
Journal of Machine Learning Research 18 (2017) 1-5 Submitted 3/16; Revised 3/17; Published 4/17

JSAT: Java Statistical Analysis Tool, a Library for Machine
Learning

Edward Raff raff.edward@gmail.com

Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County

Editor: Geoff Holmes

Abstract

Java Statistical Analysis Tool (JSAT) is a Machine Learning library written in pure Java.
It works to fill a void in the Java ecosystem for a general purpose library that is relatively
high performance and flexible, which is not adequately fulfilled by Weka (Hall et al., 2009)
and Java-ML (Abeel et al., 2009). Almost all of the algorithms are independently imple-
mented using an Object-Oriented framework. JSAT is made available under the GNU GPL
license here: https://github.com/EdwardRaff/JSAT.

Keywords: java, machine learning, open source, java library, machine learning software.

1. Introduction

There exist relatively few general purpose Machine Learning libraries for use in the Java
ecosystem. Weka is one of the only such libraries in this domain, and one of the oldest and
most used in general. It seems that more modern and efficient libraries, such as Scikit-learn
(Pedregosa et al., 2011), have been developed in every language but Java. While a number
of distributed libraries, such as MLlib (Meng et al., 2016), exist in the Java ecosystem,
their focus precludes the inclusion of many algorithms that do not scale out. These tools
may add needless overhead and complexity for datasets and tasks that can be solved with
a single machine. This leaves a void in the Java ecosystem for a tool that is both easy
for developers, relatively fast, and allows more flexibility for researchers to develop and
compare new algorithms.

JSAT attempts to fill this void. It is written in Java 6 and has no dependencies, mak-
ing it easy to integrate into any Java project without conflict. Many common “bread and
butter” algorithms, such as k-means, Random Forest, and SVMs are implemented with
multiple different solvers. In every case one or more classical implementations is included,
such as Platt’s SMO algorithm for SVMs, that can be used as a baseline for correctness
and comparison for researchers developing new solutions and to ensure performance is re-
spectable compared to common baselines. Popular and more efficient algorithms, such as
the algorithms for Linear-SVM and L1 regularized Logistic-Regression used in LIBLINEAR
(Fan et al., 2008) are provided—as well as less common but advantageous solutions, such
as accelerated k-means algorithms. JSAT is not limited to exact solvers like SMO, and
includes many faster approximations such as the Projectron and BSGD.

Collectively, JSAT includes numerous algorithms for classification and regression (over
70), clustering (18), feature selection and engineering (over 20), visualization (5), and the

c©2017 Edward Raff.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-131.html.

https://github.com/EdwardRaff/JSAT
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/16-131.html

Raff

tools for implementing them. These counts do not include cases where many algorithms are
covered by a single class. For example, the NNChainHAC class provides O(n2) hierarchical
clustering for any Lance Williams dissimilarity. This also includes a number of algorithms
that are useful but not widely available—be it in Java or any other language. Some ex-
amples include a multi-class generalization of the popular Passive Aggressive classifier and
the Adaptive Multi-Hyperplane Machine (AMM). Almost all code in JSAT has been im-
plemented independently by the author based on the original papers, rather than porting
other implementations. The three primary interfaces in JSAT are Classifier, Regressor,
and Clusterer for the three primary tasks JSAT supports. Each interface defines the
API for learning and inference, with extension interfaces for specializes abilities, such as
an UpdateableClassifier for online learning. JSAT also has interfaces related to warm
starting, change detection, text processing, building/querying metric spaces, loss functions,
and optimization. JSAT comes out to about 202k lines of code, compared to 707k for Weka
and just under 190k lines for Scikit-learn.1

2. Features

JSAT has a number of features in its implementation and design to try and balance ease of
use for users, and the development of new algorithms by researchers. Both of these tasks
benefit from a certain level of performance in terms of run-time, which JSAT strives to
achieve for all algorithms. A small benchmark on MNIST is given in Table 1, where JSAT
is compared against the same algorithm in other libraries, with JSAT adjusted to match the
default parameters used by others. Error rate was measured from one run on the standard
training and testing split of MNIST. JSAT’s performance is generally better than Weka
and BudgetedSVM (Djuric et al., 2013), and more mixed when compared to LIBLINEAR.
That the latter two are written in C/C++ is important to demonstrate that Java code can
perform on a similar level while offering the benefits of the Java platform and ecosystem.
JSAT’s large collection of algorithms also allows for better efficiency by selecting the most
appropriate algorithm. For example, when using the accelerated k-means algorithm from
Elkan (2003), JSAT becomes 170 times faster with respect to Weka’s implementation. All
of these numbers are for single-threaded executions, and JSAT supports multi-threaded
execution of many algorithms, more so than Weka and many other libraries.

Weka LIBLINEAR BudgetedSVM
Platt SMO C45 RF 1-NN LR Lloyd’s k-means SVM by DCD newGLMNET AMM BSGD

Other Time 7904 303 143 2537 3301 1011 161 14.5 59.5 160
JSAT Time 973 139 125 691 914 36 71 29.2 9.7 64
Other Error 1.55% 11.1% 3.26% 3.09% 8.21% — 8.30% 8.35% 37.2% 21.8%
JSAT Error 1.56% 11.5% 4.19% 3.09% 7.76% — 9.21% 8.53% 5.02% 10.5%

Table 1: Training time (in seconds) on MNIST

2.1 For Researchers

JSAT includes a wide breadth of algorithms, allowing for comparison against many other
approaches in a unified framework. Comparisons also become more meaningful as all al-

1. Excluding comments and blanks lines, based on https://www.openhub.net

2

https://www.openhub.net

JSAT: Java Statistical Analysis Tool

gorithms are on an equal footing of speed, avoiding the need for alternative comparison
metrics when using multiple libraries. Compared to Python, developing in Java can be a
benefit for any algorithm that is not easy to implement in a vectorized approach, which is
necessary for performance in most interpreted languages.

For high level implementations, JSAT includes the L-BFGS and OWL-QN solvers, re-
quiring only the implementation of the desired objective function and its gradient to be
used. It’s also common to implement one’s algorithm via SGD for efficiency, and JSAT
provides common variants such as Nestrov Momentum SGD, Adam, and RMSprop.

When using lower level linear algebra constructs, JSAT continues to use an Object-
Oriented approach. This allows for simple and common tricks to be added to an imple-
mentation by changing only the initialization of the object. For example the ScaledVector

object allows one to implement the common trick for updating a vector by a scalar in con-
stant time presented in Shalev-Shwartz et al. (2007). This works with both sparse and dense
vectors. Similar objects exist for a vector shifted by a constant, keeping track of the 2-norm
of a vector, or implicitly constructing the degree-2 polynomial expansion of the vector.

We also borrow the concept of the kcentroid from Dlib (King, 2009), called KernelPoint

in JSAT. This object represents the result of performing math in the space induced by us-
ing the kernel trick. The object itself approximates the result with a compact solution by
projecting new vectors to a basis set. JSAT extends it to support multiple strategies, such
as the specialized merged result for the RBF kernel from Wang et al. (2010). This allows
for a single piece of code to switch between multiple different approximation methods for
implementing a kernelized algorithm. A KernelPoints further extends the concept to mul-
tiple kernelized weight vectors backed by a single set of basis vectors, which is useful for
multi-class algorithms.

At the lowest level, JSAT includes interfaces for continuous and discrete probability
distributions, and implementations of more specialized math functions such as the digamma
function. Faster, but less accurate, implementations of common math functions are provided
as well so authors may optimize their algorithms further. Useful tools are included at this
level, such as a generic object for implementing functions via continued fractions.

2.2 For Developers / Users

Building Machine Learning-based solutions often revolves around parameter tuning and
trying multiple different algorithms to see which obtains the best performance. Based on
this fact, JSAT attempts to make this process simpler for both novices as well as experts.
All data in JSAT is represented with a DataSet class, of which specialized instances ex-
ist for label-less, classification, and regression datasets—making the goal explicit by the
type system. The creation of test and validation sets are simply one function call, for exam-
ple List<DataSet> splits = dataset.randomSplit(0.7, 0.2, 0.1) will split a dataset
into 3 subsets, with 70% for training, 20% for validation, and 10% for testing. Any number
of ratios could be given, and it would return as many sets. It can also be used for selecting
a random subset by passing in just one value less than 1.

Explicit classification and regression model evaluation objects exist to either use pre-
selected test sets or perform cross validation. Each support the use of an arbitrary number
of evaluation metrics for their respective types, which can be passed in as objects. This

3

Raff

includes common metrics such as AUC, Fβ score, Precision, Recall, and others. These
metrics, as well as many of the algorithms in JSAT, support weighted data instances.

1 ClassificationDataSet dataset = LIBSVMLoader.loadC(new

File("diabetes.libsvm"));

2 List <ClassificationDataSet > splits = dataset.randomSplit (0.75, 0.25);

3 ClassificationDataSet train = splits.get(0), test = splits.get(1);

4 PlattSMO model = new PlattSMO(new RBFKernel ());//have data , now pick model

5 RandomSearch search = new RandomSearch ((Classifier)model , 3);

6 search.autoAddParameters(train); // automatically find parameters to tune

7 search.trainC(train);//build model & tune parameters

8 ClassificationModelEvaluation cme = new

ClassificationModelEvaluation(search.getTrainedClassifier (), train);

9 cme.evaluateTestSet(test);// evaluate tuned model

10 System.out.println("Tuned Error rate: " + cme.getErrorRate ());

Listing 1: Loading a dataset and performing a parameter search in JSAT

Built upon these is a framework for model evaluation, currently supporting the classic
Grid-Search approach and the Random-Search method (Bergstra and Bengio, 2012). Setting
the search parameters and their ranges is both cumbersome from a coding standpoint, and
difficult for novice users. To alleviate this issue, every object with tunable parameters in
JSAT may specify a distribution for each parameter it wants included in the search. This
is done with respect to an input dataset, and the methods are discovered through Java’s
reflection mechanism. This allows JSAT to automatically populate the search parameters
with reasonable values, even when the user may not have properly normalized their data.
An abridged example of this is provided in Listing 1. In this example, the RBF kernel will
automatically be searched over a wider space since the data has not been normalized into
the [−1, 1] range, a common issue overlooked by beginners (Hsu et al., 2003). It also has
the benefit of being concise, and does not need to be changed when the algorithm used
changes. When desired, the user can manually specify the searched parameters and values.

The GridSearch object also has additional logic for models that can be warm-started
in their training. The warm-start interface indicates the main parameter that warm-starts
should be based off of—automatically making use of this functionality for faster training.
This is also helpful for building regularization paths, as is common with L1 regularized
models (Schmidt et al., 2009). This is an improvement over many packages that support
warm-starting for some models, but require explicit cross validation objects for each algo-
rithm.

3. Conclusion and Future Plans

JSAT has a wide breadth in the algorithms and tools it makes available to users and
researchers, and fills a vital performance need while maintaining a relatively small code
base. Future development goals are to further refine the API for consistency and ease of
use. A move to Java 8 is planned, and will be used to perform more significant refactoring.

References

T Abeel, Y Peer, and Y Saeys. Java-ML: A Machine Learning Library. Journal of Machine
Learning Research, 10:931–934, 2009. ISSN 15324435.

4

JSAT: Java Statistical Analysis Tool

J Bergstra and Y Bengio. Random Search for Hyper-Parameter Optimization. Journal of
Machine Learning Research, 13:281–305, 2012. ISSN 1532-4435.

N Djuric, L Lan, S Vucetic, and Z Wang. BudgetedSVM: A Toolbox for Scalable SVM
Approximations. Journal of Machine Learning Research, 14:3813–3817, 2013.

C Elkan. Using the Triangle Inequality to Accelerate k-Means. In International Conference
on Machine Learning (ICML), pages 147–153. AAAI Press, 2003.

R Fan, K Chang, C Hsieh, X Wang, and C Lin. LIBLINEAR: A Library for Large Linear
Classification. The Journal of Machine Learning Research, 9:1871–1874, 2008.

M Hall, E Frank, G Holmes, B Pfahringer, P Reutemann, and I Witten. The WEKA
Data Mining Software: An Update Mark. ACM SIGKDD Explorations Newsletter, 11
(1):10–18, nov 2009. ISSN 19310145. doi: 10.1145/1656274.1656278.

C Hsu, C Chang, and C Lin. A Practical Guide to Support Vector Classification. Technical
report, National Taiwan University, 2003.

D. E. King. Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning Research,
10:1755–1758, 2009. ISSN 15324435. doi: 10.1145/1577069.1755843.

X Meng, J Bradley, B Yavuz, E Sparks, S Venkataraman, D Liu, J Freeman, DB Tsai,
M Amde, S Owen, D Xin, R Xin, M J. Franklin, R Zadeh, M Zaharia, and A Talwalkar.
Mllib: Machine learning in apache spark. Journal of Machine Learning Research, 17(34):
1–7, 2016. URL http://jmlr.org/papers/v17/15-237.html.

F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Pret-
tenhofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher,
M Perrot, and E Duchesnay. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

M Schmidt, G Fung, and R Rosaless. Optimization Methods for L1-Regularization. Tech-
nical report, University of British Columbia, 2009.

S Shalev-Shwartz, Y Singer, and N Srebro. Pegasos : Primal Estimated sub-GrAdient
SOlver for SVM. In International Conference on Machine Learning (ICML), pages 807–
814, New York, NY, 2007. ACM. doi: 10.1145/1273496.1273598.

Z Wang, K Crammer, and S Vucetic. Multi-class pegasos on a budget. In International
Conference on Machine Learning (ICML), pages 1143–1150, 2010.

5

http://jmlr.org/papers/v17/15-237.html

	Introduction
	Features
	For Researchers
	For Developers / Users

	Conclusion and Future Plans

