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Editor: Gábor Lugosi

Abstract

The problem of clustering is considered for the case where every point is a time series.
The time series are either given in one batch (offline setting), or they are allowed to grow
with time and new time series can be added along the way (online setting). We propose
a natural notion of consistency for this problem, and show that there are simple, com-
putationally efficient algorithms that are asymptotically consistent under extremely weak
assumptions on the distributions that generate the data. The notion of consistency is as
follows. A clustering algorithm is called consistent if it places two time series into the same
cluster if and only if the distribution that generates them is the same. In the considered
framework the time series are allowed to be highly dependent, and the dependence can
have arbitrary form. If the number of clusters is known, the only assumption we make
is that the (marginal) distribution of each time series is stationary ergodic. No paramet-
ric, memory or mixing assumptions are made. When the number of clusters is unknown,
stronger assumptions are provably necessary, but it is still possible to devise nonparametric
algorithms that are consistent under very general conditions. The theoretical findings of
this work are illustrated with experiments on both synthetic and real data.

Keywords: clustering, time series, ergodicity, unsupervised learning

1. Introduction

Clustering is a widely studied problem in machine learning, and is key to many applications
across different fields of science. The goal is to partition a given data set into a set of non-
overlapping clusters in some natural way, thus hopefully revealing an underlying structure
in the data. In particular, this problem for time series data is motivated by many research
problems from a variety of disciplines, such as marketing and finance, biological and medical
research, video/audio analysis, etc., with the common feature that the data are abundant
while little is known about the nature of the processes that generate them.
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The intuitively appealing problem of clustering is notoriously difficult to formalise. An
intrinsic part of the problem is a similarity measure: the points in each cluster are supposed
to be close to each other in some sense. While it is clear that the problem of finding the
appropriate similarity measure is inseparable from the problem of achieving the clustering
objectives, in the available formulations of the problem it is usually assumed that the
similarity measure is given: it is either some fixed metric, or just a matrix of similarities
between the points. Even with this simplification, it is still unclear how to define good
clustering. Thus, Kleinberg (2002) presents a set of fairly natural properties that a good
clustering function should have, and further demonstrate that there is no clustering function
that satisfies these properties. A common approach is therefore to fix not only the similarity
measure, but also some specific objective function — typically, along with the number of
clusters — and to construct algorithms that maximise this objective. However, even this
approach has some fundamental difficulties, albeit of a different, this time computational,
nature: already in the case where the number of clusters is known, and the distance between
the points is set to be the Euclidean distance, optimising some fairly natural objectives (such
as k-means) turns out to be NP hard (Mahajan et al., 2009).

In this paper we consider a subset of the clustering problem, namely, clustering time
series. That is, we consider the case where each data point is a sample drawn from some
(unknown) time-series distribution. At first glance this does not appear to be a simplifica-
tion (indeed, any data point can be considered as a time series of length 1). However, note
that time series present a different dimension of asymptotic: with respect to their length,
rather than with respect to the total number of points to be clustered. “Learning” along
this dimension turns out to be easy to define, and allows for the construction of consistent
algorithms under most general assumptions. Specifically, the assumption that each time
series is generated by a stationary ergodic distribution is already sufficient to estimate any
finite-dimensional characteristic of the distribution with arbitrary precision, provided the
series is long enough. Thus, in contrast to the general clustering setup, in the time-series
case it is possible to “learn” the distribution that generates each given data point. No
assumptions on the dependence between time series are necessary for this. The assumption
that a given time series is stationary ergodic is one of the most general assumptions used
in statistics; in particular, it allows for arbitrary long-range serial dependence, and sub-
sumes most of the nonparametric as well as modelling assumptions used in the literature
on clustering time series, such as i.i.d., (hidden) Markov, or mixing time series.

This allows us to define the following clustering objective: group a pair of time series
into the same cluster if and only if the distribution that generates them is the same.

Note that this intuitive objective is impossible to achieve outside the time-series frame-
work. Even in the simplest case where the underlying distributions are Gaussian and the
number of clusters is known, there is always a nontrivial likelihood for each point to be gen-
erated by any of the distributions. Thus, the best one can do is to estimate the parameters
of the distributions, rather than to actually cluster the data points. The situation becomes
hopeless in the nonparametric setting. In contrast, the fully nonparametric case is tractable
for time-series data, both in offline and online scenarios, as explained in the next section.
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1.1 Problem Setup

We consider two variants of the clustering problem in this setting: offline (batch) and online,
defined as follows.

In the offline (batch) setting a finite number N of sequences x1 = (X1
1 , . . . , X

1
n1

),
. . . ,xN = (XN

1 , . . . , X
N
nN

) is given. Each sequence is generated by one of κ different un-
known time-series distributions. The target clustering is the partitioning of x1, . . . ,xN into
κ clusters, putting together those and only those sequences that were generated by the same
time-series distribution. We call a batch clustering algorithm asymptotically consistent if,
with probability 1, it stabilises on the target clustering in the limit as the lengths n1, . . . , nN
of each of the N samples tend to infinity. The number κ of clusters may be either known
or unknown. Note that the asymptotic is not with respect to the number of sequences, but
with respect to the individual sequence lengths.

In the online setting we have a growing body of sequences of data. The number of se-
quences as well as the sequences themselves grow with time. The manner of this evolution
can be arbitrary; we only require that the length of each individual sequence tend to infin-
ity. Similarly to the batch setting, the joint distribution generating the data is unknown.
At time step 1 initial segments of some of the first sequences are available to the learner.
At each subsequent time step, new data are revealed, either as an extension of a previ-
ously observed sequence, or as a new sequence. Thus, at each time step t a total of N(t)
sequences x1, . . . ,xN(t) are to be clustered, where each sequence xi is of length ni(t) ∈ N
for i = 1..N(t). The total number of observed sequences N(t) as well as the individual
sequence lengths ni(t) grow with time. In the online setting, a clustering algorithm is called
asymptotically consistent, if almost surely for each fixed batch of sequences x1, . . . ,xN ,
the clustering restricted to this sequences coincides with the target clustering from some
time on.

At first glance it may seem that one can use the offline algorithm in the online setting
by simply applying it to the entire data observed at every time step. However, this naive
approach does not result in a consistent algorithm. The main challenge in the online setting
can be identified with what we regard as “bad” sequences: sequences for which sufficient
information has not yet been collected, and thus cannot be distinguished based on the pro-
cess distributions that generate them. In this setting, using a batch algorithm at every time
step results in not only mis-clustering such “bad” sequences, but also in clustering incor-
rectly those for which sufficient data are already available. That is, such “bad” sequences
can render the entire batch clustering useless, leading the algorithm to incorrectly cluster
even the “good” sequences. Since new sequences may arrive in an uncontrollable (even
data-dependent, adversarial) fashion, any batch algorithm will fail in this scenario.

1.2 Results

The first result of this work is a formal definition of the problem of time-series clustering
which is rather intuitive, and at the same time allows for the construction of efficient
algorithms that are provably consistent under the most general assumptions. The second
result is the construction of such algorithms.

More specifically, we propose clustering algorithms that, as we further show, are strongly
asymptotically consistent, provided that the number κ of clusters is known, and the process
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distribution generating each sequence is stationary ergodic. No restrictions are placed on
the dependence between the sequences: this dependence may be arbitrary (and can be
thought of as adversarial). This consistency result is established in each of the two settings
(offline and online) introduced above.

As follows from the theoretical impossibility results of Ryabko (2010c) that are discussed
further in Section 1.4, under the only assumption that the distributions generating the
sequences are stationary ergodic, it is impossible to find the correct number of clusters
κ, that is, the total number of different time-series distributions that generate the data.
Moreover, non-asymptotic results (finite-time bounds on the probability of error) are also
provably impossible to obtain in this setting, since this is already the case for the problem
of estimating the probability of any finite-time event (Shields, 1996).

Finding the number κ of clusters, as well as obtaining non-asymptotic performance
guarantees, is possible under additional conditions on the distributions. In particular, we
show that if κ is unknown, it is possible to construct consistent algorithms provided that
the distributions are mixing and bounds on the mixing rates are available.

However, the main focus of this paper remains on the general framework where no
additional assumptions on the unknown process distributions are made (other than that
they are stationary ergodic). As such, the main theoretical and experimental results concern
the case of known κ.

Finally, we show that our methods can be implemented efficiently: they are at most
quadratic in each of their arguments, and are linear (up to log terms) in some formulations.
To test the empirical performance of our algorithms we evaluated them on both synthetic
and real data. To reflect the generality of the suggested framework in the experimental
setup, we had our synthetic data generated by stationary ergodic process distributions
that do not belong to any “simpler” class of distributions, and in particular cannot be
modelled as hidden Markov processes with countable sets of states. In the batch setting,
the error rates of both methods go to zero with sequence length. In the online setting
with new samples arriving at every time step, the error rate of the offline algorithm remains
consistently high, whereas that of the online algorithm converges to zero. This demonstrates
that, unlike the offline algorithm, the online algorithm is robust to “bad” sequences. To
demonstrate the applicability of our work to real-world scenarios, we chose the problem of
clustering motion-capture sequences of human locomotion. This application area has also
been studied in the works (Li and Prakash, 2011) and (Jebara et al., 2007) that (to the
best of our knowledge) constitute the state-of-the-art performance1 on the data sets they
consider, and against which we compare the performance of our methods. We obtained
consistently better performance on the data sets involving motion that can be considered
ergodic (walking, running), and competitive performance on those involving non-ergodic
motions (single jumps).

1. After this paper had been accepted for publication and entered the production stage, the work (Tschan-
nen and Bolcskei, 2015) appeared, which uses the data set of Li and Prakash (2011) and reports a better
performance on it as compared to both our algorithm and that of Li and Prakash (2011).
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1.3 Methodology and Algorithms

A crucial point of any clustering method is the similarity measure. Since the objective in
our formulation is to cluster time series based on the distributions that generate them, the
similarity measure must reflect the difference between the underlying distributions. As we
aim to make as few assumptions as possible on the distributions that generate the data, and
since we make no assumptions on the nature of differences between the distributions, the
distance should take into account all possible differences between time-series distributions.
Moreover, it should be possible to construct estimates of this distance that are consistent
for arbitrary stationary ergodic distributions.

It turns out that a suitable distance for this purpose is the so-called distributional dis-
tance. The distributional distance d(ρ1, ρ2) between a pair of process distributions ρ1, ρ2

is defined (Gray, 1988) as
∑

j∈Nwj |ρ1(Bj)− ρ2(Bj)| where, wj are positive summable real
weights, e.g. wj = 1/j(j + 1), and Bj range over a countable field that generates the σ-
algebra of the underlying probability space. For example, consider finite-alphabet processes
with the binary alphabet X = {0, 1}. In this case Bj , j ∈ N would range over the set
X ∗ = ∪m∈NXm; that is, over all tuples 0, 1, 00, 01, 10, 11, 000, 001, . . . ; therefore, the dis-
tributional distance in this case is the weighted sum of the differences of the probability
values (calculated with respect to ρ1 and ρ2) of all possible tuples. In this case, the dis-
tributional distance metrises the topology of weak convergence. In this work we consider
real-valued processes so that the sets Bj range over a suitable sequence of intervals, all pairs
of such intervals, triples, and so on (see the formal definitions in Section 2). Although this
distance involves infinite summations, we show that its empirical approximations can be
easily calculated. Asymptotically consistent estimates of this distance can be obtained by
replacing unknown probabilities with the corresponding frequencies (Ryabko and Ryabko,
2010); these estimators have proved useful in various statistical problems concerning ergodic
processes (Ryabko and Ryabko, 2010; Ryabko, 2012; Khaleghi and Ryabko, 2012).

Armed with an estimator of the distributional distance, it is relatively easy to construct
a consistent clustering algorithm for the batch setting. In particular, we show that the
following algorithm is asymptotically consistent. First, a set of κ cluster centres are chosen
by κ farthest point initialisation (using an empirical estimate of the distributional distance).
This means that the first sequence is assigned as the first cluster centre. Iterating over 2..κ,
at every iteration a sequence is sought which has the largest minimum distance from the
already chosen cluster centres. Next, the remaining sequences are assigned to the closest
clusters.

The online algorithm is based on a weighted combination of several clusterings, each
obtained by running the offline procedure on different portions of data. The partitions are
combined with weights that depend on the batch size and on an appropriate performance
measure for each individual partition. The performance measure of each clustering is the
minimum inter-cluster distance.

1.4 Related Work

Some probabilistic formulations of the time-series clustering problem can be considered
related to ours. Perhaps the closest is in terms of mixture models (Bach and Jordan,
2004; Biernacki et al., 2000; Kumar et al., 2002; Smyth, 1997; Zhong and Ghosh, 2003):
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it is assumed that the data are generated by a mixture of κ different distributions that
have a particular known form (such as Gaussian, Hidden Markov models, or graphical
models). Thus, each of the N samples is independently generated according to one of
these κ distributions (with some fixed probability). Since the model of the data is specified
quite well, one can use likelihood-based distances (and then, for example, the k-means
algorithm), or Bayesian inference, to cluster the data. Another typical objective is to
estimate the parameters of the distributions in the mixture (e.g., Gaussians), rather than
actually clustering the data points. Clearly, the main difference between this setting and
ours is in that we do not assume any known model for the data; we do not even require
independence between the samples.

Taking a different perspective, the problem of clustering in our formulations generalises
two classical problems in mathematical statistics, namely, homogeneity testing (or the two-
sample problem) and process classification (or the three-sample problem). In the two-sample
problem, given two sequences x1 = (X1

1 , . . . , X
1
n1

) and x2 = (X2
1 , . . . , X

2
n2

) it is required to
test whether they are generated by the same or by different process distributions. This
corresponds to the special case of clustering only N = 2 data points where the number κ of
clusters is unknown: it can be either 1 or 2. In the three-sample problem, three sequences
x1,x2,x3 are given, and it is known that x1 and x2 are generated by different distributions,
while x3 is generated either by the same distribution as x1 or by the same distribution as
x2. It is required to find which one is the case. This can be seen as clustering N = 3 data
points, with the number of clusters known: κ = 2. The classical approach is, of course, to
consider Gaussian i.i.d. samples, but general nonparametric solutions exist not only for i.i.d.
data (Lehmann, 1986), but also for Markov chains (Gutman, 1989), as well as under certain
conditions on the mixing rates of the processes. Observe that the two-sample problem is
more difficult to solve than the three-sample problem, since the number κ of clusters is
unknown in the former while it is given in the latter. Indeed, as shown by Ryabko (2010c),
in general for stationary ergodic (binary-valued) processes there is no solution for the two-
sample problem, even in the weakest asymptotic sense. A solution to the three-sample
problem for (real-valued) stationary ergodic processes was given by (Ryabko and Ryabko,
2010); it is based on estimating the distributional distance.

More generally, the area of nonparametric statistical analysis of stationary ergodic time
series to which the main results of this paper belong, is full of both positive and nega-
tive results, some of which are related to the problem of clustering in our formulation.
Among these we can mention change point problems (Carlstein and Lele, 1994; Khaleghi
and Ryabko, 2012, 2014) hypothesis testing (Ryabko, 2012, 2014; Morvai and Weiss, 2005)
and prediction (Ryabko, 1988; Morvai and Weiss, 2012).

1.5 Organization

The remainder of the paper is organised as follows. We start by introducing notation and
definitions in Section 2. In Section 3 we define the considered clustering protocol. Our main
theoretical results are given in Section 4, where we present our methods, prove their con-
sistency, and discuss some extensions (Section 4.4). Section 5 is devoted to computational
considerations. In Section 6 we provide some experimental evaluations on both synthetic
and real data. Finally, in Section 7 we provide some concluding remarks and open questions.
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2. Preliminaries

Let X be a measurable space (the domain); in this work we let X = R but extensions to
more general spaces are straightforward. For a sequence X1, . . . , Xn we use the abbreviation
X1..n. Consider the Borel σ-algebra B on X∞ generated by the cylinders {B × X∞ : B ∈
Bm,l,m, l ∈ N} where, the sets Bm,l,m, l ∈ N are obtained via the partitioning of Xm into
cubes of dimension m and volume 2−ml (starting at the origin). Let also Bm := ∪l∈NBm,l.
We may choose any other means to generate the Borel σ-algebra B on X , but we need
to fix a specific choice for computational reasons. Process distributions are probability
measures on the space (X∞,B). Similarly, one can define distributions over the space
((X∞)∞,B2) of infinite matrices with the Borel σ-algebra B2 generated by the cylinders
{(X∞)k × (B × X∞) × (X∞)∞ : B ∈ Bm,l, k,m, l ∈ {0} ∪ N}. For x = X1..n ∈ X n and
B ∈ Bm let ν(x, B) denote the frequency with which x falls in B, i.e.

ν(x, B) :=
I{n ≥ m}
n−m+ 1

n−m+1∑
i=1

I{Xi..i+m−1 ∈ B} (1)

A process ρ is stationary if for any i, j ∈ 1..n and B ∈ B, we have

ρ(X1..j ∈ B) = ρ(Xi..i+j−1 ∈ B).

A stationary process ρ is called ergodic if for all B ∈ B with probability 1 we have

lim
n→∞

ν(X1..n, B) = ρ(B).

By virtue of the ergodic theorem (e.g., Billingsley, 1961), this definition can be shown to be
equivalent to the standard definition of stationary ergodic processes (every shift-invariant
set has measure 0 or 1; see, e.g., Gray, 1988).

Definition 1 (Distributional Distance) The distributional distance between a pair of
process distributions ρ1, ρ2 is defined as follows (Gray, 1988):

d(ρ1, ρ2) =

∞∑
m,l=1

wmwl
∑

B∈Bm,l
|ρ1(B)− ρ2(B)|,

where we set wj := 1/j(j + 1), but any summable sequence of positive weights may be used.

In words, this involves partitioning the sets Xm, m ∈ N into cubes of decreasing volume
(indexed by l) and then taking a sum over the absolute differences in probabilities of all of
the cubes in these partitions. The differences in probabilities are weighted: smaller weights
are given to larger m and finer partitions.

Remark 2 The distributional distance is more generally defined as

d′(ρ1, ρ2) :=
∑
i∈N

wi|ρ1(Ai)− ρ2(Ai)|

where Ai ranges over a countable field that generates the σ-algebra of the underlying prob-
ability space (Gray, 1988). Definition 1 above is more suitable for implementing and testing
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algorithms, while the consistency results of this paper hold for either. Note also that the
choice of sets Bi may result in a different topology on the space of time-series distributions.
The particular choice we made results in the usual topology of weak convergence (Billings-
ley, 1999).

We use the following empirical estimates of the distributional distance.

Definition 3 (Empirical estimates of d) Define the empirical estimate of the distribu-
tional distance between a sequence x = X1..n ∈ X n, n ∈ N and a process distribution ρ as

d̂(x, ρ) :=

mn∑
m=1

ln∑
l=1

wmwl
∑

B∈Bm,l
|ν(x, B)− ρ(B)|, (2)

and that between a pair of sequences xi ∈ X ni ni ∈ N, i = 1, 2 as

d̂(x1,x2) :=

mn∑
m=1

ln∑
l=1

wmwl
∑

B∈Bm,l
|ν(x1, B)− ν(x2, B)|, (3)

where mn and ln are any sequences that go to infinity with n, and (wj)j∈N are as in Defi-
nition 1.

Remark 4 (constants mn, ln) The sequences of constants mn, ln(n ∈ N) in the definition
of d̂ are intended to introduce some computational flexibility in the estimate: while already
the choice mn, ln ≡ ∞ is computationally feasible, other choices give better computational
complexity without sacrificing the quality of the estimate; see Section 5. For the asymptotic
consistency results this choice is irrelevant. Thus, in the proofs we tacitly assume mn, ln ≡
∞; extension to the general case is straightforward.

Lemma 5 (d̂ is asymptotically consistent: Ryabko and Ryabko, 2010) For every
pair of sequences x1 ∈ X n1 and x2 ∈ X n2 with joint distribution ρ whose marginals
ρi, i = 1, 2 are stationary ergodic we have

lim
n1,n2→∞

d̂(x1,x2) = d(ρ1, ρ2), ρ− a.s., and (4)

lim
ni→∞

d̂(xi, ρj) = d(ρi, ρj), i, j ∈ 1, 2, ρ− a.s. (5)

The proof of this lemma can be found in the work (Ryabko and Ryabko, 2010); since it is
important for further development but rather short and simple, we reproduce it here.
Proof The idea of the proof is simple: for each set B ∈ B, the frequency with which the
sample xi, i = 1, 2 falls into B converges to the probability ρi(B), i = 1, 2. When the
sample sizes grow, there will be more and more sets B ∈ B whose frequencies have already
converged to the corresponding probabilities, so that the cumulative weight of those sets
whose frequencies have not converged yet will tend to 0.

Fix ε > 0. We can find an index J such that

∞∑
m,l=J

wmwl ≤ ε/3.
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Moreover, for each m, l ∈ 1..J we can find a finite subset Sm,l of Bm,l such that

ρi(S
m,l) ≥ 1− ε

6Jwmwl
.

There exists some N (which depends on the realization Xi
1, . . . , X

i
ni , i = 1, 2) such that for

all ni ≥ N, i = 1, 2 we have,

sup
B∈Sm,l

|ν(xi, B)− ρi(B)| ≤ ερi(B)

6Jwmwl
, i = 1, 2. (6)

For all ni ≥ N, i = 1, 2 we have

|d̂(x1,x2)− d(ρ1, ρ2)| =

∣∣∣∣∣∣
∞∑

m,l=1

wmwl
∑

B∈Bm,l

(
|ν(x1, B)− ν(x2, B)| − |ρ1(B)− ρ2(B)|

)∣∣∣∣∣∣
≤

∞∑
m,l=1

wmwl
∑

B∈Bm,l
|ν(x1, B)− ρ1(B)|+ |ν(x2, B)− ρ2(B)|

≤
J∑

m,l=1

wmwl
∑

B∈Sm,l

(
|ν(x1, B)− ρ1(B)|+ |ν(x2, B)− ρ2(B)|

)
+ 2ε/3

≤
J∑

m,l=1

wmwl
∑

B∈Sm,l

ρ1(B)ε

6Jwmwl
+

ρ2(B)ε

6Jwmwl
+ 2ε/3 ≤ ε,

which proves (4). The statement (5) can be proven analogously.

Remark 6 The triangle inequality holds for the distributional distance d(·, ·) and its em-
pirical estimates d̂(·, ·) so that for all distributions ρi, i = 1..3 and all sequences xi ∈
X ni ni ∈ N, i = 1..3 we have

d(ρ1, ρ2) ≤ d(ρ1, ρ3) + d(ρ2, ρ3),

d̂(x1,x2) ≤ d̂(x1,x3) + d̂(x2,x3),

d̂(x1, ρ1) ≤ d̂(x1, ρ2) + d(ρ1, ρ2).

3. Clustering Settings: Offline and Online

We start with a common general probabilistic setup for both settings (offline and online),
which we use to formulate each of the two settings separately.

Consider the matrix X ∈ (X∞)∞ of random variables

X :=

 X1
1 X1

2 X1
3 . . .

X2
1 X2

2 . . . . . .
...

...
. . .

...

 ∈ (X∞)∞ (7)
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generated by some probability distribution P on ((X∞)∞,B2). Assume that the marginal
distribution of P on each row of X is one of κ unknown stationary ergodic process distri-
butions ρ1, ρ2, . . . , ρκ. Thus, the matrix X corresponds to infinitely many one-way infinite
sequences, each of which is generated by a stationary ergodic distribution. Aside from this
assumption, we do not make any further assumptions on the distribution P that gener-
ates X. This means that the rows of X (corresponding to different time-series samples) are
allowed to be dependent, and the dependence can be arbitrary; one can even think of the
dependence between samples as adversarial. For notational convenience we assume that the
distributions ρk, k = 1..κ are ordered based on the order of appearance of their first rows
(samples) in X.

Among the various ways the rows of X may be partitioned into κ disjoint subsets, the
most natural partitioning in this formulation is to group together those and only those rows
for which the marginal distribution is the same. More precisely, we define the ground-truth
partitioning of X as follows.

Definition 7 (Ground-truth G) Let

G = {G1, . . . ,Gκ}

be a partitioning of N into κ disjoint subsets Gk, k = 1..κ, such that the marginal distribu-
tion of xi, i ∈ N is ρk for some k ∈ 1..κ if and only if i ∈ Gk. We call G the ground-truth
clustering. We also introduce the notation G|N for the restriction of G to the first N se-
quences:

G|N := {Gk ∩ {1..N} : k = 1..κ}.

3.1 Offline Setting

The problem is formulated as follows. We are given a finite set S := {x1, . . . ,xN} of N
samples, for some fixed N ∈ N. Each sample is generated by one of κ unknown stationary
ergodic process distributions ρ1, . . . , ρκ. More specifically, the set S is obtained from X as
follows. Some (arbitrary) lengths ni ∈ N, i ∈ 1..N are fixed, and xi for each i = 1..N is
defined as xi := Xi

1..ni
.

A clustering function f takes a finite set S := {x1, . . . ,xN} of samples and an optional
parameter κ (the number of target clusters) to produce a partition f(S, κ) := {C1, . . . , Cκ}
of the index set {1..N}. The goal is to partition {1..N} so as to recover the ground-truth
clustering G|N . For consistency of notation, in the offline setting we identify G with G|N .
We call a clustering algorithm asymptotically consistent if it achieves this goal for long
enough sequences xi, i = 1..N in S:

Definition 8 (Consistency: offline setting) A clustering function f is consistent for a
set of sequences S if f(S, κ) = G. Moreover, denoting n := min{n1, . . . , nN}, f is called
strongly asymptotically consistent in the offline sense if with probability 1 from some n on
it is consistent on the set S: P (∃n′∀n > n′f(S, κ) = G) = 1. It is weakly asymptotically
consistent if limn→∞ P (f(S, κ) = G) = 1.

Note that the notion of consistency above is asymptotic with respect to the minimum sample
length n, and not with respect to the number N of samples.

10
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When considering the offline setting with a known number of clusters κ we assume that
N is such that {1..N} ∩ Gk 6= ∅ for every k = 1..κ (that is, all κ clusters are represented);
otherwise we could just take a smaller κ.

3.2 Online Setting

The online problem is formulated as follows. Consider the infinite matrix X given by (7).
At every time step t ∈ N, a part S(t) of X is observed corresponding to the first N(t) ∈ N
rows of X, each of length ni(t), i ∈ 1..N(t), i.e.

S(t) = {xt1, · · ·xtN(t)} where xti := Xi
1..ni(t)

.

This setting is depicted in Figure 1. We assume that the number of samples, as well as
the individual sample-lengths grow with time. That is, the length ni(t) of each sequence xi
is nondecreasing and grows to infinity (as a function of time t). The number of sequences
N(t) also grows to infinity. Aside from these assumptions, the functions N(t) and ni(t) are
completely arbitrary.
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Figure 1: Online Protocol: solid rectangles correspond to sequences available at time t,
dashed rectangles correspond to segments arrived at time t+ 1.

An online clustering function is strongly asymptotically consistent if, with probability
1, for each N ∈ N from some time on the first N sequences are clustered correctly (with
respect to the ground-truth given by Definition 7).

Definition 9 (Consistency: online setting) A clustering function is strongly (weakly)
asymptotically consistent in the online sense, if for every N ∈ N the clustering f(S(t), κ)|N
is strongly (weakly) asymptotically consistent in the offline sense, where f(S(t), κ)|N is the
clustering f(S(t), κ) restricted to the first N sequences:

f(S(t), κ)|N := {f(S(t), κ) ∩ {1..N}, k = 1..κ}.
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Remark 10 Note that even if the eventual number κ of different time-series distributions
producing the sequences (that is, the number of clusters in the ground-truth clustering G)
is known, the number of observed distributions at each individual time step is unknown.
That is, it is possible that at a given time t we have

∣∣G|N(t)

∣∣ < κ.

Known and unknown κ. As mentioned in the introduction, in the general framework de-
scribed above, consistent clustering (for both the offline and the online problems) with
unknown number of clusters is impossible. This follows from the impossibility result of
Ryabko (2010c) that states that when we have only two (binary-valued) samples generated
(independently) by two stationary ergodic distributions, it is impossible to decide whether
they have been generated by the same or by different distributions, even in the sense of
weak asymptotic consistency. (This holds even if the distributions come from a smaller
class: the set of all B-processes.) Therefore, if the number of clusters is unknown, we are
bound to make stronger assumptions. Since our main interest in this paper is to develop
consistent clustering algorithms under the general framework described above, for the most
part of this paper we assume that the correct number κ of clusters is known. However, in
Section 4.3 we also show that under certain mixing conditions on the process distributions
that generate the data, it is possible to have consistent algorithms in the case of unknown
κ as well.

4. Clustering Algorithms and their Consistency

In this section we present our clustering methods for both the offline and the online settings.
The main results, presented in Sections 4.1 (offline) and 4.2 (online), concern the case where
the number of clusters κ is known. In Section 4.3 we show that, given the mixing rates of
the process distributions that generate the data, it is possible to find the correct number of
clusters κ and thus obtain consistent algorithms for the case of unknown κ as well. Finally,
Section 4.4 considers some extensions of the proposed settings.

4.1 Offline Setting

Given that we have asymptotically consistent estimates d̂ of the distributional distance
d, it is relatively simple to construct asymptotically consistent clustering algorithms for
the offline setting. This follows from the fact that, since d̂(·, ·) converges to d(·, ·), for
large enough sequence lengths n the points x1, . . . ,xN have the so-called strict separation
property: the points within each target cluster are closer to each other than to points in any
other cluster (on strict separation in clustering see, for example, Balcan et al., 2008). This
makes many simple algorithms, such as single or average linkage, or the k-means algorithm
with certain initialisations, provably consistent.

We present below one specific algorithm that we show to be asymptotically consistent
in the general framework introduced. What makes this simple algorithm interesting is that
it requires only κN distance calculations (that is, much less than is needed to calculate the
distance between each two sequences). In short, Algorithm 1 initialises the clusters using
farthest-point initialisation, and then assigns each remaining point to the nearest cluster.
More precisely, the sample x1 is assigned as the first cluster centre. Then a sample is found
that is farthest away from x1 in the empirical distributional distance d̂ and is assigned as

12
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the second cluster centre. For each k = 2..κ the kth cluster centre is sought as the sequence
with the largest minimum distance from the already assigned cluster centres for 1..k − 1.
(This initialisation was proposed for use with k-means clustering by Katsavounidis et al.,
1994.) By the last iteration we have κ cluster centres. Next, the remaining samples are
each assigned to the closest cluster.

Algorithm 1 Offline clustering

1: INPUT: sequences S := {x1, · · · ,xN}, Number κ of clusters
2: Initialize κ-farthest points as cluster-centres:
3: c1 ← 1
4: C1 ← {c1}
5: for k = 2..κ do
6: ck ← argmax

i=1..N
min

j=1..k−1
d̂(xi,xcj ), where ties are broken arbitrarily

7: Ck ← {ck}
8: end for
9: Assign the remaining points to closest centres:

10: for i = 1..N do
11: k ← argminj∈

⋃κ
k=1 Ck

d̂(xi,xj)
12: Ck ← Ck ∪ {i}
13: end for
14: OUTPUT: clusters C1, C2, · · · , Cκ

Theorem 11 Algorithm 1 is strongly asymptotically consistent (in the offline sense of Def-
inition 8), provided that the correct number κ of clusters is known, and the marginal distri-
bution of each sequence xi, i = 1..N is stationary ergodic.

Proof To prove the consistency statement we use Lemma 5 to show that if the samples
in S are long enough, the samples that are generated by the same process distribution
are closer to each other than to the rest of the samples. Therefore, the samples chosen as
cluster centres are each generated by a different process distribution, and since the algorithm
assigns the rest of the samples to the closest clusters, the statement follows. More formally,
let n denote the shortest sample length in S:

nmin := min
i∈1..N

ni.

Denote by δ the minimum nonzero distance between the process distributions:

δ := min
k 6=k′∈1..κ

d̂(ρk, ρk′).

Fix ε ∈ (0, δ/4). Since there are a finite number N of samples, by Lemma 5 for all large
enough nmin we have

sup
k∈1..κ

i∈Gk∩{1..N}

d̂(xi, ρk) ≤ ε. (8)

13



Khaleghi, Ryabko, Mary and Preux

where Gk, k = 1..κ denote the ground-truth partitions given by Definition 7. By (8) and
applying the triangle inequality we obtain

sup
k∈1..κ

i,j∈Gk∩{1..N}

d̂(xi,xj) ≤ 2ε. (9)

Thus, for all large enough nmin we have

inf
i∈Gk∩{1..N}
j∈Gk′∩{1..N}
k 6=k′∈1..κ

d̂(xi,xj) ≥ inf
i∈Gk∩{1..N}
j∈Gk′∩{1..N}
k 6=k′∈1..κ

d(ρk, ρk′)− d̂(xi, ρk)− d̂(xj , ρk′)

≥ δ − 2ε (10)

where the first inequality follows from the triangle inequality, and the second inequality
follows from (8) and the definition of δ. In words, (9) and (10) mean that the samples in
S that are generated by the same process distribution are closer to each other than to the
rest of the samples. Finally, for all nmin large enough to have (9) and (10) we obtain

max
i=1..N

min
k=1..κ−1

d̂(xi,xck) ≥ δ − 2ε > δ/2

where as specified by Algorithm 1, c1 := 1 and ck := argmax
i=1..N

min
j=1..k−1

d̂(xi,xcj ), k = 2..κ.

Hence, the indices c1, . . . , cκ will be chosen to index sequences generated by different pro-
cess distributions. To derive the consistency statement, it remains to note that, by (9) and
(10), each remaining sequence will be assigned to the cluster centre corresponding to the
sequence generated by the same distribution.

4.2 Online Setting

The online version of the problem turns out to be more complicated than the offline one. The
challenge is that, since new sequences arrive (potentially) at every time step, we can never
rely on the distance estimates corresponding to all of the observed samples to be correct.
Thus, as mentioned in the introduction, the main challenge can be identified with what we
regard as “bad” sequences: recently-observed sequences, for which sufficient information
has not yet been collected, and for which the estimates of the distance (with respect to any
other sequence) are bound to be misleading. Thus, in particular, farthest-point initialisation
would not work in this case. More generally, using any batch algorithm on all available data
at every time step results in not only mis-clustering “bad” sequences, but also in clustering
incorrectly those for which sufficient data are already available.

The solution, realised in Algorithm 2, is based on a weighted combination of several
clusterings, each obtained by running the offline algorithm (Algorithm 1) on different por-
tions of data. The clusterings are combined with weights that depend on the batch size
and on the minimum inter-cluster distance. This last step of combining multiple clusterings
with weights may be reminiscent of prediction with expert advice (see Cesa-Bianchi and
Lugosi, 2006 for an overview), where experts are combined based on their past performance.
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Algorithm 2 Online Clustering

1: INPUT: Number κ of target clusters
2: for t = 1..∞ do
3: Obtain new sequences S(t) = {xt1, · · · ,xtN(t)}
4: Initialize the normalization factor: η ← 0
5: Initialize the final clusters: Ck(t)← ∅, k = 1..κ
6: Generate N(t)− κ+ 1 candidate cluster centres:
7: for j = κ..N(t) do
8: {Cj1 , . . . , C

j
κ} ← Alg1({xt1, · · · ,xtj}, κ)

9: µk ← min{i ∈ Cjk}, k = 1..κ . Set the smallest index as cluster centre.

10: (cj1, . . . , c
j
κ)← sort(µ1, . . . , µκ) . Sort the cluster centres increasingly.

11: γj ← mink 6=k′∈1..κ d̂(xt
cjk
,xt

cj
k′

) . Calculate performance score.

12: wj ← 1/j(j + 1)
13: η ← η + wjγj
14: end for
15: Assign points to clusters:
16: for i = 1..N(t) do

17: k ← argmink′∈1..κ
1
η

∑N(t)
j=1 wjγj d̂(xti,x

t
cj
k′

)

18: Ck(t)← Ck(t) ∪ {i}
19: end for
20: OUTPUT: {C1(t), · · · , Ck(t)}
21: end for

However, the difference here is that the performance of each clustering cannot be measured
directly.

More precisely, Algorithm 2 works as follows. Given a set S(t) of N(t) samples, the
algorithm iterates over j := κ, . . . , N(t) where at each iteration Algorithm 1 is used to
cluster the first j sequences {xt1, . . . ,xtj} into κ clusters. In each cluster the sequence with
the smallest index is assigned as the candidate cluster centre. A performance score γj is

calculated as the minimum distance d̂ between the κ candidate cluster centres obtained at
iteration j. Thus, γj is an estimate of the minimum inter-cluster distance. At this point

we have N(t)− κ + 1 sets of κ cluster centres cj1, . . . , c
j
κ, j = 1..N(t)− κ + 1. Next, every

sample xti, i = 1..N(t) is assigned to a cluster, according to the weighted combination of
the distances between xti and the candidate cluster centres obtained at each iteration on j.
More precisely, for each i = 1..N(t) the sequence xti is assigned to the cluster κ, where κ is
defined as

k := argmink=1..κ

N(t)∑
j=κ

wjγj d̂(xti,x
t
cjk

).

Theorem 12 Algorithm 2 is strongly asymptotically consistent (in the online sense of Def-
inition 9), provided the correct number of clusters κ is known, and the marginal distribution
of each sequence xi, i ∈ N is stationary ergodic.

15



Khaleghi, Ryabko, Mary and Preux

Before giving the proof of Theorem 12, we provide an intuitive explanation as to how
Algorithm 2 works. First, consider the following simple candidate solution. Take some fixed
(reference) portion of the samples, run the batch algorithm on it, and then simply assign
every remaining sequence to the nearest cluster. Since the offline algorithm is asymptotically
consistent, this procedure would be asymptotically consistent as well, but only if we knew
that the selected reference of the sequences contains at least one sequence sampled from
each and every one of the κ distributions. However, there is no way to find a fixed (not
growing with time) portion of data that would be guaranteed to contain a representative
of each cluster (that is, of each time-series distribution). Allowing such a reference set of
sequences to grow with time would guarantee that eventually it contains representatives of
all clusters, but it would break the consistency guarantee for the reference set; since the set
grows, this formulation effectively returns us back to the original online clustering problem.

A key observation we make to circumvent this problem is the following. If, for some
j ∈ {κ, . . . , N(t)}, each sample in the batch {xt1, . . . ,xtj} is generated by at most κ − 1
process distributions, any partitioning of this batch into κ sets results in a minimum inter-
cluster distance γj that, as follows from the asymptotic consistency of d̂, converges to 0.
On the other hand, if the set of samples {xt1, . . . ,xtj} contains sequences generated by all
κ process distributions, γj converges to a nonzero constant, namely, the minimum distance
between the distinct process distributions ρ1, . . . , ρκ. In the latter case from some time on
the batch {xt1, . . . ,xtj} will be clustered correctly. Thus, instead of selecting one reference
batch of sequences and constructing a set of clusters based on those, we consider all batches
of sequences for j = κ..N(t), and combine them with weights. Two sets of weights are
involved in this step: γj and wj , where

1. γj is used to penalise for small inter-cluster distance, cancelling the clustering results
produced based on sets of sequences generated by less than κ distributions;

2. wj is used to give precedence to chronologically earlier clusterings, protecting the clus-
tering decisions from the presence of the (potentially “bad”) newly formed sequences,
whose corresponding distance estimates may still be far from accurate.

As time goes on, the batches in which not all clusters are represented will have their weight
γj converge to 0, while the number of batches that have all clusters represented and are
clustered correctly by the offline algorithm will go to infinity, and their total weight will
approach 1. Note that, since we are combining different clusterings, it is important to
use a consistent ordering of clusters, for otherwise we might sum up clusters generated by
different distributions. Therefore, we always order the clusters with respect to the index of
the first sequence in each cluster.
Proof [of Theorem 12] First, we show that for every k ∈ 1..κ we have

1

η

N(t)∑
j=1

wjγ
t
j d̂(xt

cjk
, ρk)→ 0 a.s. (11)

Denote by δ the minimum nonzero distance between the process distributions:

δ := min
k 6=k′∈1..κ

d̂(ρk, ρk′). (12)
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Fix ε ∈ (0, δ/4). We can find an index J such that
∑∞

j=J wj ≤ ε. Let S(t)|j = {xt1, · · · ,xtj}
denote the subset of S(t) consisting of the first j sequences for j ∈ 1..N(t). For k = 1..κ let

sk := min{i ∈ Gk ∩ 1..N(t)} (13)

index the first sequence in S(t) that is generated by ρk where Gk, k = 1..κ are the ground-
truth partitions given by Definition 7. Define

m := max
k∈1..κ

sk. (14)

Recall that the sequence lengths ni(t) grow with time. Therefore, by Lemma 5 (consistency
of d̂) for every j ∈ 1..J there exists some T1(j) such that for all t ≥ T1(j) we have

sup
k∈1..κ

i∈Gk∩{1..j}

d̂(xti, ρk) ≤ ε. (15)

Moreover, by Theorem 11 for every j ∈ m..J there exists some T2(j) such that Alg1(S(t)|j , κ)
is consistent for all t ≥ T2(j). Let

T := max
i=1,2
j∈1..J

Ti(j).

Recall that, by definition (14) of m, S(t)|m contains samples from all κ distributions. There-
fore, for all t ≥ T we have

inf
k 6=k′∈1..κ

d̂(xtcmk
,xtcm

k′
) ≥ inf

k 6=k′∈1..κ
d(ρk, ρk′)− sup

k 6=k′∈1..κ
(d̂(xtcmk

, ρk) + d̂(xtcm
k′
, ρk′))

≥ δ − 2ε ≥ δ/2, (16)

where the first inequality follows from the triangle inequality and the second inequality
follows from the consistency of Alg1(S(t)|m, κ) for t ≥ T , the definition of δ given by (12)
and the assumption that ε ∈ (0, δ/4). Recall that (as specified in Algorithm 2) we have

η :=
∑N(t)

j=1 wjγ
t
j . Hence, by (16) for all t ≥ T we have

η ≥ wmδ/2. (17)

By (17) and noting that by definition, d̂(·, ·) ≤ 1 for all t ≥ T , for every k ∈ 1..κ we obtain

1

η

N(t)∑
j=1

wjγ
t
j d̂(xt

cjk
, ρk) ≤

1

η

J∑
j=1

wjγ
t
j d̂(xt

cjk
, ρk) +

2ε

wmδ
. (18)

On the other hand, by the definition (14) of m, the sequences in S(t)|j for j = 1..m− 1 are
generated by at most κ− 1 out of the κ process distributions. Therefore, at every iteration
on j ∈ 1..m−1 there exists at least one pair of distinct cluster centres that are generated by
the same process distribution. Therefore, by (15) and (17), for all t ≥ T and every k ∈ 1..κ
we have,

1

η

m−1∑
j=1

wjγ
t
j d̂(xt

cjk
, ρi) ≤

1

η

m−1∑
j=1

wjγ
t
j ≤

2ε

wmδ
. (19)
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Noting that the clusters are ordered in the order of appearance of the distributions, we have
xt
cjk

= xtsk for all j = m..J and k = 1..κ, where the index sk is defined by (13). Therefore,

by (15) for all t ≥ T and every k = 1..κ we have

1

η

J∑
j=m

wjγ
t
j d̂(xt

cjk
, ρk) =

1

η
d̂(xtsk , ρk)

J∑
j=m

wjγ
t
j ≤ ε. (20)

Combining (18), (19), and (20) we obtain

1

η

N(t)∑
j=1

wjγ
t
j d̂(xt

cjk
, ρk) ≤ ε(1 +

4

wmδ
). (21)

for all k = 1..κ and all t ≥ T , establishing (11).
To finish the proof of the consistency, consider an index i ∈ Gr for some r ∈ 1..κ. By

Lemma 5, increasing T if necessary, for all t ≥ T we have

sup
k∈1..κ

j∈Gk∩1..N

d̂(xtj , ρk) ≤ ε. (22)

For all t ≥ T and all k 6= r ∈ 1..κ we have,

1

η

N(t)∑
j=1

wjγ
t
j d̂(xti,x

t
cjk

) ≥ 1

η

N(t)∑
j=1

wjγ
t
j d̂(xti, ρk)−

1

η

N(t)∑
j=1

wjγ
t
j d̂(xt

cjk
, ρk)

≥ 1

η

N(t)∑
j=1

wjγ
t
j(d̂(ρk, ρr)− d̂(xti, ρr))−

1

η

N(t)∑
j=1

wjγ
t
j d̂(xt

cjk
, ρk)

≥ δ − 2ε(1 +
2

wmδ
), (23)

where the first and second inequalities follow from the triangle inequality, and the last
inequality follows from (22), (21) and the definition of δ. Since the choice of ε is arbitrary,
from (22) and (23) we obtain

argmin
k∈1..κ

1

η

N(t)∑
j=1

wjγ
t
j d̂(xti,x

t
cjk

) = r. (24)

It remains to note that for any fixed N ∈ N from some t on (24) holds for all i = 1..N , and
the consistency statement follows.

4.3 Unknown Number κ of Clusters

So far we have shown that when κ is known in advance, consistent clustering is possi-
ble under the only assumption that the samples are generated by unknown stationary er-
godic process distributions. However, as follows from the theoretical impossibility results
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of Ryabko (2010c) discussed in Section 3, the correct number κ of clusters is not possible to
be estimated with no further assumptions or additional constraints. One way to overcome
this obstacle is to assume known rates of convergence of frequencies to the corresponding
probabilities. Such rates are provided by assumptions on the mixing rates of the process
distributions that generate the data.

Here we will show that under some assumptions on the mixing rates (and still without
making any modelling or independence assumptions), consistent clustering is possible when
the number of clusters is unknown.

The purpose of this section, however, is not to find the weakest assumptions under
which consistent clustering (with κ unknown) is possible, nor is it to provide sharp bounds
under the assumptions considered; our only purpose here is to demonstrate that asymptotic
consistency is achievable in principle when the number of clusters is unknown, under some
mild nonparametric assumptions on the time-series distributions. More refined analysis
could yield sharper bounds under weaker assumptions, such as those in, for example, (Bosq,
1996; Rio, 1999; Doukhan, 1994; Doukhan et al., 2010).

We introduce mixing coefficients, mainly following Rio (1999) in formulations. Infor-
mally, mixing coefficients of a stochastic process measure how fast the process forgets about
its past. Any one-way infinite stationary process X1, X2, . . . can be extended backwards
to make a two-way infinite process . . . , X−1, X0, X1, . . . with the same distribution. In the
definition below we assume such an extension. Define the ϕ-mixing coefficients of a process
µ as

ϕn(µ) = sup
A∈σ(X−∞..k),B∈σ(Xk+n..∞),µ(A)6=0

|µ(B|A)− µ(B)|, (25)

where σ(..) stands for the σ-algebra generated by random variables in brackets. These
coefficients are nonincreasing. Define also

θn(µ) := 2 + 8(ϕ1(µ) + · · ·+ ϕn(µ)).

A process µ is called uniformly ϕ-mixing if ϕn(µ)→ 0. Many important classes of processes
satisfy mixing conditions. For example, a stationary irreducible aperiodic Hidden Markov
process with finitely many states is uniformly ϕ-mixing with coefficients decreasing expo-
nentially fast. Other probabilistic assumptions can be used to obtain bounds on the mixing
coefficients, see, e.g., (Bradley, 2005) and references therein.

The method that we propose for clustering mixing time series in the offline setting,
namely Algorithm 3, is very simple. Its inputs are: a set S := {x1, . . . ,xN} of samples each
of length ni, i = 1..N , the threshold level δ ∈ (0, 1) and the parameters m, l ∈ N, Bm,l,n.
The algorithm assigns to the same cluster all samples which are at most δ-far from each
other, as measured by d̂ with mn = m, ln = l and the summation over Bm,l restricted to
Bm,l,n. The sets Bm,l,n have to be chosen so that in asymptotic they cover the whole space,
∪n∈NBm,l,n = Bm,l. For example, Bm,l,n may consist of the first bn cubes around the origin,
where bn → ∞ is a parameter sequence. We do not give a pseudocode implementation of
this algorithm, since it is rather clear.

The idea is that the threshold level δ = δn is selected according to the smallest sample-
length n := mini=1..N ni and the (known bounds on) mixing rates of the process ρ generating
the samples (see Theorem 13). As we show in Theorem 13, if the distribution of the samples
satisfies ϕn(ρ) ≤ ϕn → 0, where ϕn are known, then one can select (based on ϕn only)
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the parameters of Algorithm 3 in such a way that it is weakly asymptotically consistent.
Moreover, a bound on the probability of error before asymptotic is provided.

Theorem 13 (Algorithm 3 is consistent for unknown κ) Fix sequences mn, ln, bn ∈
N, and let, for each m, l ∈ N, Bm,l,n ⊂ Bm,l be an increasing sequence of finite sets such
that ∪n∈NBm,l,n = Bm,l. Set bn := maxl≤ln,m≤mn |Bm,l,n| and n := mini=1..N ni. Let also
δn ∈ (0, 1). Let N ∈ N, and suppose that the samples x1, . . . ,xN are generated in such
a way that the (unknown marginal) distributions ρk, k = 1..κ are stationary ergodic and
satisfy ϕn(ρk) ≤ ϕn, for all k = 1..κ, n ∈ N. Then there exist constants ερ, δρ and nρ that
depend only on ρk, k = 1..κ, such that for all δn < δρ and n > nρ, Algorithm 3 satisfies

P (T 6= G|N ) ≤ 2N(N + 1)(mnlnbnγn/2(δn) + γn/2(ερ)) (26)

where

γn(ε) :=
√
e exp(−nε2/θn),

T is the partition output by the algorithm and G|N is the ground-truth clustering. In partic-
ular, if ϕn = o(1), then, selecting the parameters in such a way that δn = o(1), mn, ln, bn =

o(n), mn, ln → ∞, ∪k∈NBm,l,k = Bm,l, bm,ln → ∞, for all m, l ∈ N, γn(const) = o(1), and,
finally, mnlnbnγn(δn) = o(1), as is always possible, Algorithm 3 is weakly asymptotically
consistent (with the number of clusters κ unknown).

Proof We use the following bound from (Rio, 1999, Corollary 2.1): for any zero-mean
[−1, 1]-valued random process Y1, Y2, . . . with distribution P and every n ∈ N we have

P

(
|
n∑
i=1

Yi| > nε

)
≤ γn(ε). (27)

For every j = 1..N , every m < n, l ∈ N, and B ∈ Bm,l, define the [−1, 1]-valued processes
Yj := Y j

1 , Y
j

2 , . . . as

Y j
t := I{(Xj

t , . . . , X
j
t+m−1) ∈ B} − ρk(Xj

1..m ∈ B),

where ρk is the marginal distribution of Xj (that is, k is such that j ∈ Gk). It is easy to
see that ϕ-mixing coefficients for this process satisfy ϕn(Yj) ≤ ϕn−2m. Thus, from (27) we
have

P (|ν(Xj
1..nj

, B)− ρk(Xj
1..m ∈ B)| > ε/2) ≤ γn−2mn(ε/2). (28)

Then for every i, j ∈ Gk ∩ 1..N for some k ∈ 1..κ (that is, xi and xj are in the same
ground-truth cluster) we have

P (|ν(Xi
1..ni , B)− ν(Xj

1..nj
, B)| > ε) ≤ 2γn−2mn(ε/2).

Using the union bound, summing over m, l, and B, we obtain

P (d̂(xi,xj) > ε) ≤ 2mnlnbnγn−2mn(ε/2). (29)
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Next, let i ∈ Gk ∩ 1..N and j ∈ Gk′ ∩ 1..N for k 6= k′ ∈ 1..κ (i.e., xi,xj are in two different
target clusters). Then, for some mi,j , li,j ∈ N there is Bi,j ∈ Bmi,j ,li,j such that for some
τi,j > 0 we have

|ρk(Xi
1..|Bi,j | ∈ Bi,j)− ρk′(X

j
1..|Bi,j | ∈ Bi,j)| > 2τi,j .

Then for every ε < τi,j/2 we have

P (|ν(Xi
1..ni , Bi,j)− ν(Xj

1..nj
, Bi,j)| < ε) ≤ 2γn−2mi,j (τi,j). (30)

Moreover, for ε < wmi,jwli,jτi,j/2 we have

P (d̂(xi,xj) < ε) ≤ 2γn−2mi,j (τi,j). (31)

Define
δρ := min

k 6=k′∈1..κ
i∈Gk∩1..N
j∈Gk′∩1..N

wmi,jwli,jτi,j/2, ερ := min
k 6=k′∈1..κ
i∈Gk∩1..N
j∈Gk′∩1..N

τi,j/2

nρ := 2 max
k 6=k′∈1..κ
i∈Gk∩1..N
j∈Gk′∩1..N

mi,j .

Clearly, from this and (30), for every δ < 2δρ and n > nρ we obtain

P (d̂(xi,xj) < δ) ≤ 2γn/2(ερ). (32)

Algorithm 3 produces correct results if for every pair i, j we have d̂(xi,xj) < δn if and only
if i, j ∈ Gk ∩ 1..N for some k ∈ 1..κ. Therefore, taking the bounds (29) and (32) together
for each of the N(N + 1)/2 pairs of samples, we obtain (26).

For the online setting, consider the following simple extension of Algorithm 3, that we
call Algorithm 3’. It applies Algorithm 3 to the first Nt sequences, where the parameters
of Algorithm 3 and Nt are chosen in such a way that the bound (26) with N = Nt is o(1)
and Nt → ∞ as time t goes to infinity. It then assigns each of the remaining sequences
(xi, i > Nt) to the nearest cluster. Note that in this case the bound (26) with N = Nt

bounds the error of Algorithm 3’ on the first Nt sequences, as long as all of the κ clusters
are already represented among the first Nt sequences. Since Nt →∞, we can formulate the
following result.

Theorem 14 Algorithm 3’ is weakly asymptotically consistent in the online setting when
the number κ of clusters is unknown, provided that the assumptions of Theorem 13 apply to
the first N sequences x1, . . . ,xN for every N ∈ N.

4.4 Extensions

In this section we show that some simple, yet rather general extensions of the main results
of this paper are possible, namely allowing for non-stationarity and for slight differences in
distributions in the same cluster.
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4.4.1 AMS Processes and Gradual Changes

Here we argue that our results can be strengthened to a more general case where the
process distributions that generate the data are Asymptotically Mean Stationary (AMS)
ergodic. Throughout the paper we have been concerned with stationary ergodic process
distributions. Recall from Section 2 that a process ρ is stationary if for any i, j ∈ 1..n
and B ∈ Bm, m ∈ N, we have ρ(X1..j ∈ B) = ρ(Xi..i+j−1 ∈ B). A stationary process
is called ergodic if the limiting frequencies converge to their corresponding probabilities,
so that for all B ∈ B with probability 1 we have limn→∞ ν(X1..n, B) = ρ(B). This latter
convergence of all frequencies is the only property of the process distributions that is used
in the proofs (via Lemma 5) which give rise to our consistency results. We observe that
this property also holds for a more general class of processes, namely those that are AMS
ergodic. Specifically, a process ρ is called AMS if for every j ∈ 1..n and B ∈ Bm,m N the
series limn→∞

∑n−j+1
i=1

1
nρ(Xi..i+j−1 ∈ B) converges to a limit ρ̄(B), which forms a measure,

i.e. ρ̄(X1..j ∈ B) := ρ̄(B), B ∈ Bm, m ∈ N, called asymptotic mean of ρ. Moreover, if ρ is
an AMS process, then for every B ∈ Bm, m ∈ N, the frequency ν(X1..n, B) converges ρ-a.s.
to a random variable with mean ρ̄(B). Similarly to stationary processes, if the random
variable to which ν(X1..n, B) converges is a.s. constant, then ρ is called AMS ergodic. More
information on AMS processes can be found in the work (Gray, 1988). However, the main
characteristic pertaining to our work is that the class of all processes with AMS properties is
composed precisely of those processes for which the almost sure convergence of frequencies
to the corresponding probabilities holds. It is thus easy to check that all of the asymptotic
results of Sections 4.1, 4.2 carry over to the more general setting where the unknown process
distributions that generate the data are AMS ergodic.

4.4.2 Strictly Separated Clusters of Distributions

So far we have defined a cluster as a set of sequences generated by the same distribution.
This seems to capture rather well the notion that in the same cluster the objects can be
very different (as is the case for stochastically generated sequences), yet are intrinsically of
the same nature (they have the same law).

However, one may wish to generalise this further, and allow each sequence to be gener-
ated by a different distribution, yet requiring that in the same clusters distributions must
be close. Unlike the original formulation, such an extension would require fixing some sim-
ilarity measure between distributions. The results of the preceding sections suggest using
the distributional distance for this purpose.

Specifically, as discussed in Section 4.1, in our formulation, from some time on, the
sequences possess the so-called strict separation property in the d̂ distance: sequences in
the same target cluster are closer to each other than to those in other clusters. One possible
way to relax the considered setting is to impose the strict separation property on the
distributions that generate the data. Here the separation would be with respect to the
distributional distance d. That is, each sequence xi, i = 1..N , may be generated by its own
distribution ρi, but the distributions {ρi : i = 1..N} can be clustered in such a way that the
resulting clustering has the strict separation property with respect to d. The goal would
then be to recover this clustering based on the given samples. In fact, it can be shown that
the offline Algorithm 1 of Section 4.1 is consistent in this setting as well. How this transfers
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to the online setting remains open. For the offline case, we can formulate the following
result, whose proof is analogous to that of Theorem 11.

Theorem 15 Assume that each sequence xi, i = 1..N is generated by a stationary ergodic
distribution ρi. Assume further that the set of distributions {1, . . . , N} admits a parti-
tioning G = {G1, . . . ,Gk} that has the strict separation property with respect to d: for all
i, j = 1..k, i 6= j, for all ρ1, ρ2 ∈ Gi and all ρ3 ∈ Gj we have d(ρ1, ρ2) < d(ρ1, ρ3). Then
Algorithm 1 is strongly asymptotically consistent, in the sense that almost surely from some
n = min{n1, . . . , nN} on it outputs the set G.

5. Computational Considerations

In this section we show that all of the proposed methods are efficiently computable. This
claim is further illustrated by the experimental results in the next section. Note, however,
that since the results presented are asymptotic, the question of what is the best achievable
computational complexity of an algorithm that still has the same asymptotic performance
guarantees is meaningless: for example, an algorithm could throw away most of the data and
still be asymptotically consistent. This is why we do not attempt to find a resource-optimal
way of computing the methods presented.
First, we show that calculating d̂ is at most quadratic (up to log terms), and quasilinear
if we use mn = log n. Let us begin by showing that calculating d̂ is fully tractable with
mn, ln ≡ ∞. First, observe that for fixed m and l, the sum

Tm,l :=
∑

B∈Bm,l
|ν(X1

1..n1
, B)− ν(X2

1..n2
, B)| (33)

has not more than n1 + n2− 2m+ 2 nonzero terms (assuming m ≤ n1, n2; the other case is
obvious). Indeed, there are ni−m+ 1 tuples of size m in each sequence xi, i = 1, 2 namely,
Xi

1..m, X
i
2..m+1, . . . , X

i
n1−m+1..n1

. Therefore, Tm,l can be obtained by a finite number of
calculations.

Furthermore, let

s = min
X1
i 6=X2

j

i=1..n1,j=1..n2

|X1
i −X2

j |, (34)

and observe that Tm,l = 0 for all m > n and for each m, for all l > log s−1 the term Tm,l

is constant. That is, for each fixed m we have

∞∑
l=1

wmwlT
m,l = wmwlog s−1Tm,log s−1

+

log s−1∑
l=1

wmwlT
m,l

so that we simply double the weight of the last nonzero term. (Note also that s is bounded
above by the length of the binary precision in representing the random variables Xi

j .) Thus,

even with mn, ln ≡ ∞ one can calculate d̂ precisely. Moreover, for a fixed m ∈ 1.. log n and
l ∈ 1.. log s−1 for every sequence xi, i = 1, 2 the frequencies ν(xi, B), B ∈ Bm,l may
be calculated using suffix trees or suffix arrays, with O(n) worst case construction and
search complexity (see, e.g., Ukkonen, 1995). Searching all z := n −m + 1 occurrences of
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subsequences of length m results in O(m + z) = O(n) complexity. This brings the overall
computational complexity of (3) to O(nmn log s−1); this can potentially be improved using
specialized structures, e.g., (Grossi and Vitter, 2005).

The following consideration can be used to set mn. For a fixed l the frequencies
ν(xi, B), i = 1, 2 of cells in B ∈ Bm,l corresponding to values of m much larger than logn
(in the asymptotic sense, that is, if logn = o(m)) are not, in general, consistent estimates
of their probabilities, and thus only add to the estimation error. More specifically, for a
subsequence Xj..j+m with j = 1..n−m of length m the probability ρi(Xj..j+m ∈ B), i = 1, 2
is of order 2−mhi , i = 1, 2 where hi denotes the entropy rate of ρi, i = 1, 2. Moreover, under
some (general) conditions (including hi > 0) one can show that, asymptotically, a string of
length of order log n/hi on average occurs at most once in a string of length n (Kontoyiannis
and Suhov, 1994). Therefore, subsequences of length m larger than log n are typically met
0 or 1 times, and thus are not consistent estimates of probabilities. By the above argument,
one can use mn of order log n. To choose ln <∞ one can either fix some constant based on
the bound on the precision in real computations, or choose it in such a way that each cell
Bm,ln contains no more than log n points for all m = 1.. log n largest values of ln.

5.1 Complexity of the Algorithms.

The computational complexity of the presented algorithms is dominated by the complexity
of calculations of d̂ between different pairs of sequences. Thus, it is sufficient to bound the
number of pairwise d̂ computations.

It is easy to see that the offline algorithm for the case of known κ (Algorithm 1) re-
quires at most κN distance calculations, while for the case of unknown κ all N2 distance
calculations are necessary.

The computational complexity of the updates in the online algorithm can be computed
as follows. Assume that the pairwise distance values are stored in a database D, and that
for every sequence xt−1

i , i ∈ N we have already constructed a suffix tree, using for example,
the online algorithm of Ukkonen (1995). At time step t, a new symbol X is received. Let
us first calculate the required computations to update D. We have two cases, either X
forms a new sequence, so that N(t) = N(t − 1) + 1, or it is the subsequent element of a
previously received segment, say, xtj for some j ∈ 1..N(t), so that nj(t) = nj(t − 1) + 1.
In either case, let xtj denote the updated sequence. Note that for all i 6= j ∈ 1..N(t) we

have ni(t) = ni(t− 1). Recall the notation xti := X
(i)
1 , . . . X

(i)
ni(t)

for i ∈ 1..N(t). In order to

update D we need to update the distance between xtj and xti for all i 6= j ∈ N(t). Thus,
we need to search for all mn new patterns induced by the received symbol X, resulting in
complexity at most O(N(t)m2

nln). Let n(t) := max{n1(t), . . . nN(t)(t)}, t ∈ N. As discussed
previously, we let mn := log n(t); we also define ln := log s(t)−1 where

s(t) := min
i,j∈1..N(t)

u=1..ni(t),v=1..nj(t),X
(i)
u 6=X

(j)
v

|X(i)
u −X(j)

v |, t ∈ N.

Thus, the per symbol complexity of updating D is at most O(N(t) log3 n(t)). However, note
that if s(t) decreases from one time step to the next, updating D will have a complexity
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of order equivalent to its complete construction, resulting in a computational complexity
of order O(N(t)n(t) log2 n(t)). Therefore, we avoid calculating s(t) at every time step;
instead, we update s(t) at prespecified time steps so that for every n(t) symbols received,
D is reconstructed at most log n(t) times. (This can be done, for example, by recalculating
s(t) at time steps where n(t) is a power of 2.) It is easy to see that with the database D of
distance values at hand, the rest of the computations are of order at most O(N(t)2). Thus,
the computational complexity of updates in Algorithm 2 is at mostO(N(t)2+N(t) log3 n(t)).

6. Experimental Results

In this section we present empirical evaluations of Algorithms 1 and 2 on both synthetically
generated and real data.

6.1 Synthetic Data

We start with synthetic experiments. In order for the experiments to reflect the generality of
our approach we have selected time-series distributions that, while being stationary ergodic,
cannot be considered as part of any of the usual smaller classes of processes, and are difficult
to approximate by finite-state models. Namely, we consider rotation processes used, for
example, by Shields (1996) as an example of stationary ergodic processes that are not B-
processes. Such time series cannot be modelled by a hidden Markov model with a finite
or countably infinite set of states. Moreover, while k-order Markov (or hidden Markov)
approximations of this process converge to it in the distributional distance d, they do not
converge to it in the d̄ distance, a stronger distance than d whose empirical approximations
are often used to study general (non-Markovian) processes (e.g., Ornstein and Weiss, 1990).

6.1.1 Time Series Generation

To generate a sequence x = X1..n we proceed as follows: Fix some parameter α ∈ (0, 1).
Select r0 ∈ [0, 1]; then, for each i = 1..n obtain ri by shifting ri−1 by α to the right, and
removing the integer part, i.e. ri := ri−1 + α− bri−1 + αc. The sequence x = (X1, X2, · · · )
is then obtained from ri by thresholding at 0.5, that is Xi := I{ri > 0.5}. If α is irrational
then x forms a stationary ergodic time series. (We simulate α by a longdouble with a long
mantissa.)

For the purpose of our experiments, first we fix κ := 5 difference process distributions
specified by α1 = 0.31..., α2 = 0.33..., α3 = 0.35..., α4 = 0.37..., α5 = 0.39.... The param-
eters αi are intentionally selected to be close, in order to make the process distributions
harder to distinguish. Next we generate an N ×M data matrix X, each row of which is
a sequence generated by one of the process distributions. Our task in both the online and
the batch setting is to cluster the rows of X into κ = 5 clusters.

6.1.2 Batch Setting

In this experiment we demonstrate that in the batch setting, the clustering errors corre-
sponding to both the online and the offline algorithms converge to 0 as the sequence-lengths
grow. To this end, at every time step t we take an N×n(t) submatrix X|n(t) of X composed
of the rows of X terminated at length n(t), where n(t) = 5t. Then at each iteration we let
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each of the algorithms, (online and offline) cluster the rows of X|n(t) into five clusters, and
calculate the clustering error rate of each algorithm. As shown in Figure 2 (top) the error
rate of each algorithm decreases with sequence length.
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Figure 2: Top: error rate vs. sequence length in batch setting. Bottom: error rate vs.
Number of observed samples in online setting. (error rates averaged over 100
runs.)

6.1.3 Online Setting

In this experiment we demonstrate that, unlike the online algorithm, the offline algorithm is
consistently confused by the new sequences arriving at each time step in an online setting.
To simulate an online setting, we proceed as follows: At every time step t, a triangular
window is used to reveal the first 1..ni(t), i = 1..t elements of the first t rows of the data
matrix X, with ni(t) := 5(t − i) + 1, i = 1..t. This gives a total of t sequences, each of
length ni(t), for i = 1..t, where the ith sequence for i = 1..t corresponds to the ith row of X
terminated at length ni(t). At every time step t the online and offline algorithms are each
used in turn to cluster the observed t sequences into five clusters. Note that the performance
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of both algorithms is measured on all sequences available at a given time, not on a fixed
batch of sequences. As shown in Figure 2 (bottom), in this setting the clustering error
rate of the offline algorithm remains consistently high, whereas that of the online algorithm
converges to zero.

6.2 Real Data

As an application we consider the problem of clustering motion capture sequences, where
groups of sequences with similar dynamics are to be identified. Data is taken from the
Motion Capture database (MOCAP) which consists of time-series data representing human
locomotion. The sequences are composed of marker positions on human body which are
tracked spatially through time for various activities.

We compare our results to those obtained with two other methods, namely those of Li
and Prakash (2011) and Jebara et al. (2007). Note that we have not implemented these
reference methods, rather we have taken the numerical results directly from the correspond-
ing articles. In order to have common grounds for each comparison we use the same sets
of sequences2 and the same means of evaluation as those used by Li and Prakash (2011);
Jebara et al. (2007).

In the paper by Li and Prakash (2011) two MOCAP data sets3 are used, where the
sequences in each data set are labelled with either running or walking as annotated in the
database. Performance is evaluated via the conditional entropy S of the true labelling
with respect to the prediction, i.e., S := −

∑
i,j

Mij∑
i′,j′Mi′j′

log
Mij∑
j′Mij′

where M denotes

the clustering confusion matrix. The motion sequences used by Li and Prakash (2011) are
reportedly trimmed to equal duration. However, we use the original sequences as our method
is not limited by variation in sequence lengths. Table 1 lists performance of Algorithm 1
as well as that reported for the method of Li and Prakash (2011); Algorithm 1 performs
consistently better.

In the paper (Jebara et al., 2007) four MOCAP data sets4 are used, corresponding to
four motions: run, walk, jump and forward jump. Table 2 lists performance in terms of
accuracy. The data sets in Table 2 constitute two types of motions:

1. motions that can be considered ergodic: walk, run, run/jog (displayed above the
double line), and

2. non-ergodic motions: single jumps (displayed below the double line).

As shown in Table 2, Algorithm 1 achieves consistently better performance on the first
group of data sets, while being competitive (better on one and worse on the other) on the
non-ergodic motions. The time taken to complete each task is in the order of few minutes
on a standard laptop computer.

2. The subject’s right foot was used as marker position.
3. The corresponding subject references are #16 and #35.
4. The corresponding subject references are #7, #9, #13, #16 and #35.
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Data set (Li and Prakash, 2011) Algorithm 1

1. Walk vs. Run (#35) 0.1015 0
2. Walk vs. Run (#16) 0.3786 0.2109

Table 1: Comparison with the work (Li and Prakash, 2011): Performance in terms of en-
tropy; data sets concern ergodic motion captures.

Data set (Jebara et al., 2007) Algorithm 1

1. Run(#9) vs. Run/Jog(#35) 100% 100%
2. Walk(#7) vs. Run/Jog(#35) 95% 100%

3. Jump vs. Jump fwd.(#13) 87% 100%
4. Jump vs. Jump fwd.(#13, 16) 66% 60%

Table 2: Comparison with the work (Jebara et al., 2007): Performance in terms of accuracy;
Rows 1 & 2 concern ergodic, Rows 3 & 4 concern non-ergodic motion captures.

7. Discussion

We have proposed a natural notion of consistency for clustering time series in both the online
and the offline settings. While in this work we have taken some first steps in investigating
the theoretical and algorithmic questions arising in the proposed framework, there are many
open problems and exciting directions for future research remaining to be explored. Some
of these are discussed in this section.

Rates, optimality. The main focus of this work is on the most general case of highly
dependent time series. On the one hand, this captures best the spirit of the unsupervised
learning problem in question: the nature of the data is completely unknown, and one tries
to find some structure in it. On the other hand, as discussed above, in this generality rates
of convergence and finite-sample performance guarantees are provably impossible to obtain,
and thus one cannot argue about optimality. While we have provided some results on a
more restrictive setting (time series with mixing, Section 4.3), the question of what the
optimal performance guarantees are for different classes of time series remains open. In
fact, the first interesting question in this direction is not about time series with mixing, but
about i.i.d. series. What is the minimal achievable probability of clustering error in this
setting, for finite sample sizes, and what algorithms attain it?

Online setting: bad points. In the online setting of Section 4.2, we have assumed that the
length of each sequence grows to infinity with time. While this is a good first approximation,
this assumption may not be practical. It is interesting to consider the situation in which
some sequences stop growing at some point; moreover, it can be assumed that such sequences
are not representative of the corresponding distribution. While this clearly makes the
problem much more difficult, already in the setting considered in this work we have dealt
with “bad” sequences at each time step: these are those sequences which are as yet too
short to be informative. This hints at the possibility of obtaining consistent algorithms in
the extended setting outlined.

Other metrics and non-metric-based methods. All of the methods presented in this paper
are based on the distributional distance d. The main property of this distance that we
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exploit is that it can be estimated consistently. In principle, one can use other distances
with this property, in order to obtain consistent clustering algorithms. While there are not
many known distances that can be consistently estimated for arbitrary stationary ergodic
distributions, there is at least one, namely the telescope distance recently introduced by
Ryabko and Mary (2013). Moreover, the definition of consistency proposed does not entail
the need to use a distance between time-series distributions. As an alternative, the use
of compression-based methods can be considered. Such methods have been used to solve
various statistical problems concerning stationary ergodic time series (Ryabko and Astola,
2006; Ryabko, 2010a). Compression-based methods have also been used for clustering time-
series data before, albeit without consistency analysis, by Cilibrasi and Vitanyi (2005).
Combining our consistency framework with these compression-based methods is another
promising direction for further research.
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