
Journal of Machine Learning Research 17 (2016) 1-5 Submitted 11/14; Revised 5/15; Published 3/16

Harry: A Tool for Measuring String Similarity

Konrad Rieck KONRAD.RIECK@CS.UNI-GOETTINGEN.DE

Christian Wressnegger CHRISTIAN.WRESSNEGGER@CS.UNI-GOETTINGEN.DE

University of Göttingen
Goldschmidtstraße 7
37077 Göttingen, Germany

Editor: Antti Honkela

Abstract
Comparing strings and assessing their similarity is a basic operation in many application domains of
machine learning, such as in information retrieval, natural language processing and bioinformatics.
The practitioner can choose from a large variety of available similarity measures for this task, each
emphasizing different aspects of the string data. In this article, we present Harry, a small tool
specifically designed for measuring the similarity of strings. Harry implements over 20 similarity
measures, including common string distances and string kernels, such as the Levenshtein distance
and the Subsequence kernel. The tool has been designed with efficiency in mind and allows for
multi-threaded as well as distributed computing, enabling the analysis of large data sets of strings.
Harry supports common data formats and thus can interface with analysis environments, such as
Matlab, Pylab and Weka.
Keywords: string kernels, string distances, similarity measures for strings

1. Introduction

The comparison of strings is a basic operation in many applications of machine learning. Several
problems of information retrieval and natural language processing center on comparing strings (see
Salton and McGill, 1986). Similarly, several tasks in bioinformatics revolve around assessing the
similarity of sequences (see Borgwardt, 2011). The problem underlying these tasks—measuring the
similarity or dissimilarity of two strings—has been a vivid topic of research for over five decades,
ranging from early telecommunication to modern machine learning and data analysis. As a result,
the practitioner can choose from a large variety of available methods for assessing the similarity of
strings1, each emphasizing different aspects and characteristics of the data.

In this article we present Harry, a small tool specifically designed for measuring the similarity
of strings and making various comparison methods available for analysis of string data. Harry
implements over 20 common similarity measures, including classic string distances, such as the
Damerau (1964) and Levenshtein (1966) distance, as well as modern string kernels, such as the
Spectrum and Subsequence kernel (Lodhi et al., 2002). As the pairwise comparison of strings
usually induces a quadratic run-time, Harry has been designed with efficiency in mind and allows
for multi-threaded as well as distributed computing, which enables calculating large distance and
kernel matrices. Harry supports common data formats and thus can interface with analysis tools and
environments, such as Matlab, Pylab, Weka and LibSVM.

1. For ease of presentation, we use the term similarity synonymously with dissimilarity in this article.

c©2016 Konrad Rieck and Christian Wressnegger.



RIECK AND WRESSNEGGER

While there also exist other tools implementing similarity measures for strings, such as the popular
module python-Levenshtein, the generic toolbox Shogun (Sonnenburg et al., 2010) and the R package
KeBABS for biological sequences (Palme et al., 2015), none of these tools provides a similarly broad
range of similarity measures in comparison with Harry. Moreover, Harry complements the tool Sally
(Rieck et al., 2012) which maps strings to vectors and allows for applying vectorial comparison
functions to strings, such as the Euclidean and Manhattan distance. In combination, Harry & Sally
provide a versatile basis for analyzing string data.

2. A Brief Overview of Harry

Harry implements a generic framework for the comparison of strings and assessing their similarity.
In the following, we briefly discuss the main features of this framework.

2.1 Supported Similarity Measures

The current version of Harry supports the similarity measures listed in Table 1. Included are classic
string distances by Damerau (1964) and Levenshtein (1966) as well as more recent methods, such as
distances by Jaro (1989) and Bennett et al. (1998). Furthermore, the tool implements string kernels
as described by Shawe-Taylor and Cristianini (2004) and allows for mapping kernels to distances
and vice versa. In addition to distances and kernels, Harry also implements so-called similarity
coefficients, such as the Jaccard index, which assess similarity in terms of matching sets of characters
or words (Sokal and Sneath, 1963).

String Distances (10)

Bag distance Hamming distance Kernel-substitution distance String alignment distance
Compression distance Jaro distance Lee distance
Damerau-Levenshtein distance Jaro-Winkler distance Levenshtein distance

String Kernels (4)

Distance-substitution kernel Spectrum kernel Subsequence kernel Weighted-degree kernel

Similarity Coefficients (7)

Braun-Blanquet coefficient Kulczynski coefficient Simpson coefficient Sokal-Sneath coefficient
Jaccard coefficient Otsuka coefficient Soerensen-Dice coefficient

Table 1: Similarity measures for strings supported by Harry (version 0.4.1).

2.2 Scalable Computation

For the efficient processing of large sets of strings, Harry makes use of multi-threading and distributes
the workload over multiple CPU cores (see option -n). The run-time performance of Harry thus
scales linearly with the number of cores and enables computing large distance and kernel matrices.
Furthermore, Harry can split the calculation of large matrices into smaller chunks, where these
chunks are either defined manually as sub-matrices (see options -x and -y) or automatically from the
number of requested splits (option -s). Using this splitting the computation of similarity measures
can be easily distributed over multiple hosts and carried out with systems for high performance
computing, such as the LSF or SGE platform.

2



HARRY

The run-time performance of Harry is further improved by caching recurrent computations
(option -a), such as during the normalization of string kernels and distances. The underlying
cache builds on a lightweight synchronization that ensures little overhead, even if several threads
concurrently access the data. The caching can also be applied directly to the computed similarity
values (option -G) and speed up the comparison of data sets with duplicate strings.

2.3 Interfaces and Preprocessing

To interface with other analysis tools and environments, Harry implements support for common input
and output formats. The tool can read string data from text files, directories and compressed archives
(option -i). Moreover, it is able to store computed similarity matrices in output formats suitable for
Matlab, Pylab, Weka and LibSVM (option -o). Additionally, Harry is bundled with a Python module
that enables efficiently comparing strings in Python without storing data on disk.

Harry supports several preprocessing functions that improve string comparison in particular fields
of application. For example, the tool enables the user to change the granularity of the comparison
to either bytes, bits or tokens (option -g). In the latter setting the input strings are partitioned into
tokens using a set of delimiter characters, thereby enabling the analysis of structured data, such as
text and log entries. Moreover, Harry supports removing stop tokens from strings, transforming
tokens to Soundex codes and encoding non-printable characters in texts.

The data format, preprocessing functions and the selected similarity measure can be specified on
the command line as well as in a configuration file (option -c). As a result, experiments with Harry
can be easily reproduced using stored configurations.

3. Experiments with Harry

We demonstrate the efficiency of Harry in an empirical evaluation, where we first study its scalability
(Section 3.1) and then compare its performance to related tools (Section 3.2). In all experiments we
consider the data sets listed in Table 2 which contain strings of DNA snippets, protein sequences,
Twitter messages and network traces, respectively.

Data set ARTS SPROT TWEETS WEBFP

Type of strings DNA snippets Protein sequences Twitter messages Network traces
Average length of strings 2,400 bases 457 proteins 126 characters 1,312 packets
Size of alphabet 4 bases 22 proteins 69 characters 6 packet sizes

Table 2: Data sets for evaluation. Each data set consists of 1,000 strings randomly drawn from
the original source: ARTS (Sonnenburg et al., 2006); SPROT (O’Donovan et al., 2002);
TWEETS (Twitter.com); WEBFP (Cai et al., 2012).

3.1 Scalability of Harry

In our first experiment, we compute the Levenshtein (1966) distance, the normalized compression
distance (Bennett et al., 1998) and the Subsequence kernel (Lodhi et al., 2002) on all four data sets
using Harry. We repeat the computation with a different number of available CPU cores and measure
the run-time in terms of comparisons per second.

3



RIECK AND WRESSNEGGER

Figure 1 shows the results of this experiment. The Levenshtein distance and the Subsequence
kernel scale perfectly linear with the number of CPU cores, reaching peak performances of 105 and
104 comparisons per second, respectively. The compression distance scales almost linearly, as the
caching used for normalization induces a slight overhead when more than 8 cores are used.

1 2 4 8 16 32
# CPU cores

100

101

102

103

104

105

C
o
m

p
a
ri

so
n
s 

p
e
r 

se
co

n
d

Levenshtein distance

1 2 4 8 16 32
# CPU cores

100

101

102

103

104

105

C
o
m

p
a
ri

so
n
s 

p
e
r 

se
co

n
d

Compression distance

ARTS

SPROT

TWEETS

WEBFP

1 2 4 8 16 32
# CPU cores

100

101

102

103

104

105

C
o
m

p
a
ri

so
n
s 

p
e
r 

se
co

n
d

Subsequence kernel

Figure 1: Run-time performance of Harry with varying number of CPU cores.

3.2 Comparative Evaluation

In the second experiment, we compare Harry with other tools for measuring string similarity. We
consider the Python modules python-Levenshtein (0.11.2) and python-jellyfish (0.5.0) that implement
the Levenshtein distance and its variants, the library CompLearn (1.1.7) that focuses on compression
distances, and the machine learning toolbox Shogun (4.0.0) that provides several string kernels. For
each of the four data sets, we randomly draw 100 strings, compute a full similarity matrix with each
tool and measure the run-time over 10 runs.

ARTS WEBFP SPROT TWEETS

Data sets

10-1

100

101

102

103

R
u
n
-t

im
e
 i
n
 s

e
co

n
d
s

Levenshtein distance

Harry 0.4.0

py-Levenshtein 0.11.2

py-Jellyfish 0.5.0

ARTS WEBFP SPROT TWEETS

Data sets

10-1

100

101

102

103

R
u
n
-t

im
e
 i
n
 s

e
co

n
d
s

Compression distance

Harry 0.4.0

CompLearn 1.1.7

ARTS WEBFP SPROT TWEETS

Data sets

10-1

100

101

102

103

R
u
n
-t

im
e
 i
n
 s

e
co

n
d
s

Subsequence kernel

Harry 0.4.0

Shogun 4.0.0

Figure 2: Comparative evaluation of Harry and related software tools.

The averaged results for the comparative evaluation are shown in Figure 2. In all settings, Harry
is on par with the other tools and provides a similar and often even better performance. Given that
each of the related tools focuses only on a subset of similarity measures, this experiment demonstrates
the versatile yet efficient implementation of Harry.

4. Conclusions

Harry provides access to a wide range of similarity measures and enables their efficient computation
on string data. In combination with Sally (Rieck et al., 2012), the tool is a perfect fit for analyzing
and learning with strings. The source code of Harry along with documentation and a tutorial is
available at http://www.mlsec.org/harry.

4

http://www.mlsec.org/harry


HARRY

Acknowledgments

The authors gratefully acknowledge funding from BMBF (16KIS0154K) and DFG (RI 2469/1-1).

References

C. Bennett, P. Gacs, M. Li, P. Vitanyi, and W. Zurek. Information distance. IEEE Transactions on
Information Theory, 44(4):1407–1423, July 1998.

K. M. Borgwardt. Kernel Methods in Bioinformatics, chapter Handbook of Statistical Bioinformatics,
pages 317–334. Springer, 2011.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a distance: Website fingerprinting
attacks and defenses. In Proc. of ACM Conference on Computer and Communications Security
(CCS), pages 605–616, 2012.

F. Damerau. A technique for computer detection and correction of spelling errors. Communications
of the ACM, 7(3):171–176, 1964.

M. A. Jaro. Advances in record linkage methodology as applied to the 1985 census of tampa florida.
Journal of the American Statistical Association, 84(406):414–420, 1989.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Doklady
Akademii Nauk SSSR, 163(4):845–848, 1966.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

C. O’Donovan, M. Martin, A. Gattiker, E. Gasteiger, A. Bairoch, and R. Apweiler. High-quality
protein knowledge resource: SWISS-PROT and TrEMBL. Briefings in Bioinformatics, 3(3):
275–284, 2002.

J. Palme, S. Hochreiter, and U. Bodenhofer. KeBABS: an R package for kernel-based analysis of
biological sequences. Bioinformatics, 2015. (doi: 10.1093/bioinformatics/btv176).

K. Rieck, C. Wressnegger, and A. Bikadorov. Sally: A tool for embedding strings in vector spaces.
Journal of Machine Learning Research (JMLR), 13(Nov):3247–3251, Nov. 2012.

G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1986.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

R. Sokal and P. Sneath. Principles of Numerical Taxonomy. W.H. Freeman and Company, San
Francisco, CA, USA, 1963.

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: Accurate recognition of transcription starts in human.
Bioinformatics, 22(14):e472–e480, 2006.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder, C. Gehl,
and V. Franc. The shogun machine learning toolbox. Journal of Machine Learning Research
(JMLR), 11(Jun):1799–1802, 2010.

5


	Introduction
	A Brief Overview of Harry
	Supported Similarity Measures
	Scalable Computation
	Interfaces and Preprocessing

	Experiments with Harry
	Scalability of Harry
	Comparative Evaluation

	Conclusions

