(x) in the absence
of the other function. Therefore we condition on the observations, (x, y), and GPCS model
parameters in order to compute the conditional distribution p

(
[f1(x), f2(x)]|y

)
from the

multivariate Gaussian joint distribution p
(
[f1(x), f2(x)], y

)
. For notational convenience we

omit explicit reference to the model parameters in the subsequent derivations but note that
all distributions are conditional on these parameters.

To recall, for two latent functions, f1(x) and f2(x), GPCS specifies

y(x) = σ1f1(x) + σ2f2(x) + ε (24)

ε ∼ N (0, σ2ε ) (25)

f1(x) ∼ GP(0,K1) (26)

f2(x) ∼ GP(0,K2) (27)

where for notational simplicity we let K1 = k1(x, x
′), K2 = k2(x, x

′), σ1 = σ1(w(x)), and
σ2 = σ2(w(x)).

We consider the most general case when we want to predict counterfactuals for both
f1(x) and f2(x) over the domain X. No restrictions are placed over X. It can include
the entire original domain, parts of the original domain, or different inputs entirely. We
concatenate f(X) and g(X) together,

u = [f(X), g(X)] . (28)
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Since in section 3.2 we assumed that f1(x) and f2(x) have independent Gaussian process
priors, we know that,

u ∼ N
(

0,

[
K1 0
0 K2

])
(29)

Considering the observed data, y, we know that u and y are jointly Gaussian,

[
u
y

]
∼ N

(
0,

[
Σu,u Σu,y

ΣT
u,y Σy,y

])
(30)

and using multivariate Gaussian identities, we find that u has the conditional Gaussian
distribution

u|y ∼ N
(

Σu,yΣ
−1
y,yy,Σu,u − Σu,yΣ

−1
y,yΣ

T
u,y

)
(31)

Thus in order to derive counterfactuals for both f(X) and g(X) we only need to compute
Σu,y,Σy,y, and Σu,u. Note that with respect to Σu,u we have already derived the covariance
structure for u in Equation (29).

Computation for Σu,y In order to compute Σu,y, we expand the multiplication noting
that y is defined to be a two-function GPCS,

Σu,y = E[uyT ] (32)

= E[



f1(x1)
...

f1(xn)
f2(x1)
...

f2(xn)


σ1(x1)f1(x1) + σ2(x1)f2(x1) + ε

...
σ1(xn)f1(xn) + σ2(xn)f2(xn) + ε

T ] (33)

Multiplying these elements is assisted by the following identities. Recall that kernels K1

and K2 define the covariance among function values in f and g respectively,

E[f1(xi)f1(xj)] = k1(i, j) (34)

E[f2(xi)f2(xj)] = k2(i, j) (35)

Additionally, since f1(x) and f2(x) have independent Gaussian process priors, E[f1(xi)f2(xj)] =
0. Furthermore, because ε is distributed with mean zero, E[εi] = 0. Finally, since σ1(x) and
σ2(x) are constant (conditional on hyperparameters) E[σ1(xi)] = σ1(xi) and E[σ2(xi)] =
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σ2(xi). Thus we can conclude that

Σu,y =



σ1(x1)k1(1, 1) σ1(x2)k1(1, 2) ... σ1(xn)k1(1, n)
σ1(x1)k1(2, 1) σ1(x2)k1(2, 2) ... σ1(xn)k1(2, n)

...
σ1(x1)k1(n, 1) σ1(x2)k1(n, 2) ... σ1(xn)k1(n, n)
σ2(x1)k2(1, 1) σ2(x2)k2(1, 2) ... σ2(xn)k2(1, n)
σ2(x1)k2(2, 1) σ2(x2)k2(2, 2) ... σ2(xn)k2(2, n)

...
σ2(x1)k2(n, 1) σ2(x2)k2(n, 2) ... σ2(xn)k2(n, n)


(36)

=

[
K1 � 1σT1
K2 � 1σT2

]
(37)

where � is elementwise multiplication.

Computation for Σy,y The computation for Σy,y is very similar to that of Σu,y so we
omit its expansion for the sake of brevity. The slight difference is that we must consider
E[εiεi] which equals σ2ε .

Thus,

Σy,y = E[yyT ] (38)

= K1 � [σ1σ
T
1 ] +K2 � [σ2σ

T
2 ] + Inσ

2
ε (39)

3.3.1. GPCS background model counterfactuals

The counterfactual derivations above directly apply to the GPCS background model with
r = 2, where y(x) = f0(x) + σ1(w(x))f1(x). Recall that as we discussed in section 2.1, this
is a special case of the GPCS background model where f1(x) is an additive change function.
In this case, the counterfactual for f0(x) estimates what would have occurred in the absence
of the identified change. The counterfactual for f1(x) models how the change would have
affected the entire domain.

If we let u = [f0(X), f1(X)] we can derive counterfactuals for the GPCS background
model by setting σ0 = 1 in the equations for Σu,u, Σu,y, and Σy,y above. Explicitly,

Σu,u =

[
K0 0
0 K1

]
(40)

Σu,y =

[
K0

K1 � 1σT1

]
(41)

Σy,y = K0 +K1 � [σ1σ
T
1 ] + Inσ

2
ε (42)

3.4. Scalable inference

Analytic optimization and inference for Gaussian processes requires computation of the log
marginal likelihood from Eq. (12). Yet solving linear systems and computing log deter-
minants over n × n covariance matrices, using standard approaches such as the Cholesky
decomposition, requires O(n3) computations and O(n2) memory, which is impractical for
large datasets. Recent advances in scalable Gaussian processes (Wilson, 2014) have reduced
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this computational burden by exploiting Kronecker structure under two assumptions: (1)
the inputs lie on a grid formed by a Cartesian product, x ∈ X = X(1) × ... × X(D); and,
(2) the kernel is multiplicative across each dimension. Multiplicative kernels are commonly
employed in spatio-temporal Gaussian process modeling (Martin, 1990; Majumdar et al.,
2005; Flaxman et al., 2015), corresponding to a soft a priori assumption of independence
across input dimensions, without ruling out posterior correlations. The popular RBF and
ARD kernels, for instance, already have this multiplicative structure. Under these assump-
tions, the n× n covariance matrix K = K1⊗ · · · ⊗KD, where each Kd is nd× nd such that∏D

1 nd = n.

Using efficient Kronecker algebra, Saatçi (2011) shows how one can solve linear systems

and compute log determinants in O(Dn
D+1
D ) operations using O(Dn

2
D ) memory. Further-

more, Wilson et al. (2014) extends the Kronecker methods for incomplete grids. Yet for ad-
ditive compositions of kernels, such as those needed for change surface modeling in Eq. (16),
the resulting sum of matrix Kronecker products does not decompose as a Kronecker product.
Thus, the standard Kronecker approaches for scalable inference and learning are inappli-
cable. Instead, solving linear systems for the kernel inverse can be efficiently carried out
through linear conjugate gradients as in Flaxman et al. (2015) that only rely on matrix
vector multiplications, which can be performed efficiently with sums of Kronecker matrices.

However, there is no exact method for efficient computation of the log determinant
of the sum of Kronecker products. Instead, Flaxman et al. (2015) upper bound the log
determinant using the Fiedler bound (Fiedler, 1971) which says that for n × n Hermitian
matrices A and B with sorted eigenvalues α1, . . . , αn and β1, . . . , βn respectively,

log(|A+B|) ≤
n∑
i=1

log(αi + βn−i+1) (43)

While efficient, the Fiedler bound does not generalize to more than two matrices.

3.4.1. Weyl bound

In order to achieve scalable computations for an arbitrary additive composition of Kronecker
matrices, we propose to bound the log determinant of the sum of multiple covariance ma-
trices using Weyl’s inequality (Weyl, 1912) which states that for n× n Hermitian matrices,
M = A+B, with sorted eigenvalues µ1, . . . , µn, α1, . . . , αn, and β1, . . . , βn respectively,

µi+j−1 ≤ αi + βj ∀i, j ≥ 1 (44)

Since log(|A + B|) = log(|M |) =
∑n

i=1 log(µi) we can bound the log determinant by∑n
i+j−1=1 log(αi + βj). Furthermore, we can use the Weyl bound iteratively over pairs

of matrices to bound the sum of r covariance matrices K1, . . . ,Kr.

As the bound indicates, there is flexibility in the choice of which eigenvalue pair {αi, βj}
to use for bounding µi+j−1. Thus for each eigenvalue, µk, we wish to choose i, j that
minimizes αi + βj subject to k = i + j − 1. One might be tempted to minimize over all
possible pairs for each eigenvalue, µ1, . . . , µn, in order to obtain the tightest bound on the
log determinant. Unfortunately, such a procedure requires O(n2) computations. Instead we
explore two possible alternatives:
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1. For each µi+j−1 we choose the “middle” pair, {αi, βj}, such that i = j when possible,
and i = j + 1 otherwise. This “middle” heuristic requires O(n) computations.

2. We employ a greedy search to choose the minimum of v possible pairs of eigenvalues.
Using the previous i′ and j′, we consider {αi, βj} for all i = i′ − v

2 , ..., i
′ + v

2 and the
corresponding j values. Setting v = 1 corresponds to the middle heuristic. Setting
v = n corresponds to the exact Weyl bound. The greedy search requires O(vn)
computations.

In addition to bounding the sum of kernels, we must also deal with the scaling functions,
σi(w(x)). We can rewrite Eq. (16) in matrix notation,

K = S1K1S
′
1 + · · ·+ SrKrS

′
r (45)

where Si = diag(σi(w(x))) and S′i = diag(σi(w(x′))). Employing the bound on eigenvalues
of matrix products (Bhatia, 2013),

sort(eig(AB)) ≤ sort(eig(A))sort(eig(B)) (46)

we can bound the log determinant of K in Eq. (45) with an iterative Weyl approximation
over [{si,lki,ls′i,l}nl=1]

r
i=1 where si,l, ki,l, and s′i,l are the lth largest eigenvalue of Si, Ki, and

S′i respectively.

We empirically evaluate the exact Weyl bound, middle heuristic, and greedy search
with v = 80 pairs of eigenvalue indexes to search above and below the previous index.
All experiments are evaluated using GPCS with synthetic data generated according to the
procedure in section 4.1. We also compare these results against the Fiedler bound in the
case of two kernels.

Figure 5 depicts the ratio of each approximation to the true log determinant, and the
time to compute each approximation over increasing number of observations for two kernels.
While the Fiedler approximation is more accurate than any Weyl approach, all approxima-
tions perform quite similarly (note the fine grained axis scale) and converge to ≈ 0.85 of the
true log determinant. In terms of computation time, the exact Weyl bound scales poorly
with data size as expected. Yet both approximate Weyl bounds scale well. In practice,
we use the middle heuristic described above, since it provides the fastest results, nearly
equivalent to the Fiedler bound.

Figure 6 depicts the same quantities as Figure 5 but using three additive kernels. Since
the Fiedler approximation is only valid for two kernels it is excluded from these plots. While
the log determinant approximation ratios are less accurate for small datasets, as the data
size increases all Weyl approximations converge to ≈ 0.8.

In addition to enabling scalable change surface kernels, the Weyl bound method permits
scalable additive kernels in general. When applied to the spatio-temporal domain this yields
the first scalable Gaussian process model which is non-separable in space and time.

3.4.2. Massively Scalable Inference

We further extend the scalability and flexibility of the Weyl bound method by leveraging
a structured kernel interpolation methodology from the KISS-GP framework (Wilson and
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Figure 5: Left plot shows the ratio of log determinant approximations to the true log de-
terminant of two additive kernels. Note that the y-axis is scaled to a relatively narrow
band. The dashed line indicates that both the Weyl exact and Weyl greedy method per-
formed similarly. Right plot shows the time to compute each approximation and the true
log determinant.

Nickisch, 2015). Although many spatio-temporal policy relevant applications naturally have
near-grid structure, such as readings over a nearly dense set of latitudes, longitudes, and
times, this integration with KISS-GP further relaxes the dependencies on grid assumptions.
The resulting approach scales to much larger problems by interpolating data to a smaller,
user-defined grid. In particular, with local cubic interpolation, the error in the kernel
approximation is upper bounded O(1/m3) for m latent grid points, and m can be very
large because the kernel matrices in this space are structured. These scalable approaches
are thus very generally applicable as demonstrated in an extensive range of previously
published experiments in Wilson et al. (2016b,a) based on these techniques. Additionally,
KISS-GP enables the Weyl bound approximation methods to apply to arbitrary, non-grid
data.

We empirically demonstrate the advantages of integration with KISS-GP by evaluating
an additive GPCS on the two-dimensional data described above. Although the original
data lies on a grid, we use KISS-GP interpolation to compute the negative log likelihood on
four grids of increasingly smaller size. Figure 7 depicts the negative log likelihood and the
computation time for these experiments using the Weyl middle heuristic. The plot legend
indicates the size of the induced grid size. For example, ‘KISS-GP 75%’ is 75% the size of
the original grid. Note that the time and log likelihood scales in Figure 7 are different from
those in Figures 5 and 6 since we are now computing full inference steps as opposed to just
computing the log determinant. The results indicate that with minimal error in negative
log likelihood accuracy we can substantially reduce the time for inference.
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Figure 6: Left plot shows the ratio of approximations to the true log determinant of 3
additive kernels. Note that the y-axis has a much larger scale than in Figure 5. Right plot
shows the time to compute each approximation and the true log determinant of 3 additive
kernels.
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Figure 7: Plots showing negative log likelihood and time for inference on two additive
kernels using the Weyl bound on grids of decreasing size. For example, ‘KISS-GP 75%’
computes the Weyl middle bound on a grid which is 75% the size of the original grid used
to compute the first line.

3.5. Initialization

Since GPCS uses flexible spectral mixture kernels, as well as RKS features for the change
surface, the parameter space is highly multimodal. Therefore, it is essential to initialize the
model hyperparameters appropriately. Below we present an approach where we first ini-
tialize the w(x) RKS features and then use those values in a novel initialization method for
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the spectral mixture kernels. Like most GP optimization problems, GPCS hyperparameter
optimization is non-convex and there are no provable guarantees that the proposed initial-
ization will result in optimal solutions. However, it is our experience that this initialization
procedure works well in practice for the GPCS as well as spectral mixture kernels in general.

To initialize w(x) defined by RKS features we first simplify the change surface model by
assuming that each latent function, f1, ..., fr, from Eq. (15) is drawn from a Gaussian pro-
cess with an RBF kernel. Since RBF kernels have far fewer hyperparameters than spectral
mixture kernels, starting with RBF kernels helps our approach find good starting vaglues
for w(x). Algorithm 1 provides the procedure for initializing this simplified change surface
model. Note that depending on the application domain, a model with latent functions
defined by RBF kernels may be sufficient as a terminal model.

Algorithm 1 Initialize RKS w(x) by optimizing a simplified model with RBF kernels

1: for i = 1 : m1 do
2: Draw a, ω, b for RKS features in w(x)
3: Draw m2 sets of hyperparameter values for RBF kernels, {θ1, ..., θm2}
4: Choose the best hyperparameter set, θ(i) = max-likelihood(θ1, ..., θm2)
5: Partial optimization of {a, ω, b, θ} → Θ(i)

6: end for
7: Choose the best set of hyperparameters, Θ = max-likelihood(Θ(1), ...,Θ(m1))
8: Optimize Θ until convergence

In the algorithm, we test multiple possible sets of values for w(x) by drawing the hy-
perparameters a, ω, and b from their respective prior distributions (see section 3.2.1) m1

number of times. We set reasonable values for hyperparameters in those prior distributions.
Specifically, we let Λ = ( range(x)2 )2, σ0 = std(y), and σn = mean(|y|)

10 . These choices are
similar to those employed in Lázaro-Gredilla et al. (2010).

For each sampled set of w(x) hyperparameters, we sample m2 sets of hyperparameters
for the RBF kernels and select the set with the highest marginal likelihood. Then we run
an abbreviated optimization procedure over the combined w(x) and RBF hyperparameters
and select the joint set that achieves the highest marginal likelihood. Finally, we optimize
the resulting hyperparameters until convergence.

In order to initialize the spectral mixture kernels, we use the initialized w(x) from
above to define the subset {x : σi(w(x)) > 0.5} where each latent function, fi from Eq.
(15), is dominant. We then take a Fourier transform of y(x) over each dimension, x(d),
of {x : σi(w(x)) > 0.5} to obtain the empirical spectrum in that dimension. Note that
we consider each dimension of x individually since we have a multiplicative Q-component
spectral mixture kernel over each dimension (Wilson, 2014). Since spectral mixture kernels
model the spectral density with Q Gaussians on R1, we fit a 1-dimensional Gaussian mixture
model,

p(x) =

Q∑
q=1

φqN (µq, vq) (47)

to the empirical spectrum for each dimension. Using the learned mixture model we initialize
the parameters of the spectral mixture kernels for fi(x).
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Algorithm 2 Initialize spectral mixture kernels

1: for ki : i = 1 : r do
2: for d = 1 : D do
3: Compute x(d) ∈ {x : σi(w(x)) > 0.5}
4: Sample s ∼ |FFT(sort(y(x(d))))|2

5: Fit Q component GMM as p(s) =
∑Q

q=1 φ
(d)
q N (µ

(d)
q , v

(d)
q )

6: Initialize ωq = std(y(x(d))) ∗ φq
7: end for
8: end for

After initializing w(x) and spectral mixture hyperparameters, we jointly optimize the
entire model using marginal likelihood and non-linear conjugate gradients (Rasmussen and
Nickisch, 2010).

4. Experiments

We demonstrate the power and flexibility of GPCS by applying the model to a variety of
numerical simulations and complex human settings. We begin with 2-dimensional numerical
data in section 4.1, and show that GPCS is able to correctly model out-of-class polynomial
change surfaces, and that it provides higher accuracy regressions than other comparable
methods. Additionally we compute highly accurate counterfactual predictions for both
GPCS and GPCS background models and discuss how the posterior distribution varies over
the prediction domain as a function of the change surface.

We next consider coal mining, epidemiological, and urban policy data to provide ad-
ditional analytical evidence for the effectiveness of GPCS and to demonstrate how GPCS
results can be used to provide novel policy-relevant and scientifically-relevant insights. The
ground truth against which GPCS is evaluated are the domain specific interventions in these
case studies.

In order to compare GPCS to standard changepoint models, we use a 1-dimensional
dataset on the frequency of coal mining accidents. After fitting GPCS, we show that the
change surface is able to identify a region of change similar to other changepoint methods.
However, unlike changepoint methods that only identify a single moment of change, GPCS
models how the data changes over time.

We then employ GPCS to analyze two complex spatio-temporal settings involving policy
and scientific questions. First we examine requests for residential lead testing kits in New
York City between 2014-2016, during a time of heightened concern about lead-tainted water.
GPCS identifies a spatially and temporally varying change surface around the period when
issues of water contamination were being raised in the news. We conduct a regression
analysis on the resulting change surface features to better understand demographic factors
that may have affected residents’ concerns about lead-tainted water.

Second, we apply GPCS to model state-level measles incidence in the United States dur-
ing the twentieth century. GPCS identifies a substantial change around the introduction of
the measles vaccine in 1963. However, the shape of the change surface varies over time for
each state, indicating possible spatio-temporal heterogeneity in the adoption and effective-
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ness of the vaccination program during its initial years. We use regression analysis on the
change surface features to explore possible institutional and demographic factors that may
have influenced the impacts of the measles vaccination program. Finally, we estimate the
counterfactual of measles incidence without vaccination by filtering out the detected change
function and examining the inferred latent background function.

4.1. Numerical Experiments

We generate a 50 × 50 grid of synthetic data by drawing independently from two la-
tent functions, f1(x) and f2(x). Each function is characterized by an independent Gaus-
sian process with a two-dimensional RBF kernel of different length-scales and signal vari-
ances. The synthetic change surface between the functions is defined by σ(wpoly(x)) where
wpoly(x) =

∑3
i=0 β

T
i x

i, βi ∼ N (0, 3ID). We chose a polynomial change surface because it
generates complex change patterns but is out-of-class when we use RKS features for w(x),
thus testing the robustness of GPCS to change surface misspecification.

4.1.1. GPCS model

Using the synthetic data generation technique described above we simulate data as y =
σ(wpoly(x))f1(x) + (1 − σ(wpoly(x)))f2(x) + ε, where ε ∼ N (0, σ2ε ). We apply GPCS with
two latent functions, spectral mixture kernels, and w(x) defined by RKS features. We do not
provide the model with prior information about the change surface or latent functions. As
emphasized in section 3.5, successful convergence is dependent on reasonable initialization.
Therefore, we use m1 = 100 and m2 = 20 for Algorithm 1. Figure 8 depicts two typical
results using the initialization procedure followed by analytic optimization. The model
captures the change surface and produces an appropriate regression over the data. Note
that in Figure 8b the predicted change surface is flipped since the order of functions is not
important in GPCS.

To demonstrate that the initialization method from section 3.5 provides consistent re-
sults, we consider a numeric example and run GPCS 30 times with different random seeds.
Figure 9 provides the true data and change surface as well as the mean and standard de-
viation over the 30 experimental results using the section 3.5 initialization procedure. For
the predicted change surface we manually normalized the orientation of the change surface
before computing summary statistics. The results illustrate that the initialization proce-
dure provides accurate and consistent results for both y and σ(w(x)) across multiple runs.
Indeed, when we repeat these experiments with random initialization, instead of the pro-
cedure from section 3.5, the MSE between the predicted and true change surface is 58%
greater than when using our initialization procedure. Additionally, the results have a 17%
larger standard deviation of σ(w(xi)) over the 30 runs, demonstrating that the procedure
we propose provides more consistent and accurate results.

Using synthetic data, we create a predictive test by splitting the data into training
and testing sets. We compare GPCS to three other expressive, scalable methods: sparse
spectrum Gaussian process with 500 basis functions (Lázaro-Gredilla et al., 2010), sparse
spectrum Gaussian process with fixed spectral points with 500 basis functions (Lázaro-
Gredilla et al., 2010), and a Gaussian process with multiplicative spectral mixture kernels
in each dimension. For each method we average the results for 10 random restarts. For
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Figure 8: Two numerical data experiments. In each of (a) and (b) the top-left plot depicts
the data (e.g., observations indexed by two dimensional spatial inputs); the bottom-left
shows the true change surface with the range from blue to yellow depicting σ1(w(x)). The
top-right depicts the predicted output; the bottom-right shows the predicted change surface.
Note that the predicted change surface in plot (b) is flipped since the order of functions is
not important.
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Figure 9: Consistency results across 30 runs with different random seeds. True data and
change surface are on the left, while the mean and standard deviation of the predicted
results are in center and right panels.

each method Table 2 shows the normalized mean squared error (NMSE),

NMSE =
‖ytest − ypred‖22
‖ytest − ȳtrain‖22

(48)
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Table 2: Comparison of prediction accuracy (normalized mean squared error) using flexible
and scalable Gaussian process methods on synthetic multidimensional change-surface data.

Method NMSE

GPCS 0.00078

SSGP 0.01530

SSGP fixed 0.02820

Spectral mixture 0.00200

where ȳtrain is the mean of the training data.

GPCS performed best due to the expressive non-stationary covariance function that fits
to the different functional regimes in the data. Although the other methods can flexibly
adapt to the data, they must account for the change in covariance structure by setting a
shorter global length-scale over the data, thus underestimating the correlation of points in
each regime. Thus their predictive accuracy is lower than GPCS, which can accommodate
changes in covariance structure across the boundary of a change surface while retaining
reasonable covariance length-scales within each regime.

We use GPCS to compute counterfactual predictions on the numerical data. In the
previous experiments we used the data, (x, y), to fit the parameters of GPCS, θ. Now we
condition on (x, y, θ) to infer the individual latent functions f1(x) and f2(x) over the entire
domain, x. By employing the marginalization procedure described in section 3.3 we derive
posterior distributions for both f1(x) and f2(x). Since we have synthetic data we can then
compare the counterfactual predictions to the true latent function values. Specifically, we
use (x, y, θ) from Figure 8b to infer the posterior counterfactual mean and variance for both
f1(x) and f2(x) and show the results in Figure 10. Note how the posterior mean predictions
of f1(x) and f2(x) are quite similar to the true values. Moreover, the posterior uncertainty
estimates are very reasonable. For both f1(x) and f2(x) the posterior variance varies over
the two-dimensional domain, x, as a function of the change surface. Where s1(x) ≈ 1 the
posterior variance of f1(x) ≈ 0 while the posterior variance of f2(x) is large. In areas where
s2(x) ≈ 1 the posterior variance of f1(x) is large, while the posterior variance of f2(x) ≈ 0.

The uncertainty is also evident in the squared error, 1
n

∑
(fi(x)− ˆfi(x)), where, as expected,

each function has larger error in areas of high posterior variance.

As discussed in section 3, the underlying probabilistic Gaussian process model behind
GPCS automatically discourages extraneous complexity, favoring the simplest explanations
consistent with the data (MacKay, 2003; Rasmussen and Ghahramani, 2001; Rasmussen
and Williams, 2006; Wilson et al., 2014; Wilson, 2014). This property enables GPCS to
discover interpretable generative hypothesis for the data, which is crucial for public policy
applications. This Bayesian Occam’s razor principle is a cornerstone of many probabilistic
approaches, such as automatically determining the intrinsic dimensionality for probabilis-
tic PCA (Minka, 2001), or hypothesis testing for Bayesian neural network architectures
(MacKay, 2003). In the absence of such automatic complexity control, these methods would
always favour the highest intrinsic dimensionality or the largest neural network respectively.

To demonstrate this Occam’s razor principle in our context, we generate numeric data
from a single GP without any change surface by setting σ(wpoly(x)) = 0, and fit a misspec-
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Figure 10: Posterior counterfactual predictions using hyperparameters derived from GPCS
model. We plot the true latent function as well as the posterior mean and variance estimates
for each function. Additionally, we plot the squared error between the true and posterior
mean values.

ified GPCS model assuming two latent regimes. Figure 11 depicts the predicted change
surfaces for 20 experiments of such data. The left panel illustrates pictorially that the
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Figure 11: Data without any change surface, σ(wpoly(x)) = 0. The left panel depicts
σ1(w(x)) for each experiment. The right panel provides a histogram of the mean centered
change surfaces values, σ1(w(x))−

∑
i∈n σ1(w(xi)).

change surfaces are nearly all flat at either σ1(w(x)) = 0 or σ1(w(x)) = 1 for these exper-
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iments. Specifically, std[σ1(w(x))] < 0.03 for all but two runs. This finding indicates that
GPCS discovers that no dynamic transition exists and does not overfit the data, despite
the added flexibility afforded by multiple mixture components. Only one of the 20 results
(bottom-right) indicates a change, and even in that case the magnitude of the transition
is markedly subdued as compared to the results in Figures 8 and 12. While the upper-
right result appears to have a large transition, in fact it has a flat change surface with
std[σ1(w(x))] = 0.07. The right panel provides a histogram of the mean centered change
surface values for all experiments, σ1(w(x)) −

∑
i∈n σ1(ω(xi)), again demonstrating that

GPCS learns very flat change surfaces and does not erroneously identify a change.

4.1.2. GPCS background model

We test the GPCS background model with a similar setup. Using the synthetic data gen-
eration technique described above, we simulate data as y = f0(x) + σ(wpoly(x))f1(x) + ε,
where ε ∼ N (0, σ2ε ). We again note that the polynomial change surface is out-of-class.

We apply the GPCS background model with one background function and one latent
function scaled by a change surface. Both Gaussian process priors use spectral mixture
kernels, and w(x) is defined by RKS features. We do not provide the model with prior
information about the change surface or latent functions. Figure 12 depicts two typical
results using the initialization procedure followed by analytic optimization. The model
captures the change surface and produces an appropriate regression over the data.
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Figure 12: Two numerical data experiments. In each of (a) and (b) the top-left plot depicts
the data; the bottom-left shows the true change surface with the range from blue to yellow
depicting σ1(w(x)). The top-right depicts the predicted output; the bottom-right shows the
predicted change surface.

We use the GPCS background model to compute counterfactual predictions on the
data from Figure 12b. Conditioning on (x, y, θ) we employ the marginalization procedure
described in section 3.3 to infer posterior distributions for the background function, f0(x),
and the change function, f1(x), over the entire domain, x. The results are shown in Figure
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13. Note how the posterior mean predictions of both the background and change functions
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Figure 13: Posterior counterfactual predictions using hyperparameters derived from GPCS
background model. We plot the true latent function as well as the posterior mean and
variance estimates for each function. Additionally, we plot the squared error between the
true and posterior mean values.

are quite similar to the true values. As in the case of GPCS, the posterior variance for each
function varies over the two-dimensional domain, x, as a function of the change surface,
σ(wpoly(x)).

4.1.3. Log Gaussian Cox Process

The numerical experiments above demonstrate the consistency of GPCS for identifying
out-of-sample change surfaces and modeling complex data for high accuracy prediction. To
further demonstrate the flexibility of the model, we apply GPCS to data generated by a
log-Gaussian Cox process (Møller et al., 1998; Flaxman et al., 2015). This inhomogeneous
Poisson process is modulated by a stochastic intensity defined as a GP,

λ = f (49)

f ∼ GP(µ,K) (50)

Conditional on λ, and letting s denote a region in space-time, the resulting small-area count
data are non-negative integers distributed as

y(s) | λ ∼ Poisson
(

exp

∫
s
λ(x)dx

)
. (51)

We let this GP model be a convex combination of two GPs with an out-of-sample change
surface, as described in section 4.1. Thus we generated data from this model as

y | f1(xi), f2(xi) ∼ Poisson
(

exp
[
σ(wpoly(x))f1(x) + (1− σ(wpoly(x)))f2(x) + ε

])
. (52)
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Such data substantially departs from the type of data that GPCS is designed to model. In-
deed, while custom approaches are often created to handle inhomogeneous Poisson data (Flax-
man et al., 2015; Shirota and Gelfand, 2016), we use GPCS to demonstrate its flexibility
and applicability to complex non-Gaussian data. The results are shown in Figure 14. The

True Data

10 20 30 40 50

10

20

30

40

50

True Change Surface

10 20 30 40 50

10

20

30

40

50

Model Prediction

10 20 30 40 50

10

20

30

40

50

Predicted Change Surface

10 20 30 40 50

10

20

30

40

50

(a)

True Data

10 20 30 40 50

10

20

30

40

50

True Change Surface

10 20 30 40 50

10

20

30

40

50

Model Prediction

10 20 30 40 50

10

20

30

40

50

Predicted Change Surface

10 20 30 40 50

10

20

30

40

50

(b)

Figure 14: Two numerical data experiments with data from a log-Gaussian Cox process.
In each of (a) and (b) the top-left plot depicts the data (e.g., observations indexed by two
dimensional spatial inputs); the bottom-left shows the true change surface with the range
from blue to yellow depicting σ1(w(x)). The top-right depicts the predicted output; the
bottom-right shows the predicted change surface.

model provides accurate change surfaces and predictions even though the data is substan-
tially out-of-class – even beyond the out-of-class change surface data from sections 4.1.1 and
4.1.2. The precise location of change surfaces deviates slightly in GPCS, particularly on
the left edge of Figure 14b where the raw data is highly stochastic. Additionally, the model
predictions are smoothed versions of the true latent data, which reflects the fundamental
difference between Gaussian and Poisson models.

4.2. British Coal Mining Data

British coal mining accidents from 1861 to 1962 have been well studied as a benchmark
in the point process and changepoint literature (Raftery and Akman, 1986; Carlin et al.,
1992; Adams and MacKay, 2007). We use yearly counts of accidents from Jarrett (1979).
Adams and MacKay (2007) indicate that the Coal Mines Regulation Act of 1887 affected the
underlying process of coal mine accidents. This act limited child labor in mines, detailed
inspection procedures, and regulated construction standards (Mining, 2017). We apply
GPCS to show that it can detect changes corresponding to policy interventions in data
while providing additional information beyond previous changepoint approaches.

We consider GPCS with two latent functions, spectral mixture kernels, and w(x) defined
by RKS features. We do not provide the model with prior information about the 1887
legislation date. Figure 15 depicts the cumulative data and predicted change surface. The
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Table 3: Comparing methods for estimating the date of change in coal mining data.

Method Estimated date

GPCS σ(w(x)) = 0.5 1888.8

PELT mean change 1886.5

PELT variance change 1882.5

ecp 1887.0

Student-t test 1886.5

Bartlett test 1947.5

Mann-Whitney test 1891.5

Kolmogorov-Smirnov test 1896.5

red line marks the year 1887 and the magenta line marks x : σ(w(x)) = 0.5. GPCS correctly
identified the change region and suggests a gradual change that took 5.6 years to transition
from σ(w(x)) = 0.25 to σ(w(x)) = 0.75.

Figure 15: British coal mining accidents from 1851 to 1962. The blue line depicts cumulative
annual accidents, the green line plots σ(w(x)), the vertical red line marks the Coal Mines
Regulation Act of 1887, and the vertical magenta line indicates σ(w(x)) = 0.5.

Using the coal mining data we apply a number of well known univariate changepoint
methods using their standard settings. We compared Pruned Exact Linear Time (PELT)
(Killick et al., 2012) for changes in mean and variance and a nonparametric method named
“ecp” (James and Matteson, 2013). Additionally, we tested the batch changepoint method
described in Ross (2013) with Student-t and Bartlett tests for Gaussian data as well as
Mann-Whitney and Kolmogorov-Smirnov tests for nonparametric changepoint estimation
(Sharkey and Killick, 2014). Figure 3 compares the dates of change identified by these
methods to the midpoint date where σ(w(x)) = 0.5 in GPCS.

Most of the methods identified a midpoint date between 1886 and 1895. While each
method provides a point estimate of the change, only GPCS provides a clear, quantitative
description of the development of this change. Indeed the 5.6 years during which the change
surface transitions between σ(w(x)) = 0.25 to σ(w(x)) = 0.75 nicely encapsulate most of
the point estimate method results.
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4.3. New York City Lead Data

In recent years there has been heightened concern about lead-tainted water in major United
States metropolitan areas. For example, concerns about lead poisoning in Flint, Michigan’s
water supply garnered national attention in 2015 and 2016, leading to Congressional hear-
ings. Similar lead contamination issues have been reported in a spate of United States
cities such as Cleveland, OH, New York, NY, and Newark, NJ (Editorial Board, 2016).
Lead concerns in New York City have focused on lead-tainted water in schools and public
housing projects, prompting reporting in some local and national media (Gay, 2016).

In order to understand the evolving dynamics of New York City residents’ concerns about
lead-tainted water, we analyzed requests for residential lead testing kits in New York City.
These kits can be freely ordered by any resident of New York City and allow individuals to
test their household’s water for elevated levels of lead (City, 2016). We considered weekly
requests for each zip code in New York City from January 2014 through April 2016. This
provides a proxy for measuring the concern about lead tainted water. Figure 16 shows the
aggregated requests over the entire city for lead testing kits during the observation period.
It could be argued that this is an imperfect reflection of citizen concern since is unlikely that
a household will request more than one testing kit within a relatively short period of time.
Thus a reduction in requests may be due to saturation in demand for kits rather than a
decrease in concern. However, we contend that since there were only 28,057 requests for lead
testing kits over the entire observation period, and New York City contains approximately
3,148,067 households, there is a substantial pool of households in New York City that are
able to signal their concern through requesting a lead testing kit (Census Bureau, 2014a).

Figure 16: Requests for residential lead testing kits in New York City aggregated at a weekly
level across the entire city.

While there is a distinct uptick in requests for kits towards the middle and end of the
observation period, there is no ground truth change point, unlike the coal mining example
in section 4.2 and the measles incidence example in section 4.4. We apply GPCS with two
latent functions, spectral mixture kernels, and w(x) defined by RKS features. Note that the
inputs are three dimensional, x ∈ R3, with two spatial dimensions representing centroids of
each zipcode and one temporal dimension.
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08 Jul 2014
21 Oct 2015

Figure 17: NYC zip codes colored by the date where σ(w(xzip)) = 0.5. Red indicates earlier
dates, with Bulls Head in Staten Island being the earliest. Blue indicates later dates, with
New Hyde Park at the eastern edge of Queens being the latest.

The model suggests that residents’ concerns about lead tainted water had distinct spatial
and temporal variation. In Figure 17 we depict the midpoint, σ(w(xzip)) = 0.5, for each
zip code. We illustrate the spatial variation in the midpoint date by shading zip codes
with an early midpoint in red and zip codes with later midpoint in blue. Regions in Staten
Island and Brooklyn experienced the earliest midpoints, with Bulls Head in Staten Island
(zip code 10314) being the first area to reach σ(w(xzip)) = 0.5 and New Hyde Park at the
eastern edge of Queens (zip code 11040) being the last. The model detects certain zip codes
changing in mid to late 2014, which somewhat predates the national publicity surrounding
the Flint water crisis. However, most zip codes have midpoint dates sometime in 2015.

In Figure 18 we depict the change surface slope from σ(w(xzip)) = 0.25 to σ(w(xzip)) =
0.75 for each zip code to estimate the rate of change. We illustrate the variation in slope by
shading zip codes with flatter change slopes in red and the steeper change slopes in blue.
The flattest change surface occurred in Mariner’s Harbor in Staten Island (zip code 10303)
while the steepest change surface occurred in Woodlawn Heights in the Bronx (zip code
10470). We find that some zip codes had approximately four times the rate of change as
others.

Regression analysis: The variations in the change surface indicate that the concerns
about lead-tainted water may have varied heterogeneously over space and time. In order
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3.77
12.4

Figure 18: NYC zip codes colored by the slope of σ(w(xzip)) from 0.25 to 0.75. Red
indicates flatter slopes, with Mariner’s Harbor in Staten Island being the flattest. Blue
indicates steeper slopes, with Woodlawn Heights in the Bronx being the steepest.

to better understand these patterns we considered demographic and housing characteris-
tics that may have contributed to differential concern among residents in New York City.
Specifically we examined potential factors influencing the midpoint date between the two
regimes. All data were taken from the 2014 American Community Survey 5 year average at
the zip code level (Census Bureau, 2014b). Factors considered included information about
residents such as education of householder, whether the householder was the home owner,
previous year’s annual income of household, number of people per household, and whether
a minor or senior lived in the household. Additionally, we considered information about
when the homes were built.

Results of a linear regression over all factors can be seen in Table 4. Five variables were
statistically significant at a p-value < 0.05: median annual household income, percentage
of houses built 1940-1959, percentage of householders with high school equivalent educa-
tion, percentage of householders with at least a college education, and percentage of owner
occupied households. Median annual household income had a positive correlation with the
change date, suggesting that higher household income is associated with later midpoint
dates. People with lower incomes may tend to live in housing that is less well maintained,
or is perceived to be less well maintained. Thus they may require less “activation energy”
to request lead testing kits when faced with possible environmental hazards. Education
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Table 4: Results from a linear regression to the NYC lead midpoint date, σ(w(xzip)) = 0.5.
Variables are listed on the left while their coefficients, with standard errors in parentheses,
are listed on the right. Asterisks indicate statistically significant variables.

Dependent variable:

Midpoint date

Log median household income 21.916∗∗

(7.912)
% homes built after 2010 0.549

(0.724)
% homes built 2000-2009 0.061

(0.164)
% homes built 1980-1999 −0.070

(0.153)
% homes built 1960-1979 0.027

(0.094)
% homes built 1940-1959 0.667∗∗

(0.092)
% education high school equivalent −1.609∗∗

(0.331)
% education some college 0.143

(0.312)
% education college and above −0.864∗∗

(0.303)
% households owner occupied −0.310∗

(0.126)
Average family size 9.507

(6.453)
% households with member 18 or younger −0.020

(0.282)
% households with member 60 or older 0.202

(0.215)
% households with only one member 0.283

(0.227)
Constant −149.602

(77.036)

Observations 176
R2 0.420
Adjusted R2 0.370

Note: ∗p<0.05; ∗∗p<0.01
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levels were compared to a base value of householders with less than a high school educa-
tion. Thus zip codes with more educated householders tended to have earlier midpoint
dates, and more concern about lead-tainted water. Similarly, owner occupied households
had a negative correlation with the midpoint date. Since owner occupiers may tend to have
more knowledge about their home infrastructure and may expect to remain in a location
for longer than renters – perhaps even over generations – they could have a greater interest
in ensuring low levels of water-based lead. The positive correlation of homes built between
1940-1959 may be due to a geographic anomaly since zip codes with the highest proportion
of these homes are all in Eastern Queens. This region has very high median incomes which
may ultimately explain the later midpoint dates.

This analysis indicates that more education and outreach to lower-income families by
the New York City Department of Environmental Protection could be an effective means
of addressing residents’ concerns about future health risks. Additionally, it suggests an
information disparity between renters and owner-occupiers that may be of interest to policy
makers. Beyond the statistical analysis of demographic data, we also qualitatively exam-
ined media coverage related to the Flint water crisis as detailed by the Flint Water Study
(Water Study, 2015). While some articles and news reports were reported in 2014, the vast
majority began in 2015. The increased rate and national scope of this coverage in 2015 and
2016 may explain why zip codes with later midpoint dates shifted more rapidly. Addition-
ally, it may be that residents with lower incomes identified earlier with those in Flint and
thus were more concerned about potentially contaminated water than their more affluent
neighbors.

In addition to the regression factors, there is a significant positive correlation between
change slope and midpoint date with a p-value of 4×10−4. The positive correlation between
midpoint date and change slope is evident from a visual inspection of Figures 17 and 18.
This relation indicates that in zip codes that changed later, their changes were relatively
quicker perhaps due to the prevalence of news coverage at that later time.

4.4. United States Measles Data

Measles was nearly eradicated in the United States following the introduction of the measles
vaccine in 1963. However, due to the vast geographic, ethnic, bureaucratic, and socio-
economic heterogeneity in the United States we may expect differential effectiveness of the
vaccination program, particularly in its initial years. We analyze monthly incidence data
for measles from 1935 to 2003 in each of the continental United States and the District of
Columbia. Incidence rates per 100,000 population based on historical population estimates
are made publicly available by Project Tycho (van Panhuis et al., 2013). We fit the model
to ≈ 33, 000 data points where x ∈ R3 with two spatial dimensions representing centroids
of each state and one temporal dimension.

We apply GPCS with two latent functions, spectral mixture kernels, and w(x) defined
by RKS features. We do not provide prior information about the 1963 vaccination date.
Results for three states are shown in Figure 19 along with the predicted change surface
for each state. The red line marks the vaccine year of 1963, while the magenta line marks
where σ(w(xstate)) = 0.5.
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Figure 19: Measles incidence levels from three states, 1935 to 2003. The green line plots
σ(w(xstate)), the vertical red line indicates the vaccine in 1963, and the magenta line indi-
cates σ(w(xstate)) = 0.5.

GPCS correctly identified the time frame when the measles vaccine was released in the
United States. Additionally, the model suggests that the effect of the measles vaccine varied
both temporally and spatially. This finding again demonstrates the effectiveness of GPCS
to detect changes in real world data while providing important insight into the change’s
dynamics that are not ascertainable through existing models. In Figure 20 we depict the
midpoint, σ(w(xstate)) = 0.5, for each state. We illustrate the spatial variation in the change
surface midpoint by shading states with an early midpoint in red and states with a later
midpoint in blue. We discover that there is an approximately 6 year range of midpoints
between states, with California being the earliest and North Dakota being the latest.

In Figure 21 we depict the change surface slope from σ(w(xstate)) = 0.25 to σ(w(xstate)) =
0.75 for each state to estimate the rate of change. We illustrate the variation in slope by
shading states with the flatter change regions in red and the steeper change regions in blue.
Here we find that some states had approximately twice the rate of change as others, with
Arizona having the flattest slope and Maine the steepest.

Regression analysis: These variations in the change surface indicate that the measles
vaccine may have affected states heterogeneously over space and time. In order to better un-
derstand these dynamics we considered demographic information that may have contributed
to differences in measles vaccine program implementation and effectiveness. Specifically we
examined potential factors influencing the midpoint shift date between the two regimes,
σ(w(xstate)) = 0.5. Since the change surface shifts primarily during the 1960s and the
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1961.5
1967.2

Figure 20: U.S. states colored by the date where σ(w(xstate)) = 0.5. Red indicates earlier
dates, with California being the earliest. Blue indicates later dates, with North Dakota
being the latest. Grayed out states were missing in the dataset.

0.156
0.297

Figure 21: U.S. states colored by the slope of σ(w(xstate)) from 0.25 to 0.75. Red indicates
flatter slopes, with Arizona being the lowest. Blue indicates steeper slopes, with Maine
being the highest. Grayed out states were missing in the dataset.

measles vaccine is introduced in 1963, we consider historical census data only from 1960-
1962 (Census Bureau, 1999). Factors included annual birth rate, death rates of different age
segments, and population in each state. Since measles is often contracted by children and
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people are rarely diagnosed for the disease twice in their life (it is a permanently immunizing
disease), previous literature has shown that birth rates and the size of a young non-immune
population is important for understanding the pre-vaccination dynamics of measles (Earn
et al., 2000). Indeed, before the measles vaccine 5-9 year olds comprised 50% of disease
incidence (Control and Prevention, 2016). We also consider median household income and
household income inequality for each state. Finally, we also consider the average annual
temperature in each state.

The results of a linear regression over all factors can be seen in Table 5. Four variables
were statistically significant at a p-value < 0.05: the Gini coefficient of annual family income
per state, average annual temperature, death rate of people aged 10+, and proportion of
population aged 0-9. The Gini coefficient had a relatively large, positive correlation sug-
gesting that wider family income inequality is associated with later dates of switching to the
post-vaccine regime. One potential explanation of this phenomenon may be that states with
higher Gini coefficients may have had large socio-economically depressed communities as
well as substantial rural populations. Inoculation and vaccination education may have been
more difficult in those communities and regions, thus delaying the midpoint date in those
states. For example, Arkansas, Alabama, Kentucky, and Tennessee are all relatively rural
states and have among the highest Gini coefficients. These states all have relatively late
midpoint dates sometime in 1966. Another interesting example is the District of Columbia,
which had the highest Gini coefficient. Although Washington D.C. is an urban center, it
had also been an area of poverty and substandard local government, which may have con-
tributed to its late change. Warmer temperatures are correlated with early midpoint dates
perhaps due to biological mechanisms underlying the contagion of measles. Additionally,
measles is spread through human contact which may also be affected by weather patterns.
Death rates of people aged 10+ and relatively larger populations of children aged 0-9 were
associated with later midpoint dates. Both of these factors indicate higher density of young
children who may never have been affected by measles. This in turn may have increased
the prevalence of the virus and delayed the midpoint date.

In addition to the regression factors, there is a significant positive correlation between
change slope and midpoint date with a p-value < 2.2 × 10−16, suggesting that states with
later changes transition more quickly from the pre-vaccine regime to the post-vaccine regime.
The steeper change slope may be due to other states already having inoculated their resi-
dents. Fewer measles cases nationwide could have enabled states with later midpoint dates
to more effectively contain the disease in their borders.

While this analysis does not provide conclusive results about underlying causal mech-
anisms, it suggests that further scientific research is warranted to understand the political
and demographic factors that contributed to differential effectiveness in the early years of
the measles vaccine program. Indeed, one challenge in analyzing measles at a state-level
aggregation is that measles disease dynamics may vary between cities even within states
(Dalziel et al., 2016). Nevertheless, the results indicate that future vaccination programs
should particularly consider how to quickly and effectively provide vaccinations to rural
areas and provide additional resources to socioeconomically disadvantaged communities.
Additionally, care should be taken when accounting for the effects of weather patterns and
population dynamics.
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Table 5: Results from a linear regression to the measles incidence midpoint date,
σ(w(xstate)) = 0.5. Variables are listed on the left while their coefficients, with standard
errors in parentheses, are listed on the right. Asterisks indicate statistically significant
variables.

Dependent variable:

Midpoint date

Log death rate aged 0-4 −1.614
(2.186)

Log death rate aged 5-9 5.023
(2.640)

Log death rate aged 10+ 7.651∗∗

(2.632)

Log birth rate −10.932
(5.472)

Gini of family income 48.503∗∗

(17.461)

Log median household income 4.997
(2.620)

Log population 0.117
(0.228)

Proportion of population aged 0-9 84.757∗

(32.784)

Average temperature (◦F) −0.093∗

(0.035)

Constant 1, 980.509∗∗

(24.237)

Observations 46
R2 0.396
Adjusted R2 0.245

Note: ∗p<0.05; ∗∗p<0.01
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Counterfactual analysis: Using the counterfactual GPCS framework, we inferred the
incidence of measles in the absence of the change surface identified by GPCS. We used the
latent function that is dominant in the data before the measles vaccine to compute pos-
terior estimates for measles incidence between the earliest detected midpoint date in 1961
and the end of the data in 2003. This estimation is inspired by the counterfactual estima-
tion described in van Panhuis et al. (2013). We argue that GPCS provides more believable
counterfactual estimates than simple interpolations or regressions because GPCS is a more
expressive model for measles dynamics and explicitly considers data variation both before
and after the start of the measles vaccine program. Figure 22 depicts the aggregated coun-
terfactual posterior mean estimates over the entire United States. The left plot shows true
and counterfactual monthly incidence, while the right plot depicts the cumulative counter-
factual incidence. Under the assumption that the change surface reflects the causal effect
of the vaccine program intervention, we also estimate how many cases were “prevented”
through the vaccination program. Since disease dynamics may have many causal factors,
we cannot disentangle the introduction of the measles vaccine from any contemporaneous
societal or policy changes that may have impacted measles incidence. Thus these findings
are a starting point for more extensive epidemiological research. Additionally, while we plot
the posterior mean estimates, note that our confidence in these estimates diminishes as we
consider counterfactual estimates far from the change region.
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Figure 22: Counterfactual posterior mean estimates for measles incidence. Plot (a) depicts
the aggregated counterfactual posterior mean estimates over the entire United States. Plot
(b) depicts the cumulative counterfactual incidence over the entire United States as well as
estimating how many cases were “prevented” through the vaccination program under the
assumption that the change surface corresponds to the vaccine intervention.

5. Conclusion

We presented change surfaces as an expressive generalization of changepoints that are able
to model complex, multidimensional data with varying rates of change between latent func-
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tional regimes. Additionally, we showed how change surfaces can be used for counterfactual
prediction. Yet we believe that change surfaces are not only a generalization of the statis-
tical properties of change points, but truly a conceptual shift for modeling of distributional
changes in data. Instead of attempting to discover discrete moments of change, change
surfaces offer a more realistic framework for modeling complex data. Indeed, the change
surface analyses presented in this paper demonstrate that they can provide scientific and
public policy insights.

As an instantiation of change surfaces, we presented GPCS, which uses independent
Gaussian process priors and flexible RKS basis functions to enable a highly expressive
change surface model. We derived counterfactual prediction methods for GPCS that nat-
urally provide counterfactual posterior mean and variance estimates. We also demonstrate
that probabilistic inference within GPCS automatically discourages extraneous complexity,
naturally leading to interpretable generative hypotheses for our observations. To support
GPCS we also created a novel scalable inference method for multiple additive kernels us-
ing the Weyl bound. This result extends far beyond change surfaces, enabling scalable
Gaussian processes with non-separable covariance structures over multiple dimensions. Ad-
ditionally, we developed an effective approach for initializing expressive spectral mixture
kernels. Future work may consider combining the Weyl bound approach with recent devel-
opments in automated computation of Gaussian process log determinants (Gardner et al.,
2018; Wang et al., 2019). In particular, integrating the Weyl bound methodology with new
MVM approaches in Dong et al. (2017) may provide important computational benefits.

Using change surfaces we are able to model complex, spatio-temporal data with ex-
pressivity and clarity. We studied requests for lead testing kits in New York City between
2014-2016, a period of heightened concern regarding water quality around the United States.
GPCS identified a change in the dynamics of requests, but perhaps more importantly, it il-
lustrated how that change developed over time and varied over space. The spatio-temporal
heterogeneity modeled by GPCS enabled further investigation into demographic factors
that may have influenced the behavior of residents in various parts of the city. This analy-
sis is only possible with a change surface model because standard changepoint approaches
are only able to provide single, point-in-time estimates of a midpoint date. Policy makers
are often interested in learning how public health risks or legal regulations affect various
populations. Our results demonstrate that change surfaces can be a particularly effective
method for policy makers to understand how changes develop and are distributed over a
multidimensional domain.

We also used GPCS to model measles incidence in the United States over the course
of the twentieth century. In addition to identifying a change in regimes around the in-
troduction of the measles vaccine in 1963, we used the fitted change surface to illuminate
heterogeneity across states. The differential change rates and midpoint dates in each state
could have important scientific and policy implications for vaccination campaigns. To this
end, we provide a regression analysis of institutional and demographic factors that may
have influenced the impact of the measles vaccination program.

Finally, we are excited about how the introduction of change surfaces could inspire fur-
ther research into expressive modeling of complex changes. As we emphasized in Section 3,
our use of Gaussian processes in GPCS presents but one approach to modeling change
surfaces. Future work may provide alternative methods for characterizing change surfaces
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using statistical approaches beyond Gaussian processes. For example, other instantiations
of change surfaces could utilize penalty terms to enforce the soft mutual exclusivity between
the functional regimes, or else employ decision-tree like structures to divide the domain.
Another fruitful methodological avenue could extend the retrospective analysis in this pa-
per to address online or sequential change surface detection. Additionally, change surfaces
may be further used for causal inference in conjuction with natural experiments, which
are often used by econometricians for causal inference in observational data. For example,
change surfaces may help discover regression discontinuity designs (Herlands et al., 2018)
or identify heterogeneous treatment effects in real-valued data.
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