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Abstract
POMDPs.jl is an open-source framework for solving Markov decision processes (MDPs)
and partially observable MDPs (POMDPs). POMDPs.jl allows users to specify sequential
decision making problems with minimal effort without sacrificing the expressive nature of
POMDPs, making this framework viable for both educational and research purposes. It
is written in the Julia language to allow flexible prototyping and large-scale computation
that leverages the high-performance nature of the language. The associated JuliaPOMDP
community also provides a number of state-of-the-art MDP and POMDP solvers and a rich
library of support tools to help with implementing new solvers and evaluating the solution
results. The most recent version of POMDPs.jl, the related packages, and documentation
can be found at https://github.com/JuliaPOMDP/POMDPs.jl.
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1. Introduction

Recent advances in algorithms and hardware make partially observable Markov decision
processes (POMDPs) a viable model for a variety of applications ranging from aircraft
collision avoidance (Wolf and Kochenderfer, 2011) to spoken dialog systems (Young et al.,
2013). In general, POMDPs can be applied to a wide variety of problems that include state
and dynamic uncertainties as well as continuous and discrete domains (Kochenderfer, 2015).
State-of-the-art algorithms like POMCP (Silver and Veness, 2010) and MCVI (Bai et al.,
2010) can solve problems with millions of states and with continuous state spaces. However,
working with POMDPs is challenging due to their probabilistic nature and the complexity
of the algorithms used to solve them.

POMDPs.jl is an interface for solving POMDPs written in the Julia programming lan-
guage (Bezanson et al., 2012). It is designed to support users in three different roles: 1)
defining problems, 2) creating solvers, and 3) running experiments. The goals of POMDPs.jl
are to allow users in these roles to easily build on code written by others through a single
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Figure 1: POMDPs.jl framework architecture. The three main concepts in the architecture:
problem, solver and experiment are supported by abstract types in the framework
as well as necessary function implementations.

unified interface, simplify the process of benchmarking algorithms against one another, and
encourage growth of the software ecosystem through open-source contributions. This ecosys-
tem is organized as an online community, JuliaPOMDP. The centerpiece of the community
is the POMDPs.jl package — a unified, implementation-free interface providing access to a
growing collection of state-of-the-art solvers, benchmark problems, and libraries of support
tools. An outline of the POMDPs.jl architecture and its core concepts are shown in Fig. 1.
POMDPs.jl provides abstract types corresponding to each of the core concepts and a list of
functions that defines a standard interface. Users implement concrete types that represent
problems or solvers and specify their behavior by defining methods.

2. Existing Frameworks and Related Work

There are a number of frameworks that are capable of solving decision making problems
in fully observable settings, but few accommodate partially observable domains. The most
closely related frameworks to POMDPs.jl are APPL (Kurniawati et al.), AI-Toolbox (Bar-
giacchi), and ZMDP (Smith) in that they can handle problems with partial observability.
However, these frameworks either support only a generative model problem definition (APPL
for MCVI) or explicit problem definitions using probability tables (APPL for SARSOP, AI-
Toolbox and ZMDP), but not both. This limits the flexibility of the frameworks to handle
both discrete and continuous domains. While the fact that these frameworks are all written
in C++ leads to performant code, it makes prototyping slow and challenging for new users.
It is also comparatively more difficult to extend these frameworks to new domains and im-
plement new algorithms due to their complicated hierarchies and lack of modularity in the
source code. A number of reinforcement learning frameworks exist that are designed to be
easily extendable such as BURLAP (Diuk et al., 2008), RLPy (Geramifard et al., 2015), and
rllab (Duan et al., 2016). However, these frameworks primarily cater to problems that are
fully observable.
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3. Why POMDPs.jl?

POMDPs.jl aims to simplify the task of writing problems, implementing solvers, and running
experiments in the context of POMDPs. The advantages of POMDPs.jl are as follows:
Simplicity: The POMDPs.jl interface provides a minimal set of types and functions nec-
essary to define a problem, a solver, and experiments in a partially observable setting. The
POMDPs.jl interface contains 10 abstract types and 37 functions, of which, each user will
define a subset for their problem. For example, if a user wants to solve an MDP rather than
a POMDP, they do not need to implement functions involving observations. Examples of
function requirements for the MCTS and SARSOP solvers are shown in Table 1.

Table 1: A section of the function table for two solvers that use POMDPs.jl
functions states actions observations transition observation reward · · ·

MCTS n/a n/a n/a · · ·
SARSOP

...
...

...
...

...
...

...
...

Expressiveness: The POMDPs.jl interface provides flexibility to handle problems that are
fully or partially observable, problems that are continuous or discrete, and problems with
infinite and finite horizons. Solvers may leverage explicitly-defined distributions, if they are
available, or only use samples from a generative model. Moreover, all POMDPs.jl problems
can be defined in code. Julia makes it easy to prototype new code, removing the need for
problem specification or solver configuration files written in another format.
Extensibility: The interface allows new algorithms to be implemented with minimal effort.
By providing an expressive interface to a POMDP model, POMDPs.jl allows algorithm writ-
ers to access any component of the model with simple function calls. Since all solvers are
implemented within a unified framework, POMDPs.jl also allows for standardized bench-
marking across algorithms. It is also simple to call programs written in other languages from
Julia, such as Python and C, allowing existing solvers to be wrapped using POMDPs.jl.
Usability: A number of ready-to-use solvers supporting the POMDPs.jl interface are avail-
able from the JuliaPOMDP community. To install the SARSOP solver, for example, the
user only needs to run POMDPs.add("SARSOP"), and the package manager will download and
compile any dependencies on all three major platforms — Linux, Windows, and OS X.

4. Concepts and Use Case Examples

This section describes the three main concepts outlined in Fig. 1, namely the problem, the
solver, and the experiment. The POMDPs.jl interface consists of several abstract types and
a set of functions that support these concepts.
Problem: The problem defines the MDP or POMDP model to be solved. Below is a
definition for the Tiger POMDP (Kaelbling et al., 1998).

immutable TigerPOMDP <: POMDP{Bool , Int64 , Bool}
p_correct :: Float64 # probability of hearing the tiger correctly
discount :: Float64 # discount factor

end
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The TigerPOMDP type inherits from the abstract POMDP type (part of the POMDPs.jl interface),
which is parametrized by the state, action, and observation types. In this case, the state is
represented by the native Bool type, but, in general, these types may be user-defined. The
same flexibility is available for the other components of the problem, giving the user the
flexibility to define their problem in the form of their choosing.
Solver: A solver implementation typically requires three type definitions: a Solver that
contains the parameters that define solver behavior, a Policy that defines a mapping from
beliefs to actions, and an Updater that defines how the belief is updated with new observa-
tions. An example of a QMDP (Littman et al., 1995) policy type is shown below.

type QMDPPolicy{Action} <: Policy
alphas :: Matrix{Float64} # policy alpha vectors
action_map :: Vector{Action} # indices to actions
pomdp:: POMDP # POMDP model

end

A solver implementation usually includes three top-level functions: solve, that creates a
policy for the problem given the solver, action, that emits an action for a belief based on
the policy, and update, that updates the belief based on the action taken and the observation
received, given the updater.
Experiment: Experiments combine problems and solvers to evaluate the quality of a solver
policy. For example, the experimenter might create a simulator type, Sim, and a correspond-
ing simulate function (an important part of the main loop is shown below).

function simulate(sim::Sim , pomdp , policy , updater , initial_dist)
...
for t in 1:sim.max_steps

a = action(policy , b)
sp = rand(sim.rng , transition(pomdp , s, a))
r_total += discount(pomdp)^t*reward(pomdp , s, a, sp)
o = rand(sim.rng , observation(pomdp , s, a, sp))
b = update(updater , b, a, o)
...

A simulation can then be run as follows:
using QMDP , POMDPModels , POMDPToolbox # import JuliaPOMDP packages
pomdp = TigerPOMDP () # initialize the tiger problem
solver = QMDPSolver () # initialize QMDP solver
policy = solve(solver , pomdp) # compute a policy
r = simulate(Sim(), pomdp , policy , updater(policy), DiscreteBelief (2))

5. Conclusion

POMDPs.jl is a high level interface for working with POMDPs that allows users to easily
define their problems, create new solvers, and run experiments. This manuscript provides
a brief overview of the framework and its features; extensive documentation and examples
for this software package can be found at https://github.com/JuliaPOMDP/POMDPs.jl.
Future work includes integrating Julia’s shared memory parallelism into sampling based
solvers to improve computational efficiency, as well as introducing support for reinforcement
learning algorithms.
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