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Abstract

We consider the emphatic temporal-difference (TD) algorithm, ETD(λ), for learning the
value functions of stationary policies in a discounted, finite state and action Markov de-
cision process. The ETD(λ) algorithm was recently proposed by Sutton, Mahmood, and
White (2016) to solve a long-standing divergence problem of the standard TD algorithm
when it is applied to off-policy training, where data from an exploratory policy are used
to evaluate other policies of interest. The almost sure convergence of ETD(λ) has been
proved in our recent work under general off-policy training conditions, but for a narrow
range of diminishing stepsize. In this paper we present convergence results for constrained
versions of ETD(λ) with constant stepsize and with diminishing stepsize from a broad
range. Our results characterize the asymptotic behavior of the trajectory of iterates pro-
duced by those algorithms, and are derived by combining key properties of ETD(λ) with
powerful convergence theorems from the weak convergence methods in stochastic approx-
imation theory. For the case of constant stepsize, in addition to analyzing the behavior
of the algorithms in the limit as the stepsize parameter approaches zero, we also analyze
their behavior for a fixed stepsize and bound the deviations of their averaged iterates from
the desired solution. These results are obtained by exploiting the weak Feller property of
the Markov chains associated with the algorithms, and by using ergodic theorems for weak
Feller Markov chains, in conjunction with the convergence results we get from the weak
convergence methods. Besides ETD(λ), our analysis also applies to the off-policy TD(λ)
algorithm, when the divergence issue is avoided by setting λ sufficiently large. It yields, for
that case, new results on the asymptotic convergence properties of constrained off-policy
TD(λ) with constant or slowly diminishing stepsize.

Keywords: Markov decision processes, approximate policy evaluation, reinforcement
learning, temporal-difference methods, importance sampling, stochastic approximation,
convergence

1. Introduction

We consider discounted finite state and action Markov decision processes (MDPs) and
the problem of learning an approximate value function for a given policy from off-policy
data, that is, from data due to a different policy. The first policy is called the target
policy and the second the behavior policy. The case of on-policy learning, where the target
and behavior policies are the same, has been well-studied and widely applied (see e.g.,
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Sutton, 1988; Tsitsiklis and Van Roy, 1997; and the books Bertsekas and Tsitsiklis, 1996;
Sutton and Barto, 1998). Off-policy learning provides additional flexibilities and is useful
in many contexts. For example, one may want to avoid executing the target policy before
estimating the potential risk for safety concerns, or one may want to learn value functions
for many target policies in parallel from one exploratory behavior. These require off-policy
learning. In addition, insofar as value functions (with respect to different reward/cost
assignments) reflect statistical properties of future outcomes, off-policy learning can be
used by an autonomous agent to build an experience-based internal model of the world
in artificial intelligence applications (Sutton, 2009). Algorithms for off-policy learning are
thus not only useful as model-free computational methods for solving MDPs, but can also
potentially be a step toward the goal of making autonomous agents capable of learning over
a long life-time, facing a sequence of diverse tasks.

In this paper we focus on a new off-policy learning algorithm proposed recently by
Sutton, Mahmood, and White (2016): the emphatic temporal-difference (TD) learning al-
gorithm, or ETD(λ). The algorithm is similar to the standard TD(λ) algorithm with linear
function approximation (Sutton, 1988), but uses a novel scheme to resolve a long-standing
divergence problem in TD(λ) when applied to off-policy data. Regarding the divergence
problem, while TD(λ) was proved to converge for the on-policy case (Tsitsiklis and Van
Roy, 1997), it was known quite early that the algorithm can diverge in other cases (Baird,
1995; Tsitsiklis and Van Roy, 1997).1 The difficulty is intrinsic to sampling states according
to an arbitrary distribution. Since then alternative algorithms without convergence issues
have been sought for off-policy learning. In particular, in the off-policy LSTD(λ) algorithm
(Bertsekas and Yu, 2009; Yu, 2012), which is an extension of the on-policy least-squares
version of TD(λ) proposed by Bradtke and Barto (1996) and Boyan (1999), with higher
computational complexity than TD(λ), the linear equation associated with TD(λ) is esti-
mated from data and then solved.2 In the gradient-TD algorithms (Sutton et al., 2008,
2009; Maei, 2011) and the proximal gradient-TD algorithms (Liu et al., 2009; Mahadevan
and Liu, 2012; see also Mahadevan et al., 2014; Liu et al., 2015), the difficulty in TD(λ) is
overcome by reformulating the approximate policy evaluation problem TD(λ) attempts to
solve as optimization problems and then tackle them with optimization techniques. (See
the surveys Geist and Scherrer, 2014 and Dann et al., 2014 for other algorithm examples.)

Compared to the algorithms just mentioned, ETD(λ) is closer to the standard TD(λ)
algorithm and addresses the issue in TD(λ) more directly. It introduces a novel weighting
scheme to re-weight the states when forming the eligibility traces in TD(λ), so that the
weights reflect the occupation frequencies of the target policy rather than the behavior
policy. An important result of this weighting scheme is that under natural conditions on
the function approximation architecture, the average dynamics of ETD(λ) can be described
by an affine function involving a negative definite matrix (Sutton et al., 2016; Yu, 2015a),3

1. For related discussions, see also Bertsekas and Tsitsiklis (1996); Sutton and Barto (1998); and Sutton
et al. (2016).

2. An efficient algorithm for solving the estimated equations is the one given by Yao and Liu (2008) based
on the line search method. It can also be applied to finding approximate solutions under additional
penalty terms suggested by Pires and Szepesv́ari (2012).

3. Sutton et al. (2016) work with the negation of the matrix that we associate with ETD(λ) in this paper.
The negative definiteness property we discuss here corresponds to the positive definiteness property
discussed in their work.
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which provides a desired stability property, similar to the case of convergent on-policy TD
algorithms.

The almost sure convergence of ETD(λ), under general off-policy training conditions,
has been shown in our recent work (Yu, 2015a) for diminishing stepsize. That result,
however, requires the stepsize to diminish at the rate of O(1/t), with t being the time index
of the iterate sequence. This range of stepsize is too narrow for applications. In practice,
algorithms tend to make progress too slowly if the stepsize becomes too small, and the
environment may be non-stationary, so it is often preferred to use a much larger stepsize or
constant stepsize.

The purpose of this paper is to provide an analysis of ETD(λ) for a broad range of
stepsizes. Specifically, we consider constant stepsize and stepsize that can decrease at a
rate much slower than O(1/t). We will maintain general off-policy training conditions,
without placing restrictions on the behavior policy. However, we will consider constrained
versions of ETD(λ), which constrain the iterates to be in a bounded set, and a mode of
convergence that is weaker than almost sure convergence. Constraining the ETD(λ) iterates
is not only needed in analysis, but also a means to control the variances of the iterates, which
is important in practice since off-policy learning algorithms generally have high variances.
Almost sure convergence is no longer guaranteed for algorithms using large stepsizes; hence
we analyze their behavior with respect to a weaker convergence mode.

We study a simple, basic version of constrained ETD(λ) and several variations of it,
some of which are biased but can mitigate the variance issue better. To give an overview
of our results, we shall refer to the first algorithm as the unbiased algorithm, and its biased
variations as the biased variants. Two groups of results will be given to characterize the
asymptotic behavior of the trajectory of iterates produced by these algorithms. The first
group of results are derived by combining key properties of ETD(λ) with powerful conver-
gence theorems from the weak convergence methods in stochastic approximation theory.
The results show (roughly speaking) that:

(i) In the case of diminishing stepsize, under mild conditions, the trajectory of iterates
produced by the unbiased algorithm eventually spends nearly all its time in an arbi-
trarily small neighborhood of the desired solution, with an arbitrarily high probability
(Theorem 4); and the trajectory produced by the biased algorithms has a similar be-
havior, when the algorithmic parameters are set to make the biases sufficiently small
(Theorem 6). These results entail the convergence in mean to the desired solution
for the unbiased algorithm (Corollary 2), and the convergence in probability to some
vicinity of the desired solution for the biased variants.

(ii) In the case of constant stepsize, imagine that we run the algorithms for all stepsizes;
then conclusions similar to those in (i) hold in the limit as the stepsize parameter
approaches zero (Theorems 5 and 7). In particular, a smaller stepsize parameter
results in an increasingly longer segment of the trajectory to spend, with an increasing
probability, nearly all its time in some neighborhood of the desired solution. The size of
the neighborhood can be made arbitrarily small as the stepsize parameter approaches
zero and, in the case of the biased variants, also as their biases are reduced.

The next group of results are for the constant-stepsize case and complement the results in
(ii) by focusing on the asymptotic behavior of the algorithms for a fixed stepsize. Among
others, they show (roughly speaking) that:
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(iii) For any given stepsize parameter, asymptotically, the expected maximal deviation
of multiple consecutive averaged iterates from the desired solution can be bounded
in terms of the masses that the invariant probability measures of certain associated
Markov chains assign to a small neighborhood of the desired solution. Those proba-
bility masses approach one when the stepsize parameter approaches zero and, in the
case of the biased variants, also when their biases are sufficiently small (Theorems 8
and 9).

(iv) For a perturbed version of the unbiased algorithm and its biased variants, the maximal
deviation of averaged iterates from the desired solution, under a given stepsize param-
eter, can be bounded almost surely in terms of those probability masses mentioned in
(iii), for each initial condition (Theorems 10 and 11).

To derive the first group of results, we use powerful convergence theorems from the
weak convergence methods in stochastic approximation theory (Kushner and Clark, 1978;
Kushner and Shwartz, 1984; Kushner and Yin, 2003). This theory builds on the ordinary
differential equation (ODE) based proof method, treats the trajectory of iterates as a whole,
and studies its asymptotic behavior through the continuous-time processes corresponding
to left-shifted and interpolated iterates. The probability distributions of these continuous-
time interpolated processes are analyzed (as probability measures on a function space) by
the weak convergence methods, leading to a characterization of their limiting distributions,
from which asymptotic properties of the trajectory of iterates can be obtained.

Most of our efforts in the first part of our analysis are to prove that the constrained
ETD(λ) algorithms satisfy the conditions required by the general convergence theorems just
mentioned. We prove this by using key properties of ETD(λ) iterates, most importantly,
the ergodicity and uniform integrability properties of the trace iterates, and the convergence
of certain averaged processes which, intuitively speaking, describe the averaged dynamics
of ETD(λ). Some of these properties were established earlier in our work (2015a) when
analyzing the almost sure convergence of ETD(λ). Building upon that work, we prove the
remaining properties needed in the analysis.

To derive the second group of results, we exploit the fact that in the case of constant
stepsize, the iterates together with other random variables involved in the algorithms form
weak Feller Markov chains, and such Markov chains have nice ergodicity properties. We use
ergodic theorems for weak Feller Markov chains (Meyn, 1989; Meyn and Tweedie, 2009),
together with the properties of ETD(λ) iterates and the convergence results we get from
the weak convergence methods, in this second part of our analysis.

Besides ETD(λ), the analysis we give in the paper also applies to off-policy TD(λ), when
the divergence issue mentioned earlier is avoided by setting λ sufficiently close to 1. The
reason is that in that case the off-policy TD(λ) iterates have the same properties as the ones
used in our analysis of ETD(λ) and therefore, the same conclusions hold for constrained
versions of off-policy TD(λ), regarding their asymptotic convergence properties for constant
or slowly diminishing stepsize (these results are new, to our knowledge). Similarly, our
analysis also applies directly to the ETD(λ, β) algorithm, a variation of ETD(λ) recently
proposed by Hallak et al. (2016).

Regarding practical performance of the algorithms, the biased ETD variant algorithms
are much more robust than the unbiased algorithm despite the latter’s superior asymptotic
convergence properties. (This is not a surprise, for the biased algorithms are in fact defined
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by using a well-known robustifying approach from stochastic approximation theory.) Their
behavior is demonstrated by experiments in (Mahmood et al., 2015; Yu, 2016). In particular,
the report (Yu, 2016) is our companion note for this paper and includes several simulation
results to illustrate some of the theorems we give here regarding the behavior of multiple
consecutive iterates of the biased algorithms.

The paper is organized as follows. In Section 2 we provide the background for the
ETD(λ) algorithm. In Section 3 we present our convergence results on constrained ETD(λ)
and several variants of it, and we give the proofs in Section 4. We conclude the paper in
Section 5 with a brief discussion on direct applications of our convergence results to the off-
policy TD(λ) algorithm and the ETD(λ, β) algorithm, as well as to ETD(λ) under relaxed
conditions, followed by a discussion on several open issues. In Appendix A we include the
key properties of the ETD(λ) trace iterates that are used in the analysis.

2. Preliminaries

In this section we describe the policy evaluation problem in the off-policy case, the ETD(λ)
algorithm and its constrained version. We also review the results from our prior work
(2015a) that are needed in this paper.

2.1 Off-policy Policy Evaluation

Let S = {1, . . . , N} be a finite set of states, and let A be a finite set of actions. Without
loss of generality we assume that for all states, every action in A can be applied. If a ∈ A
is applied at state s ∈ S, the system moves to state s′ with probability p(s′ | s, a) and yields
a random reward with mean r(s, a, s′) and bounded variance, according to a probability
distribution q(· | s, a, s′). These are the parameters of the MDP model we consider; they
are unknown to the learning algorithms to be introduced.

A stationary policy is a time-invariant decision rule that specifies the probability of
taking an action at each state. When actions are taken according to such a policy, the
states and actions (St, At) at times t ≥ 0 form a (time-homogeneous) Markov chain on the
space S ×A, with the marginal state process {St} being also a Markov chain.

Let π and πo be two given stationary policies, with π(a | s) and πo(a | s) denoting the
probability of taking action a at state s under π and πo, respectively. While the system
evolves under the policy πo, generating a stream of state transitions and rewards, we wish
to use these observations to evaluate the performance of the policy π, with respect to a
discounted reward criterion, the definition of which will be given shortly. Here π is the target
policy and πo the behavior policy. It is allowed that πo 6= π (the off-policy case), provided
that at each state, all actions taken by π can also be taken by πo (cf. Assumption 1(ii)
below).

Let γ(s) ∈ [0, 1], s ∈ S, be state-dependent discount factors, with γ(s) < 1 for at least
one state. We measure the performance of π in terms of the expected discounted total
rewards attained under π as follows: for each state s ∈ S,

vπ(s) := Eπ
[
R0 +

∞∑
t=1

γ(S1) γ(S2) · · · γ(St) ·Rt
∣∣∣S0 = s

]
, (1)
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whereRt is the random reward received at time t, and Eπ denotes expectation with respect to
the probability distribution of the states, actions and rewards, (St, At, Rt), t ≥ 0, generated
under the policy π. The function vπ on S is called the value function of π. The special
case of γ being a constant less than 1 corresponds to the γ-discounted reward criterion:
vπ(s) = Eπ

[∑∞
t=0 γ

tRt | S0 = s
]
. In the general case, by letting γ depend on the state, the

formulation is able to also cover certain undiscounted total reward MDPs with termination;4

however, for vπ to be well-defined (i.e., to have the right-hand side of Equation 1 well-defined
for each state), a condition on the target policy is needed, which is stated below and will
be assumed throughout the paper.

Let Pπ denote the transition matrix of the Markov chain on S induced by π. Let Γ
denote the N ×N diagonal matrix with diagonal entries γ(s), s ∈ S.

Assumption 1 (conditions on the target and behavior policies)

(i) The target policy π is such that (I − PπΓ)−1 exists.

(ii) The behavior policy πo induces an irreducible Markov chain on S, and moreover, for
all (s, a) ∈ S ×A, πo(a | s) > 0 if π(a | s) > 0.

Under Assumption 1(i), the value function vπ in (1) is well-defined, and furthermore, vπ
satisfies uniquely the Bellman equation5

vπ = rπ + PπΓ vπ, i.e., vπ = (I − PπΓ)−1rπ,

where rπ is the expected one-stage reward function under π (i.e., rπ(s) = Eπ[R0 | S0 = s]
for s ∈ S).

2.2 The ETD(λ) Algorithm

Like the standard TD(λ) algorithm (Sutton, 1988; Tsitsiklis and Van Roy, 1997), the
ETD(λ) algorithm (Sutton et al., 2016) approximates the value function vπ by a func-
tion of the form v(s) = φ(s)>θ, s ∈ S, using a parameter vector θ ∈ Rn and n-dimensional
feature representations φ(s) for the states. (Here φ(s) is a column vector and > stands for
transpose.) In matrix notation, denote by Φ the N × n matrix with φ(s)>, s ∈ S, as its
rows. Then the columns of Φ span the subspace of approximate value functions, and the
approximation problem is to find in that subspace a function v = Φθ ≈ vπ.

We focus on a general form of the ETD(λ) algorithm, which uses state-dependent λ
values specified by a function λ : S → [0, 1]. Inputs to the algorithm are the states, actions
and rewards, {(St, At, Rt)}, generated under the behavior policy πo, where Rt is the random
reward received upon the transition from state St to St+1 with action At. The algorithm
can access the following functions, in addition to the features φ(s):

4. We may view vπ(s) as the expected (undiscounted) total rewards attained under π starting from the
state s and up to a random termination time τ ≥ 1 that depends on the states in a Markovian way. In
particular, if at time t ≥ 1, the state is s and termination has not occurred yet, the probability of τ = t
(terminating at time t) is 1 − γ(s). Then vπ(s) can be equivalently written as vπ(s) = Eπ

[∑τ−1
t=0 Rt |

S0 = s
]
.

5. One can verify this Bellman equation directly. It also follows from the standard MDP theory, as by
definition vπ here can be related to a value function in a discounted MDP where the discount factors
depend on state transitions, similar to discounted semi-Markov decision processes (see e.g., Puterman,
1994).
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(i) the state-dependent discount factor γ(s) that defines vπ, as described earlier;

(ii) λ : S → [0, 1], which determines the single or multi-step Bellman equation for the
algorithm (cf. the subsequent Equations 6-7 and Footnote 7);

(iii) ρ : S × A → R+ given by ρ(s, a) = π(a | s)/πo(a | s) (with 0/0 = 0), which gives the
likelihood ratios for action probabilities that can be used to compensate for sampling
states and actions according to the behavior policy πo instead of the target policy π;

(iv) i : S → R+, which gives the algorithm additional flexibility to weigh states according
to the degree of “interest” indicated by i(s).

The algorithm also uses a sequence αt > 0, t ≥ 0, as stepsize parameters. We shall consider
only deterministic {αt}.

To simplify notation, let

ρt = ρ(St, At), γt = γ(St), λt = λ(St).

ETD(λ) calculates recursively θt ∈ Rn, t ≥ 0, according to

θt+1 = θt + αt et · ρt
(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
)
, (2)

where et ∈ Rn, called the “eligibility trace,” is calculated together with two nonnegative
scalar iterates (Ft,Mt) according to6

Ft = γt ρt−1 Ft−1 + i(St), (3)

Mt = λt i(St) + (1− λt)Ft, (4)

et = λt γt ρt−1 et−1 +Mt φ(St). (5)

For t = 0, (e0, F0, θ0) are given as an initial condition of the algorithm.
We recognize that the iteration (2) has the same form as TD(λ), but the trace et

is calculated differently, involving an “emphasis” weight Mt on the state St, which itself
evolves along with the iterate Ft, called the “follow-on” trace. If Mt is always set to 1
regardless of Ft and i(·), then the iteration (2) reduces to the off-policy TD(λ) algorithm
in the case where γ and λ are constants.

2.3 Associated Bellman Equations and Approximation and Convergence
Properties of ETD(λ)

Let Λ denote the diagonal matrix with diagonal entries λ(s), s ∈ S. Associated with ETD(λ)
is a generalized multistep Bellman equation of which vπ is the unique solution (Sutton,
1995):7

v = rλπ,γ + P λπ,γ v. (6)

6. The definition (5) we use here differs slightly from the original definition of et used by Sutton et al.
(2016), but the two are equivalent and (5) appears to be more convenient for our analysis.

7. For the details of this Bellman equation, we refer the readers to the early work (Sutton, 1995; Sutton and
Barto, 1998) and the recent work (Sutton et al., 2016). We remark that similar to the standard one-step
Bellman equation, which is a recursive relation that expresses vπ in terms of the expected one-stage
reward and the expected total future rewards given by vπ itself, one can use the strong Markov property
to derive other recursive relations satisfied by vπ, in which the expected one-stage reward is replaced
by the expected rewards attained by π up to some random stopping time. This gives rise to a general
class of Bellman equations, of which (6) is one example. Earlier works on using such equations in TD
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Here P λπ,γ is an N ×N substochastic matrix, rλπ,γ ∈ RN is a vector of expected discounted
total rewards attained by π up to some random time depending on the function λ, and they
can be expressed in terms of Pπ and rπ as

P λπ,γ = I − (I − PπΓΛ)−1 (I − PπΓ), rλπ,γ = (I − PπΓΛ)−1 rπ. (7)

ETD(λ) aims to solve a projected version of the Bellman equation (6) (Sutton et al.,
2016), which takes the following forms in the space of approximate value functions and in
the space of the θ-parameters, respectively:

v = Π
(
rλπ,γ + P λπ,γ v

)
, v ∈ column-space(Φ), ⇐⇒ Cθ + b = 0, θ ∈ Rn. (8)

Here Π is a projection onto the approximation subspace with respect to a weighted Eu-
clidean norm or seminorm, under a condition on the approximation architecture that will
be explained shortly. The weights that define this norm also define the diagonal entries
M̄ss, s ∈ S, of a diagonal matrix M̄ , which are given by

diag(M̄) = d>πo,i(I − P λπ,γ)−1, with dπo,i ∈ RN , dπo,i(s) = dπo(s) · i(s), s ∈ S, (9)

where dπo(s) > 0 denotes the steady state probability of state s for the behavior policy πo,
under Assumption 1(ii). For the corresponding linear equation in the θ-space in (8),

C = −Φ>M̄ (I − P λπ,γ) Φ, b = Φ>M̄ rλπ,γ . (10)

From the expression (9) of the diagonal matrix M̄ , the most important difference be-
tween the earlier TD algorithms and ETD(λ) can be seen. For on-policy TD(λ), in stead
of (9), the diagonal matrix M̄ is determined by the steady state probabilities of the states
under the target policy π under an ergodicity assumption (Tsitsiklis and Van Roy, 1997),
and for off-policy TD(λ), it is determined by the steady state probabilities dπo(s) under the
behavior policy πo. Here, due to the emphatic weighting scheme (3)-(5), the diagonals of
M̄ given by (9) reflect the occupation frequencies (with respect to P λπ,γ) of the target policy
rather than the behavior policy.

Let | · | denote the (unweighted) Euclidean norm. The matrix C is said to be negative
definite if there exists c > 0 such that θ>Cθ ≤ −c|θ|2 for all θ ∈ Rn; and negative semidefi-
nite if in the preceding inequality c = 0. A salient property of ETD(λ) is that the matrix C
is always negative semidefinite (Sutton et al., 2016), and under natural and mild conditions,
C is negative definite. This is proved in our work (2015a) and summarized below.

Call those states s with M̄ss > 0 emphasized states (define this set of states to be empty
if M̄ given by Equation 9 is ill-defined, a case we will not encounter).

Assumption 2 (condition on the approximation architecture)
The set of feature vectors of emphasized states, {φ(s) | s ∈ S, M̄ss > 0}, contains n linearly
independent vectors.

learning include the paper (Sutton, 1995) and Chap. 5.3 of the book (Bertsekas and Tsitsiklis, 1996).
Recently, Ueno et al. (2011) considered an even broader class of Bellman equations using the concept of
estimating equations from statistics, and Yu and Bertsekas (2012) focused on a special class of generalized
Bellman equations and discussed their potential advantages from an approximation viewpoint. But an
in-depth study of the application of such equations is still lacking currently. Because generalized Bellman
equations offer flexible ways to address the bias vs. variance problem in learning the value functions of
a policy, they are especially important and deserve further study, in our opinion.
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Theorem 1 (Yu, 2015a, Prop. C.2) Under Assumption 1, the matrix C is negative def-
inite if and only if Assumption 2 holds.

Assumption 2, which implies the linear independence of the columns of Φ, is satisfied
in particular if the set of feature vectors, {φ(s) | s ∈ S, i(s) > 0}, contains n linearly
independent vectors, since states with positive interest i(s) are among the emphasized
states.8 So this assumption can be easily satisfied in reinforcement learning without model
knowledge.9

In view of Theorem 1, under Assumptions 1-2, the equation Cθ + b = 0 has a unique
solution θ∗; equivalently, Φθ∗ is the unique solution to the projected Bellman equation (7):

Φθ∗ = Π
(
rλπ,γ + P λπ,γ Φθ∗

)
,

where Π is a well-defined projection operator that projects a vector in RN onto the approx-
imation subspace with respect to the seminorm on RN given by√∑

s∈S M̄ss · v(s)2, ∀ v ∈ RN

(which is a norm if M̄ss > 0 for all s ∈ S). The relation between the approximate value
function v = Φθ∗ and the desired value function vπ, in particular, the approximation error,
can be characterized by using the oblique projection viewpoint (Scherrer, 2010) for projected
Bellman equations.10

The almost sure convergence of ETD(λ) to θ∗ is proved in (Yu, 2015a, Theorem 2.2)
under Assumptions 1 and 2, for diminishing stepsize satisfying αt = O(1/t) and αt−αt+1

αt
=

O(1/t). Despite this convergence guarantee, the stepsize range is too narrow for appli-
cations, as we discussed in the introduction. In this paper we will focus on constrained
ETD(λ) algorithms that restrict the θ-iterates in a bounded set, but can operate with much
larger stepsizes and also suffer less from the issue of high variance in off-policy learning.
We will analyze their behavior under Assumptions 1 and 2, although our analysis extends
to the case without Assumption 2 (see the discussion in Section 5.1).

8. This follows from the definition (9) of the diagonals M̄ss. Since (I − Pλπ,γ)−1 = I +
∑∞
k=1(Pλπ,γ)k ≥ I,

we have diag(M̄) = d>πo,i(I − Pλπ,γ)−1 ≥ d>πo,i. Hence i(s) > 0 implies M̄ss ≥ dπo(s) · i(s) > 0.
9. There is another way to verify Assumption 2 without calculating M̄ . Suppose ETD(λ) starts from a

state S0 with i(S0) > 0. Then it can be shown that if St = s and Mt > 0, we must have M̄ss > 0. This
means that as soon as we find among states St with emphasis weights Mt > 0 n states that have linearly
independent feature vectors, we can be sure that Assumption 2 is satisfied.

10. Briefly speaking, Scherrer (2010) showed that the solutions of projected Bellman equations are oblique
projections of vπ on the approximation subspace. An oblique projection is defined by two nonorthogonal
subspaces of equal dimensions and is the projection onto the first subspace orthogonally to the second
(Saad, 2003). In the special case of ETD(λ), the first of these two subspaces is the approximation
subspace {v ∈ RN | v = Φθ for some θ ∈ Rn}, and the second is the image of the approximation
subspace under the linear transformation (I − Pλπ,γ)>M̄ . Essentially it is the angle between the two
subspaces that determines the approximation bias Φθ∗−Πvπ in the worst case, for a worst-case choice of
rλπ,γ . (For details, see also Yu and Bertsekas 2012, Sec. 2.2.) Recently, for the case of constant λ, i and γ,
Hallak et al. (2016) derived bounds on the approximation bias that are based on contraction arguments
and are comparable to the bound for on-policy TD(λ) (Tsitsiklis and Van Roy, 1997). These bounds lie
above the bounds given by the oblique projection view (cf. Yu and Bertsekas, 2010; Yu and Bertsekas,
2012, Sec. 2.2); however, they are expressed in terms of λ and γ, so they give us explicit numbers instead
of analytical expressions to bound the approximation bias.
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2.4 Constrained ETD(λ), Averaged Processes and Mean ODE

We consider first a constrained version of ETD(λ) that simply scales the θ-iterates, if
necessary, to keep them bounded:

θt+1 = ΠB

(
θt + αt et · ρt

(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
))
, (11)

where ΠB is the Euclidean projection onto a closed ball B ⊂ Rn at the origin with radius
rB: B = {θ ∈ Rn | |θ| ≤ rB}. Under Assumptions 1 and 2, when the radius rB is sufficiently
large (greater than the threshold given in Lemma 1 below), from any given initial (e0, F0, θ0),
the algorithm (11) converges almost surely to θ∗, for diminishing stepsize αt = O(1/t) (Yu,
2015a, Theorem 4.1).

Our interest in this paper is to apply (11) with a much larger range of stepsize, in
particular, constant stepsize or stepsize that diminishes much more slowly than O(1/t). In
Sections 3 and 4, we will analyze the algorithm (11) and its two variants for such stepsizes.
To prepare for the analysis, in the rest of this section, we review several results from our
prior work (2015a) that will be needed.

First, we discuss about the “mean ODE” that we wish to associate with (11). It is the
projected ODE

ẋ = h̄(x) + z, z ∈ −NB(x), (12)

where the function h̄ is the left-hand side of the equation Cx+ b = 0 we want to solve:

h̄(x) = Cx+ b; (13)

NB(x) is the normal cone of B at x (i.e., NB(x) = {0} for x in the interior of B and
NB(x) = {ax | a ≥ 0} for x on the boundary of B); and z is the boundary reflection term
that cancels out the component of h̄(x) in NB(x) (i.e., z = −y where y is the projection of
h̄(x) on NB(x)), and it is the “minimal force” needed to keep the solution x(·) of (12) in B
(Kushner and Yin, 2003, Chap. 4.3).

The negative definiteness of the matrix C ensures that when the radius of B is sufficiently
large, the boundary reflection term is zero for all x ∈ B and the projected ODE (12) has
no stationary points other than θ∗ (see Yu 2015a, Sec. 4.1 for a simple proof):

Lemma 1 Let c > 0 be such that x>Cx ≤ −c|x|2 for all x ∈ Rn. Suppose B has a radius
rB > |b|/c. Then θ∗ lies in the interior of B; a solution x(τ), τ ∈ [0,∞), to the projected
ODE (12) for an initial condition x(0) ∈ B coincides with the unique solution to ẋ = h̄(x),
with the boundary reflection term being z(·) ≡ 0; and the only solution x(τ), τ ∈ (−∞,+∞),
of (12) in B is x(·) ≡ θ∗.

Informally speaking, suppose we have proved that (12) is the mean ODE for the algo-
rithm (11) under stepsizes of our interest. Then applying powerful convergence theorems
from stochastic approximation theory (Kushner and Yin, 2003), we can assert that the iter-
ates θt will eventually “follow closely” a solution of the mean ODE. This together with the
solution property of the mean ODE given in Lemma 1 will then give us a characterization
of the asymptotic behavior of the algorithm (11) for a constraint set B with sufficiently
large radius.

10
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Several properties of the ETD(λ) iterates will be important in proving that (12) is
indeed the mean ODE for (11) and reflects its average dynamics. We now discuss two such
properties (other key properties will be given in Appendix A). They concern the ergodicity
of the Markov chain {(St, At, et, Ft)} on the joint space of states, actions and traces, and
the convergence of certain averaged sequences associated with the algorithm (11). They
will also be useful in analyzing variants of (11).

Let Zt = (St, At, et, Ft), t ≥ 0. It was shown in (Yu, 2015a) that under Assumption 1,
{Zt} is a weak Feller Markov chain11 on the infinite state space S × A × Rn+1 and is
ergodic. Specifically, on a metric space, a sequence of probability measures {µt} is said
to converge weakly to a probability measure µ if for any bounded continuous function f ,∫
fdµt →

∫
fdµ as t → ∞ (Dudley, 2002, Chap. 9.3). We are interested in the weak

convergence of the occupation probability measures of the process {Zt}, where for each
initial condition Z0 = z, the occupation probability measures µz,t, t ≥ 0, are defined by
µz,t(D) = 1

t+1

∑t
k=0 1(Zk ∈ D) for any Borel subset D of S ×A×Rn+1, with 1(·) denoting

the indicator function.

Theorem 2 (ergodicity of {Zt}; Yu, 2015a, Theorem 3.2) Under Assumption 1, the
Markov chain {Zt} has a unique invariant probability measure ζ, and for each initial con-
dition Z0 = z, the sequence {µz,t} of occupation probability measures converges weakly to ζ,
almost surely.

Let Eζ denote expectation with respect to the stationary process {Zt} with ζ as its initial
distribution. By the definition of weak convergence, the weak convergence of {µz,t} given
in Theorem 2 implies that for each given initial condition of Z0, the averages 1

t

∑t−1
k=0 f(Zk)

converge almost surely to Eζ{f(Z0)} for any bounded continuous function f .12 To study
the average dynamics of the algorithm (11), however, we need to also consider unbounded
functions. In particular, the function related to both (11) and the unconstrained ETD(λ)
is h : Rn × Ξ→ Rn,

h(θ, ξ) = e · ρ(s, a)
(
r(s, a, s′) + γ(s′)φ(s′)>θ − φ(s)>θ

)
, (14)

where

ξ = (e, F, s, a, s′) ∈ Ξ := Rn+1 × S ×A× S.

Writing ξt for the traces and transition at time t: ξt = (et, Ft, St, At, St+1), we can express
the recursion (11) equivalently as

θt+1 = ΠB

(
θt + αt h(θt, ξt) + αt et · ω̃t+1

)
, (15)

where ω̃t+1 = ρt (Rt − r(St, At, St+1)) is the noise part of the observed reward.
The convergence to h̄(θ) of the averaged sequence 1

t

∑t−1
k=0 h(θ, ξk), with θ held fixed

and t going to infinity, will be needed to prove that (12) is the mean ODE of (11). Since

11. See Section 4.3.1 or the book by Meyn and Tweedie (2009, Chap. 6) for the definition and properties of
weak Feller Markov chains.

12. With the usual discrete topology for the finite space S × A and the usual topology for the Euclidean
space Rn+1, the space S × A × Rn+1 equipped with the product topology is metrizable. A continuous
function f(s, a, e, F ) on this space is a function that is continuous in (e, F ) for each (s, a) ∈ S ×A.
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h̄(θ) = Cθ + b, this convergence for each fixed θ can be identified with the convergence
of the matrix and vector iterates calculated by ELSTD(λ)—the least-squares version of
ETD(λ)—to approximate the left-hand side of the equation Cθ + b = 0. It was proved in
our work (2015a) as a special case of the convergence of averaged sequences for a larger set
of functions including h(θ, ·). Since this general result will be needed in analyzing variants
of (11), we give its formulation here.

Throughout the rest of the paper, we let ‖ · ‖ denote the infinity norm of a Euclidean
space, and we use this notation for both vectors and matrices (viewed as vectors). For
Rm-valued random variables Xt, we say {Xt} converges to a random variable X in mean if
E[‖Xt −X‖]→ 0 as t→∞.

Consider a vector-valued function g : Ξ → Rm such that with ξ = (e, F, s, a, s′), g(ξ) is
Lipschitz continuous in (e, F ) uniformly in (s, a, s′). That is, there exists a finite constant
Lg such that for any (e, F ), (ê, F̂ ) ∈ Rn+1,∥∥g(e, F, s, a, s′)− g(ê, F̂ , s, a, s′)

∥∥ ≤ Lg∥∥(e, F )− (ê, F̂ )
∥∥, ∀ (s, a, s′) ∈ S ×A× S. (16)

For each θ ∈ Rn, the function h(θ, ·) in (14) is a special case of g. The convergence of the
averaged sequence 1

t

∑t−1
k=0 g(ξk) is given in the theorem below; the part on convergence in

mean will be used frequently later in this paper. The convergence of 1
t

∑t−1
k=0 h(θ, ξk) then

follows as a special case.

Theorem 3 (convergence of averaged sequences; Yu, 2015a, Theorems 3.1-3.3)
Let g be a vector-valued function satisfying the Lipschitz condition (16). Then under As-
sumption 1, Eζ

[
‖g(ξ0)‖

]
< ∞ and for any given initial (e0, F0) ∈ Rn+1, as t → ∞,

1
t

∑t−1
k=0 g(ξk) converges to ḡ = Eζ

[
g(ξ0)

]
in mean and almost surely.

Corollary 1 (Yu, 2015a, Theorem 2.1) Under Assumption 1, for the functions h̄, h
given in (13), (14) respectively, the following hold: For each θ ∈ Rn, Eζ

[
‖h(θ, ξ0)‖

]
<∞ and

h̄(θ) = Eζ
[
h(θ, ξ0)

]
; and for any given initial (e0, F0) ∈ Rn+1, as t → ∞, 1

t

∑t−1
k=0 h(θ, ξk)

converges to h̄(θ) in mean and almost surely.

3. Convergence Results for Constrained ETD(λ)

In this section we present the convergence properties of the constrained ETD(λ) algorithm
(11) and several variants of it, for constant stepsize and for stepsize that diminishes slowly.
We will explain briefly how the results are obtained, leaving the detailed analyses to Sec-
tion 4. The first set of results about the algorithm (11) will be given first in Section 3.1,
followed by similar results in Section 3.2 for two variant algorithms that have biases but
can mitigate the variance issue in off-policy learning better. These results are obtained
through applying two general convergence theorems from (Kushner and Yin, 2003), which
concern weak convergence of stochastic approximation algorithms for diminishing and con-
stant stepsize. Finally, the constant-stepsize case will be analyzed further in Section 3.3,
in order to refine some results of Sections 3.1-3.2 so that the asymptotic behavior of the
algorithms for a fixed stepsize can be characterized explicitly. In that subsection, besides
the three algorithms just mentioned, we will also discuss another variant algorithm with
perturbation.

12
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Regarding notation, recall that 1(·) is the indicator function, | · | stands for the usual
(unweighted) Euclidean norm and ‖ · ‖ the infinity norm for Rm. We denote by Nδ(D) the
δ-neighborhood of a set D ⊂ Rm: Nδ(D) = {x ∈ Rm | infy∈D |x − y| ≤ δ}, and we write
Nδ(θ

∗) for the δ-neighborhood of θ∗. For the iteration index t, the notation t ∈ [k1, k2] or
t ∈ [k1, k2) will be used to mean that the range of t is the set of integers in the interval
[k1, k2] or [k1, k2). More definitions and notation will be introduced later where they are
needed.

3.1 Main Results

We consider first the algorithm (11) for diminishing stepsize. Let the stepsize change slowly
in the following sense.

Assumption 3 (condition on diminishing stepsize) The (deterministic) nonnegative
sequence {αt} satisfies that

∑
t≥0 αt = ∞, αt → 0 as t → ∞, and for some sequence of

integers mt →∞,

lim
t→∞

sup
0≤j≤mt

∣∣∣∣αt+jαt
− 1

∣∣∣∣ = 0. (17)

The condition (17) is the condition A.8.2.8 in (Kushner and Yin, 2003, Chap. 8) and
allows stepsizes much larger than O(1/t). We can have αt = O(t−β), β ∈ (0, 1], and
even larger stepsizes are possible. For example, partition the time interval [0,∞) into
increasingly longer intervals Ik, k ≥ 0, and set αt to be constant within each interval Ik.
Then the condition (17) can be fulfilled by letting the constants for each Ik decrease as
O(k−β), β ∈ (0, 1].

We now state the convergence result. For any T > 0, let m(k, T ) = min{t ≥ k |∑t+1
j=k αj > T}. If we draw a continuous timeline and put each iteration of the algorithm at

a specific moment, with the stepsize αj being the length of time between iterations j and
j+ 1, then m(k, T ) is the latest iteration before time T has elapsed since the k-th iteration.
If αt = O(t−β), β ∈ (0, 1], for example, then for fixed T , there are O(kβ) iterates between
the k-th and m(k, T )-th iteration.

Recall that Assumption 1, Assumption 2, and Lemma 1 are given in Sections 2.1, 2.3,
and 2.4, respectively.

Theorem 4 (convergence of constrained ETD with diminishing stepsize)
Suppose Assumptions 1-2 hold and the radius of B exceeds the threshold given in Lemma 1.
Let {θt} be generated by the algorithm (11) with stepsize {αt} satisfying Assumption 3, from
any given initial condition (e0, F0). Then there exists a sequence Tk →∞ such that for any
δ > 0,

lim sup
k→∞

P
(
θt 6∈ Nδ(θ

∗), some t ∈
[
k, m(k, Tk)

])
= 0.

This theorem implies θt → θ∗ in probability. Since {θt} is bounded, by (Dudley, 2002,
Theorem 10.3.6), θt must also converge to θ∗ in mean:

Corollary 2 (convergence in mean) In the setting of Theorem 4, E
[
‖θt − θ∗‖

]
→ 0 as

t→∞.
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Another important note is that the conclusion of Theorem 4 is much stronger than
that θt → θ∗ in probability. Here as k → ∞, we consider an increasingly longer segment
[k,m(k, Tk)] of iterates, and are able to conclude that the probability of that entire segment
being inside an arbitrarily small neighborhood of θ∗ approaches 1. This is the power of the
weak convergence methods (Kushner and Clark, 1978; Kushner and Shwartz, 1984; Kushner
and Yin, 2003), by which our conclusion is obtained.

In the case of constant stepsize, we consider all the trajectories that can be produced by
the algorithm (11) using some constant stepsize, and we ask what the properties of these
trajectories are in the limit as the stepsize parameter approaches 0. Here there is a common
timeline used in relating trajectories generated with different stepsizes (and it comes from
the ODE-based analysis): we imagine again a continuous timeline, along which we put the
iterations at moments that are evenly separated in time by α, if the stepsize parameter is
α. The scalars T, Tα in the theorem below represent amounts of time with respect to this
continuous timeline.

Theorem 5 (convergence of constrained ETD with constant stepsize)
Suppose Assumptions 1-2 hold and the radius of B exceeds the threshold given in Lemma 1.
For each α > 0, let {θαt } be generated by the algorithm (11) with constant stepsize α, from
any given initial condition (e0, F0). Let {kα | α > 0} be any sequence of nonnegative integers
that are nondecreasing as α→ 0. Then the following hold:

(i) For any δ > 0,

lim
T→∞

lim
α→0

1

T/α

kα+bT/αc∑
t=kα

1
(
θαt ∈ Nδ(θ

∗)
)

= 1 in probability.

(ii) Let αkα →∞ as α→ 0. Then there exists a sequence {Tα | α > 0} with Tα →∞ as
α→ 0, such that for any δ > 0,

lim sup
α→0

P
(
θαt 6∈ Nδ(θ

∗), some t ∈
[
kα, kα + Tα/α

])
= 0.

Part (ii) above is similar to Theorem 4. Here as α→ 0, an increasingly longer segment
[kα, kα + Tα/α] of the tail of the trajectory {θαt } is considered, and it is concluded that
the probability of that entire segment being inside an arbitrarily small neighborhood of
θ∗ approaches 1. Part (i) above, roughly speaking, says that as α diminishes, within the
segment [kα, kα + T/α], the fraction of iterates θαt that lie in a small δ-neighborhood of θ∗

approaches 1 for sufficiently large T .
We give the proofs of Theorems 4-5 in Section 4.1. As mentioned earlier, most of

our efforts will be to use the properties of ETD iterates to show that the conditions of
two general convergence theorems from stochastic approximation theory (Kushner and Yin,
2003, Theorems 8.2.2, 8.2.3) are satisfied by the algorithm (11). After that we can specialize
the conclusions of those theorems to obtain Theorems 4-5. Specifically, after furnishing their
conditions, applying (Kushner and Yin, 2003, Theorems 8.2.2, 8.2.3) will give us directly
the desired conclusions in Theorems 4-5 with Nδ(LB) in place of Nδ(θ

∗), where Nδ(LB) is
the δ-neighborhood of the limit set LB for the projected ODE (12). This limit set is defined
as follows:

LB := ∩τ̄>0 ∪x(0)∈B{x(τ), τ ≥ τ̄}

14
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where x(τ) is a solution of the projected ODE (12) with initial condition x(0), the union is
over all the solutions with initial x(0) ∈ B, and D for a set D denotes taking the closure
of D. It can be shown that LB = {θ∗} under our assumptions, so Theorems 4-5 will then
follow as special cases of (Kushner and Yin, 2003, Theorems 8.2.2, 8.2.3).

Remark 1 (on weak convergence methods) The theorems from the book (Kushner
and Yin, 2003) which we will apply are based on the weak convergence methods. While
it is beyond the scope of this paper to explain these powerful methods, let us mention
here a few basic facts about them to elucidate the origin of the convergence theorems
we gave above. In the framework of (Kushner and Yin, 2003), one studies a trajectory
of iterates produced by an algorithm by working with continuous-time processes that are
piecewise constant or linear interpolations of the iterates. (Often one also left-shifts a
trajectory of iterates to bring the “asymptotic part” of the trajectory closer to the origin
of the continuous time axis.) In the case of our problem, for example, for diminishing
stepsize, these continuous-time processes are xk(τ), τ ∈ [0,∞), indexed by k ≥ 0, where
for each k, xk is a piecewise constant interpolation of θk+t, t ≥ 0, given by xk(τ) = θk
for τ ∈ [0, αk) and xk(τ) = θk+t for τ ∈ [

∑t−1
m=0 αk+m,

∑t
m=0 αk+m), t ≥ 1. Similarly, for

constant stepsize, the continuous-time processes involved are xα(τ), τ ∈ [0,∞), indexed by
α > 0, and for each α, xα is a piecewise constant interpolation of θαkα+t, t ≥ 0, given by

xα(τ) = θkα+t for τ ∈ [tα, (t+ 1)α). The behavior of the sequence {xk} or {xα} as k →∞
or α → 0, tells us the asymptotic properties of the algorithm as the number of iterations
grows to infinity or as the stepsize parameter approaches 0. With the weak convergence
methods, one considers the probability distributions of the continuous-time processes in such
sequences, and analyze the convergence of these probability distributions and their limiting
distributions along any subsequences. Here each continuous-time process takes values in a
space of vector-valued functions on [0,∞) or (−∞,∞) that are right-continuous and have
left-hand limits, and this function space equipped with an appropriate metric, known as
the Skorohod metric, is a complete separable metric space (Kushner and Yin, 2003, p. 238-
240). On this space, one analyzes the weak convergence of the probability distributions
of the continuous-time processes. Under certain conditions on the algorithm, the general
conclusions from (Kushner and Yin, 2003, Theorems 8.2.2, 8.2.3) are that any subsequence
of these probability distributions contains a further subsequence which is convergent, and
that all the limiting probability distributions must assign the full measure 1 to the set of
solutions of the mean ODE associated with the algorithm. This general weak convergence
property then yields various conclusions about the asymptotic behavior of the algorithm
and its relation with the mean ODE solutions. When further combined with the solution
properties of the mean ODE, it leads to specific results such as the theorems we give in this
section.

3.2 Two Variants of Constrained ETD(λ) with Biases

We now consider two simple variants of (11). They constrain the ETD iterates even more,
at a price of introducing biases in this process, so that unlike (11), they can no longer
get to θ∗ arbitrarily closely. Instead they aim at a small neighborhood of θ∗, the size of
which depends on how they modify the ETD iterates. On the other hand, because the
trace iterates {(et, Ft)} can have unbounded variances and are also naturally unbounded in
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common off-policy situations (see discussions in Yu, 2012, Prop. 3.1 and Footnote 3, p. 3320-
3322 and Yu, 2015a, Remark A.1, p. 23), these variant algorithms have the advantage that
they make the θ-iterates more robust against the drastic changes that can occur to the
trace iterates. Indeed our definition of the variant algorithms below follows a well-known
approach to “robustifying” algorithms in stochastic approximation theory (see discussions
in Kushner and Yin, 2003, p. 23 and p. 141).

The two variant algorithms are defined as follows. For each K > 0, let ψK : Rn → Rn

be a bounded Lipschitz continuous function such that

‖ψK(x)‖ ≤ ‖x‖ ∀x ∈ Rn, and ψK(x) = x if ‖x‖ ≤ K. (18)

(For instance, let ψK(x) = r̄x/|x| if |x| ≥ r̄ and ψK(x) = x otherwise, for r̄ =
√
nK; or let

ψK(x) be the result of truncating each component of x to be within [−K,K].) For the first
variant of the algorithm (11), we replace et in (11) by ψK(et):

θt+1 = ΠB

(
θt + αt ψK(et) · ρt

(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
))
. (19)

For the second variant, we apply ψK to bound the entire increment in (11) before it is
multiplied by the stepsize αt and added to θt:

θt+1 = ΠB (θt + αt ψK(Yt)) , where Yt = et · ρt
(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
)
. (20)

As will be proved later, these two algorithms are associated with mean ODEs of the
form,

ẋ = h̄K(x) + z, z ∈ −NB(x), (21)

where h̄K : Rn → Rn is determined by each algorithm and deviates from the function
h̄(x) = Cx + b due to the alterations introduced by ψK . This ODE is similar to the
projected ODE (12), except that since h̄K is an approximation of h̄, θ∗ is no longer a
stable or stationary point for the mean ODE (21). The two variant algorithms thus have a
bias in their θ-iterates, and the bias can be made smaller by choosing a larger K. This is
reflected in the two convergence theorems given below. They are similar to the previous two
theorems for the algorithm (11), except that now given a desired small neighborhood of θ∗,
a sufficiently large K needs to be used in order for the θ-iterates to reach that neighborhood
of θ∗ and exhibit properties similar to those shown in the previous case.

Theorem 6 (constrained ETD variants with diminishing stepsize)
In the setting of Theorem 4, let {θt} be generated instead by the algorithm (19) or (20),
with a bounded Lipschitz continuous function ψK satisfying (18), and with stepsize {αt}
satisfying Assumption 3. Then for each δ > 0, there exists Kδ > 0 such that if K ≥ Kδ,
then it holds for some sequence Tk →∞ that

lim sup
k→∞

P
(
θt 6∈ Nδ(θ

∗), some t ∈
[
k, m(k, Tk)

])
= 0.

Theorem 7 (constrained ETD variants with constant stepsize)
In the setting of Theorem 5, let {θαt } be generated instead by the algorithm (19) or (20),
with a bounded Lipschitz continuous function ψK satisfying (18) and with constant stepsize
α > 0. Let {kα | α > 0} be any sequence of nonnegative integers that are nondecreasing as
α→ 0. Then for each δ > 0, there exists Kδ > 0 such that the following hold if K ≥ Kδ:
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(i)

lim
T→∞

lim
α→0

1

T/α

kα+bT/αc∑
t=kα

1
(
θαt ∈ Nδ(θ

∗)
)

= 1 in probability.

(ii) Let αkα →∞ as α→ 0. Then there exists a sequence {Tα | α > 0} with Tα →∞ as
α→ 0, such that

lim sup
α→0

P
(
θαt 6∈ Nδ(θ

∗), some t ∈
[
kα, kα + Tα/α

])
= 0.

We give the proofs of the above two theorems in Section 4.2. Because the proofs are
similar for the two variant algorithms, we include in this paper only the proofs for the first
variant—the proofs for the second variant can be found in the arXiv version of this paper
(Yu, 2015b).

The proof arguments are largely the same as those that we will use first in Section 4.1
to prove Theorems 4-5 for the algorithm (11). Indeed, for all the three algorithms, the main
proof step is the same, which is to apply the general conclusions of (Kushner and Yin, 2003,
Theorems 8.2.2, 8.2.3) to establish the connection between the iterates of an algorithm and
the solutions of an associated mean ODE, and this step does not concern what the solutions
of the ODE are actually. (For the two variant algorithms, verifying that the conditions of
Theorems 8.2.2, 8.2.3 in Kushner and Yin, 2003 are met is, in fact, easier because various
functions involved in the analysis become bounded due to the use of the bounded function
ψK .) For the two variant algorithms, the result of this step is that the same conclusions
given in Theorems 4-5 hold with Nδ(LB) in place of Nδ(θ

∗), where LB is the limit set of the
projected mean ODE (21) associated with each variant algorithm. To attain Theorems 6-7,
we then combine this with the fact that by choosing K sufficiently large, one can make the
limit set LB ⊂ Nδ(θ

∗) for an arbitrarily small δ.

3.3 More about the Constant-stepsize Case

For the constant-stepsize case, the results given in Theorems 5 and 7 bear similarities to their
counterparts for the diminishing stepsize case given in Theorems 4 and 6. However, they
characterize the behavior of the iterates in the limit as the stepsize parameter approaches
0, and deal with only a finite segment of the iterates for each stepsize (although in their
part (ii) both the segment’s length Tα/α→∞ and its starting position kα →∞ as α→ 0).
So unlike in the diminishing stepsize case, these results do not tell us explicitly about the
behavior of θαt for a fixed stepsize α as we take t to infinity.

The purpose of the present subsection is to analyze further the case of a fixed stepsize
just mentioned. We observe that for a fixed stepsize α, the iterates θαt together with
Zt = (St, At, et, Ft) form a weak Feller Markov chain {(Zt, θαt )} (see Lemma 4, Section 4.3.1).
Thus we can apply several ergodic theorems for weak Feller Markov chains (Meyn, 1989;
Meyn and Tweedie, 2009) to analyze the constant-stepsize case and combine the implications
from these theorems with the results we obtained previously using the weak convergence
methods from stochastic approximation theory.

We now present our results using this approach. Let Mα denote the set of invariant
probability measures of the Markov chain {(Zt, θαt )}. This set depends on the particular
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algorithm used to generate the θ-iterates, but we shall use the notation Mα for all the
algorithms we discuss here, for notational simplicity. We know that {Zt} has a unique
invariant probability measure (Theorem 2, Section 2.4), but it need not be so for the Markov
chain {(Zt, θαt )} when {θαt } is generated by the algorithm (11) or its two variants. The set
Mα can therefore have multiple elements (it is nonempty; see Prop. 6, Section 4.3.2). We
denote by M̄α the set that consists of the marginal of µ on B (the space of the θ’s), for all
the invariant probability measures µ ∈Mα.

As in the previous analysis, we are interested in the behavior of multiple consecutive
θ-iterates. In order to characterize that, we consider for each m ≥ 1, the Markov chain{(

(Zt, θ
α
t ), (Zt+1, θ

α
t+1), . . . , (Zt+m−1, θ

α
t+m−1)

)}
t≥0

(i.e., each state now consists of m consecutive states of the chain {(Zt, θαt )}). We shall refer
to this chain as the m-step version of {(Zt, θαt )}. Similar to Mα, denote by Mm

α the set
of invariant probability measures of the m-step version of {(Zt, θαt )}, and correspondingly
define M̄m

α to be the set of marginals of µ on Bm for all µ ∈ Mm
α . The set Mm

α is, of
course, determined by Mα, since each invariant probability measure in Mm

α is just the
m-dimensional distribution of a stationary Markov chain {(Zt, θαt )}.

Our first result, given in Theorem 8 below, says that for the algorithm (11), as the
stepsize α approaches zero, the invariant probability measures inMm

α will concentrate their
masses on an arbitrarily small neighborhood of (θ∗, . . . , θ∗) (m copies of θ∗). Moreover, for a
fixed stepsize, as the number of iterations grows to infinity, the expected maximal deviation
of the m consecutive averaged iterates from θ∗ can be bounded in terms of the masses those
invariant probability measures assign to the vicinities of (θ∗, . . . , θ∗). Here by averaged
iterates, we mean

θ̄αt =
1

t

t−1∑
k=0

θαk , ∀ t ≥ 1, (22)

and we shall refer to {θ̄αt } as the averaged sequence corresponding to {θαt }. This iterative
averaging is also known as “Polyak-averaging” when it is applied to accelerate the conver-
gence of the θ-iterates (see Polyak and Juditsky, 1992; Kushner and Yin, 2003, Chap. 10;
and the references therein). This is not the role of the averaging operation here, however.
The purpose here is to bring to bear the ergodic theorems for weak Feller Markov chains,
in particular, the weak convergence of certain averaged probability measures or occupa-
tion probability measures to the invariant probability measures of the m-step version of
{(Zt, θαt )}. (For the details see Section 4.3, where the proofs of the results of this subsection
will be given.) It can also be seen that for a sequence {βt} with βt ∈ [0, 1), βt → 0 as
t → ∞, if we drop a fraction βt of the terms in (22) when averaging the θ’s at each time
t, the resulting differences in the averaged iterates θ̄αt are asymptotically negligible. There-
fore, although our results below will be stated for (22), they apply to a variety of averaging
schemes.

Recall that Nδ(θ
∗) denotes the closed δ-neighborhood of θ∗. In what follows, N ′δ(θ

∗)
denotes the open δ-neighborhood of θ∗, i.e., the open ball around θ∗ with radius δ. We
write [Nδ(θ

∗)]m or [N ′δ(θ
∗)]m for the Cartesian product of m copies of Nδ(θ

∗) or N ′δ(θ
∗).

Recall also that rB is the radius of the constraint set B.
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Theorem 8 In the setting of Theorem 5, let {θαt } be generated by the algorithm (11) with
constant stepsize α > 0, and let {θ̄αt } be the corresponding averaged sequence. Then the
following hold for any δ > 0 and m ≥ 1:

(i) lim infα→0 infµ∈M̄m
α
µ
(
[Nδ(θ

∗)]m
)

= 1, and more strongly, with mα = dmα e,

lim inf
α→0

inf
µ∈M̄mα

α

µ
(
[Nδ(θ

∗)]mα
)

= 1.

(ii) For each stepsize α and any initial condition of (e0, F0, θ
α
0 ),

lim sup
k→∞

E
[

sup
k≤t<k+m

∣∣θ̄αt − θ∗∣∣ ] ≤ δ κα,m + 2rB (1− κα,m),

where κα,m = infµ∈M̄m
α
µ([N ′δ(θ

∗)]m).

Note that in part (ii) above, κα,m → 1 as α→ 0 by part (i). Note also that for m = 1,
the conclusions from the preceding theorem take the simplest form:

lim inf
α→0

inf
µ∈M̄α

µ
(
Nδ(θ

∗)
)

= 1,

lim sup
t→∞

E
[∣∣θ̄αt − θ∗∣∣] ≤ δ κα + 2rB (1− κα), for κα = inf

µ∈M̄α

µ
(
N ′δ(θ

∗)
)
.

The conclusions for m > 1 are, however, much stronger. They also suggest that in practice,
instead of simply choosing the last iterate of the algorithm as its final output at the end of
its run, one can base that choice on the behavior of multiple consecutive θ̄αt during the run.

For the two variant algorithms (19) and (20), we have a similar result given in Theorem 9
below. Here the neighborhood of (θ∗, . . . , θ∗) around which the masses of the invariant
probability measures are concentrated, depends not only on the stepsize α but also on the
biases of these algorithms. The proofs of Theorems 8-9 are given in Section 4.3.2.

Theorem 9 In the setting of Theorem 5, let {θαt } be generated instead by the algorithm
(19) or (20), with constant stepsize α > 0 and with a bounded Lipschitz continuous function
ψK satisfying (18). Let {θ̄αt } be the corresponding averaged sequence. Then the following
hold:

(i) For any given δ > 0, there exists Kδ > 0 such that for all K ≥ Kδ,

lim inf
α→0

inf
µ∈M̄m

α

µ
(
[Nδ(θ

∗)]m
)

= 1, ∀m ≥ 1,

and more strongly, with mα = dmα e,

lim inf
α→0

inf
µ∈M̄mα

α

µ
(
[Nδ(θ

∗)]mα
)

= 1, ∀m ≥ 1.

(ii) Regardless of the choice of K, given any δ > 0,m ≥ 1 and stepsize α, for each initial
condition of (e0, F0, θ

α
0 ),

lim sup
k→∞

E
[

sup
k≤t<k+m

∣∣θ̄αt − θ∗∣∣ ] ≤ δ κα,m + 2rB (1− κα,m),

where κα,m = infµ∈M̄m
α
µ([N ′δ(θ

∗)]m).
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Finally, we consider a simple modification of the preceding algorithms, for which the
conclusions of Theorems 8(ii) and 9(ii) can be strengthened. This is our motivation for
introducing the modification, but we shall postpone the discussion till Remark 2 at the end
of this subsection.

For any of the algorithms (11), (19) or (20), if the original recursion under a constant
stepsize α can be written as

θαt+1 = ΠB

(
θαt + αY α

t

)
,

we now modify this recursion formula by adding a perturbation term α∆α
θ,t as follows. Let

θαt+1 = ΠB

(
θαt + αY α

t + α∆α
θ,t

)
, (23)

where for each α > 0, ∆α
θ,t, t ≥ 0, are Rn-valued random variables such that13

(i) they are independent of each other and also independent of the process {Zt};
(ii) they are identically distributed with zero mean and finite variance, where the variance

can be bounded uniformly for all α; and

(iii) they have a positive continuous density function with respect to the Lebesgue measure.

Below we refer to (23) as the perturbed version of the algorithm (11), (19) or (20).

Theorem 10 In the setting of Theorem 5, let {θαt } be generated instead by the perturbed
version (23) of the algorithm (11) for a constant stepsize α > 0, and let {θ̄αt } be the corre-
sponding averaged sequence. Then the conclusions of Theorems 5 and 8 hold. Furthermore,
let the stepsize α be given. Then the Markov chain {(Zt, θαt )} has a unique invariant prob-
ability measure µα, and for any δ > 0,m ≥ 1 and initial condition of (e0, F0, θ

α
0 ), almost

surely,

lim inf
t→∞

1

t

t−1∑
k=0

1
(

sup
k≤j<k+m

∣∣θαj − θ∗∣∣ < δ
)
≥ µ̄(m)

α

(
[N ′δ(θ

∗)]m
)

and
lim sup
t→∞

∣∣θ̄αt − θ∗∣∣ ≤ δ κα + 2rB (1− κα), with κα = µ̄α
(
N ′δ(θ

∗)
)
,

where µ̄
(m)
α is the unique element in M̄m

α , and µ̄α is the marginal of µα on B.

Theorem 11 In the setting of Theorem 5, let {θαt } be generated instead by the perturbed
version (23) of the algorithm (19) or (20), with a constant stepsize α > 0 and with a
bounded Lipschitz continuous function ψK satisfying (18). Let {θ̄αt } be the corresponding
averaged sequence. Then the conclusions of Theorems 7 and 9 hold. Furthermore, for any
given stepsize α, the conclusions of the second part of Theorem 10 also hold.

Note that in the second part of Theorem 10, both µ̄
(m)
α

(
[N ′δ(θ

∗)]m
)

and κα approach 1
as α→ 0, since by the first part of the theorem, the conclusions of Theorem 8 hold. For the
second part of Theorem 11, the same is true provided that K is sufficiently large (so that
Nδ(LB) ⊂ Nδ(θ

∗) where LB is the limit set of the ODE associated with the algorithm),

13. We adopt these conditions for simplicity. They are not the weakest possible for our purpose, and our proof
techniques can be applied to other types of perturbations as well. For related discussions, see Remark 2
at the end of this section, as well as Remark 3 and the discussion before Prop. 8 in Section 4.3.3.
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and this can be seen from the conclusions of Theorem 9(i), which holds for the perturbed
version (23) of the two variant algorithms, as the first part of Theorem 11 says. The proofs
of Theorems 10-11 are given in Section 4.3.3.

Remark 2 (on the role of perturbation) At first sight it may seem counter-productive
to add noise to the θ-iterates in the algorithm (23). Our motivation for such random
perturbations of the θ-iterates is that this can ensure that the Markov chain {(Zt, θαt )}
has a unique invariant probability measure (see Prop. 9, Section 4.3.3). The uniqueness
allows us to invoke a result of Meyn (1989) on the convergence of the occupation probability
measures of a weak Feller Markov chain, so that we can bound the deviation of the averaged
iterates from θ∗ not only in an expected sense as before, but also for almost all sample paths
under each initial condition, as in the second part of Theorems 10-11. For the unperturbed
algorithms, we can only prove such pathwise bounds on lim supt→∞ |θ̄αt − θ∗| for a subset
of the initial conditions of (Z0, θ

α
0 ). A more detailed discussion of this is given in Remark 3

at the end of Section 4.3.3, after the proofs of the preceding theorems.
Regarding other effects of the perturbation, intuitively, larger noise terms may help the

Markov chain “mix” faster, but they can also result in less probability mass µ̄α
(
N ′δ(θ

∗)
)

around θ∗ than in the case without perturbation. What is a suitable amount of noise to
add to achieve a desired balance? We do not yet have an answer. It seems reasonable to us
to let the magnitude of the variance of the perturbation terms ∆α

θ,t be approximately α2ε

for some ε ∈ (0, 1], so that a typical perturbation α∆α
θ,t is at a smaller scale relative to the

“signal part” αY α
t in an iteration. Further investigation is needed.

4. Proofs for Section 3

We now prove the theorems given in the preceding section. We shall use KY as an abbre-
viation for the book (Kushner and Yin, 2003), which we will refer to frequently below.

4.1 Proofs for Theorems 4 and 5

In this subsection we prove Theorems 4 and 5 (Section 3.1) on convergence properties of
the constrained ETD(λ) algorithm (11). We will apply two theorems from (KY), Theorems
8.2.2 and 8.2.3, which concern weak convergence of stochastic approximation algorithms for
constant and diminishing stepsize, respectively. This requires us to show that the conditions
of those theorems are satisfied by our algorithm. The major conditions concern the uniform
integrability, tightness, and convergence in mean of certain sequences of random variables
involved in the algorithm. Our proofs will rely on many properties of the ETD iterates
that we have established in (2015a) when analyzing the almost sure convergence of the
algorithm.

4.1.1 Conditions to Verify

We need some definitions and notation, before describing the conditions required. For some
index set K, let {Xk}k∈K be a set of random variables taking values in a metric space X
(in our context X will be Rm or Ξ). The set {Xk}k∈K is said to be tight or bounded in
probability, if there exists for each δ > 0 a compact set Dδ ⊂ X such that

inf
k∈K

P(Xk ∈ Dδ) ≥ 1− δ.
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For Rm-valued Xk, the set {Xk}k∈K is said to be uniformly integrable (u.i.) if

lim
a→∞

sup
k∈K

E
[
‖Xk‖1

(
‖Xk‖ ≥ a

)]
= 0.

To analyze the constrained ETD(λ) algorithm (11), which is given by

θt+1 = ΠB(θt + αtYt), where Yt := et · ρt
(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
)
,

let Et denote expectation conditioned on Ft, the sigma-algebra generated by θm, ξm,m ≤ t,
where we recall ξm = (em, Fm, Sm, Am, Sm+1) and its space Rn+1×S ×A×S is denoted by
Ξ. By writing Yt = Et[Yt] + (Yt − Et[Yt]), we have the equivalent form of (11) given in (15):

θt+1 = ΠB(θt + αt h(θt, ξt) + αt et · ω̃t+1) .

In other words, h(θt, ξt) = Et[Yt] and et · ω̃t+1 = Yt − Et[Yt], a noise term that satisfies
Et[et · ω̃t+1] = 0.

This algorithm belongs to the class of stochastic approximation algorithms with “ex-
ogenous noises” studied in the book (KY) – the term “exogenous noises” reflects the fact
that the evolution of {ξt} is not driven by the θ-iterates. Theorems 4 and 5 will follow as
special cases from Theorems 8.2.3 and 8.2.2 of (KY, Chap. 8), respectively, if we can show
that the algorithm (11) satisfies the following conditions.

Conditions for the case of diminishing stepsize:

(i) The sequence {Yt} = {h(θt, ξt) + et · ω̃t+1} is u.i. (This corresponds to the condition
A.8.2.1 in KY.)

(ii) The function h(θ, ξ) is continuous in θ uniformly in ξ ∈ D, for each compact set
D ⊂ Ξ. (This corresponds to the condition A.8.2.3 in KY.)

(iii) The sequence {ξt} is tight. (This corresponds to the condition A.8.2.4 in KY.)

(iv) The sequence {h(θt, ξt)} is u.i., and so is {h(θ, ξt)} for each fixed θ ∈ B. (This
corresponds to the condition A.8.2.5 in KY.)

(v) There is a continuous function h̄(·) such that for each θ ∈ B and each compact set
D ⊂ Ξ,

lim
k→∞,t→∞

1

k

t+k−1∑
m=t

Et
[
h(θ, ξm)− h̄(θ)

]
1
(
ξt ∈ D

)
= 0 in mean,

where k and t are taken to ∞ in any way possible. In other words, if we denote
the average on the left-hand side by Xk,t, then the requirement “limk→∞,t→∞Xk,t =
0 in mean” means that along any subsequences kj → ∞, tj → ∞, we must have
limj→∞ E[‖Xkj ,tj‖] = 0. (This condition corresponds to the condition A.8.2.7 in KY.)

For the case of constant stepsize, we consider the iterates that could be generated by
the algorithm for all stepsizes. To distinguish between the iterates associated with different
stepsizes, in the conditions below, the superscript α is attached to the variables involved in
the algorithm with stepsize α, and similarly, the conditional expectation Et is denoted by
Eαt instead.

Conditions for the case of constant stepsize:
In addition to the condition (ii) above (which corresponds to the condition A.8.1.6 in KY
for the case of constant stepsize), the following conditions are required.
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(i′) The set {Y α
t | t ≥ 0, α > 0} := {h(θαt , ξ

α
t ) + eαt · ω̃αt+1 | t ≥ 0, α > 0} is u.i. (This

corresponds to the condition A.8.1.1 in KY.)

(iii′) The set {ξαt | t ≥ 0, α > 0} is tight. (This corresponds to the condition A.8.1.7 in
KY.)

(iv′) The set {h(θαt , ξ
α
t ) | t ≥ 0, α > 0} is u.i., in addition to the uniform integrability of

{h(θ, ξαt ) | t ≥ 0, α > 0} for each θ ∈ B. (This corresponds to the condition A.8.1.8
in KY.)

(v′) There is a continuous function h̄(·) such that for each θ ∈ B and each compact set
D ⊂ Ξ,

lim
k→∞,t→∞,α→0

1

k

t+k−1∑
m=t

Eαt
[
h(θ, ξαm)− h̄(θ)

]
1
(
ξαt ∈ D

)
= 0 in mean,

where α is taken to 0 and k, t are taken to ∞ in any way possible. (This condition
corresponds to the condition A.8.1.9 in KY, and it is in fact stronger than the latter
condition but is satisfied by our algorithms as we will show.)

The preceding conditions allow ξαt and θαt to be generated under different initial condi-
tions for different α. While we will need this generality later in Section 4.3, here we will
focus on a common initial condition for all stepsizes, for simplicity. Then, the preceding
conditions for the constant-stepsize case are essentially the same as those for the diminishing
stepsize case, because except for the θ-iterates, all the other variables (such as ξt and ω̃t)
involved in the algorithm have identical probability distributions for all stepsizes α and are
not affected by the θ-iterates. For this reason, in the proofs below, except for the θ-iterates,
we simply omit the superscript α for other variables in the case of constant stepsize, and to
verify the two sets of conditions above, we shall treat the case of diminishing stepsize and
the case of constant stepsize simultaneously.

As mentioned in Section 2.4, these conditions are to ensure that the projected ODE (12),
ẋ = h̄(x) + z, z ∈ −NB(x), is the mean ODE for the algorithm (11) and reflects its average
dynamics. Among the proofs for these conditions given next, the proof for the convergence
in mean condition (v) and (v′) will be the most involved.

4.1.2 Proofs

The condition (ii) is clearly satisfied. In what follows, we prove that the rest of the conditions
are satisfied as well. We start with the tightness conditions (iii) and (iii′), as they are
immediately implied by a property of the trace iterates we already know. We then tackle
the uniform integrability conditions (i), (i′), (iv) and (iv′), before we address the convergence
in mean required in (v) and (v′). The proofs build upon several key properties of the ETD
iterates we have established in (2015a) and recounted in Section 2.4 and Appendix A.

First, we show that the tightness conditions (iii) and (iii′) are satisfied. This is implied
by the following property of traces: supt≥0 E

[∥∥(et, Ft)
∥∥] <∞ for any given initial condition

(e0, F0) (see Prop. 11, Appendix A).

Proposition 1 Under Assumption 1, for each given initial (e0, F0) ∈ Rn+1, {(et, Ft)} is
tight and hence {ξt} is tight.
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Proof By Prop. 11, c := supt≥0 E
[∥∥(et, Ft)

∥∥] < ∞. Then, by the Markov inequality, for
a > 0, supt≥0 P

(∥∥(et, Ft)
∥∥ ≥ a

)
≤ c/a→ 0 as a→∞. This implies that {(et, Ft)} is tight.

Since the space S ×A× S is finite and ξt = (et, Ft, St, At, St+1), {ξt} is also tight.

We now handle the uniform integrability conditions (i), (i′), (iv) and (iv′). The uniform
integrability of the trace sequence {et}, as we will prove, is important here.

Proposition 2 Under Assumption 1, for each given initial (e0, F0) ∈ Rn+1, the following
sets of random variables are u.i.:

(i) {et};
(ii) {h(θ, ξt)} for each fixed θ ∈ B;

(iii) {h(θt, ξt)} in the case of diminishing stepsize; and {h(θαt , ξt) | t ≥ 0, α > 0} in the
case of constant stepsize;

(iv) {h(θt, ξt) + et ω̃t+1} in the case of diminishing stepsize; and {h(θαt , ξt) + et ω̃t+1 | t ≥
0, α > 0} in the case of constant stepsize.

The proof of Prop. 2 will use facts about u.i. sequences of random variables given in the
lemma below. This lemma basically follows from the definition of uniform integrability. We
therefore omit its proof, which can be found in the arXiv version of this paper (Yu, 2015b).

Lemma 2 Let Xk, Yk, k ∈ K (some index set) be real-valued random variables with Xk and
Yk defined on a common probability space for each k.

(i) If {Xk}k∈K, {Yk}k∈K are u.i., then {Xk + Yk}k∈K is u.i.

(ii) If {Xk}k∈K is u.i. and for all k, |Yk| ≤ |Xk| a.s., then {Yk}k∈K is u.i.

(iii) If {Xk}k∈K, {Yk}k∈K are u.i. and for some c ≥ 0, E[|Yk| |Xk] ≤ c a.s. for all k, then
{XkYk}k∈K is u.i.

We now proceed to prove Prop. 2. The proof will involve auxiliary variables, which we
call truncated traces. They are defined similarly to the trace iterates (et, Ft), but instead
of depending on all the past states and actions, they only depend on a certain number of
the most recent states and actions. Specifically, for each integer K ≥ 1, we define truncated
traces (ẽt,K , F̃t,K) as follows:

(ẽt,K , F̃t,K) = (et, Ft) for t ≤ K,

and for t ≥ K + 1, with the shorthand βt := ρt−1γtλt,

F̃t,K =

t∑
k=t−K

i(Sk) ·
(
ρkγk+1 · · · ρt−1γt

)
, (24)

M̃t,K = λt i(St) + (1− λt)F̃t,K , (25)

ẽt,K =

t∑
k=t−K

M̃k,K · φ(Sk) ·
(
βk+1 · · ·βt

)
. (26)
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Note that when t ≥ 2K + 1, the traces (ẽt,K , F̃t,K) no longer depend on the initial (e0, F0);
being functions of the states and actions between time t − 2K and t only, they lie in a
bounded set determined byK, since the state and action spaces are finite. For t = 0, . . . , 2K,
(ẽt,K , F̃t,K) also lie in a bounded set, which is determined by K and the initial (e0, F0). We
will use these bounded truncated traces to approximate the original traces {(et, Ft)} in the
analysis.

An important approximation property, given in Prop. 13 (Appendix A), is that for each
K and any initial (e0, F0) from a given bounded set E,

sup
t≥0

E
[∥∥(et, Ft)− (ẽt,K , F̃t,K)

∥∥] ≤ LK ,
where LK is a finite constant that depends on K and E and decreases monotonically to 0
as K increases:

LK ↓ 0 as K →∞.

We will use this property in the following analysis.

Proof of Prop. 2 First, we prove {et} is u.i. We then use this to show the uniform
integrability of the other sets required in parts (ii)-(iv).

(i) To prove {et} is u.i., we shall exploit its relation with the truncated traces, ẽt,K , t ≥ 0 for
integers K ≥ 1. Note that since the state and action spaces are finite, the truncated traces
{ẽt,K} lie in a bounded set (this set depends on K and the initial (e0, F0)), so there exists
a constant aK such that ‖ẽt,K‖ ≤ aK for all t. This fact will greatly simplify the analysis.
Let us first fix K and consider a ≥ ak. Denote ā = a− aK ≥ 0. Then

‖et‖ 1
(
‖et‖ ≥ a

)
≤ ‖et‖ 1

(
‖et − ẽt,K‖ ≥ ā

)
≤ ‖et − ẽt,K‖ 1

(
‖et − ẽt,K‖ ≥ ā

)
+ ‖ẽt,K‖ 1

(
‖et − ẽt,K‖ ≥ ā

)
≤ ‖et − ẽt,K‖ 1

(
‖et − ẽt,K‖ ≥ ā

)
+ aK 1

(
‖et − ẽt,K‖ ≥ ā

)
. (27)

For the second term on the right-hand side, we can bound its expectation by

E
[
aK 1

(
‖et − ẽt,K‖ ≥ ā

)]
= aKP(‖et − ẽt,K‖ ≥ ā) ≤ aK · LK/ā, ∀ t, (28)

where in the last inequality LK is a constant that depends on K (and the initial (e0, F0))
and has the property that LK ↓ 0 as K → ∞, and this inequality is derived by combing
the Markov inequality P(‖et − ẽt,K‖ ≥ ā) ≤ E[‖et − ẽt,K‖]/ā with Prop. 13, which bounds
supt≥0 E[‖et − ẽt,K‖] by LK . Similarly, for the first term on the right-hand side of (27),
using Prop. 13, we can bound its expectation by LK :

E
[
‖et − ẽt,K‖ 1

(
‖et − ẽt,K‖ ≥ ā

)]
≤ E[‖et − ẽt,K‖] ≤ LK , ∀ t. (29)

From (27)-(29) it follows that

sup
t≥0

E
[
‖et‖ 1

(
‖et‖ ≥ a

)]
≤ LK + aK · LK/(a− aK),

so for fixed K, by taking a→∞, we obtain

lim
a→∞

sup
t≥0

E
[
‖et‖ 1

(
‖et‖ ≥ a

)]
≤ LK .
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Since LK ↓ 0 as K → ∞ (Prop. 13), this implies lima→∞ supt≥0 E
[
‖et‖ 1

(
‖et‖ ≥ a

)]
= 0,

which proves the uniform integrability of {et}.
(ii) We now prove for each θ, {h(θ, ξt)} is u.i. Since the state and action spaces are finite
and θ is given, using the expression of h(θ, ξt), we can bound it as ‖h(θ, ξt)‖ ≤ L‖et‖ for
some constant L. As just proved, {et} is u.i. (equivalently {‖et‖} is u.i.) and thus {L‖et‖} is
u.i., so by Lemma 2(ii), {h(θ, ξt)} is u.i. (since this is by definition equivalent to {‖h(θ, ξt)‖}
being u.i., which is true by Lemma 2(ii)).

(iii) The uniform integrability of {h(θt, ξt)} in the case of diminishing stepsize or {h(θαt , ξt) |
t ≥ 0, α > 0} in the case of constant stepsize follows from the same argument given for (ii)
above, because θt or θαt for all t ≥ 0 and α > 0 lie in the bounded set B by the definition
of the constrained ETD(λ) algorithm.

(iv) Consider first the case of diminishing stepsize. We prove that {h(θt, ξt) + et ω̃t+1} is
u.i. (recall ω̃t+1 = ρt (Rt − r(St, At, St+1)) is the noise part of the observed reward). Since
we already showed that {h(θt, ξt)} is u.i., by Lemma 2(i), it is sufficient to prove that
{et ω̃t+1} is u.i. Now {et} is u.i. by part (i). Since the random rewards Rt in our model
have bounded variances, the noise variables ω̃t+1, t ≥ 0, also have bounded variances. This
implies that {ω̃t+1} is u.i. (Billingsley, 1968, p. 32) and that E[|ω̃t+1| | et] < c for some
constant c (independent of t). It then follows from Lemma 2(iii) that {et ω̃t+1} is u.i., and
hence {h(θt, ξt) + et ω̃t+1} is u.i.

Similarly, in the case of constant stepsize, it follows from Lemma 2(i) that the set
{h(θαt , ξt) + et ω̃t+1 | t ≥ 0, α > 0} is u.i., because {h(θαt , ξt) | t ≥ 0, α > 0} is u.i. by part
(iii) proved earlier and {et ω̃t+1} is u.i. as we just proved.

Finally, we handle the conditions (v) and (v′) stated in Section 4.1.1. The two conditions
are the same condition in the case here, because they concern each fixed θ, whereas {ξt} is
not affected by the stepsize and the θ-iterates. So we can focus just on the condition (v)
in presenting the proof, for notational simplicity. For the algorithm (11), the continuous
function h̄ required in the condition is the function h̄(θ) = Cθ+b associated with the desired
mean ODE (12). We now prove the required convergence in mean by using the properties of
trace iterates and the convergence results given in Theorem 3 and Corollary 1 (Section 2.4).

Proposition 3 Let Assumption 1 hold. For each θ ∈ B and each compact set D ⊂ Ξ,

lim
k→∞,t→∞

1

k

t+k−1∑
m=t

Et
[
h(θ, ξm)− h̄(θ)

]
1
(
ξt ∈ D

)
= 0 in mean.

Proof Denote Xk,t = 1
k

∑t+k−1
m=t

(
h(θ, ξm) − h̄(θ)

)
1
(
ξt ∈ D

)
. Since E

[∥∥Et{Xk,t}
∥∥] ≤

E[‖Xk,t‖], to prove limk,t E
[∥∥Et{Xk,t}

∥∥] = 0 (here and in what follows we simply write “k, t”
under a limit symbol for “k → ∞, t → ∞”), it is sufficient to prove limk,t E[‖Xk,t‖] = 0,
that is, to prove

lim
k,t

1

k

t+k−1∑
m=t

(
h(θ, ξm)− h̄(θ)

)
1
(
ξt ∈ D

)
= 0 in mean. (30)
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Furthermore, since lim supk,t E
[
‖Xk,t‖ 1

(
ξt ∈ D

)]
is upper-bounded by∑

(s,a,s′)∈S×A×S

lim sup
k,t

E
[
‖Xk,t‖1

(
ξt ∈ D, (St, At, St+1) = (s, a, s′)

)]
,

it is sufficient in the proof to consider only those compact sets D of the form D = E ×
{(s, a, s′)}, for each compact set E ⊂ Rn+1 and each (s, a, s′) ∈ S ×A× S. Henceforth, let
us fix a compact set E together with a triplet (s, a, s′) as the set D under consideration,
and for this set D, we proceed to prove (30).

To show (30), what we need to show is that for two arbitrary subsequences of integers
kj →∞, tj →∞,

lim
j→∞

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξm)− h̄(θ)

)
1
(
ξtj ∈ D

)
= 0 in mean. (31)

To this end, we first define auxiliary trace variables to decompose each difference term
h(θ, ξm)− h̄(θ) into two difference terms as follows:

(a) Fix a point (ē, F̄ ) ∈ E.

(b) For each j ≥ 1, define a sequence of trace pairs, (ejm, F
j
m), m ≥ tj , by using the

same recursion (3)-(5) that defines the traces {(et, Ft)}, based on the same trajectory
{(St, At)}, but starting at time m = tj with the initial (ejtj , F

j
tj

) = (ē, F̄ ).

Denote ξjm = (ejm, F
j
m, Sm, Am, Sm+1) for m ≥ tj ; it differs from ξm only in the two trace

components. Next, for each m, we write h(θ, ξm) − h̄(θ) = (h(θ, ξjm) − h̄(θ)) + (h(θ, ξm) −
h(θ, ξjm)) and correspondingly, we write

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξm)− h̄(θ)

)
=

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξjm)− h̄(θ)

)
+

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξm)−h(θ, ξjm)

)
.

We see that for (31) to hold, it is sufficient that

lim
j→∞

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξjm)− h̄(θ)

)
1
(
ξtj ∈ D

)
= 0 in mean, (32)

and

lim
j→∞

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξm)− h(θ, ξjm)

)
1
(
ξtj ∈ D

)
= 0 in mean. (33)

Let us now prove these two statements.

Proof of (32): Since the set D = E × {(s, a, s′)} and 1
(
ξtj ∈ D

)
≤ 1

(
(Stj , Atj , Stj+1) =

(s, a, s′)
)
, we can remove ξtj from consideration and show instead

lim
j→∞

1

kj

tj+kj−1∑
m=tj

(
h(θ, ξjm)− h̄(θ)

)
1
(
(Stj , Atj , Stj+1) = (s, a, s′)

)
= 0 in mean, (34)
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which will imply (32). By definition ξjm,m ≥ tj , are generated from the initial trace pairs
(ē, F̄ ) and initial transition (Stj , Atj , Stj+1) at time m = tj . So if (Stj , Atj , Stj+1) = (s, a, s′),

then conditioned on this transition at tj , the sequence {ξjm,m ≥ tj} has the same probability

distribution as a sequence ξ̂m,m ≥ 0, where ξ̂m = (êm, F̂m, Ŝm, Âm, Ŝm+1) is generated
from the initial condition ξ̂0 = (ē, F̄ , s, a, s′) by the same recursion (3)-(5) and a trajectory
{(Ŝm, Âm)} of states and actions under the behavior policy. This shows that

E

∥∥∥∥∥∥ 1

kj

tj+kj−1∑
m=tj

(
h(θ, ξjm)− h̄(θ)

)
1
(

(Stj , Atj , Stj+1) = (s, a, s′)
)∥∥∥∥∥∥


≤ E

∥∥∥∥∥∥ 1

kj

kj−1∑
m=0

(
h(θ, ξ̂m)− h̄(θ)

)∥∥∥∥∥∥
 ,

from which we see that the convergence in mean stated by (34) holds if we have

lim
k→∞

1

k

k−1∑
m=0

(
h(θ, ξ̂m)− h̄(θ)

)
= 0 in mean. (35)

Now since for each θ, the function h(θ, ·) is Lipschitz continuous in e uniformly in the
other arguments, (35) holds by Theorem 3 and its implication Corollary 1 (Section 2.4).
Consequently, (34) holds, and this implies (32).

Proof of (33): Using the expression of h and the finiteness of the state and action spaces,
we can bound the difference h(θ, ξm)− h(θ, ξjm) by∥∥h(θ, ξm)− h(θ, ξjm)

∥∥ ≤ c · ∥∥em − ejm∥∥
for some constant c (independent of m, j). Let us show

lim
j→∞

1

kj

tj+kj−1∑
m=tj

∥∥em − ejm∥∥ 1
(
ξtj ∈ D

)
= 0 in mean, (36)

which will imply (33).

To prove (36), similarly to the preceding proof, we first decompose each difference term
em− ejm in (36) into several difference terms, by using truncated traces {(ẽm,K , F̃m,K)} and

{(ẽjm,K , F̃
j
m,K) | m ≥ tj}, j ≥ 1,K ≥ 1, which we now introduce. Specifically, for each

K ≥ 1, {(ẽm,K , F̃m,K)} are defined by (24)-(26). For each j ≥ 1 and K ≥ 1, the truncated

traces {(ẽjm,K , F̃
j
m,K) | m ≥ tj} are also defined by (24)-(26), except that the initial time is

set to be tj (instead of 0) and for m ≤ tj +K, (ẽjm,K , F̃
j
m,K) is set to be (ejm, F

j
m) (instead

of (em, Fm)).

Let us fix K for now. We bound the difference em − ejm by the sum of three difference
terms as ∥∥em − ejm∥∥ ≤ ∥∥em − ẽm,K∥∥+

∥∥ejm − ẽjm,K∥∥+
∥∥ẽm,K − ẽjm,K∥∥, (37)
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and correspondingly, we consider the following three sequences of variables, as j tends to
∞:

1

kj

tj+kj−1∑
m=tj

∥∥em − ẽm,K∥∥1
(
ξtj ∈ D

)
,

1

kj

tj+kj−1∑
m=tj

∥∥ejm − ẽjm,K∥∥, (38)

and

1

kj

tj+kj−1∑
m=tj

∥∥ẽm,K − ẽjm,K∥∥1
(
ξtj ∈ D

)
. (39)

In what follows, we will bound their expected values as j →∞ and then take K →∞; this
will lead to (36).

The analyses for the two sequences in (38) are similar. Recall D = E × {(s, a, s′)}, so
ξtj ∈ D implies (etj , Ftj ) ∈ E. Since the set E is bounded, if (etj , Ftj ) ∈ E, then we can use
Prop. 13 (Appendix A) to bound the expectation of ‖em − ẽm,K‖ for m ≥ tj conditioned
on Ftj , and this gives us the bound

sup
m≥tj

Etj
[∥∥em − ẽm,K∥∥] 1

(
ξtj ∈ D

)
≤ LK

where LK is a constant that depends on K and the set E, and has the property that LK ↓ 0
as K →∞. From this bound, we obtain

E

 1

kj

tj+kj−1∑
m=tj

∥∥em − ẽm,K∥∥1
(
ξtj ∈ D

) ≤ LK , ∀ j ≥ 1. (40)

Similarly, for the second sequence in (38), by Prop. 13 we have

E

 1

kj

tj+kj−1∑
m=tj

∥∥ejm − ẽjm,K∥∥
 ≤ LK , ∀ j ≥ 1, (41)

where LK is some constant that can be chosen to be the same constant in (40) (because
the point (ē, F̄ ), which is the initial trace pair for (ejm, F

j
m) at time m = tj , lies in E).

Consider now the sequence in (39). As discussed after the definition (24)-(26) of trun-
cated traces, because of truncation, these traces lie in a bounded set determined by K and
the set in which the initial trace pair lies. Therefore, there exists a finite constant cK which
depends on K and E, such that for all m ≥ tj ,

‖ẽjm,K‖ ≤ cK , and ‖ẽm,K‖ ≤ cK if (etj , Ftj ) ∈ E.

Also by their definition, once m is sufficiently large, the truncated traces do not depend on
the initial trace pairs; in particular,

ẽjm,K = ẽm,K , ∀m ≥ tj + 2K + 1.

From these two arguments it follows that

E

 1

kj

tj+kj−1∑
m=tj

∥∥ẽm,K − ẽjm,K∥∥1
(
ξtj ∈ D

) ≤ (2K + 1) · 2cK
kj

→ 0 as j →∞. (42)
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Finally, combining (40)-(42) with (37), we obtain

lim sup
j→∞

E

 1

kj

tj+kj−1∑
m=tj

∥∥em − ejm∥∥ 1
(
ξtj ∈ D

)
≤ lim sup

j→∞
E

 1

kj

tj+kj−1∑
m=tj

∥∥em − ẽm,K∥∥1
(
ξtj ∈ D

)+ lim sup
j→∞

E

 1

kj

tj+kj−1∑
m=tj

∥∥ejm − ẽjm,K∥∥


+ lim
j→∞

E

 1

kj

tj+kj−1∑
m=tj

∥∥ẽm,K − ẽjm,K∥∥1
(
ξtj ∈ D

)
≤ 2LK .

Since LK ↓ 0 as K →∞ (Prop. 13, Appendix A), by taking K →∞, we obtain

lim
j→∞

E

 1

kj

tj+kj−1∑
m=tj

∥∥em − ejm∥∥ 1
(
ξtj ∈ D

) = 0.

This proves (36), which implies (33).

With Props. 1-3, we have furnished all the conditions required in order to apply (KY,
Theorems 8.2.2, 8.2.3) to the constrained ETD algorithm (11), so we can now specialize
the conclusions of these two theorems to our problem. In particular, they tell us that the
projected ODE (12) is the mean ODE for (11), and furthermore, by (KY, Theorem 8.2.3)
(respectively, KY, Theorem 8.2.2), the conclusions of Theorem 4 (respectively, Theorem 5)
hold with Nδ(LB) in place of Nδ(θ

∗), where Nδ(LB) is the δ-neighborhood of the limit set
LB for the projected ODE (12). Recall that this limit set is given by

LB = ∩τ̄>0 ∪x(0)∈B{x(τ), τ ≥ τ̄}

where x(τ) is a solution of the projected ODE (12) with initial condition x(0), the union is
over all the solutions with initial x(0) ∈ B, and D for a set D denotes the closure of D.

Now when the matrix C is negative definite (as implied by Assumptions 1-2) and when
the radius of B exceeds the threshold given in Lemma 1, by the latter lemma, the solutions
x(τ), τ ∈ [0,∞), of the ODE (12) coincide with the solutions of ẋ = h̄(x) = Cx + b for
all initial x(0) ∈ B. Then from the negative definiteness of C (Theorem 1, Section 2.3),
it follows that as τ → ∞, x(τ) → θ∗ uniformly in the initial condition, and consequently,
LB = {θ∗}.14 Thus Nδ(LB) = Nδ(θ

∗) and we obtain Theorems 4 and 5.

14. The details for this statement are as follows. Since h̄ is bounded on B and the boundary reflection term
z(·) ≡ 0 under our assumptions (Lemma 1, Section 2.4), a solution x(·) of (12) is Lipschitz continuous on
[0,∞). We calculate V̇ (τ) for the Lyapunov function V (τ) = |x(τ)− θ∗|2. By the negative definiteness
of the matrix C, for some c > 0, x>Cx ≤ −c|x|2 for all x ∈ Rn. Then, since h̄(x) = Cx+ b = C(x− θ∗),
we have V̇ (τ) = 2

〈
x(τ) − θ∗ , h̄(x(τ))

〉
≤ −2c

∣∣x(τ) − θ∗
∣∣2, and hence for any δ > 0, there exists ε > 0

such that V̇ (τ) ≤ −ε if V (τ) = |x(τ)− θ∗|2 ≥ δ2. This together with the continuity of the solution x(·)
implies that for any x(0) ∈ B, within time τ̄ = r2B/ε, the trajectory x(τ) must reach Nδ(θ

∗) and stay in
that set thereafter. By the definition of the limit set and the arbitrariness of δ, this implies LB = {θ∗}.
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4.2 Proofs for Theorems 6 and 7

In this subsection we prove the part of Theorems 6-7 for the first variant of the constrained
ETD(λ) algorithm given in (19), Section 3.2. The proof for the second variant algorithm
(20) is similar and can be found in the arXiv version of this paper (Yu, 2015b). Like in the
previous subsection, we will apply (KY, Theorems 8.2.2, 8.2.3) and show that the required
conditions are met. Using the properties of the mean ODE of the variant algorithm, we will
then specialize the conclusions of those theorems to obtain the desired results.

Consider the first variant algorithm (19):

θt+1 = ΠB

(
θt + αt ψK(et) · ρt

(
Rt + γt+1φ(St+1)>θt − φ(St)

>θt
))
.

We define a function hK : Rn × Ξ→ Rn by

hK(θ, ξ) = ψK(e) ·ρ(s, a)
(
r(s, a, s′) +γ(s′)φ(s′)>θ−φ(s)>θ

)
, for ξ = (e, F, s, a, s′), (43)

and write (19) equivalently as

θt+1 = ΠB

(
θt + αt hK(θt, ξt) + αt ψK(et) · ω̃t+1

)
with ω̃t+1 = ρt(Rt − r(St, At, St+1)) as before. Note that Et [ψK(e) ω̃t+1] = 0, and the
algorithm is similar to the algorithm (11)—equivalently (15)—except that we have hK and
ψK(et) in place of h and et, respectively.

We note two properties of the function hK . They follow from direct calculations and
will be useful in our analysis shortly:

(a) Using the Lipschitz continuity of the function ψK (cf. Equation 18, Section 3.2), we
have that for each θ ∈ Rn, there exists a finite c > 0 such that with ξ = (e, F, s, a, s′)
and ξ′ = (e′, F ′, s, a, s′),

‖hK(θ, ξ)− hK(θ, ξ′)‖ ≤ c ‖e− e′‖, ∀ (s, a, s′) ∈ S ×A× S. (44)

Thus hK(θ, ·) is Lipschitz continuous in (e, F ) uniformly in (s, a, s′).

(b) Since the set B is bounded, we can bound the difference hK(θ, ξ)− h(θ, ξ) for all θ in
B as follows. For some finite constant c > 0,

‖hK(θ, ξ)− h(θ, ξ)‖ ≤ c ‖ψK(e)− e‖ ≤ 2c ‖e‖ · 1(‖e‖ ≥ K), ∀ θ ∈ B, (45)

where the last inequality follows from the property (18) of ψK :

‖ψK(x)‖ ≤ ‖x‖ ∀x ∈ Rn, and ψK(x) = x if ‖x‖ ≤ K.

We now apply (KY, Theorems 8.2.2, 8.2.3) to obtain the desired conclusions in Theo-
rems 6-7 for the algorithm (19). This requires us to show that the conditions (i)-(v) and
(i′)-(v′) given in Section 4.1.1 are still satisfied when we replace et by ψK(et) and h by hK .
The uniform integrability conditions (i), (i′), (iv) and (iv′) require the following sets to be
u.i.: {hK(θt, ξt) +ψK(et) · ω̃t+1} and {hK(θαt , ξt) +ψK(et) · ω̃t+1 | t ≥ 0, α > 0}, {hK(θt, ξt)}
and {hK(θαt , ξt) | t ≥ 0, α > 0}, and {hK(θ, ξt)} for each θ. These conditions are evidently
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satisfied, in view of the boundedness of the functions ψK and hK(θ, ·) for each θ, the bound-
edness of the θ-iterates due to constraints, and the finite variances of {ω̃t}. The condition
(ii) on the continuity of hK(·, ξ) uniformly in ξ ∈ D, for each compact set D ⊂ Ξ, is also
clearly satisfied, whereas the condition (iii) (equivalently (iii′)) on the tightness of {ξt} was
already verified earlier in Prop. 1 (Section 4.1.2).

What remains is the condition (v) (which is equivalent to (v′), for the same reason
as discussed immediately before Prop. 3, Section 4.1.2). It requires the existence of a
continuous function h̄K : Rn → Rn such that for each θ ∈ B and each compact set D ⊂ Ξ,

lim
k→∞,t→∞

1

k

t+k−1∑
m=t

Et
[
hK(θ, ξm)− h̄K(θ)

]
1
(
ξt ∈ D

)
= 0 in mean. (46)

If this condition is satisfied as well, then the mean ODE for the algorithm (19) is given by

ẋ = h̄K(x) + z, z ∈ −NB(x). (47)

To furnish the condition (v), we first identify the function h̄K(θ) to be Eζ [hK(θ, ξ0)],
the expectation of hK(θ, ξ0) under the stationary distribution of the process {Zt} with the
invariant probability measure ζ as its initial distribution. We relate the functions h̄K ,K > 0,
to h̄ in the proposition below, and we will use it to characterize the bias of the algorithm
(19) later.

Proposition 4 Let Assumption 1 hold. Consider the setting of the algorithm (19), and for
each θ ∈ Rn, let h̄K(θ) = Eζ [hK(θ, ξ0)]. Then the function h̄K is Lipschitz continuous on
Rn, and

sup
θ∈B
‖h̄K(θ)− h̄(θ)‖ → 0 as K →∞. (48)

Proof For each θ, the function hK(θ, ·) is by definition bounded. Under Assumption 1, the
Markov chain {(St, At, et, Ft)} has a unique invariant probability measure ζ (Theorem 2,
Section 2.4). Therefore, h̄K(θ) is well-defined and finite. Let c1 = supe∈Rn ‖ψK(e)‖ < ∞
(since ψK is bounded). For any θ, θ′, using the definition of hK , a direct calculation shows
that for some c2 > 0, ‖hK(θ, ξ) − hK(θ′, ξ)‖ ≤ c1c2‖θ − θ′‖ for all ξ ∈ Ξ, from which it
follows that

‖h̄K(θ)− h̄K(θ′)‖ ≤ Eζ
[
‖hK(θ, ξ0)− hK(θ′, ξ0)‖

]
≤ c1c2‖θ − θ′‖.

This shows that h̄K is Lipschitz continuous. We now prove (48). Since h̄K(θ) = Eζ [hK(θ, ξ0)]
by definition and h̄(θ) = Eζ [h(θ, ξ0)] by Corollary 1 (Section 2.4), it is sufficient to prove
the following statement, which entails (48):

sup
θ∈B

Eζ
[∥∥hK(θ, ξ0)− h(θ, ξ0)

∥∥]→ 0 as K →∞. (49)

By (45), for some constant c > 0,

‖hK(θ, ξ0)− h(θ, ξ0)‖ ≤ 2c ‖e0‖ · 1(‖e0‖ ≥ K), ∀ θ ∈ B,
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and therefore,

sup
θ∈B

Eζ
[∥∥hK(θ, ξ0)− h(θ, ξ0)

∥∥] ≤ 2cEζ
[
‖e0‖ · 1(‖e0‖ ≥ K)

]
.

By Theorem 3 (Section 2.4), Eζ [‖e0‖] <∞ and hence Eζ [‖e0‖·1(‖e0‖ ≥ K)]→ 0 as K →∞.
Together with the preceding inequality, this implies (49), which in turn implies (48).

We now show that the convergence in mean required in (46) is satisfied.

Proposition 5 Under Assumption 1, the conclusion of Prop. 3 (Section 4.1.2) holds in the
setting of the algorithm (19), with the functions hK and h̄K in place of h and h̄, respectively.

Proof The same arguments given in the proof of Prop. 3 apply here, with the functions
hK , h̄K in place of h, h̄, respectively. Only two details are worth noting here. The proof
relies on the Lipschitz continuity property of hK given in (44). As mentioned earlier, this
property implies that for each θ, with ξ = (e, F, s, a, s′), hK(θ, ξ) is Lipschitz continuous in
(e, F ) uniformly in (s, a, s′), so we can apply Theorem 3 to conclude that (35) and hence
(32) hold in this case (for hK , h̄K instead of h, h̄). The property (44) also allows us to obtain
(33) in this case, by exactly the same proof given earlier.

Thus we have furnished all the conditions required by (KY, Theorems 8.2.2, 8.2.3). As
in the case of the algorithm (11), by these two theorems, the assertions of Theorems 4-5
hold for the variant algorithm (19) with Nδ(LB) in place of Nδ(θ

∗), where LB is the limit
set of the projected mean ODE associated with (19):

ẋ = h̄K(x) + z, z ∈ −NB(x).

To finish the proof for Theorems 6-7, it is now sufficient to show that for any given δ > 0, we
can choose a number Kδ large enough so that LB ⊂ Nδ(θ

∗) for all K ≥ Kδ. We prove this
below, using Prop. 4. Note that the set LB reflects the bias of the constrained algorithm
(19), so what we are showing now is that this bias decreases as K increases.

Lemma 3 Let Assumptions 1-2 hold, and let the radius of the set B exceed the threshold
given in Lemma 1. Then for all K sufficiently large, given any initial condition x(0) ∈ B,
a solution to the projected ODE (47) coincides with the unique solution to ẋ = h̄K(x), with
the boundary reflection term being z(·) ≡ 0. Given δ > 0, there exists Kδ such that for
K ≥ Kδ, the limit set LB of (47) satisfies LB ⊂ Nδ(θ

∗).

Proof Under Assumptions 1-2, the matrix C is negative definite (Theorem 1, Section 2.3),
and when the radius of the set B exceeds the threshold given in Lemma 1, there exists a
constant ε > 0 such that for all boundary points x of B, 〈x, h̄(x)〉 < −ε. At such points x,
the normal cone NB(x) = {ax | a ≥ 0}, and

〈x, h̄K(x)〉 = 〈x, h̄(x)〉+ 〈x, h̄K(x)− h̄(x)〉 < −ε+ 〈x, h̄K(x)− h̄(x)〉.

By (48) in Prop. 4, 〈x, h̄K(x) − h̄(x)〉 → 0 uniformly on B as K → ∞. Thus when K is
sufficiently large, at all boundary points x of B, 〈x, h̄K(x)〉 < 0; i.e., h̄K(x) points inside B
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and the boundary reflection term z = 0. It then follows that for such K, given an initial
condition x(0) ∈ B, a solution to (47) coincides with the unique solution to ẋ = h̄K(x),
where the uniqueness is ensured by the Lipschitz continuity of h̄K proved in Prop. 4 (cf.
Borkar, 2008, Chap. 11.2).

To prove the second statement concerning the limit set of the projected ODE, let K
be large enough so that the conclusion of the first part holds. Let x(τ), τ ∈ [0,∞), be the
solution of (47) for a given initial x(0) ∈ B. Since h̄K is bounded on B, x(·) is Lipschitz
continuous on [0,∞). Let V (τ) = |x(τ) − θ∗|2, and we calculate V̇ (τ). Since for all x,
h̄(x) = Cx+ b = C(x− θ∗) and x>Cx ≤ −c|x|2 for some c > 0 by the negative definiteness
of C, a direct calculation shows that

V̇ (τ) = 2
〈
x(τ)− θ∗ , h̄K(x(τ))

〉
= 2

〈
x(τ)− θ∗ , h̄(x(τ))

〉
+ 2

〈
x(τ)− θ∗, h̄K(x(τ))− h̄(x(τ))

〉
≤ −2c

∣∣x(τ)− θ∗
∣∣2 + 2

∣∣x(τ)− θ∗
∣∣ · ∣∣h̄K(x(τ))− h̄(x(τ))

∣∣.
By (48) in Prop. 4, supx∈B |hK(x) − h̄(x)| → 0 as K → ∞. It then follows that for
any δ > 0, there exist ε > 0 and Kδ > 0 such that for all K ≥ Kδ, V̇ (τ) ≤ −ε if
V (τ) = |x(τ)− θ∗|2 ≥ δ2. This together with the continuity of the solution x(·) shows that
for any x(0) ∈ B, within time τ̄ = r2

B/ε (where rB is the radius of B), the trajectory x(τ)
must reach Nδ(θ

∗) and stay in that set thereafter. Consequently, for all K ≥ Kδ, the limit
set LB = ∩τ̄≥0 ∪x(0)∈B{x(τ), τ ≥ τ̄} ⊂ Nδ(θ

∗).

This completes the proofs of Theorems 6 and 7 for the first variant algorithm (19).

4.3 Further Analysis of the Constant-stepsize Case

We now consider again the case of constant stepsize, and prove Theorems 8-11 given in
Section 3.3. The proofs will be based on combining the results we obtained earlier by using
stochastic approximation theory, with the ergodic theorems of weak Feller Markov chains.
As before the proofs will also rely on the key properties of the ETD iterates.

4.3.1 Weak Feller Markov Chains

We shall focus on Markov chains on complete separable metric spaces. For such a Markov
chain {Xt} with state space X, let P (·, ·) denote its transition kernel, that is, P : X×B(X)→
[0, 1],

P (x,D) = Px(X1 ∈ D), ∀x ∈ X, D ∈ B(X),

where B(X) denotes the Borel sigma-algebra on X, and Px denotes the probability distri-
bution of {Xt} conditioned on X0 = x. Multiple-step transition kernels will also be needed.
For t ≥ 1, the t-step transition kernel P t(·, ·) : X× B(X)→ [0, 1] is given by

P t(x,D) = Px(Xt ∈ D), ∀x ∈ X, D ∈ B(X),

and for t = 0, P 0 is defined as P 0(x, ·) = δx, the Dirac measure that assigns probability 1
to the point x, for each x ∈ X. Define averaged probability measures P̄k(x, ·) for k ≥ 1 and
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x ∈ X, as

P̄k(x, ·) =
1

k

k−1∑
t=0

P t(x, ·).

The Markov chain {Xt} has the weak Feller property if for every bounded continuous
function f on X,

Pf(x) :=

∫
f(y)P (x, dy) = E

[
f(X1) | X0 = x

]
is a continuous function of x (Meyn and Tweedie, 2009, Prop. 6.1.1). Weak Feller Markov
chains have nice properties. In our analysis, we will use in particular several properties
relating to the invariant probability measures of these chains and convergence of certain
probability measures to the invariant probability measures.

Recall that if µ and µt, t ≥ 0, are probability measures on X, {µt} is said to converge
weakly to µ if

∫
fdµt →

∫
fdµ for every bounded continuous function f on X. For {µt}

that is not necessarily convergent, we shall call the limiting probability measure of any of
its convergent subsequence, in the sense of weak convergence, a weak limit of {µt}. For an
(arbitrary) index set K, a set of probability measures {µk}k∈K on X is said to be tight if
for every δ > 0, there exists a compact set Dδ ⊂ X such that µk(Dδ) ≥ 1− δ for all k ∈ K.
An important fact is that on a complete separable metric space, any tight sequence of
probability measures has a further subsequence that converges weakly to some probability
measure (Dudley, 2002, Theorem 11.5.4).

For weak Feller Markov chains, their averaged probability measures {P̄k(x, ·)}k≥1 are
known to have the following property; see e.g., the proof of Lemma 4.1 in (Meyn, 1989). It
will be needed in our proofs of Theorems 8-9.

Lemma 4 Let {Xt} be a weak Feller Markov chain with transition kernel P (·, ·) on a metric
space X. For each x ∈ X, any weak limit of {P̄k(x, ·)}k≥1 is an invariant probability measure
of {Xt}.

Recall that the occupation probability measures of {Xt}, denoted {µx,t} for each initial
condition x ∈ X, are defined as follows:

µx,t(D) :=
1

t

t−1∑
k=0

1(Xk ∈ D), ∀D ∈ B(X),

where the chain {Xt} starts from X0 = x, and each µx,t is a random variable taking values in
the space of probability measures on X. Let “Px-a.s.” stand for “almost surely with respect
to Px.” The next lemma concerns the convergence of occupation probability measures of a
weak Feller Markov chain. It is a result of Meyn (1989) and will be needed in our proofs of
Theorems 10-11.

Lemma 5 (Meyn, 1989, Prop. 4.2) Let {Xt} be a weak Feller Markov chain with tran-
sition kernel P (·, ·) on a complete separable metric space X. Suppose that

(i) {Xt} has a unique invariant probability measure µ;

(ii) for each compact set E ⊂ X, the set {P̄k(x, ·) | x ∈ E, k ≥ 1} is tight; and
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(iii) for all initial conditions x ∈ X, there exists a sequence of compact sets Ek ↑ X (that
is Ek ⊂ Ek+1 for all k and ∪kEk = X) such that

lim
k→∞

lim inf
t→∞

µx,t(Ek) = 1, Px-a.s.

Then, for each initial condition x ∈ X, the sequence {µx,t} of occupation probability mea-
sures converges weakly to µ, Px-almost surely.

The condition (iii) above is equivalent to that the sequence {µx,t} of occupation proba-
bility measures is almost surely tight for each initial condition.

4.3.2 Proofs of Theorems 8 and 9

In this subsection we prove Theorem 8 for the algorithm (11) and Theorem 9 for its two
variants (19) and (20). We also show that the conclusions of Theorems 8-9 hold for the
perturbed version (23) of these algorithms as well. The proof arguments are largely the
same for all the algorithms we consider here. So except where noted otherwise, it will be
taken for granted through out this subsection that {θαt } is generated by either of the six
algorithms just mentioned, for a constant stepsize α > 0.

We start with some preliminary analysis given in the next two lemmas. Recall Zt =
(St, At, et, Ft) and {Zt} is a weak Feller Markov chain on Z := S × A × Rn+1 (Yu, 2015a,
Sec. 3.1), and its evolution is not affected by the θ-iterates. We consider the Markov chain
{(Zt, θαt )} on the state space Z × B (note that this is a complete separable metric space).
This chain also has the weak Feller property:

Lemma 6 Let Assumption 1(ii) hold. The process {(Zt, θαt )} is a weak Feller Markov
chain.

The proof of the preceding lemma is a straightforward verification using the definition
of the weak Feller property. It is included in the arXiv version of this paper (Yu, 2015b)
but omitted here due to space limit.

In order to study the behavior of multiple consecutive θ-iterates, we consider for m ≥ 1,
the m-step version of {(Zt, θαt )}, that is, the Markov chain {Xt} on (Z × B)m where each
state Xt consists of m consecutive states of the original chain {(Zt, θαt )}:

Xt =
(
(Zt, θ

α
t ), . . . , (Zt+m−1, θ

α
t+m−1)

)
.

Similarly to Lemma 6, it is straightforward to show that the m-step version of a weak
Feller Markov chain is a weak Feller chain as well. Thus the m-step version of {(Zt, θαt )}
is also a weak Feller Markov chain, and we can apply the ergodic theorems for weak Feller
Markov chains to analyze it. In particular, in this subsection we will use Lemma 4 to prove
Theorems 8-9; in the next subsection we will also use Lemma 5.

In analyzing the m-step version of {(Zt, θαt )}, sometimes it will be more convenient for
us to take as its initial condition the condition of just (Z0, θ

α
0 )—instead of (Z0, θ

α
0 ), . . .,

(Zαm−1, θ
α
m−1)—and to work with the following objects that are essentially equivalent to the

averaged probability measures {P̄k(x, ·)} and the occupation probability measures {µx,t}
defined earlier for a general Markov chain {Xt}. Specifically, with {Xt} denoting the m-step
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version of {(Zt, θαt )}, for each (z, θ) ∈ Z ×B, we define probability measures P̄
(m,k)
(z,θ) , k ≥ 1,

on the space X = (Z ×B)m, by

P̄
(m,k)
(z,θ) (D) :=

1

k

k−1∑
t=0

P(z,θ)

(
Xt ∈ D

)
, ∀D ∈ B(X). (50)

Similarly, we define occupation probability measures {µ(m)
(z,θ),t} for each (z, θ) ∈ Z ×B by

µ
(m)
(z,θ),t(D) :=

1

t

t−1∑
k=0

1
(
Xk ∈ D

)
, ∀D ∈ B(X), (51)

where the initial (Z0, θ
α
0 ) = (z, θ). Compared with the definitions of {P̄k(x, ·)} and {µx,t}

for {Xt}, apparently, all the previous conclusions given in Section 4.3.1 for {P̄k(x, ·)} and

{µx,t} hold for
{
P̄

(m,k)
(z,θ)

}
and

{
µ

(m)
(z,θ),t

}
as well; therefore we can use the objects

{
P̄

(m,k)
(z,θ)

}
and {P̄k(x, ·)}, and

{
µ

(m)
(z,θ),t

}
and {µx,t}, interchangeably in our analysis.

Lemma 7 Let Assumption 1 hold. For m ≥ 1, let {Xt} be the m-step version of {(Zt, θαt )}
on X = (Z×B)m, with transition kernel P (·, ·). Then {Xt} satisfies the conditions (ii)-(iii)
of Lemma 5.

Proof To show that the condition (ii) of Lemma 5 is satisfied, fix a compact set E ⊂ X
and let us first show that the set {P t(x, ·) | x ∈ E, t ≥ 0} is tight. Since the set B
is compact and the state and action spaces are finite, of concern here is just the tight-
ness of the marginals of these probability measures on the space of the trace components
(et, Ft, . . . , et+m−1, Ft+m−1) of the state Xt. By Prop. 11 (Appendix A), for all initial con-
ditions of (e0, F0) in a given bounded subset of Rn+1, supt≥0 E[‖(et, Ft)‖] ≤ L for a constant
L (that depends on the subset). So for the set E, applying the Markov inequality together
with the union bound, we have that there exists a constant L > 0 such that for all x ∈ E
and a > 0, Px

(
supk≤t<k+m ‖(et, Ft)‖ ≥ a

)
≤ mL/a for all k ≥ 0. Now for any given δ > 0,

let a be large enough so that mL/a < δ and let Da be the closed ball in Rn+1 centered
at the origin with radius a. Then for the compact set D = (S × A ×Da × B)m, we have
P k(x,D) = Px

(
supk≤t<k+m ‖(et, Ft)‖ ≤ a

)
≥ 1− δ for all x ∈ E and all k ≥ 0. This shows

that the set {P t(x, ·) | x ∈ E, t ≥ 0} is tight. Consequently, the averages of the probability
measures in this set must also form a tight set; in particular, the set {P̄k(x, ·) | x ∈ E, k ≥ 1}
must be tight. Hence {Xt} satisfies the condition (ii) of Lemma 5.

Consider now the condition (iii) of Lemma 5. For positive integers k, let Ek in that
condition be the compact set (S × A ×Dk × B)m, where Dk is the closed ball of radius k
in Rn+1 centered at the origin. We wish to show that for each initial condition x ∈ X,

lim
k→∞

lim inf
t→∞

µx,t(Ek) = 1, Px-a.s.

Since the θ-iterates do not affect the evolution of Zt, they can be neglected in the proof. It
is sufficient to consider instead the m-step version of {Zt} and show that for the compact
sets Êk = (S ×A×Dk)

m, it holds for any initial condition z ∈ Z of Z0 that

lim
k→∞

lim inf
t→∞

µ̂
(m)
z,t

(
Êk
)

= 1, Pz-a.s., (52)
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where {µ̂(m)
z,t } are the occupation probability measures of the m-step version of {Zt}, defined

analogously to (51) with (Zt, . . . , Zt+m−1) in place of Xt.

To prove (52), consider {Zt} first and its occupation probability measures {µ̂z,t} for
each initial condition Z0 = z ∈ Z. By Theorem 2 (Section 2.4), Pz-almost surely, {µ̂z,t}
converges weakly to ζ (the unique invariant probability measure of {Zt}). So by (Dudley,
2002, Theorem 11.1.1), for the open set D̃k = S × A ×Do

k, where Do
k denotes the interior

of Dk (i.e., Do
k is the open ball with radius k), almost surely,

lim inf
t→∞

µ̂z,t
(
D̃k

)
≥ ζ(D̃k), and hence lim

k→∞
lim inf
t→∞

µ̂z,t
(
D̃k

)
= 1. (53)

Now for the m-step version of {Zt}, with [D̃k]
m denoting the Cartesian product of m copies

of D̃k, we have

µ̂
(m)
z,t

(
[D̃k]

m
)

:=
1

t

t−1∑
j=0

1
(
Zj+j′ ∈ D̃k, 0 ≤ j′ < m

)
≥ 1−

m−1∑
j′=0

1

t

t−1∑
j=0

1
(
Zj+j′ 6∈ D̃k

)
. (54)

For each j′ < m, by the definition of µ̂z,t, we have lim supt→∞
1
t

∑t−1
j=0 1

(
Zj+j′ 6∈ D̃k

)
=

lim supt→∞ µ̂z,t
(
D̃c
k

)
, where D̃c

k denotes the complement of D̃k in S × A × Rn+1. By

(53), limk→∞ lim supt→∞ µ̂z,t
(
D̃c
k

)
= 0 almost surely. Hence for each j′ < m, we have

limk→∞ lim supt→∞
1
t

∑t−1
j=0 1

(
Zj+j′ 6∈ D̃k

)
= 0 almost surely. We then obtain from (54), by

taking the limits as t→∞ and k →∞, that

lim inf
k→∞

lim inf
t→∞

µ̂
(m)
z,t

(
[D̃k]

m
)
≥ 1−

m−1∑
j′=0

lim sup
k→∞

lim sup
t→∞

1

t

t−1∑
j=0

1
(
Zj+j′ 6∈ D̃k

)
= 1

almost surely. The desired equality (52) then follows, since [D̃k]
m ⊂ Êk.

Recall that Mm
α is the set of invariant probability measures of the m-step version of

{(Zt, θαt )}. By Lemma 7 the latter Markov chain satisfies the condition (ii) of Lemma 5,

and this implies that the set
{
P̄

(m,k)
(z,θ)

}
k≥1

is tight for each initial condition (Z0, θ
α
0 ) = (z, θ).

Recall that any subsequence of a tight sequence has a further convergent subsequence (Dud-

ley, 2002, Theorem 11.5.4). For
{
P̄

(m,k)
(z,θ)

}
k≥1

, all the weak limits (i.e., the limits of its

convergent subsequences) must be invariant probability measures in Mm
α , by the property

of weak Feller Markov chains given in Lemma 4:

Proposition 6 Under Assumption 1, consider the m-step version of {(Zt, θαt )} for m ≥ 1.

For each (z, θ) ∈ Z × B, the sequence
{
P̄

(m,k)
(z,θ)

}
k≥1

of probability measures is tight, and
any weak limit of this sequence is an invariant probability measure of the m-step version of
{(Zt, θαt )}. (Thus Mm

α 6= ∅.)

We are now ready to prove Theorems 8-9. The idea is to use the conclusions on the
θ-iterates that we can obtain by applying (KY, Theorem 8.2.2), to infer the concentration
of the mass around a small neighborhood of (θ∗, . . . , θ∗) (m copies of θ∗) for the marginals
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of all the invariant probability measures in the set Mm
α , when α is sufficiently small. This

can then be combined with Prop. 6 above to prove the desired conclusions on the θ-iterates
for a given stepsize.

Recall that Mα is the set of invariant probability measures of {(Zt, θαt )}. Recall also
that M̄m

α denotes the set of marginals of the invariant probability measures inMm
α , on the

space of the θ’s.

Proposition 7 In the setting of Theorem 5, for each α > 0, let {θαt } be generated instead
by the algorithm (11) or its perturbed version (23), with constant stepsize α and under
the condition that the initial (Z0, θ

α
0 ) is distributed according to some invariant probability

measure in Mα. Then the conclusions of Theorem 5 continue to hold.

Proof The proof arguments are the same as those for Theorem 5 given in Section 4.1. We
only need to show that the conditions (ii) and (i′)-(v′) given in Section 4.1.1 for applying
(KY, Theorem 8.2.2) are still satisfied under our present assumptions.

For the algorithm (11), the only difference from the previous assumptions in Theorem 5
is that here for each stepsize α, the initial (Z0, θ

α
0 ) has a distribution µα ∈ Mα. The

condition (ii) does not depend on such initial conditions, so it continues to hold. For
the other conditions, note that since {Zt} has a unique invariant probability measure ζ
(Theorem 2), regardless of the choice of µα, for all α, {Zt} is stationary and has the
same distribution. Then the tightness condition (iii′) trivially holds because as {ξt} is
also stationary and unaffected by the stepsize, each ξαt in (iii′) has the same distribution.
Similarly, since {et} is stationary and unaffected by the stepsize, and each et has the same
distribution with the mean of ‖et‖ given by Eζ [‖et‖] <∞ (Theorem 3), we obtain that {et}
is u.i. From this the uniform integrability required in the conditions (i′) and (iv′) follows as
a consequence, as shown in the proof of Prop. 2(ii)-(iv). Lastly, the convergence in mean
condition (v′) continues to hold (by the same proof given for Prop. 3). This is because {ξt}
has the same distribution regardless of the stepsize, and because the condition (v′) is for
each compact set D and concerns tails of a trajectory starting at instants t with ξt ∈ D,
which renders any initial condition on Z0 ineffective. Thus all the required conditions are
met, and we obtain the same conclusions on the θ-iterates as given in Theorem 5.

For the perturbed version (23) of the algorithm (11), the only difference to (11) under
the present assumptions is the perturbation variables ∆α

θ,t involved in each iteration. But
by definition these variables have conditional zero mean: Eαt [∆α

θ,t] = 0, so the only condition
in which they appear is the uniform integrability condition (i′): {Y α

t | t ≥ 0, α > 0} is u.i.,
where Y α

t is now given by Y α
t = h(θαt , ξt) + et · ω̃t+1 + ∆α

θ,t. By definition ∆α
θ,t for all α

and t have bounded variance, and hence {∆α
θ,t} is u.i. (Billingsley, 1968, p. 32). The set

{h(θαt , ξt) + et · ω̃t+1 | t ≥ 0, α > 0} is u.i., which follows from the u.i. of {et}, as we just
verified in the case of the algorithm (11). Therefore, by Lemma 2(i), {Y α

t | t ≥ 0, α > 0}
is u.i. and the condition (i′) is satisfied. Since the perturbed version (23) meets all the
required conditions, and shares with (11) the same mean ODE, the same conclusions given
in Theorem 5 hold for this algorithm as well.

We now prove Theorem 8 for the algorithm (11). We prove its part (i) and part (ii)
separately, as the arguments are different. Our proofs below also apply to the perturbed
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version (23) of the algorithm (11), and together with the preceding proposition, they estab-
lish the first part of Theorem 10 (which says that the conclusions of both Theorem 5 and
Theorem 8 hold for the perturbed algorithm).

Proof of Theorem 8(i) Proof by contradiction. Consider the statement of Theorem 8(i):

∀ δ > 0, lim inf
α→0

inf
µ∈M̄mα

α

µ
(
[Nδ(θ

∗)]mα
)

= 1, where mα = dmα e.

Suppose it is not true. Then there exist δ, ε > 0, m ≥ 1, a sequence αk → 0, and a sequence
µαk ∈ M̄mk

αk
, where mk = mαk , such that

µαk([Nδ(θ
∗)]mk) ≤ 1− ε, ∀ k ≥ 0. (55)

Each µαk corresponds to an invariant probability measure of {(Zt, θαkt )} in Mαk , which
we denote by µ̂αk . For each k ≥ 0, generate the iterates {θαkt } using µ̂αk as the initial
distribution of (Z0, θ

αk
0 ). For other values of α, generate the iterates {θαt } using some

µ̂α ∈ Mα as the initial distribution of (Z0, θ
α
0 ). By Prop. 7, the conclusions of Theorem 5

hold:
lim sup
α→0

P
(
θαt 6∈ Nδ(θ

∗), some t ∈
[
kα, kα + Tα/α

])
= 0,

where Tα →∞ as α→ 0, and this implies for the given m,

lim sup
α→0

P
(
θαt 6∈ Nδ(θ

∗), some t ∈
[
kα, kα + dmα e

))
= 0. (56)

But for each α > 0, the process {(Zt, θαt )} with the initial distribution µ̂α is stationary,
so the probability in the left-hand side of (56) is just 1− µα([Nδ(θ

∗)]mα), for the marginal
probability measure µα ∈ M̄mα

α that corresponds to the invariant probability measure
µ̂α. Therefore, by (56), lim infα→0 µα([Nδ(θ

∗)]mα) = 1. On the other hand, by (55),
lim infα→0 µα([Nδ(θ

∗)]mα) ≤ lim infk→∞ µαk([Nδ(θ
∗)]mk) < 1, a contradiction. Thus the

statement of Theorem 8(i) recounted at the beginning of this proof must hold.
This also proves the other statement of Theorem 8(i), lim infα→0 infµ∈M̄m

α
µ
(
[Nδ(θ

∗)]m
)

=
1, because for α < 1, by the correspondences between those invariant probability measures
in Mm

α and those in Mmα
α , infµ∈M̄m

α
µ
(
[Nδ(θ

∗)]m
)
≥ infµ∈M̄mα

α
µ
(
[Nδ(θ

∗)]mα
)
. This com-

pletes the proof.

Proof of Theorem 8(ii) We suppress the superscript α of θαt in the proof. The statement
is trivially true if δ ≥ 2rB, so consider the case δ < 2rB. Let (z, θ) ∈ Z × B be the initial
condition of (Z0, θ0). By convexity of the Euclidean norm,

∣∣θ̄t− θ∗∣∣ ≤ 1
t

∑t−1
j=0 |θj − θ∗|, and

therefore, for all k ≥ 1,

sup
k≤t<k+m

∣∣θ̄t − θ∗∣∣ ≤ 1

k

k−1∑
j=0

sup
j≤t<j+m

|θt − θ∗|, (57)

and

E

[
sup

k≤t<k+m

∣∣θ̄t − θ∗∣∣] ≤ 1

k

k−1∑
j=0

E

[
sup

j≤t<j+m
|θt − θ∗|

]
. (58)
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With N ′δ(θ
∗) denoting the open δ-neighborhood of θ∗, we have

1

k

k−1∑
j=0

E

[
sup

j≤t<j+m
|θt − θ∗|

]

≤ 1

k

k−1∑
j=0

E

[(
sup

j≤t<j+m
|θt − θ∗|

)
· 1
(
θt ∈ N ′δ(θ∗), j ≤ t < j +m

)]

+
1

k

k−1∑
j=0

E

[(
sup

j≤t<j+m
|θt − θ∗|

)
· 1
(
θt 6∈ N ′δ(θ∗), some t ∈ [j, j +m)

)]
≤ δ · P̄ (m,k)

(z,θ) (Dδ) + 2rB ·
(
1− P̄ (m,k)

(z,θ) (Dδ)
)
, (59)

where Dδ =
{(
z1, θ1, . . . , zm, θm

)
∈ (Z × B)m

∣∣ sup1≤j≤m
∣∣θj − θ∗∣∣ < δ

}
, and the second

inequality follows from the definition (50) of the averaged probability measure P̄
(m,k)
(z,θ) .

By Prop. 6,
{
P̄

(m,k)
(z,θ)

}
k≥1

is tight and all its weak limits are in Mm
α , the set of invariant

probability measure of them-step version of {(Zt, θt)}. There is also the fact that on a metric
space, if a sequence of probability measures µk converges to some probability measure µ
weakly, then lim infk→∞ µk(D) ≥ µ(D) for any open set D (Dudley, 2002, Theorem 11.1.1).
From these two arguments we have that for the set Dδ, which is open with respect to the
topology on (Z ×B)m,

lim inf
k→∞

P̄
(m,k)
(z,θ) (Dδ) ≥ inf

µ∈Mm
α

µ(Dδ) = inf
µ∈M̄m

α

µ
(
[N ′δ(θ

∗)]m
)

=: κα,m. (60)

Combining the three inequalities (58)-(60), and using also the relation δ < 2rB, we obtain

lim sup
k→∞

E

[
sup

k≤t<k+m

∣∣θ̄t − θ∗∣∣] ≤ δ κα,m + 2rB
(
1− κα,m

)
.

This complete the proof.

We prove Theorem 9 in exactly the same way as we proved Theorem 8, so we omit
the details and only outline the proof here. First, for the variant algorithms (19) and (20)
as well as their perturbed version (23), we consider fixed K and ψK . Similar to Prop. 7,
we show that if for each stepsize α, the initial (Z0, θ

α
0 ) is distributed according to some

invariant probability measure inMα, then the algorithms continue to satisfy the conditions
given in Section 4.1.1, so we can apply (KY, Theorem 8.2.2) to assert that the conclusions
of Theorem 5 continue to hold with Nδ(θ

∗) replaced by the limit set Nδ(LB) of the mean
ODE associated with each algorithm. (Recall Theorem 7 is also obtained in this way.)
Subsequently, with Nδ(LB) in place of Nδ(θ

∗) again, and with K and ψK still held fixed,
we use the same proof for Theorem 8(i) to obtain that for any δ > 0 and m ≥ 1,

lim inf
α→0

inf
µ∈M̄mα

α

µ
(
[Nδ(LB)]mα

)
= 1, where mα = dmα e.

41



Yu

Finally, we combine this with the fact that given any δ > 0, the limit set Nδ(LB) ⊂ Nδ(θ
∗)

for all K sufficiently large (see Lemma 3 in Section 4.2, which holds for (19) and (20), as
well as their perturbed version (23) since the latter has the same mean ODE as the original
algorithm). Theorem 9(i) then follows: given δ > 0, for all K sufficiently large,

lim inf
α→0

inf
µ∈M̄mα

α

µ
(
[Nδ(θ

∗)]mα
)

= 1.

The proof for Theorem 9(ii) is exactly the same as that for Theorem 8(ii) given earlier. In
particular, this proof relies solely on the weak Feller property of the Markov chain {(Zt, θαt )}
and the convergence property of the averaged probability measures of the m-step version
of {(Zt, θαt )}, all of which have shown to hold for the algorithms (19) and (20) and their
perturbed version (23) in this subsection.

The preceding arguments also show that the first part of Theorem 11 holds; that is,
the conclusions of Theorem 7 and Theorem 9 hold for the perturbed version (23) of the
algorithm (19) or (20) as well.

4.3.3 Proofs of Theorems 10 and 11

In this subsection we establish completely Theorems 10 and 11 regarding the perturbed
version (23) of the algorithms (11), (19) and (20). We have already proved the first part
of both of these theorems in the previous subsection. Below we tackle their second part,
which, as we recall, is stronger than the corresponding part of Theorems 8 and 9 in that for
a fixed stepsize α, the deviation of the averaged iterates {θ̄αt } from θ∗ in the limit as t→∞
is now characterized not in an expected sense but for almost all sample paths.

To simplify the presentation, except where noted otherwise, it will be taken for granted
throughout this subsection that {θαt } is generated by the perturbed version (23) of any of the
three algorithms (11), (19) and (20). Recall that when updating θαt to θαt+1, the perturbed
algorithm (23) adds the perturbation term α∆θ,t to the iterate before the projection ΠB,
where ∆θ,t, t ≥ 0, are assumed to be i.i.d. Rn-valued random variables that have zero mean
and bounded variances and have a positive continuous density function with respect to
the Lebesgue measure. (Here and in what follows, we omit the superscript α of the noise
terms ∆θ,t since we deal with a fixed stepsize α in this part of the analysis.) As mentioned
in Section 3.3, these conditions are not as weak as possible. Indeed, the purpose of the
perturbation is to make the invariant probability measure of {(Zt, θαt )} unique so that we can
invoke the ergodic theorem for weak Feller Markov chains given in Lemma 5, Section 4.3.1.
Therefore, any conditions that can guarantee the uniqueness of the invariant probability
measure can be used. In the present paper, for simplicity, we focus on the conditions we
assumed earlier on ∆θ,t, and prove the uniqueness just mentioned under these conditions,
although our proof arguments can be useful for weaker conditions as well.

Proposition 8 Under Assumption 1, {(Zt, θαt )} has a unique invariant probability measure.

The next two lemmas are the intermediate steps to prove Prop. 8. We need the notion
of a stochastic kernel, of which the transition kernel of a Markov chain is one example. For
two topological spaces X and Y, a function Q : B(X)×Y → [0, 1] is a (Borel measurable)
stochastic kernel on X given Y, if for each y ∈ Y, Q(· | y) is a probability measure
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on B(X) and for each D ∈ B(X), Q(D | y) is a Borel measurable function on Y. For
the algorithms we consider, the iteration that generates (Zt+1, θ

α
t+1) from (Zt, θ

α
t ) can be

equivalently described in terms of stochastic kernels. In particular, the transition from Zt
to Zt+1 is described by the transition kernel of the Markov chain {Zt}, and the probability
distribution of θαt+1 given θαt and ξt = (et, Ft, St, At, St+1) is described by another stochastic
kernel, which will be our focus in the analysis below.

Lemma 8 Let Assumption 1(ii) hold. Let Q(dθ′ | ξ, θ) be the stochastic kernel (on B given
Ξ×B) that describes the probability distribution of θαt+1 given ξt = ξ, θαt = θ. Then for each
bounded set E ⊂ Ξ, there exist β ∈ (0, 1] and a probability measure Q1 on B such that

Q(dθ′ | ξ, θ) ≥ β Q1(dθ′), ∀ ξ ∈ E, θ ∈ B. (61)

Proof We consider only the case where {θαt } is generated by the perturbed version of the
algorithm (11); the proof for the perturbed version of the two other algorithms (19) and
(20) follows exactly the same arguments. In the proof below we use the notation that for a
scalar c and a set D ⊂ Rn, the set cD = {cx | x ∈ D}.

By the definitions of the algorithms (11) and (23), for ξ = (e, F, s, a, s′) ∈ Ξ and θ ∈ B,
we can express Q(· | ξ, θ) as

Q(D | ξ, θ) =

∫ ∫
1
(

ΠB

(
θ + αf(ξ, θ, r) + α∆

)
∈ D

)
p(d∆) q(dr | s, a, s′), ∀D ∈ B(B),

(62)
where f(ξ, θ, r) = e ·ρ(s, a)

(
r+γ(s′)φ(s′)>θ−φ(s)>θ

)
, and p(·) is the common distribution

of the perturbation variables ∆θ,t. Let r̄ > 0 be large enough so that for some c > 0,
q([−r̄, r̄] | s̄, ā, s̄′) ≥ c for all (s̄, ā, s̄′) ∈ S × A × S. Let E be an arbitrary bounded subset
of Ξ. For all ξ ∈ E, θ ∈ B and r ∈ [−r̄, r̄], since E and B are bounded, g(ξ, θ, r) :=
(θ+ αf(ξ, θ, r))/α lies in a compact subset of Rn, which we denote by D̄. Let ε ∈ (0, rB/α]
and let D̄ε be the ε-neighborhood of D̄. By our assumption on the perturbation variables
involved in the algorithm (23), p(·) has a positive continuous density function with respect
to the Lebesgue measure `(·). Therefore, there exists some c′ > 0 such that for any Borel
subset D of the compact set −D̄ε := {−x | x ∈ D̄ε}, p(D) ≥ c′`(D).

Now consider an arbitrary ξ ∈ E, θ ∈ B, and r ∈ [−r̄, r̄]. We have y := g(ξ, θ, r) ∈ D̄.
Let Bε(−y) be the ε-neighborhood of −y, and let Bε denote the closed ball in Rn centered
at the origin with radius ε. If ∆ ∈ Bε(−y), then θ+αf(ξ, θ, r)+α∆ = αy+α∆ ∈ αBε ⊂ B
(since αε ≤ rB). Therefore, for any D ∈ B(B),∫

1
(

ΠB

(
θ + αf(ξ, θ, r) + α∆

)
∈ D

)
p(d∆) ≥

∫
Bε(−y)

1
(
αy + α∆ ∈ D

)
p(d∆)

≥ c′
∫
Bε(−y)

1
(
αy + α∆ ∈ D

)
`(d∆)

= c′`
(

1
αD ∩Bε

)
, (63)

where in the second inequality we used the fact that Bε(−y) ⊂ −D̄ε and restricted to
B(−D̄ε), p(d∆) ≥ c′`(d∆), as discussed earlier.
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To finish the proof, define the probability measure Q1 on B by Q1(D) = `( 1
αD ∩

Bε)/`(Bε) for all D ∈ B(B). Then for all ξ ∈ E and θ ∈ B, using (62) and (63) and
our choice of r̄, we have

Q(D | ξ, θ) ≥
∫

[−r̄,r̄]
c′`(Bε) ·Q1(D) q(dr | s, a, s′) ≥ c · c′`(Bε) ·Q1(D), D ∈ B(B),

and the desired inequality (61) then follows by letting β = cc′`(Bε) > 0 (we must have
β ≤ 1 since we can choose D = B in the inequality above).

We will use the preceding result in the proof of the next lemma.

Lemma 9 Let Assumption 1 hold. Let {µx,t} be the sequence of occupation probability
measures of {(Zt, θαt )} for each initial condition x ∈ Z × B. Suppose that for some x =
(z, θ) ∈ Z ×B and µ ∈Mα, {µx,t} converges weakly to µ, Px-almost surely. Then for each
θ′ ∈ B and x′ = (z, θ′), {µx′,t} also converges weakly to µ, Px′-almost surely.

Proof We use a coupling argument to prove the statement. In the proof, we suppress the
superscript α of θαt . Let {Xt} denote the process {(Zt, θt)} with initial condition x = (z, θ),
and let {X ′t} denote the process {(Zt, θt)} with initial condition x′ = (z, θ′), for an arbitrary
θ′ ∈ B. In what follows, we first define a sequence

{(Zt, θ̃t, θ̃′t)} with (Z0, θ̃0, θ̃
′
0) = (z, θ, θ′),

in such a way that the two marginal processes {(Zt, θ̃t)} and {(Zt, θ̃′t)} have the same
probability distributions as {Xt} and {X ′t}, respectively. We then relate the occupation
probability measures {µx,t}, {µx′,t} to those of the marginal processes, {µ̃x,t}, {µ̃x′,t}, which
are defined as

µ̃x,t(D) =
1

t

t−1∑
k=0

1
(
(Zk, θ̃k) ∈ D

)
, µ̃x′,t(D) =

1

t

t−1∑
k=0

1
(
(Zk, θ̃

′
k) ∈ D

)
, ∀D ∈ B(Z ×B).

We now define {(Zt, θ̃t, θ̃′t)}. First, let {Zt} be generated as before with Z0 = z. Denote
ξt = (et, Ft, St, At, St+1) as before, and let Q be the stochastic kernel that describes the
evolution of θt+1 given (ξt, θt). By Lemma 7, the occupation probability measures of {Zt}
is almost surely tight for each initial condition. This implies the existence of a compact
set Ē ⊂ Rn+1 such that for the compact set E = Ē × S × A × S ⊂ Ξ, the sequence {ξt}
visits E infinitely often with probability one. For this set E, by Lemma 8, there exist some
β ∈ (0, 1] and probability measure Q1 on B such that Q(· | ξ̄, θ̄) ≥ βQ1(·) for all ξ̄ ∈ E and
θ̄ ∈ B. Therefore, on E ×B, we can write Q(· | ξ̄, θ̄) as the convex combination of Q1 and
another stochastic kernel Q0 as follows:

Q(· | ξ̄, θ̄) = β Q1(·) + (1− β)Q0(· | ξ̄, θ̄), ∀ ξ̄ ∈ E, θ̄ ∈ B, (64)

where Q0(· | ξ̄, θ̄) =
[
Q(· | ξ̄, θ̄)− β Q1(·)

]
/(1− β) and Q0 is a stochastic kernel on B given

E ×B.
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Next, independently of {Zt}, generate a sequence {Yt}t≥1 of i.i.d., {0, 1}-valued random
variables such that Yt = 1 with probability β and Yt = 0 with probability 1−β. Set Y0 = 0.
Let

tY = min{t ≥ 1 | Yt = 1, ξt−1 ∈ E}.

Then tY < ∞ with probability one. (Since {ξt} visits E infinitely often and the process
{Yt} is independent of {ξt}, this follows easily from applying the Borel-Cantelli lemma to
{(ξtk , Ytk+1)}k≥1, where tk is when the k-th visit to E by {ξt} occurs.)

Now for each t ≥ 0, let us define the pair (θ̃t+1, θ̃
′
t+1) according to the following rule,

based on the values of (ξ0, θ̃0, θ̃
′
0), . . . , (ξt, θ̃t, θ̃

′
t) and (Y0, . . . , Yt, Yt+1):

(i) In the case t < tY and ξt 6∈ E, generate θ̃t+1 and θ̃′t+1 according to Q(· | ξt, θ̃t) and

Q(· | ξt, θ̃′t) respectively.

(ii) In the case t < tY and ξt ∈ E, if Yt+1 = 0, generate θ̃t+1 and θ̃′t+1 according to

Q0(· | ξt, θ̃t) and Q0(· | ξt, θ̃′t) respectively; if Yt+1 = 1, generate θ̃t+1 according to
Q1(·) and let θ̃′t+1 = θ̃t+1.

(iii) In the case t ≥ tY , generate θ̃t+1 according to Q(· | ξt, θ̃t) and let θ̃′t+1 = θ̃t+1.

In view of (64), it can be verified directly by induction on t that the marginal process
{(Zt, θ̃t)} (resp. {(Zt, θ̃′t)}) in the preceding construction has the same probability distribu-
tion as {Xt} (resp. {X ′t}). This implies that {µx,t} (resp. {µx′,t}) converges weakly to µ with
probability one if and only if {µ̃x,t} (resp. {µ̃x′,t}) converges weakly to µ with probability
one. On the other hand, by construction θ̃t = θ̃′t for t ≥ tY , where tY <∞ with probability
one, so except on a null set, {µ̃x,t} and {µ̃x′,t} have the same weak limits. Combining these
two arguments with the assumption that {µx,t} converges weakly to µ with probability one,
it follows that the three sequences {µ̃x,t}, {µ̃x′,t}, and {µx′,t} must all converge weakly to
µ with probability one.

Proof of Prop. 8 We suppress the superscript α of θαt in the proof. Let {Xt} = {(Zt, θt)}.
By Prop. 6, the setMα of invariant probability measures of {Xt} is nonempty. Recall also
that since the evolution of {Zt} is not affected by the θ-iterates, the marginal of any µ ∈Mα

on the space Z must equal ζ, the unique invariant probability measure of {Zt} (Theorem 2).
Suppose {Xt} has multiple invariant probability measures; i.e., there exist µ, µ′ ∈ Mα

with µ 6= µ′. Then by (Dudley, 2002, Theorem 11.3.2) there exists a bounded continuous
function f on Z ×B such that ∫

f dµ 6=
∫
f dµ′. (65)

On the other hand, since µ is an invariant probability measure of {Xt}, applying a
strong law of large numbers for stationary processes (Doob, 1953, Chap. X, Theorem 2.1;
see also Meyn and Tweedie, 2009, Lemma 17.1.1 and Theorem 17.1.2) to the stationary
Markov chain {Xt} with initial distribution µ, we have that there exist a set D1 ⊂ Z × B
with µ(D1) = 1 and a measurable function gf on Z ×B such that

(i) for each x ∈ D1, with the initial condition X0 = x, limt→∞
1
t

∑t−1
k=0 f(Xk) = gf (x),

Px-a.s.;

(ii) Eµ[gf (X0)] = Eµ[f(X0)] (i.e.,
∫
gfdµ =

∫
fdµ).
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The same is true for the invariant probability measure µ′: there exist a set D2 ⊂ Z × B
with µ′(D2) = 1 and a measurable function g′f (x) such that

(i) for each x ∈ D2, with the initial condition X0 = x, limt→∞
1
t

∑t−1
k=0 f(Xk) = g′f (x),

Px-a.s.;

(ii) Eµ′ [g′f (X0)] = Eµ′ [f(X0)] (i.e.,
∫
g′fdµ

′ =
∫
fdµ′).

Also, since {Xt} is a weak Feller Markov chain (Lemma 6), by (Meyn, 1989, Prop. 4.1),
for a set of initial conditions x with µ-measure 1, the occupation probability measures {µx,t}
of {Xt} converge weakly, Px-almost surely, to some (nonrandom) µ̃x ∈ Mα that depends
on the initial x. The same is true for µ′. So by excluding from D1 a µ-null set and from
D2 a µ′-null set if necessary, we can assume that the sets D1, D2 above also satisfy that
for each x ∈ D1 ∪ D2, the occupation probability measures {µx,t} converge weakly to an
invariant probability measure µ̃x almost surely. Then since 1

t

∑t−1
k=0 f(Xk) is the same as∫

fdµx,t for X0 = x, we have, by the weak convergence of {µx,t} just discussed, that

gf (x) =

∫
fdµ̃x for each x ∈ D1, g′f (x) =

∫
fdµ̃x for each x ∈ D2. (66)

Certainly we must have gf (x) = g′f (x) on D1 ∩D2. We now relate the values of these
two functions at points that share the same z-component. In particular, let proj(D1) denote
the projection of D1 on Z: proj(D1) = {z ∈ Z | ∃ θ with (z, θ) ∈ D1}, and let D1,z be the
vertical section of D1 at z: D1,z = {θ | (z, θ) ∈ D1}. Define proj(D2) and D2,z similarly. If
x = (z, θ) ∈ D1 ∪ D2 and x′ = (z, θ′) ∈ D1 ∪ D2, then in view of Lemma 9 and the weak
convergence of {µx,t} and {µx′,t}, we must have µ̃x = µ̃x′ . Consequently, by (66), for each
z ∈ proj(D1), gf (z, ·) is constant on D1,z; for each z ∈ proj(D2), g′f (z, ·) is constant on D2,z;
and for each z ∈ proj(D1)∩proj(D2), the constants that gf (z, ·), g′f (z, ·) take on D1,z, D2,z,
respectively, are the same.

We now show
∫
fdµ =

∫
fdµ′ to contradict (65) and finish the proof. Since µ(D1) =

µ′(D2) = 1 and by Theorem 2 (Section 2.4) µ, µ′ have the same marginal distribution on Z,
which is ζ, there exists a Borel set E ⊂ proj(D1) ∩ proj(D2) with ζ(E) = 1. Consider the
sets (E×B)∩D1 and (E×B)∩D2, which have µ-measure 1 and µ′-measure 1, respectively.
By (Dudley, 2002, Prop. 10.2.8), we can decompose µ, µ′ into the marginal ζ on Z and the
conditional distributions µ(dθ | z), µ′(dθ | z) for z ∈ Z. Then

1 = µ
(
(E×B)∩D1

)
=

∫
E

∫
D1,z

µ(dθ | z) ζ(dz), 1 = µ′
(
(E×B)∩D2

)
=

∫
E

∫
D2,z

µ′(dθ | z) ζ(dz),

where the equality for the iterated integral in each relation follows from (Dudley, 2002,
Theorem 10.2.1(ii)). These relations imply that for some set E0 ⊂ E with ζ(E0) = 0,∫

D1,z

µ(dθ | z) =

∫
D2,z

µ′(dθ | z) = 1, ∀ z ∈ E \ E0. (67)

We now calculate
∫
gfdµ and

∫
g′fdµ

′. We have∫
gf dµ =

∫
(E×B)∩D1

gf dµ =

∫
E

∫
D1,z

gf (z, θ)µ(dθ | z) ζ(dz), (68)∫
g′f dµ

′ =

∫
(E×B)∩D2

g′f dµ
′ =

∫
E

∫
D2,z

g′f (z, θ)µ′(dθ | z) ζ(dz), (69)
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where the equality for the iterated integral in each relation also follows from (Dudley, 2002,
Theorem 10.2.1(ii)). As discussed earlier, for each z ∈ E ⊂ proj(D1) ∩ proj(D2), the two
constant functions, gf (z, ·) on D1,z and g′f (z, ·) on D2,z, have the same value. Using this
together with (67), we conclude that∫

D1,z

gf (z, θ)µ(dθ | z) =

∫
D2,z

g′f (z, θ)µ′(dθ | z), ∀ z ∈ E \ E0. (70)

Since ζ(E0) = 0, we obtain from (68)-(70) that
∫
gfdµ =

∫
g′fdµ

′. But
∫
gfdµ =

∫
fdµ

and
∫
g′fdµ

′ =
∫
fdµ′ (as we obtained at the beginning of the proof), so

∫
fdµ =

∫
fdµ′,

a contradiction to (65). This proves that {Xt} must have a unique invariant probability
measure.

Proposition 8 implies that for every m ≥ 1, the m-step version of {(Zt, θαt )} has a unique
invariant probability measure. This together with Lemma 7 (Section 4.3.2) furnishes the
conditions (A1)-(A3) of (Meyn, 1989, Prop. 4.2) for weak Feller Markov chains (these con-
ditions are the conditions (i)-(iii) of our Lemma 5). We can therefore apply the conclusions
of (Meyn, 1989, Prop. 4.2) (see Lemma 5 in our Section 4.3.1) to the m-step version of
{(Zt, θαt )} here, and the result is the following proposition:

Proposition 9 Under Assumption 1, for each m ≥ 1, the m-step version of {(Zt, θαt )}
has a unique invariant probability measure µ(m), and the occupation probability measures

µ
(m)
(z,θ),t, t ≥ 1, as defined by (51), converge weakly to µ(m) almost surely, for each initial

condition (z, θ) ∈ Z ×B of (Z0, θ
α
0 ).

With Prop. 9 we can proceed to prove the second part of Theorems 10 and 11. Given
that we have already established their first part in the previous subsection, the arguments
for their second part are the same for both theorems and are given below. The proof is
similar to that for Theorem 8(ii) in Section 4.3.2, except that here, instead of working with

the averaged probability measures
{
P̄

(m,k)
(z,θ)

}
, Prop. 9 allows us to work with the occupation

probability measures.

Proof of the second part of both Theorem 10 and Theorem 11 We suppress the
superscript α of θαt in the proof. By Prop. 9, {(Zt, θt)} has a unique invariant probability
measure µα, and itsm-step version has a corresponding unique invariant probability measure

µ
(m)
α . We prove first the statement that for each initial condition (z, θ) ∈ Z × B, almost

surely,

lim inf
t→∞

1

t

t−1∑
k=0

1
(

sup
k≤j<k+m

∣∣θj − θ∗∣∣ < δ
)
≥ µ̄(m)

α

(
[N ′δ(θ

∗)]m
)
, (71)

where µ̄
(m)
α is the unique element in M̄m

α , and N ′δ(θ
∗) is the open δ-neighborhood of θ∗.

For each t, by the definition (51) of the occupation probability measure µ
(m)
(z,θ),t, the average

in the left-hand side above is the same as µ
(m)
(z,θ),t(Dδ), where Dδ =

{(
z1, θ1, . . . , zm, θm

)
∈

(Z × B)m
∣∣ sup1≤j≤m

∣∣θj − θ∗∣∣ < δ
}

. By Prop. 9, P(z,θ)-almost surely, {µ(m)
(z,θ),t} converges
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weakly to µ
(m)
α , and therefore, except on a null set of sample paths, we have by (Dudley,

2002, Theorem 11.1.1) that for the open set Dδ,

lim inf
t→∞

µ
(m)
(z,θ),t(Dδ) ≥ µ(m)

α (Dδ) = µ̄(m)
α

(
[N ′δ(θ

∗)]m
)
.

This proves (71).
We now prove the statement that for each initial condition (z, θ) ∈ Z×B, almost surely,

lim sup
t→∞

∣∣θ̄t − θ∗∣∣ ≤ δ κα + 2rB (1− κα), where κα = µ̄α
(
N ′δ(θ

∗)
)
, (72)

and µ̄α is the marginal of µα on B. The statement is trivially true if δ ≥ 2rB, so consider
the case δ < 2rB. Fix an initial condition (z, θ) ∈ Z × B for (Z0, θ0), and let {µ(z,θ),t} be
the corresponding occupation probability measures of {(Zt, θt)}. For the averaged sequence
{θ̄t}, by convexity of the norm | · |,

∣∣θ̄t − θ∗∣∣ ≤ 1

t

t−1∑
k=0

|θk − θ∗|. (73)

We have

1

t

t−1∑
k=0

|θk − θ∗| ≤
1

t

t−1∑
k=0

|θk − θ∗| · 1
(
θk ∈ N ′δ(θ∗)

)
+

1

t

t−1∑
k=0

|θt − θ∗| · 1
(
θk 6∈ N ′δ(θ∗)

)
≤ δ · µ(z,θ),t(Dδ) + 2rB ·

(
1− µ(z,θ),t(Dδ)

)
, (74)

where Dδ =
{

(z1, θ1) ∈ Z × B
∣∣ |θ1 − θ∗| < δ

}
. By Prop. 9, P(z,θ)-almost surely, {µ(z,θ),t}

converges weakly to µα. Therefore, except on a null set of sample paths, we have by (Dudley,
2002, Theorem 11.1.1) that for the open set Dδ,

lim inf
t→∞

µ(z,θ),t(Dδ) ≥ µα(Dδ) = µ̄α
(
N ′δ(θ

∗)
)
. (75)

Combining the three inequalities (73)-(75), and using also the relation δ < 2rB, we obtain
that (72) holds almost surely for each initial condition (z, θ) ∈ Z ×B.

Remark 3 (on the role of perturbation again) As mentioned before Prop. 8, our pur-
pose of perturbing the constrained ETD algorithms is to guarantee that the Markov chain
{(Zt, θαt )} has a unique invariant probability measure. Without the perturbation, this can-
not be ensured, so we cannot apply the ergodic theorem given in Lemma 5 to exploit the
convergence of occupation probability measures, as we did in the preceding proof, even
though {(Zt, θαt )} satisfies the remaining two conditions required by that ergodic theorem
(cf. Lemma 7, Section 4.3.2).

In connection with this discussion, let us clarify a point. We know that the occupation
probability measures of {Zt} converge weakly to its unique invariant probability measure ζ
almost surely for each initial condition of Z0 (Theorem 2). But this fact alone cannot rule
out the possibility that {(Zt, θαt )} has multiple invariant probability measures and that its
occupation probability measures do not converge for some initial condition (z, θ).
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Finally, another property of weak Feller Markov chains and its implication for our prob-
lem are worth noting here. By (Meyn, 1989, Prop. 4.1), for a weak Feller Markov chain
{Xt}, provided that an invariant probability measure µ exists, we have that for a set of
initial conditions x with µ-measure 1, the occupation probability measures {µx,t} converge
weakly, Px-almost surely, to an invariant probability measure µx that depends on the initial
condition. Thus, for the unperturbed algorithms (11), (19) and (20), despite the possibility
of {(Zt, θαt )} having multiple invariant probability measures, the preceding proof can be
applied to those initial conditions from which the occupation probability measures converge
almost surely. In particular, this argument leads to the following conclusion. In the case of
the algorithm (11), (19) or (20), under the same conditions as in Theorem 8 or 9, it holds
for any invariant probability measure µ of {(Zt, θαt )} that for each initial condition (z, θ)
from some set of initial conditions with µ-measure 1,

lim sup
t→∞

∣∣θ̄αt − θ∗∣∣ ≤ δ κα + 2rB (1− κα) P(z,θ)-a.s.,

where κα = infµ∈M̄α
µ(N ′δ(θ

∗)). The limitation of this result, however, is that the set of
initial conditions involved is unknown and can be small.

5. Discussion

In this section we discuss direct applications of our convergence results to ETD(λ) under
relaxed conditions and to two other algorithms, the off-policy TD(λ) algorithm and the
ETD(λ, β) algorithm (Hallak et al., 2016). We then discuss several open issues to conclude
the paper.

5.1 The Case without Assumption 2

Let Assumption 1 hold. Recall from Section 2.3 that ETD(λ) aims to solve the equation
Cθ + b = 0, where

b = Φ>M̄ rλπ,γ , C = −Φ>GΦ with G = M̄(I − P λπ,γ).

In this paper we have focused on the case where Assumption 2 holds and C is negative
definite (Theorem 1, Section 2.3). If Assumption 2 does not hold, then either there are less
than n emphasized states (i.e., states s with M̄ss > 0), or the feature vectors of emphasized
states are not rich enough to contain n linearly independent vectors. In either case the
function approximation capacity is not fully utilized. It is hence desirable to fulfill Assump-
tion 2 by adding more states with positive interest weights i(s) or by enriching the feature
representation.

Nevertheless, suppose Assumption 2 does not hold (in which case C is negative semidef-
inite as shown by Sutton et al., 2016). This essentially has no effects on the convergence
properties of the constrained or unconstrained ETD(λ) algorithms, because of the emphatic
weighting scheme (3)-(5), as we explain now.

Let there be at least one state s with interest weight i(s) > 0 (the case is vacuous
otherwise). Partition the state space into the set of emphasized states and the set of non-
emphasized states:

J1 = {s ∈ S | M̄ss > 0}, J0 = {s ∈ S | M̄ss = 0}.
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Corresponding to the partition, by rearranging the indices of states if necessary, we can
write

Φ =

[
Φ1

Φ0

]
, rλπ,γ =

[
r1

r0

]
, M̄ =

[
M̂ 0|J1|×|J0|

0|J0|×|J1| 0|J0|×|J0|

]
,

where 0m×m′ denotes an m×m′ zero matrix, M̂ is a diagonal matrix with M̄ss, s ∈ J1, as its
diagonals. Let Q̂ be the sub-matrix of P λπ,γ that consists of the entries whose row/column

indices are in J1. For the equation Cθ + b = 0, clearly b = Φ>1 M̂r1. Consider now the
matrix C. It is shown in the proof of Prop. C.2 in (Yu, 2015a) that G has a block-diagonal
structure with respect to the partition {J1,J0},

G =

[
Ĝ 0|J1|×|J0|

0|J0|×|J1| 0|J0|×|J0|

]
,

where the block corresponding to J0 is a zero matrix as shown above, and the block Ĝ
corresponding to J1 is a positive definite matrix given by

Ĝ = M̂(I − Q̂), (76)

and M̂ can be expressed explicitly as

diag(M̂) = d1
πo,i
>

(I − Q̂)−1, d1
πo,i ∈ R|J1|, d1

πo,i(s) = dπo(s) · i(s), s ∈ J1. (77)

Thus the matrix C has a special structure:

Theorem 12 (structure of the matrix C; Yu, 2015a, Appendix C.2, p. 41-44) Let
Assumption 1 hold, and let i(s) > 0 for at least one state s ∈ S. Then

C = −Φ>1 ĜΦ1, where Ĝ = M̂(I − Q̂) is positive definite.

Let range(A) denote the range space of a matrix A. By the positive definiteness of the
matrix Ĝ given in the preceding theorem, the negative semidefinite matrix C possesses the
following properties (we omit the straightforward proof):

Proposition 10 Let Assumption 1 hold, and let i(s) > 0 for at least one state s ∈ S. Then
the matrix C satisfies that

(i) range(C) = range(C>) = span{φ(s) | s ∈ J1}; and

(ii) there exists c > 0 such that for all x ∈ span{φ(s) | s ∈ J1}, x>Cx ≤ −c |x|2.

Two observations then follow immediately:

(i) Since b = Φ>1 M̂r1 ∈ span{φ(s)|s ∈ J1}, Prop. 10(i) shows that the equation Cθ+b = 0
admits a solution, and a unique one in span{φ(s) | s ∈ J1}, which we denote by θ∗.15

15. From the structures of G, Pλπ,γ , Q̂ and M̂ shown in (Yu, 2015a, Appendix C.2, p. 41-44), which give
rise to (76)-(77), we also have the following facts. The approximate value function v = Φ1θ

∗ for the
emphasized states J1 is the unique solution of the projected Bellman equation v = Π(r1+Q̂v), where Π is
the projection onto the column space of Φ1 with respect to the weighted Euclidean norm on R|J1| defined
by the weights M̄ss, s ∈ J1 (the diagonals of M̂). The equation v = r1 + Q̂v is indeed a generalized
Bellman equation for the emphasized states only, and has vπ(s), s ∈ J1, as its unique solution. Then
for the emphasized states, the relation between the approximate value function Φ1θ

∗ and vπ on J1, in
particular the approximation error, can again be characterized using the oblique projection viewpoint
(Scherrer, 2010), similar to the case with Assumption 2 discussed in Section 2.3.
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(ii) Prop. 10(ii) shows that C acts like a negative definite matrix on the space of feature
vectors, span{φ(s)|s ∈ J1}, that the ETD(λ) algorithms naturally operate on.16

We remark that for an arbitrary negative semidefinite matrix C, neither of these conclusions
holds. They hold here as direct consequences of the positive definiteness of the matrix Ĝ
that underlies C, and this positive definiteness property is due to the emphatic weighting
scheme (3)-(5) employed by ETD(λ).

Now let us discuss the behavior of the constrained ETD(λ) algorithms starting from
some state S0 of interest (i.e., i(S0) > 0), in the absence of Assumption 2. Recall that
earlier we did not need Assumption 2 when applying the two general convergence theo-
rems from (Kushner and Yin, 2003), and we used the negative definiteness of C implied
by this assumption only near the end of our proofs to get the solution properties of the
mean ODE associated with each algorithm. In the absence of Assumption 2, for the un-
perturbed algorithms (11), (19) and (20), we can simply restrict attention to the subspace
span{φ(s)|s ∈ J1} and use the property in Prop. 10(ii) in lieu of negative definiteness. After
all, the θ-iterates of these algorithms always lie in the span of the feature vectors if the ini-
tial θ0, e0 ∈ span{φ(s)|s ∈ J1} and in the case of the two biased algorithms (19) and (20), if
the function ψK(x) does not change the direction of x. On the subspace span{φ(s)|s ∈ J1},
in view of Prop. 10(ii), the function |θ − θ∗|2 serves again as a Lyapunov function for an-
alyzing the ODE solutions in exactly the same way as before. Thus, in the absence of
Assumption 2, for the algorithms (11), (19) and (20) that set θ0, e0 and ψK as just de-
scribed, and for rB > |b|/c where c is as in Prop. 10(ii), the conclusions of Theorems 4-9 in
Section 3 continue to hold with Nδ(θ

∗) or N ′δ(θ
∗) replaced by Nδ(θ

∗) ∩ span{φ(s)|s ∈ J1}
or N ′δ(θ

∗) ∩ span{φ(s)|s ∈ J1}.
The same is true for the almost sure convergence of the unconstrained ETD(λ) algo-

rithm (2) under diminishing stepsize: with i(S0) > 0 and θ0, e0 ∈ span{φ(s)|s ∈ J1}, the
conclusion of (Yu, 2015a, Theorem 2.2) continues to hold in the absence of Assumption 2;
that is, for αt = O(1/t) with αt−αt+1

αt
= O(1/t), θt

a.s.→ θ∗.

It can be seen now that without Assumption 2, complications can only arise through
initializing the algorithms outside the desired subspace. We discussed such situations in
the arXiv version of this paper (Yu, 2015b, Sec. 5.1), but we shall omit them here in part
because it does not seem natural to initialize θ0, e0 with a component perpendicular to
span{φ(s)|s ∈ J1} in the first place.

As a final note, in the absence of Assumption 2, any solution θ̄ of Cθ + b = 0 gives the
same approximate value function for emphasized states, but the approximate values Φ0θ̄ for
non-emphasized states in J0 are different for different solutions θ̄. Thus one needs to be
cautious in using the approximate values Φ0θ̄. They correspond to different extrapolations
from the approximate values Φ1θ

∗ for the emphasized states, whereas Φ1θ
∗ is not defined to

take into account approximation errors for those states in J0, although its approximation
error for emphasized states can be well characterized (cf. Footnote 15).

16. Start ETD(λ) from a state S0 with i(S0) > 0. It can be verified that the emphatic weighting scheme
dictates that if St ∈ J0, then the emphasis weight Mt for that state must be zero. Consequently,
et is a linear combination of the features of the emphasized states and the initial e0. So when e0 ∈
span{φ(s)|s ∈ J1}, et ∈ span{φ(s)|s ∈ J1} always, and if in addition θ0 ∈ span{φ(s)|s ∈ J1}, then
θt ∈ span{φ(s)|s ∈ J1} always. This is very similar to the case of TD(λ) with possibly linearly dependent
features discussed in (Tsitsiklis and Van Roy, 1997).
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5.2 Off-policy TD(λ) and ETD(λ, β)

Applying TD(λ) to off-policy learning by using importance sampling techniques was first
proposed in (Precup et al., 2000, 2001), and the focus there was on episodic data. The
analysis we gave in this paper applies directly to the (non-episodic) off-policy TD(λ) algo-
rithm studied in (Bertsekas and Yu, 2009; Yu, 2012; Dann et al., 2014), when its divergence
issue is avoided by setting λ sufficiently large. Specifically, we consider constant γ ∈ [0, 1)
and constant λ ∈ [0, 1], and an infinitely long trajectory generated by the behavior policy
as before. The algorithm is the same as TD(λ) except for incorporating the importance
sampling weight ρt:

17

θt+1 = θt + αt et · ρt
(
Rt + γφ(St+1)>θt − φ(St)

>θt
)
,

where

et = λγρt−1 et−1 + φ(St).

The constrained versions of the algorithm are defined similarly to those for ETD(λ).

Under Assumption 1(ii), the associated projected Bellman equation is the same as that
for on-policy TD(λ) (Tsitsiklis and Van Roy, 1997) except that the projection norm is the
weighted Euclidean norm with weights given by the steady state probabilities dπo(s), s ∈ S.
Assuming Φ has full column rank, the corresponding equation in the θ-space, Cθ + b = 0,
has the desired property that the matrix C is negative definite, if λ is sufficiently large (in
particular if λ = 1) (Bertsekas and Yu, 2009). For that case, the conclusions given in this
paper for constrained ETD(λ) all hold for the corresponding versions of off-policy TD(λ).
(Similarly, for the case of C being negative semidefinite due to Φ having rank less than n,
the discussion given in the previous subsection for ETD(λ) also applies.) The reason is that
besides the property of C, the other properties of the iterates that we used in our analysis,
which are given in Section 2 and Appendix A, all hold for off-policy TD(λ). In fact, some
of these properties were first derived for off-policy LSTD(λ) and TD(λ) in (Yu, 2012) and
extended later in (Yu, 2015a) to ETD(λ).

For the same reason, the convergence analyses we gave in (2015a) and this paper for ETD
also apply to a variation of the ETD algorithm, ETD(λ, β), proposed recently by Hallak
et al. (2016), when the parameter β is set in an appropriate range.

5.3 Open Issues

A major difficulty in applying off-policy TD learning, especially with λ > 0, is the high
variances of the iterates. For ETD(λ), off-policy TD(λ) and their least-squares versions,
because of the growing variances of products of the importance sampling weights ρtρt+1 · · ·
along a trajectory, and because of the amplifying effects these weights can have on the traces,
the variances of the traces iterates can grow unboundedly with time, severely affecting the
behavior of the algorithms in practice. (The problem of growing variances when applying

17. It is not necessary to multiply the term φ(St)
>θt by ρt, and that version of the algorithm was the one

given in (Bertsekas and Yu, 2009; Yu, 2012). The experimental results in (Dann et al., 2014) suggest
to us that each version can have less variance than the other in some occasions, however. As far as
convergence analysis is concerned, the two versions are essentially the same and the analyses given in
(Yu, 2012, 2015a) and this paper indeed apply simultaneously to both versions of the algorithm.
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importance sampling to simulate Markov systems was also known earlier and discussed
in prior works; see e.g., Glynn and Iglehart, 1989; Randhawa and Juneja, 2004.) The two
biased constrained algorithms discussed in this paper were motivated by the need to mitigate
the variance problem, and their robust behavior has been observed in our experiments
(Mahmood et al., 2015; Yu, 2016). However, beyond simply constraining the iterates, more
variance reduction techniques are needed, such as control variates (Randhawa and Juneja,
2004; Ahamed et al., 2006) and weighted importance sampling (Precup et al., 2000, 2001;
Mahmood et al., 2014; Mahmood and Sutton, 2015). To overcome the variance problem in
off-policy learning, further research is required.

Regarding convergence analysis of ETD(λ), the results we gave in (2015a) and this paper
concern only the convergence properties and not the rates of convergence. For on-policy
TD(λ) and LSTD(λ), convergence rate analyses are available (Konda, 2002, Chap. 6). Such
analyses in the off-policy case will give us better understanding of the asymptotic behavior
of the off-policy algorithms. Finally, besides asymptotic behavior of the algorithms, their
finite-time or finite-sample properties (such as those considered by Munos and Szepesv́ari,
2008; Antos et al., 2008; Lazaric et al., 2012; Liu et al., 2015), and their large deviations
properties are also worth studying.
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Appendix A. Key Properties of Trace Iterates

In this appendix we list four key properties of trace iterates {(et, Ft)} generated by the
ETD(λ) algorithm. Three of them were derived in (Yu, 2015a, Appendix A), and used in
the convergence analysis of ETD(λ) in both (Yu, 2015a) and the present paper.

As discussed in Section 3.2, {(et, Ft)} can have unbounded variances and is naturally
unbounded in common off-policy situations. However, as the proposition below shows,
{(et, Ft)} is bounded in a stochastic sense.

Proposition 11 Under Assumption 1, given a bounded set E ⊂ Rn+1, there exists a con-
stant L <∞ such that if the initial (e0, F0) ∈ E, then supt≥0 E

[∥∥(et, Ft)
∥∥] < L.

The preceding proposition is the same as (Yu, 2015a, Prop. A.1) except that the con-
clusion is for all the initial (e0, F0) from the set E, instead of a fixed initial (e0, F0). By
making explicit the dependence of the constant L on the initial (e0, F0), the same proof
of (Yu, 2015a, Prop. A.1) (which is a relatively straightforward calculation) applies to the
preceding proposition.

We note that Prop. 11 does not imply the uniform integrability of {(et, Ft)}—this
stronger property does hold for the trace iterates, as we proved in Prop. 2(i), Section 4.1.2.
(The latter and its proof focus on {et} only, but the same argument applies to {(et, Ft)}.)
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The next proposition concerns the change in the trace iterates due to the change in
its initial condition. It is the same as (Yu, 2015a, Prop. A.2); its proof is more involved
than the proofs of the two other properties of the trace iterates and uses, among others, a
theorem for nonnegative random processes (Neveu, 1975). We did not use this proposition
directly in the analysis of the present paper, but it is important in establishing that the
Markov chain {Zt} has a unique invariant probability measure (Theorem 2, Section 2.4),
which the results of the present paper rely on. In addition, it is helpful for understanding
the behavior of the trace iterates.

Let (êt, F̂t), t ≥ 1, be defined by the same recursion (3)-(5) that defines (et, Ft), using
the same state and action random variables {(St, At)}, but with a different initial condition
(ê0, F̂0). We write a zero vector in any Euclidean space as 0.

Proposition 12 Under Assumption 1, for any two given initial conditions (e0, F0) and
(ê0, F̂0),

Ft − F̂t
a.s.→ 0, et − êt

a.s.→ 0.

The third proposition below concerns approximating the trace iterates (et, Ft) by trun-
cated traces that depend on a fixed number of the most recent states and actions only.
First, let us express the traces (et, Ft), by using their definitions (cf. Equations 3-5), as

Ft = F0 ·
(
ρ0γ1 · · · ρt−1γt

)
+

t∑
k=1

i(Sk) ·
(
ρkγk+1 · · · ρt−1γt

)
, (78)

et = e0 ·
(
β1 · · ·βt

)
+

t∑
k=1

Mk · φ(Sk) ·
(
βk+1 · · ·βt

)
, (79)

where βk = ρk−1γkλk and

Mk = λk i(Sk) + (1− λk)Fk.

For each integer K ≥ 1, the truncated traces (ẽt,K , F̃t,K) are defined by limiting the sum-
mations in (78)-(79) to be over K + 1 terms only as follows:

(ẽt,K , F̃t,K) = (et, Ft) for t ≤ K,

and for t ≥ K + 1,

F̃t,K =
t∑

k=t−K
i(Sk) ·

(
ρkγk+1 · · · ρt−1γt

)
, (80)

M̃t,K = λt i(St) + (1− λt)F̃t,K , (81)

ẽt,K =
t∑

k=t−K
M̃k,K · φ(Sk) ·

(
βk+1 · · ·βt

)
. (82)

We have the following approximation property for truncated traces, in which the notation
“LK ↓ 0” means that LK decreases monotonically to 0 as K →∞.

54



Weak Convergence Properties of Constrained ETD Learning

Proposition 13 Let Assumption 1 hold. Given a bounded set E ⊂ Rn+1, there exist con-
stants LK ,K ≥ 1, with LK ↓ 0 as K →∞, such that if the initial (e0, F0) ∈ E, then

sup
t≥0

E
[∥∥(et, Ft)− (ẽt,K , F̃t,K)

∥∥] ≤ LK .
The preceding proposition is the same as (Yu, 2015a, Prop. A.3(i)), except that the initial

(e0, F0) can be from a bounded set E instead of being fixed. The proof given in (Yu, 2015a)
applies here as well, similar to the case of Prop. 11. This proposition about truncated traces
was used in (Yu, 2015a) to obtain the convergence in mean given in Theorem 3 (Section 2.4)
and allowed us to work with simple finite-space Markov chains, instead of working with
the infinite-space Markov chain {Zt} directly, in that proof. In the present paper, it has
expedited our proofs of Props. 2-3 (Section 4.1.2) regarding the uniform integrability and
convergence in mean conditions for constrained ETD(λ).

Finally, the uniform integrability of {(et, Ft)} (proved in Prop. 2(i) in this paper, as
already mentioned) is important both for convergence analysis and for understanding the
behavior of the trace iterates.

References

T. P. Ahamed, V. S. Borkar, and S. Juneja. Adaptive importance sampling technique for
Markov chains using stochastic approximation. Operations Research, 54:489–504, 2006.

A. Antos, C. Szepesv́ari, and R. Munos. Learning near-optimal policies with Bellman
residual minimization based fitted policy iteration and a single sample path. Machine
Learning, 71:89–129, 2008.

L. C. Baird. Residual algorithms: Reinforcement learning with function approximation. In
The 12th International Conference on Machine Learning (ICML), 1995.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA, 1996.

D. P. Bertsekas and H. Yu. Projected equation methods for approximate solution of large
linear systems. Journal of Computational and Applied Mathematics, 227(1):27–50, 2009.

P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, New York, 1968.

V. S. Borkar. Stochastic Approximation: A Dynamic Viewpoint. Cambridge University
Press, Cambridge, 2008.

J. A. Boyan. Least-squares temporal difference learning. In The 16th International Con-
ference on Machine Learning (ICML), 1999.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(2):33–57, 1996.

C. Dann, G. Neumann, and J. Peters. Policy evaluation with temporal differences: A survey
and comparison. Journal of Machine Learning Research, 15:809–883, 2014.

55



Yu

J. L. Doob. Stochastic Processes. John Wiley & Sons, New York, 1953.

R. M. Dudley. Real Analysis and Probability. Cambridge University Press, Cambridge,
2002.

M. Geist and B. Scherrer. Off-policy learning with eligibility traces: A survey. Journal of
Machine Learning Research, 15:289–333, 2014.

P. W. Glynn and D. L. Iglehart. Importance sampling for stochastic simulations. Manage-
ment Science, 35:1367–1392, 1989.

A. Hallak, A. Tamar, R. Munos, and S. Mannor. Generalized emphatic temporal difference
learning: Bias-variance analysis. In The 30th AAAI Conference on Artificial Intelligence,
2016.

V. R. Konda. Actor-Critic Algorithms. PhD thesis, MIT, 2002.

H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and
Unconstrained Systems. Springer-Verlag, New York, 1978.

H. J. Kushner and A. Shwartz. Weak convergence and asymptotic properties of adaptive
filters with constant gains. IEEE Transactions on Information Theory, 30:177–182, 1984.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and
Applications. Springer-Verlag, New York, 2nd edition, 2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample analysis of least-squares policy
iteration. Journal of Machine Learning Research, 13:3041–3074, 2012.

B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy TD-learning. In Advances in
Neural Information Processing Systems (NIPS) 22, 2009.

B. Liu, J. Liu, M. Ghavamzadeh, S. Mahadevan, and M. Petrik. Finite-sample analysis of
proximal gradient TD algorithms. In The 31st Conference on Uncertainty in Artificial
Intelligence (UAI), 2015.

H. R. Maei. Gradient Temporal-Difference Learning Algorithms. PhD thesis, University of
Alberta, 2011.

S. Mahadevan and B. Liu. Sparse Q-learning with mirror descent. In The 28th Conference
on Uncertainty in Artificial Intelligence (UAI), 2012.

S. Mahadevan, B. Liu, P. Thomas, W. Dabney, S. Giguere, N. Jacek, I. Gemp, and J. Liu.
Proximal reinforcement learning: A new theory of sequential decision making in primal-
dual spaces, 2014. arXiv:1405.6757.

A. R. Mahmood and R. S. Sutton. Off-policy learning based on weighted importance
sampling with linear computational complexity. In The 31st Conference on Uncertainty
in Artificial Intelligence (UAI), 2015.

56



Weak Convergence Properties of Constrained ETD Learning

A. R. Mahmood, H. van Hasselt, and R. S. Sutton. Weighted importance sampling for off-
policy learning with linear function approximation. In Advances in Neural Information
Processing Systems (NIPS) 27, 2014.

A. R. Mahmood, H. Yu, M. White, and R. S. Sutton. Emphatic temporal-difference learning.
In European Workshops on Reinforcement Learning (EWRL), 2015.

S. Meyn. Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov
function. SIAM Journal on Control and Optimization, 27:1409–1439, 1989.

S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cambridge University
Press, Cambridge, 2nd edition, 2009.

R. Munos and C. Szepesv́ari. Finite time bounds for fitted value iteration. Journal of
Machine Learning Research, 9:815–857, 2008.

J. Neveu. Discrete-Parameter Martingales. North-Holland, Amsterdam, 1975.

B. A. Pires and C. Szepesv́ari. Statistical linear estimation with penalized estimators: An
application to reinforcement learning. In The 29th International Conference on Machine
Learning (ICML), 2012.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30:838–855, 1992.

D. Precup, R. S. Sutton, and S. Singh. Eligibility traces for off-policy policy evaluation. In
The 17th International Conference on Machine Learning (ICML), 2000.

D. Precup, R. S. Sutton, and S. Dasgupta. Off-policy temporal-difference learning with
function approximation. In The 18th International Conference on Machine Learning
(ICML), 2001.

M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, New York, 1994.

R. S. Randhawa and S. Juneja. Combining importance sampling and temporal difference
control variates to simulate Markov chains. ACM Transactions on Modeling and Com-
puter Simulation, 14(1):1–30, 2004.

Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2nd edition,
2003.

B. Scherrer. Should one compute the temporal difference fix point or minimize the Bellman
residual? The unified oblique projection view. In The 27th International Conference on
Machine Learning (ICML), 2010.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3:9–44, 1988.

R. S. Sutton. TD models: Modeling the world at a mixture of time scales. In The 12th
International Conference on Machine Learning (ICML), 1995.

57



Yu

R. S. Sutton. The grand challenge of predictive empirical abstract knowledge. In IJCAI
Workshop on Grand Challenges for Reasoning from Experiences, 2009.

R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, Cambridge, MA, 1998.
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