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Abstract

In this article, we develop and investigate a new classifier based on features extracted using
spatial depth. Our construction is based on fitting a generalized additive model to posterior
probabilities of different competing classes. To cope with possible multi-modal as well as
non-elliptic nature of the population distribution, we also develop a localized version of
spatial depth and use that with varying degrees of localization to build the classifier. Final
classification is done by aggregating several posterior probability estimates, each of which is
obtained using this localized spatial depth with a fixed scale of localization. The proposed
classifier can be conveniently used even when the dimension of the data is larger than the
sample size, and its good discriminatory power for such data has been established using
theoretical as well as numerical results.

Keywords: Bayes classifier, elliptic distributions, generalized additive models, HDLSS
asymptotics, uniform strong consistency, weighted aggregation of posteriors.

1. Introduction

In a supervised classification problem with J competing classes, we have nj labeled obser-
vations xj1, . . . ,xjnj from the j-th class (1 ≤ j ≤ J). We use this training sample consisting

of n =
∑J

j=1 nj observations to construct a decision rule for classifying an unlabeled ob-
servation x to one of these J classes. If πj , fj and p(j|·) denote the prior probability,
the probability density function and the posterior probability of the j-th class, respec-
tively, then the Bayes classifier assigns x to the class j0, where j0 = argmax1≤j≤J p(j|x) =
argmax1≤j≤J πjfj(x). However, the fj ’s or the p(j|·)’s are usually unknown in practice, and
one needs to estimate them from the training sample. Popular parametric classifiers like
linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) (see, e.g.,
Hastie et al., 2009) are motivated by parametric model assumptions on the fj ’s. So, they
may lead to poor classification when these assumptions fail to hold, and the class boundaries
of the Bayes classifier have complex geometry. On the other hand, nonparametric classifiers
like those based on k-nearest neighbors (k-NN) (see, e.g., Cover and Hart, 1967) and kernel
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Figure 1: Bayes class boundaries in R2.

density estimates (KDE) (see, e.g., Scott, 2015) are more flexible and free from such model
assumptions. But, they suffer from the curse of dimensionality and are often not suitable
for high-dimensional data.

To demonstrate this, let us consider two examples denoted by E1 and E2. E1 involves
a classification problem with two classes in Rd, where the distribution of the first class is
an equal mixture of Nd(0d, Id) and Nd(0d, 10Id), and that of the second class is Nd(0d, 5Id).
Here Nd denotes the d-variate normal distribution, 0d = (0, . . . , 0)T ∈ Rd and Id is the d×d
identity matrix. In E2, each class distribution is an equal mixture of two uniform distribu-
tions. For the first (respectively, the second) class, it is a mixture of Ud(0, 1) and Ud(2, 3)
(respectively, Ud(1, 2) and Ud(3, 4)), where Ud(r1, r2) denotes the uniform distribution over
the region {x ∈ Rd : r1 ≤ ‖x‖ ≤ r2} with 0 ≤ r1 < r2 < ∞ and ‖ · ‖ being the Euclidean
norm. Figure 1 shows the class boundaries of the Bayes classifier for these two examples
when d = 2 and π1 = π2 = 1/2. The regions colored grey (respectively, black) correspond
to observations classified to the first (respectively, the second) class by the Bayes classifier.
It is clear that classifiers like LDA and QDA, or any other classifier with linear or quadratic
class boundaries will deviate significantly from the Bayes classifier in both examples. A
natural question then is how standard nonparametric classifiers like those based on k-NN
and KDE perform in such examples.

Figure 2 shows the average misclassification rates of these two classifiers along with the
Bayes risks for different values of d. These classifiers were trained on a sample of size 100
from each class, and the misclassification rates were computed based on 250 independent
observations from each class. This procedure was repeated 500 times to calculate the average
misclassification rates. Smoothing parameters associated with k-NN and KDE (i.e., the
number of neighbors k in k-NN and the bandwidth in KDE) were chosen by minimizing
leave-one-out cross-validation estimates of misclassification rates (see, e.g., Hastie et al.,
2009). Figure 2 shows that in E1, the Bayes risk decreases to zero as d grows. Since the
class distributions in E2 have disjoint supports, the Bayes risk is zero for all values of d. But
in both examples, the misclassification rates of these two nonparametric classifiers increased
to almost 50% as d increased.
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Figure 2: Average misclassification rates of nonparametric classifiers and the Bayes classifier
for d = 2, 5, 10, 20, 50 and 100.

These two examples clearly show the necessity to develop new classifiers to cope with
such situations. We use the idea of data depth for this purpose. Over the last three decades,
data depth (see, e.g., Liu et al., 1999; Zuo and Serfling, 2000) has emerged as a powerful
tool for multivariate data analysis with applications in many areas including supervised
and unsupervised classification (see, e.g., Jornsten, 2004; Ghosh and Chaudhuri, 2005a,b;
Hoberg and Mosler, 2006; Xia et al., 2008; Dutta and Ghosh, 2012; Li et al., 2012; Lange
et al., 2014; Paindaveine and Van Bever, 2015). Spatial depth (also known as the L1 depth)
is a popular notion of data depth that was introduced and studied by Vardi and Zhang
(2000) and Serfling (2002). The spatial depth (SPD) of an observation x ∈ Rd with respect to
(w.r.t.) a distribution function F on Rd is defined as SPD(x, F ) = 1−

∥∥EF [u(x−X)]
∥∥, where

X ∼ F , and u(·) is the multivariate sign function given by u(x) = ‖x‖−1x if x 6= 0d ∈ Rd,
and u(0d) = 0d. This version of SPD is invariant w.r.t. location shift, orthogonal, and
homogeneous scale transformations. SPD is often computed on the standardized version of
X as well. In that case, it is defined as

SPD(x, F ) = 1−
∥∥EF [u(Σ−1/2(x−X))]

∥∥,
where Σ is a scatter matrix associated with F . One can check that if Σ has the affine
equivariance property (see, e.g., Zuo and Serfling, 2000), this version of SPD is affine in-
variant. To differentiate between these two versions of SPD, we will denote them by SPD◦

and SPD∗, respectively. If Σ = λId for some λ > 0 (e.g., if F is spherically symmetric, see
Fang et al., 1990), then SPD◦ and SPD∗ coincide. Throughout this article, the term SPD
will be used in a generic sense.

Like other depth functions, SPD provides a center-outward ordering of multivariate
data. An observation has higher (respectively, lower) depth if it lies close to (respectively,
away from) the center of the distribution. In other words, given an observation x and a
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pair of probability distributions F1 and F2, if SPD(x, F1) is larger than SPD(x, F2), one
would expect x to come from F1 instead of F2. Based on this simple idea, the maximum
depth classifier was developed by Jornsten (2004); Ghosh and Chaudhuri (2005b). For a
J class problem involving distributions F1, . . . , FJ , the maximum depth classifier based on
SPD assigns an observation x to the j0-th class, where j0 = argmax1≤j≤J SPD(x, Fj).
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Figure 3: SPD(x, F1) and SPD(x, F2) for different values of ‖x‖ when x ∈ R2.

In E1 and E2, since the class distributions are spherically symmetric, SPD∗ coincides
with SPD◦, and they become a monotonically decreasing function of the Euclidean norm
of x (see Lemma 7). In Figure 3, we have plotted SPD(x, F1) and SPD(x, F2) for different
values of ‖x‖ in E1 and E2, where F1 and F2 are the distributions of the two classes and
x ∈ R2. It is transparent from Figure 3 that the maximum depth classifier based on SPD
will fail in both examples. In E1, for all values of ‖x‖ smaller (respectively, greater) than a
constant close to 4, the observations will be classified to the first (respectively, the second)
class by the maximum SPD classifier. On the other hand, this classifier will classify all
observations to the second class in E2. Most of the popular depth functions turn out to
be monotonically decreasing functions of the Euclidean norm in the case of a spherically
symmetric distribution. So, the maximum depth classifiers based on those depth functions
will have similar problems as well.

In Section 2, we develop a modified classifier based on SPD to overcome this limitation of
maximum depth classifiers. In the literature, most of the modified depth based classifiers are
developed mainly for two class problems (see, e.g., Ghosh and Chaudhuri, 2005b; Dutta and
Ghosh, 2012; Li et al., 2012; Lange et al., 2014). For classification problems involving J(> 2)
classes, one usually solves

(
J
2

)
binary classification problems taking one pair of classes at a

time and then uses either majority voting (see, e.g., Friedman, 1996) or pairwise coupling
(see, e.g., Hastie and Tibshirani, 1998) to make the final classification. Unlike those existing
methods, our proposed classifier directly addresses the J class problem.
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Almost all existing depth based classifiers require ellipticity of class distributions to
achieve Bayes optimality. To cope with possible multi-modal as well as non-elliptic popu-
lation distributions, we construct a localized version of spatial depth (LSPD) in Section 3.
In Section 4, we develop a multi-scale classifier based on LSPD. Relevant theoretical results
on SPD, LSPD and the resulting classifiers are studied in these sections. In Sections 5 and
6, some simulated and benchmark data sets are analyzed to demonstrate the usefulness of
these proposed classifiers. An advantage of SPD over other depth functions is its compu-
tational simplicity. Classifiers based on SPD and LSPD can be constructed even when the
dimension exceeds the sample size. We deal with such high dimension, low sample size
(HDLSS) cases in Section 7, and show that both classifiers turn out to be optimal under a
fairly general framework. Several high-dimensional data sets are also analyzed to evaluate
their empirical performance. All proofs and mathematical details are given in Appendix A.

2. Bayes Optimality of a Classifier Based on Spatial Depth

Let us assume that f1, . . . , fJ are density functions of J elliptically symmetric distributions

(Fang et al., 1990) on Rd, where fj(x) = |Σj |−1/2gj(‖Σ−1/2j (x − µj)‖) for 1 ≤ j ≤ J .

Here µj ∈ Rd, Σj is a d × d symmetric and positive definite matrix, and gj(‖t‖) is a

probability density function of a spherically symmetric distribution on Rd for 1 ≤ j ≤ J .
For such classification problems involving general elliptic populations with equal or unequal
priors, the next theorem establishes the Bayes optimality of a classifier, which is based on
z∗(x) = (z∗1(x), . . . , z∗J(x))T = (SPD∗(x, F1), . . . , SPD∗(x, FJ))T .

Theorem 1 If the densities of J competing classes are elliptically symmetric, the posterior
probabilities of these classes satisfy the logistic regression model given by

p(j|x) = p̃(j|z∗(x)) =
exp(Φj(z

∗(x)))

[1 +
∑(J−1)

k=1 exp(Φk(z∗(x)))]
for 1 ≤ j ≤ (J − 1) (1)

and p(J |x) = p̃(J |z∗(x)) =
1

[1 +
∑(J−1)

k=1 exp(Φk(z∗(x)))]
. (2)

Here Φj(z
∗(x)) = ϕj1(z

∗
1(x)) + · · ·+ ϕjJ(z∗J(x)), and ϕjis are appropriate real-valued func-

tions of πj and fj for 1 ≤ j ≤ J . Consequently, the Bayes rule assigns an observation x to
the class j0, where j0 = argmax1≤j≤J p̃(j|z∗(x)).

Theorem 1 shows that the Bayes classifier is based on a nonparametric multinomial
additive logistic regression model for the posterior probabilities, which is a special case of
generalized additive models (GAM) (Hastie and Tibshirani, 1990). If the prior probabilities
of J classes are equal, and f1, . . . , fJ are all elliptic and unimodal differing only in their
locations, this Bayes classifier reduces to the maximum depth classifier (Ghosh and Chaud-
huri, 2005b) (see Remark 8 after the proof of Theorem 1 in Appendix A). A special case of
Theorem 1 with Σj = λjId, where λj > 0 for 1 ≤ j ≤ J is stated below.

Corollary 2 If the densities of J competing classes are spherically symmetric (i.e., fj(x) =
gj(‖x − µj‖) for 1 ≤ j ≤ J), then the posterior probabilities of these classes satisfy the
logistic regression model given in Theorem 1 with z∗(x) replaced by z◦(x) = (SPD◦(x, F1),
. . ., SPD◦(x, FJ))T .
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For any fixed i and j, one can calculate the J-dimensional vector z◦(xji) (or, z∗(xji)), where
xji is the i-th labeled observation from the j-th class for 1 ≤ i ≤ nj and 1 ≤ j ≤ J . These
z◦(xji)s (or, z∗(xji)s) can be viewed as realizations of the vector of covariates in a non-
parametric multinomial additive logistic regression model, where the response corresponds
to the class label that belongs to {1, . . . , J}. Now, a classifier based on SPD can be con-
structed by fitting a GAM with the logistic link function. This procedure can be viewed as
a multinomial logistic regression in the J-dimensional depth plot. Lange et al. (2014); Li
et al. (2012); Mozharovskyi et al. (2015) used such plots for nonparametric classification.
Recently, Cuesta-Albertos et al. also considered GAM to construct a depth based classifier
for functional data. In practice, we use a random sample x1, . . . ,xn generated from F to
compute the empirical versions of SPD◦ and SPD∗, which are given by

SPD◦(x, Fn) = 1−

∥∥∥∥∥ 1

n

n∑
i=1

u(x− xi)

∥∥∥∥∥ and SPD∗(x, Fn) = 1−

∥∥∥∥∥ 1

n

n∑
i=1

u(Σ̂
−1/2

(x− xi))

∥∥∥∥∥ ,
respectively, where Σ̂ is an estimate of Σ, and Fn is the empirical distribution of the data
x1, . . . ,xn. Clearly, SPD∗ is affine invariant if Σ̂ has the affine equivariance property. The
resulting classifier worked quite well in examples E1 and E2, and we shall see the numerical
results later in Section 5.1.

3. Extraction of Small Scale Distributional Features by Localization of
Spatial Depth

Under elliptic symmetry, the density function of a class can be expressed as a function of
SPD∗, and hence the depth contours coincide with the density contours. This is the main
mathematical argument used in the proof of Theorem 1. For non-elliptic distributions,
where the density function cannot be expressed as a function of SPD, such mathematical
arguments are no longer valid. Consider an equal mixture of Nd(0d, 0.25Id), Nd(21d, 0.25Id)
and Nd(41d, 0.25Id), where 1d = (1, . . . , 1)T denotes a d-dimensional vector with all elements
equal to 1. We have plotted the density contours in Figure 4(a) and SPD◦ contours in
Figure 4(b) when d = 2. In this trimodal distribution, the SPD◦ contours failed to match
the density contours. As a second example, we consider a d-dimensional distribution with
independent components, where the i-th component is exponential with the scale parameter
d/(d− i+ 1) for 1 ≤ i ≤ d. Figures 5(a) and 5(b) show the density contours and the SPD◦

contours, respectively, when d = 2. Even in this example, SPD◦ and density contours
differed significantly. We observed a similar picture for contours based on SPD∗ as well.

To cope with this issue, we suggest a localization of SPD. Note that SPD◦(x, F ) =
1−‖EF [u(x−X)]‖ is constructed by assigning the same weight to each unit vector u(x−X)
and ignoring the significance of the distance between x and X. By introducing a weight
function, which takes account of this distance, one can extract important features related
to the local geometry of the data. To capture these local features, we use a kernel function
K(·) and define

Γ◦h(x, F ) = EF [Kh(t)]− ‖EF [Kh(t)u(t)]‖,

6



Multi-scale Classification using Localized Spatial Depth

X1

X
2

−2 0 2 4 6

−
2

0
2

4
6

(a) Density

X1

X
2

−2 0 2 4 6

−
2

0
2

4
6

(b) SPD◦

X1

X
2

−2 0 2 4 6

−
2

0
2

4
6

(c) LSPD◦h=0.4

Figure 4: Contours of density, SPD◦ and LSPD◦h (with h = 0.4) functions for a symmetric,
trimodal density function.
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Figure 5: Contours of density, SPD◦ and LSPD◦h (with h = 0.25) functions for the density
function f(x1, x2) = 0.5 exp{−(x1 + 0.5x2)}I{x1 > 0, x2 > 0}.

where t = (x − X) and Kh(t) = h−dK(t/h). For our theoretical investigation, we will
assume K to be a continuous probability density function on Rd that satisfies the following
properties:

(K1) K(t) = g0(‖t‖), where g0 is a decreasing function with g0(0) < ∞ and g0(‖t‖) → 0
as ‖t‖ → ∞,

(K2) K(t) has bounded first derivatives, and

(K3)
∫
Rd ‖t‖K(t)dt <∞.

The Gaussian kernel K(t) = (
√

2π)−d exp(−‖t‖2/2) is a possible choice. It is desirable
that localized spatial depth (LSPD) approximates the class density, or a monotone function
of it for small values of h. This will ensure that the class densities and hence the class
posterior probabilities become functions of LSPD as h→ 0. On the other hand, one should
expect that as h→∞, LSPD should tend to SPD, or a monotone function of it. However,
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Γ◦h(x, F ) → 0 as h → ∞. So, we re-scale Γ◦h(x, F ) by an appropriate factor of h to define
LSPD◦ as follows:

LSPD◦h(x, F ) =

{
Γ◦h(x, F ) if h ≤ 1,

hdΓ◦h(x, F ) if h > 1.
(3)

LSPD◦h defined in this way is a continuous function of h. For d = 2, Figures 4(c) and 5(c)
show that unlike SPD◦ contours, LSPD◦h contours matched the density contours in both

examples. Using t = Σ−1/2(x − X) in the definition of Γ◦h(x, F ), one gets Γ∗h(x, F ), and
LSPD∗h is defined using Γ∗h(x, F ) in the same way. Clearly, LSPD∗h is affine invariant if Σ
is affine equivariant. When Σ = λId, we obtain Γ∗h(x, F ) = λd/2Γ◦h′(x, F ) with h′ = h

√
λ,

and using this expression, one can derive the relation between LSPD∗h and LSPD◦h. The
vector z∗h(x) = (LSPD∗h(x, F1), . . . ,LSPD∗h(x, FJ))T has the desired behavior as shown in
Theorem 3.

Theorem 3 If f1, . . . , fJ are continuous density functions with bounded first derivatives,
and Σj is the scatter matrix corresponding to the j-th class (1 ≤ j ≤ J), then
(a) z∗h(x)→ (|Σ1|1/2f1(x), . . . , |ΣJ |1/2fJ(x))T as h→ 0, and
(b) z∗h(x)→ (K(0)SPD∗(x, F1), . . . ,K(0)SPD∗(x, FJ))T as h→∞.

Now, we construct a classifier by plugging in LSPDh instead of SPD in the GAM frame-
work discussed in equations (1) and (2) of Section 2. Consider the following model for the
posterior probabilities:

p(j|x) = p̃(j|z∗h(x)) =
exp(Φj(z

∗
h(x)))

[1 +
∑(J−1)

k=1 exp(Φk(z
∗
h(x)))]

, for 1 ≤ j ≤ (J − 1), (4)

and p(J |x) = p̃(J |z∗h(x)) =
1

[1 +
∑(J−1)

k=1 exp(Φk(z
∗
h(x)))]

. (5)

The main implication of part (a) of Theorem 3 is that the classifier constructed using GAM
and z∗h(x) as the covariate tends to the Bayes classifier in a general nonparametric setup as
h→ 0. On the other hand, part (b) of Theorem 3 implies that for elliptic class distributions,
the same classifier tends to the Bayes classifier when h → ∞. When we fit a GAM, the
unknown functions Φjs are estimated nonparametrically. Flexibility of such nonparametric
estimates also takes care of the unknown constants |Σj |1/2 for 1 ≤ j ≤ J and K(0) in the
expressions of the limiting values of z∗h(x) in parts (a) and (b) of Theorem 3, respectively.
A special case of Theorem 3 follows by taking Σj = λjId with λj > 0 for all 1 ≤ j ≤ J .

Corollary 4 If f1, . . . , fJ are continuous density functions with bounded first derivatives,
then
(a) z◦h(x) = (LSPD◦h(x, F1), . . ., LSPD◦h(x, FJ))T → (f1(x), . . . , fJ(x))T as h→ 0, and
(b) z◦h(x)→ (K(0)SPD◦(x, F1), . . . ,K(0)SPD◦(x, FJ))T as h→∞.

If x1, . . . ,xn is a random sample of size n from F , the empirical version of Γ◦h(x, F ) is given
by

Γ◦h(x, Fn) =
1

n

n∑
i=1

Kh(ti)−
∥∥∥∥ 1

n

n∑
i=1

Kh(ti)u(ti)

∥∥∥∥,
8
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where ti = (x − xi) for 1 ≤ i ≤ n. Then LSPD◦h(x, Fn) is defined using (3) with Γ◦h(x, F )
replaced by Γ◦h(x, Fn). Similarly, we obtain Γ∗h(x, Fn) and LSPD∗h(x, Fn) by using ti =

Σ̂
−1/2

(x − xi) in the expression stated above. Here Σ̂ is an estimate of Σ, and Fn is the
empirical distribution of the data x1, . . . ,xn.

We know that supx∈Rd |SPD◦(x, Fn)−SPD◦(x, F )| goes to 0 almost surely (a.s.) as n
goes to infinity (see Gao, 2003). Theorem 5 establishes a similar a.s. uniform convergence
of LSPD◦h(x, Fn) to its population counterpart LSPD◦h(x, F ) for a fixed value of h.

Theorem 5 Assume the density corresponding to the distribution function F to be bounded.
Then, for any fixed h > 0, supx∈Rd |LSPD◦h(x, Fn)− LSPD◦h(x, F )| a.s.→ 0 as n→∞.

From the proof of Theorem 5 (see Appendix A), it is easy to check that this a.s. uniform
convergence also holds when h→∞. Under additional moment conditions on F , we obtain
this convergence when h→ 0 in such a way that nh2d/ log n→∞ as n→∞ (see Remarks 9
and 10 after the proof of Theorem 5 in Appendix A).

The fact that LSPD tends to a constant multiple of the probability density function
as h → 0 is a crucial requirement for limiting Bayes optimality of classifiers based on
this local depth function. Agostinelli and Romanazzi (2010) proposed localized versions
of simplicial depth and half-space depth, but the relationship between the local depth and
the probability density function was established only for d = 1. A depth function based
on inter-point distances was developed by Lok and Lee (2011) to capture multi-modality
in a data set. Chen et al. (2009) defined kernelized spatial depth using a reproducing
kernel Hilbert space. Hu et al. (2011) also considered a generalized notion of Mahalanobis
depth in reproducing kernel Hilbert spaces. However, there is no result connecting them
to the probability density function. In fact, the kernelized spatial depth function becomes
degenerate at the value (1− 1/

√
2) as the tuning parameter goes to zero. Consequently, it

becomes non-informative for small values of the tuning parameter. It will be appropriate
to note here that none of the preceding authors used their proposed depth functions for
constructing classifiers.

Recently, Paindaveine and Van Bever (2013, 2015) proposed a notion of local depth
and used it for supervised classification along with other applications. Their version of
local depth does not relate to the underlying density function either. At this point, one
should note that convergence of local depth function to the underlying density function is
an advantageous property for classification. However, this may not always be a desirable
property for other applications of data depth (see Paindaveine and Van Bever, 2013, for a
detailed discussion).

4. Multi-scale Classification using Localized Spatial Depth

When the class distributions are elliptic, part (b) of Theorem 3 implies that LSPDh with
large values of h will lead to good classifiers. These large values may not be appropriate for
non-elliptic class distributions, but part (a) of Theorem 3 implies that LSPDh with small
values of h will lead to good classifiers for general nonparametric models for class densities.
However, the empirical version of LSPDh with small h and the resulting classifier may have
their statistical limitations for high-dimensional data.

9
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We now consider two examples to demonstrate the above points. The first example
(we call it E3) involves two multivariate normal distributions Nd(0d, Id) and Nd(1d, 4Id).
In the second example (we call it E4), both the competing classes have trimodal distri-
butions. The first class has the same density as in Figure 4(a) (i.e., an equal mixture of
Nd(0d, 0.25Id), Nd(21d, 0.25Id) and Nd(41d, 0.25Id)), while the second class is an equal mix-
ture of Nd(1d, 0.25Id), Nd(31d, 0.25Id) and Nd(51d, 0.25Id). In each of these examples, we
considered d = 5 and generated a training sample of size 100 from each class. The misclassi-
fication rate for the classifier based on LSPD◦h was computed based on a test sample of size
500 (250 observations from each class). This procedure was repeated 100 times to calculate
the average misclassification rates for different values of h. Small values of h extracted local
distributional features and yielded low misclassification rates in E4 (see Figure 6(b)). How-
ever, those small values of h led to relatively higher misclassification rates in E3, while the
underlying global elliptic structure was captured well by the proposed classifier for larger
values of h (see Figure 6(a)). This provides a strong motivation for adapting a multi-scale
approach in constructing the final classifier so that one can harness the strength of different
classifiers corresponding to different scales of localization. One would expect that when
aggregated judiciously, the multi-scale classifier will lead to an improved misclassification
rate. Usefulness of the multi-scale approach in combining different classifiers has been dis-
cussed in the classification literature (see, e.g., Kittler et al., 1998; Dzeroski and Zenko,
2004; Ghosh et al., 2005, 2006).

−2 −1 0 1 2 3 4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

log(h)

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

(a) Example E3

−2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

log(h)

M
is

c
la

s
s
if
ic

a
ti
o

n
 r

a
te

(b) Example E4

Figure 6: Misclassification rates of the Bayes classifier (indicated by dotted lines) and the
classifier based on LSPD◦h (indicated by solid curves) in examples E3 and E4 for
varying choices of h.

A popular way of aggregation is to consider a weighted average of the estimated posterior
probabilities computed for different values of h. There are various proposals for the choice
of the weight function in the literature. Following Ghosh et al. (2005, 2006), we compute
∆̂h, a cross-validation estimate of the misclassification rate of the classifier based on LSPD◦h
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(or, LSPD∗h) and use

W (h) ∝ exp

[
−1

2

(∆̂h − ∆̂0)
2

∆̂0(1− ∆̂0)/n

]
as the weight function, where ∆̂0 = minh ∆̂h. The exponential function helps to appro-
priately weigh up (respectively, weigh down) the promising (respectively, the unsatisfac-
tory) classifier resulting from different choices of the smoothing parameter h. We compute∫
W (h)g̃(h)p̃(j|z∗h(x))dh for the j-th class (1 ≤ j ≤ J), where a probability density function

g̃ is used to make the integral finite. Here p̃(j|z∗h(x)) is as defined in equations (4) and (5)
of Section 3. If we use very small values of h to classify a test case, then the kernel function
used in LSPDh will put almost zero weights on all observations. Clearly, those small values
of h will not be useful for classification. On the other hand, LSPDh behaves like SPD for
large values of h. So, after a certain threshold value, increasing the value of h will not
provide any additional information about the distributional features. Therefore, one needs
to find suitable lower and upper limits of h to compute the weighted posterior probabilities
of different classes. Following Ghosh et al. (2006), we compute the pairwise distances (stan-
dardized pairwise distances in the case of LSPD∗h) among the observations in a class and
compute the quantiles of these distances. Let λj,α denote the α-th quantile (0 < α < 1) of
the pairwise distances for the j-th class with 1 ≤ j ≤ J . We use hL = minj{λj,0.05}/3 as the
lower limit of h, and hU = 2rhL as the upper limit of h. Here r is the smallest integer for
which we have ‖z∗h(xji)−z∗(xji)‖/‖z∗(xji)‖ < 0.05 (or, ‖z◦h(xji)−z◦(xji)‖/‖z◦(xji)‖ < 0.05
in case of LSPD◦h) for 1 ≤ i ≤ nj and 1 ≤ j ≤ J . Our final classifier, which we call the
LSPD classifier, assigns an observation x to the class j0, where

j0 = argmax
1≤j≤J

hU∫
hL

W (h)g̃(h)p̃(j|z∗h(x))dh.

One can choose g̃ to be the uniform distribution on the interval [hL, hU ]. Since we are
dealing with a scale parameter h, we take the uniform distribution in the logarithmic scale.
In practice, we generate M independent observations h1, . . . , hM from the distribution g̃.
For any given 1 ≤ j ≤ J and x,

∫ hU
hL

W (h)g̃(h)p̃(j|z∗h(x))dh is approximated by the average∑M
i=1W (hi)p̃(j|z∗hi(x))/M .

5. Analysis of Simulated Data Sets

We have analyzed several data sets simulated from elliptic as well as non-elliptic distribu-
tions in R5. In each example, taking an equal number of observations from each of the two
competing classes, we generated training and test sets of sizes 200 and 500, respectively.
This procedure was repeated 500 times, and the average test set misclassification rates of
different classifiers are reported in Tables 1 and 2 along with their corresponding standard
errors. To facilitate comparison, the corresponding Bayes risks are reported as well. In all
the tables in this article, the best misclassification rate in a data set is indicated by ‘∗’. The
other figures in bold (if any) are the misclassification rates whose differences from the best
misclassification rate were found to be statistically insignificant at the 5% level when the
usual large sample test for equality of proportions was used.
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For the classifiers based on SPD and LSPD, we wrote our own R codes and they are
available at the link goo.gl/E5tmd6. Throughout this article, we have used 50 different
values of h for multi-scale classification based on LSPD, and the weight function is computed
using 5-fold cross-validation method. In this section and in Section 6, we have used SPD∗

and LSPD∗h for classification with the usual sample covariance matrix of the j-th class as

Σ̂j for 1 ≤ j ≤ J . Any other choice of Σ̂j has been mentioned at appropriate places.

We compared our proposed classifiers with a pool of classifiers that include parametric
classifiers like LDA and QDA, and nonparametric classifiers like those based on k-NN (with
the Euclidean metric as the distance function) and KDE (with the Gaussian kernel). For
k-NN and KDE, we have used the pooled sample covariance matrix for standardization.
Tables 1 and 2 show misclassification rates for the multi-scale versions of k-NN (Ghosh
et al., 2005) and KDE (Ghosh et al., 2006) based on the same weight function described in
Section 4. For the multi-scale method based on KDE, we have considered 50 equi-spaced
values of the bandwidth in the range suggested by Ghosh et al. (2006). For the multi-scale
version of k-NN, we considered all possible values of k (see Ghosh et al., 2005, for more
details). These multi-scale versions usually had better performance then their single scale
analogs with the smoothing parameters chosen by the method of cross-validation.

We also considered support vector machines (SVM) (Hastie et al., 2009) based on the
linear kernel (i.e., K(x,y) = 〈x,y〉) and the radial basis function (RBF) kernel (i.e.,
Kγ(x,y) = exp(−γ‖x − y‖2)) to facilitate comparison. We used the codes available at
the R library e1071 (Dimitriadou et al., 2011). For the RBF kernel, it has been suggested
in the literature to use γ = 1/d (see http://www.csie.ntu.edu.tw/~cjlin/libsvm/).
However, for our numerical work, we considered γ = i/10d for 1 ≤ i ≤ 50. We also used
25 different values for the box constraint in the interval [0.1, 100], which were equi-spaced
in the logarithmic scale. Misclassification rates were computed for these different choices of
the tuning parameters, and the best result is reported in the tables for both classifiers.

Misclassification rates are also reported for classification tree (TREE), and a boosted
version of TREE known as random forest (RF) (see, e.g., Hastie et al., 2009). For the
implementation of TREE and RF, we used the R codes available in the libraries tree

(Ripley, 2011) and randomForest (Liaw and Wiener, 2002), respectively. For classification
tree, the deviance function was used as a measure of impurity, and the maximum height of
the tree was restricted to 31. Nodes with less than 5 observations were never considered for
splitting. We have combined the results of 500 trees in RF, where each tree was generated
based on 63.2% randomly chosen observations from the training sample. At any stage, only
a random subset of b

√
dc out of d variables were considered for splitting. Here btc denotes

the largest integer less than, or equal to t.

In addition, we also compared the performance of our classifiers with two depth based
classification methods: the classifier based on depth-depth (DD) plot (Li et al., 2012) and
the maximum depth classifier based on local depth (LD) (Paindaveine and Van Bever, 2013).
The DD classifier fits a polynomial on the depth values corresponding to the two competing
classes to construct a separating surface. Three notions of depth were used: Mahalanobis
depth, half-space depth and projection depth, where the last two depths were computed
based on 500 random projections. For each of these depth functions, we used polynomials
of degrees 1, 2 and 3. The best result obtained among all these nine possibilities is reported
in Tables 1 and 2. For the maximum LD classifier, we used the R library DepthProc
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(Kosiorowski and Zawadzki, 2016) and considered the best result obtained for different
choices of depth and a range of values for the localization parameter. The misclassification
rates of the maximum LD classifier was higher than those of the DD classifier in almost all
cases, and we do not report those results in this article.

5.1 Examples Involving Elliptic Distributions

Recall examples E1 and E2 in Section 2, and example E3 in Section 4 involving elliptic
class distributions. In E1, the DD classifier led to the lowest misclassification rate closely
followed by SPD and LSPD classifiers (see Table 1), but it did not perform well in E2. In
this example, SPD and LSPD classifiers significantly outperformed all their competitors.
Since the class distributions were elliptic, the SPD classifier had a slight edge over the
LSPD classifier in these examples. In view of normality of the class distributions, QDA
was expected to have the best performance in E3. The DD classifier ranked second here,
while SPD and LSPD classifiers performed satisfactorily. In all these examples, the Bayes
classifier had non-linear class boundaries. So, LDA and SVM with the linear kernel did
not perform well. The performance of SVM with the RBF kernel was relatively better,
and it had competitive misclassification rates in E3. In all these examples, nonparametric
classifiers based on k-NN and KDE yielded much higher misclassification rates compared
to SPD and LSPD classifiers.

Table 1: Misclassification rates (in %) of different classifiers in elliptic data sets.

Ex Bayes LDA QDA SVM SVM k-NN KDE TREE RF DD SPD LSPD
risk (linear) (RBF)

E1 26.50 50.22 51.58 45.46 33.03 39.99 39.16 36.90 31.32 27.92 ∗ 28.32 28.54
(0.11) (0.19) (0.12) (0.12) (0.13) (0.12) (0.13) (0.11) (0.12) (0.10) (0.11)

E2 0.00 47.43 42.08 43.92 34.06 36.98 34.29 39.10 34.26 26.68 8.23 ∗ 8.26
(0.11) (0.12) (0.11) (0.12) (0.13) (0.15) (0.13) (0.11) (0.13) (0.11) (0.10)

E3 10.14 21.56 11.09 ∗ 22.09 11.74 17.86 16.95 19.18 13.77 11.37 11.49 11.64
(0.09) (0.07) (0.09) (0.07) (0.09) (0.08) (0.13) (0.08) (0.08) (0.07) (0.07)

5.2 Examples Involving Non-elliptic Distributions

We now consider some examples involving non-elliptic class distributions. Recall the tri-
modal example E4 discussed in Section 4. In this example, when the classifiers based on
k-NN and KDE were used after standardizing the data set by the pooled sample covariance
matrix, they yielded misclassification rates higher than 40%. For KDE, we used a common
bandwidth in all directions after standardization. This lead to the use of a large bandwidth
in the principal component direction 1√

d
1d (this can be observed from Figure 4(a)). Since

the difference between the posterior probabilities of the two classes changes its sign fre-
quently along this direction, use of this large bandwidth makes it difficult to discriminate
between the two competing classes. In the k-NN classifier, this standardization leads to the
use of a neighborhood which was also elongated along the direction 1√

d
1d, and this affected

the performance of this classifier. So, we did not standardize the data for these two classi-
fiers, and they outperformed all other classifiers considered here (see Table 2). Classifiers
based on SPD∗ and LSPD∗ also had poor performance because of this issue with standard-
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ization. So we used classifiers based on SPD◦ and LSPD◦ in this example. The LSPD◦

classifier had the third best performance. SVM with the RBF kernel also performed well.
All other classifiers had relatively higher misclassification rates. The DD classifier, LDA,
QDA and SVM with the linear kernel all misclassified more than 25% of the observations.

The next example (we call it E5) is with exponential distributions, where the com-
ponent variables are independently distributed in both classes. The i-th variable in the
first (respectively, the second) class is exponential with scale parameter d/(d − i + 1) (re-
spectively, d/2i) for 1 ≤ i ≤ d. Further, the second class has a location shift such that
the difference between the mean vectors of the two classes is 1

d1d. Recall that Figure 5(a)
shows the density contours of the first class when d = 2. In this example, the RF classi-
fier had the best performance followed by TREE. Here all the measurement variables were
independent, and there was significant separation between the two classes in some of the
co-ordinate directions. This is one of the main reasons behind the superior performance of
both TREE and RF. Classifiers based on DD, SPD∗ and LSPD∗ also performed quite well,
and their misclassification rates were significantly lower than all other classifiers. The two
linear classifiers performed poorly, but QDA had a reasonably good performance in this
example. Good performance of QDA was not surprising as the two competing classes are
unimodal, while they differ widely in their dispersion structures.

Table 2: Misclassification rates (in %) of different classifiers in non-elliptic data sets.

Ex Bayes LDA QDA SVM SVM k-NN KDE TREE RF DD SPD LSPD
risk (linear) (RBF)

E4 2.10 40.45 42.41 36.16 3.28 2.70 ∗ 2.75 15.52 4.98 30.14 10.07 3.25
(0.12) (0.11) (0.12) (0.04) (0.03) (0.03) (0.10) (0.07) (0.12) (0.10) (0.04)

E5 2.04 41.17 5.97 32.14 7.12 9.55 9.32 4.82 2.04 ∗ 5.92 5.53 5.42
(0.15) (0.05) (0.34) (0.07) (0.08) (0.07) (0.08) (0.03) (0.05) (0.06) (0.06)

E6 13.16 49.67 25.77 47.77 29.33 27.44 27.59 38.39 29.73 28.86 24.15 24.09 ∗
(0.12) (0.12) (0.15) (0.11) (0.12) (0.11) (0.14) (0.11) (0.14) (0.10) (0.10)

E7 19.96 50.78 50.48 49.77 46.01 35.29 38.88 34.45 27.62 26.48 ∗ 38.39 40.64
(0.23) (0.22) (0.07) (0.23) (0.22) (0.24) (0.13) (0.11) (0.12) (0.20) (0.28)

In example E6, each class is an equal mixture of four elliptic distributions. The
first class constitutes of Nd(1d, S0.6), t3,d(βd, S0.7), Nd(−1d, S0.8) and t3,d(−βd, S0.9), while
the second class is an equal mixture of t3,d(1d, S−0.9), Nd(βd, 3S−0.8), t3,d(−1d, S−0.7) and
Nd(−βd, 3S−0.6). Here t3,d(µ,Σ) denotes the d-variate t distribution with 3 degrees of free-
dom (df), location parameter µ and scatter matrix Σ. The vector βd is a d-dimensional vec-
tor with the i-th element equal to (−1)i+1 for 1 ≤ i ≤ d and the matrix Sα = ((α|i−j|))d×d
for α ∈ (−1, 1) and 1 ≤ i, j ≤ J . This example has a complex structure for the class
distributions, and both SPD and LSPD classifiers significantly outperformed all their com-
petitors. As the Bayes classifier was far from being linear, LDA and linear SVM did not
have satisfactory performance.

Finally, we consider a classification problem between a Cauchy distribution and a skewed
Cauchy distribution (Azzalini, 2014) (we call it E7). The Cauchy distribution had location
parameter 1d and scatter matrix 0.5Id + 0.51d1

T
d ; while the skewed Cauchy distribution

had location parameter 0d, scatter matrix Id and asymmetry vector 1d. The DD classifier
and RF performed better than other classifiers, but SPD∗ and LSPD∗ classifiers yielded
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relatively higher misclassification rates. Both half-space depth and projection depth used
in the DD classifier are robust against outliers generated from heavy-tailed distributions,
while the moment based estimates used in both SPD∗ and LSPD∗ are non-robust. So, it is
better to use robust estimates of Σjs here. When we used MCD estimates based on 75% of
the observations (Rousseeuw and Van Driessen, 1999), the misclassification rates of SPD∗

and LSPD∗ classifiers dropped to 31.90% and 32.05%, respectively, with corresponding
standard errors of 0.18% and 0.20%.

All these examples clearly demonstrate that the LSPD classifier performs as good as
(if not better) popular nonparametric classifiers for non-elliptic, or multi-modal data. This
adjustment of the LSPD classifier is automatic in view of the multi-scale approach developed
in Section 4.

5.3 Computing Time for SPD and LSPD Classifiers

For a training sample of size n, computation of z(xji) for 1 ≤ i ≤ nj and 1 ≤ j ≤ J requires
O(n2) calculations. Fitting a GAM involves an iterative algorithm, and it is quite difficult
to calculate its exact computational complexity. Each iteration requires computations of
the order O(n2) (Wood, 2006). So, the algorithm takes no more than O(n2) computations
to fit a GAM for a finite number of iterations. For the multi-scale classifier based on LSPD,
we need to repeat this procedure for M different values of h and then compute the weight
function W (h) based on V -fold cross-validation. The overall order of computation remains
O(n2) although the associated constant increases linearly with d, J , M and V . However,
one should note that these are offline calculations. Both SPD and LSPD classifiers require
O(n) calculations to classify a test case.

Throughout this article, we have used M = 50 and V = 5 and the R library VGAM (Yee,
2008) was used to fit GAM. In a single iteration, the average CPU time to determine the
weight function W (h) based on cross-validation for the LSPD classifier was 21.83 seconds,
while 0.55 seconds were required to fit a GAM using the full training data. The average
CPU time to classify the 500 test observations was about 0.01 seconds. All the calculations
were done on a desktop computer with an Intel i7 (2.2 GHz) processor having 8 GB RAM.

6. Analysis of Benchmark Data Sets

We have analyzed seven benchmark data sets for further evaluation of our proposed classi-
fiers. The biomedical data set is taken from the CMU data archive (http://lib.stat.
cmu.edu/datasets/). In this data set, we ignored the observations with missing val-
ues. The diabetes data set is available in the R library mclust (also analyzed in Reaven
and Miller, 1979). All other data are taken from the UCI machine learning repository
(http://archive.ics.uci.edu/ml/). Descriptions of these data sets are available at these
sources. Satellite image (satimage) data set has specific training and test samples. For
this data set, we report misclassification rates of different classifiers based on this fixed
test set. If a classifier had misclassification rate ε, its standard error was computed as√
ε(1− ε)/(size of the test set). For all other data sets, we formed the training and the

test sets by randomly partitioning the data, and this random partitioning was repeated 500
times. Average test set misclassification rates of different classifiers were computed over
these 500 partitions, and they are reported in Table 3 along with their corresponding stan-
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dard errors. Sizes of training and test sets in each partition are also reported in this table.
For all classifiers, we used the same tuning procedures as described in Section 5. Codes for
the DD classifier are available only for two class problems. In biomedical and Parkinson’s
data sets, the DD classifier yielded misclassification rates of 12.54% and 14.48%, respec-
tively, with corresponding standard errors of 0.18% and 0.15%. We also used the maximum
LD classifier on these real data sets. However, its performance was not satisfactory for most
data sets and we do not report those misclassification rates in Table 3.

In biomedical and vehicle data, covariance matrices of the competing classes were differ-
ent. So, QDA led to significant improvement over LDA, and its misclassification rates were
close to the best rate. In both these data sets, the competing classes were nearly elliptic
(this can be verified using the diagnostic plots suggested by Li et al., 1997). The SPD
classifier utilized this ellipticity of the class distributions to outperform the nonparametric
classifiers. The LSPD classifier competed well with the SPD classifier in biomedical data.
But, the evidence of ellipticity was much stronger in vehicle data and LSPD had a slightly
higher misclassification rate. In diabetes data also, the three competing classes had widely
varying covariance structures. As expected, QDA performed better than LDA. Since the
class distributions were not elliptic, the SPD classifier yielded a higher misclassification rate
than the LSPD classifier, while both TREE and RF outperformed all other classifiers in
this data set.

Table 3: Descriptions of the real data sets, and misclassification rates (in %) of different classifiers.

Data set Biomed Parkinson’s Diabetes Wine Waveform Vehicle Satimage

d 4 22 3 13 21 18 36

J 2 2 3 3 3 4 6

Train 100 97 73 100 300 423 4435

Test 94 98 72 78 501 423 2000

Data LDA QDA SVM SVM k-NN KDE TREE RF SPD LSPD
set (linear) (RBF)

Biomed 15.66 12.57 21.90 12.76 17.74 16.67 17.69 13.23 12.53 12.49 *
(0.14) (0.13) (0.13) (0.13) (0.15) (0.14) (0.18) (0.14) (0.21) (0.15)

Parkinson’s 30.93 xxxx 14.83 13.29 14.42 11.24 * 16.63 11.68 15.44 14.23
(0.12) xxxx (0.12) (0.10) (0.16) (0.12) (0.20) (0.15) (0.15) (0.11)

Diabetes 13.86 8.51 10.20 14.93 11.20 11.96 3.78 * 4.29 9.36 7.93
(0.16) (0.13) (0.19) (0.15) (0.13) (0.14) (0.09) (0.10) (0.15) (0.14)

Wine 2.00 2.46 3.64 1.86 1.98 1.40 * 10.99 2.12 2.34 1.85
(0.06) (0.09) (0.09) (0.06) (0.06) (0.05) (0.22) (0.06) (0.08) (0.07)

Waveform 19.74 20.78 18.89 16.28 21.23 21.04 28.81 16.45 15.12 * 15.36
(0.15) (0.15) (0.07) (0.07) (0.11) (0.11) (0.12) (0.08) (0.06) (0.06)

Vehicle 22.49 16.38 20.59 25.37 21.80 21.21 31.41 25.52 16.35 * 17.15
(0.07) (0.07) (0.07) (0.08) (0.08) (0.07) (0.10) (0.07) (0.08) (0.08)

Satimage 16.02 14.11 12.95 8.97 18.00 21.40 18.60 8.24 * 12.58 12.58
(0.82) (0.78) (0.75) (0.64) (0.86) (0.92) (0.87) (0.61) (0.74) (0.74)

‘xxxx’: QDA could not be used because of singularity of the estimated class dispersion matrices.

In Parkinson’s data, we could not use QDA because of singularity of the estimated class
dispersion matrices. So, we used the pooled sample covariance matrix for computation

16



Multi-scale Classification using Localized Spatial Depth

of SPD∗ and LSPD∗. In this data set, all the nonparametric classifiers had significantly
lower misclassification rates than LDA, and the classifier based on KDE had the lowest
misclassification rate. The performance of the LSPD classifier was also competitive. Since
the underlying distributions were non-elliptic, LSPD outperformed the SPD classifier. We
observed a similar phenomena in wine data as well. The sample covariance matrices of
different classes were nearly singular, and we used the pooled sample covariance matrix for
computing SPD∗ and LSPD∗. The classifier based on KDE yielded the lowest misclassi-
fication rate, while the LSPD classifier had the second best performance. Although the
data dimension was quite high in both data sets, all the competing classes had low intrinsic
dimensions (can be estimated using the method described by Levina and Bickel, 2004). So,
nonparametric methods like KDE were not affected much by the curse of dimensionality.
TREE was the only classifier with a somewhat higher misclassification rate.

In waveform data, the competing class distributions were nearly elliptic and the SPD
classifier was expected to perform well. The LSPD classifier is quite flexible, and it yielded a
competitive misclassification rate. The class distributions were not normal (can be checked
using the method proposed in Royston, 1983) for this data, and did not have low intrinsic
dimensions. As a result, LDA, QDA and the nonparametric classifiers had relatively higher
misclassification rates.

In satimage data, recall that the results are based on a single training and a single test
set. So, the standard errors of the misclassification rates were high for all classifiers, and it
is quite difficult to compare the performance of different classifiers. Both RF and SVM with
the RBF kernel had lower misclassification rates than other classifiers, while the classifiers
based on SPD and LSPD had the next best performance.

7. Classification of High-dimensional Data

A serious practical limitation of many existing depth based classifiers is their computational
complexity in high dimensions, and this makes such classifiers impossible to use even for
moderately large dimensional data. Besides, depth functions that are based on random
simplices formed by the data points (see, e.g., Liu et al., 1999; Zuo and Serfling, 2000)
cannot be defined in a meaningful way if the dimension of the data exceeds the sample size.
Tukey’s half-space depth and projection depth both become degenerate at zero for such
high-dimensional data (see, e.g., Dutta et al., 2011). Classification of high-dimensional
data presents a substantial challenge to many nonparametric classification tools as well.
We have seen in examples E1 and E2 (recall Figure 2) that nonparametric classifiers like
those based on k-NN and KDE can yield poor performance when the data dimension is
large. Some limitations of SVM for classification of high-dimensional data has been noted
by Marron et al. (2007); Dutta and Ghosh (2016).

One of our primary motivations behind using SPD is its computational tractability
(especially when the dimension is large). If the dimension exceeds the sample size, then the
sample covariance matrices become singular, and we cannot use these estimates to define
the empirical versions of SPD∗ and LSPD∗h. So, we use classifiers based on SPD◦ and
LSPD◦h. We now assume the following regularity conditions to investigate the behavior of
these classifiers for such high-dimensional data.
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(C) Consider two independent random vectors X1 = (X
(1)
1 , . . . , X

(d)
1 )T ∼ Fj and X2 =

(X
(1)
2 , . . . , X

(d)
2 )T ∼ Fi for 1 ≤ j, i ≤ J .

Further, assume that

(C1) aj = limd→∞ d
−1 ∑d

k=1E(X
(k)
1 )2 exists, and d−1

∑d
k=1(X

(k)
1 )2

a.s.→ aj as d→∞,
(C2) bji = limd→∞ d−1

∑d
k=1E(X

(k)
1 X

(k)
2 ) exists, and d−1

∑d
k=1X

(k)
1 X

(k)
2

a.s.→ bji as d→∞.

It is not difficult to verify that for X1 ∼ Fj (1 ≤ j ≤ J), if we assume that the sequence

of variables {X(k)
1 − E(X

(k)
1 ) : k = 1, 2, . . .} centered at their means are independent with

uniformly bounded eighth moments (see Theorem 1 (2) in Jung and Marron, 2009, p. 4110),
or they are m-dependent processes with some appropriate conditions (see Theorem 2 in
de Jong, 1995, p. 350), then the convergence results in (C1) and (C2) hold. Also, if the
observations are generated from discrete time ARMA processes, all these conditions are
satisfied. Stationarity of such time series is not required here. These assumptions continue

to hold if the sequences {(X(k)
1 )2 −E(X

(k)
1 )2 : k = 1, 2, . . .} and {X(k)

1 X
(k)
2 −E(X

(k)
1 X

(k)
2 ) :

k = 1, 2, . . .}, where X1 ∼ Fj and X2 ∼ Fi for all 1 ≤ j, i ≤ J , are mixingales satisfying
some appropriate conditions (see, e.g., Theorem 2 in de Jong, 1995, p. 350).

Define σ2j = aj − bjj and νji = bjj − 2bji + bii. For the random vector X1 ∼ Fj , σ2j is the

limit of d−1
∑d

k=1 V ar(X
(k)
1 ) as d→∞. If we consider a second independent random vector

X2 ∼ Fi with i 6= j, then νji is the limit of d−1
∑d

k=1{E(X
(k)
1 ) − E(X

(k)
2 )}2 as d → ∞.

Hall et al. (2005) assumed a similar set of conditions to study the performance of support
vector machines (SVM) with the linear kernel and the 1-NN classifier as the data dimension
grows to infinity. Similar conditions on observation vectors were also considered by Jung
and Marron (2009) to study consistency of principal components of the empirical covariance
matrix for high-dimensional data. Under (C1) and (C2), the following theorem describes
the behavior of z◦(x) = (SPD◦(x, F1), . . ., SPD◦(x, FJ))T and z◦h(x) = (LSPD◦h(x, F1), . . .,
LSPD◦h(x, FJ))T as d grows to infinity.

Theorem 6 Suppose that the conditions (C1)-(C2) hold, and X ∼ Fj for 1 ≤ j ≤ J .

(a) z◦(X)
a.s.→ (cj1, . . . , cjJ)T = cj as d→∞, where cjj = 1−

√
1
2 and cji = 1−

√
σ2
j+νji

σ2
j+σ

2
i +νji

for 1 ≤ j 6= i ≤ J .
(b) Assume that h → ∞ and d → ∞ in such a way that

√
d/h → 0 or A0(> 0). Then,

z◦h(X)
a.s.→ g0(0)cj or c′j = (g0(ej1A0)cj1, . . . , g0(ejJA0)cjJ)T depending on whether

√
d/h→

0 or A0, respectively. Here K(t) = g0(‖t‖), ejj =
√

2σj and eji =
√
σ2j + σ2i + νji for j 6= i.

(c) Assume that h > 1, and
√
d/h→∞ as d→∞. Then, z◦h(X)

a.s.→ 0J .

The cjs as well as the c′js in the statement of Theorem 6 are distinct for all 1 ≤ j ≤ J

whenever either σ2j 6= σ2i or νji 6= 0 for all 1 ≤ j 6= i ≤ J (see Lemma 11 in Appendix A).
In such a case, part (a) of Theorem 6 implies that for large d, z◦(x) becomes degenerate at
points depending on the class distributions. So, z◦(x) has good discriminatory power, and
our classifier based on SPD◦ can discriminate well among the J populations. Further, it
follows from part (b) that when both d and h grow to infinity in such a way that

√
d/h→ 0

or to a positive constant, z◦h(x) has good discriminatory power and the classifier based on
LSPD◦h can yield low misclassification probability. However, part (c) shows that if

√
d grows
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at a rate faster than h, z◦h(x) converges to the same value 0J and it becomes non-informative.
Consequently, the classifier based on LSPD◦h will lead to a high misclassification probability
in this case.

To evaluate the performance of our depth based classifiers for high-dimensional data, we
considered examples E1-E7 with d = 200. In each example, we generated 20 observations
from each class to constitute the training sample, while 250 observations from each class
were used to form the test set. We generated 500 training and test sets, and the average test
set misclassification rates of the different classifiers along with their corresponding standard
errors are reported in Table 4. The Bayes risks were almost zero in all these examples, and
we have not stated them in Table 4. We did not standardize the data for KDE and k-NN.
QDA could not be used in these examples, and we used Id instead of the pooled sample
covariance matrix for LDA. When the competing classes have equal priors (which is the case
in simulated examples), this leads to the Euclidean distance based classifier which classifies
an observation to the class having the nearest centroid.

As we have mentioned before, we use SPD◦ and LSPD◦ for classification of these high-
dimensional data sets. For a single iteration, the LSPD classifier required an average CPU
time of 8.82 seconds to compute the weight function W (h), 0.39 seconds for fitting GAM
using the full training data, and 0.06 seconds for classification of 500 test cases.

Table 4: Misclassification rates (in %) of different classifiers in simulated data sets.

Example LDA † SVM SVM k-NN KDE TREE RF SPD◦ LSPD◦

(linear) (RBF)

E1 50.93 47.57 28.97 49.71 49.99 45.72 41.95 0.27 ∗ 0.31
(0.13) (0.09) (0.38) (0.06) (0.06) (0.15) (0.14) (0.03) (0.03)

E2 45.84 45.69 32.70 49.96 49.92 43.70 39.36 0.08 ∗ 0.09
(0.08) (0.07) (0.18) (0.01) (0.01) (0.17) (0.12) (0.03) (0.03)

E3 0.20 0.29 0.00 ∗ 49.99 49.98 27.46 0.28 0.00 ∗ 0.00 ∗
(0.01) (0.01) (0.00) (0.01) (0.01) (0.12) (0.17) (0.00) (0.00)

E4 34.87 44.28 10.43 0.19 0.20 38.55 23.57 0.68 0.13 ∗
(0.26) (0.15) (0.43) (0.08) (0.08) (0.24) (0.45) (0.12) (0.06)

E5 40.83 44.61 13.69 49.98 49.93 18.93 0.00 ∗ 0.84 0.80
(0.07) (0.11) (0.15) (0.01) (0.01) (0.03) (0.00) (0.04) (0.04)

E6 50.11 48.16 31.03 46.52 47.03 48.20 45.00 30.98 29.76 ∗
(0.12) (0.14) (0.26) (0.18) (0.14) (0.13) (0.17) (0.20) (0.19)

E7 44.74 35.06 31.82 18.92 ∗ 22.91 36.82 22.36 26.33 25.96
(0.45) (0.24) (0.48) (0.22) (0.32) (0.19) (0.19) (0.26) (0.27)

† Id was used instead of the pooled sample covariance matrix.

In the first five examples, the two competing classes had separation between either in
their locations and/or scales. So, good performance of the SPD◦ and LSPD◦ classifiers was
expected in view of Theorem 6 and Lemma 11 (see Appendix A). In E1 and E2, recall that
the component distributions of the two classes differed only in scales. The SPD◦ and LSPD◦

classifiers performed well in these examples, and the former had an edge due to ellipticity
of the class distributions. Surprisingly, all other classifiers failed to extract this separability
information properly, and had misclassification rates higher than 25%. Since the Bayes class
boundaries were highly nonlinear in these two examples, poor performance of linear SVM
and LDA was quite expected. Dutta and Ghosh (2016) showed that when one component
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distribution from the first class and one from the second class differ only in their scales,
the k-NN classifier gives a decision in favor of the distribution with a smaller spread (also
see Hall et al., 2005). This was the main reason behind the poor performance of the k-NN
classifier. Similar arguments can be given for the poor performance of the classifier based on
KDE. In these two examples, splitting based on a single variable failed to yield significant
reduction in the impurity function (one can see this in Figure 1). So, TREE and RF had
relatively higher misclassification rates. In E3, the two Gaussian distributions differed in
their locations and scales. Barring TREE, k-NN and the classifier based on KDE, all other
classifiers yielded misclassification rates close to zero. Since the scale difference between
the two classes dominates the location difference, such a poor performance of the classifier
based on KDE and k-NN was expected (see the results in Hall et al., 2005; Dutta and
Ghosh, 2016). The same explanation holds for E5 as well. These nonparametric classifiers
yielded excellent performance in E4, where the component distribution differ only in their
locations. However, TREE and RF failed to have satisfactory performance here. Splitting
based on linear combinations of the variables may be helpful in E4 (see Figure 4).

Examples E6 and E7 were difficult to deal with. Unlike E1-E5, none of the classifiers
could achieve misclassification rates close to zero in these two examples. Conditions (C1)
and (C2) do not hold here, and Theorem 6 is not applicable. The LSPD classifier had
the best performance in E6 (just like the case with d = 5 in Section 5). SVM with the
RBF kernel and the SPD classifier also led to competitive misclassification rates. Their
performance was much better than all other classifiers. In E7, the linear classifiers and
SVM with the RBF kernel could not perform well. This is also consistent with what we
observed in Section 5. Barring TREE, all other classifiers yielded competitive performances
in this example. Among them the k-NN classifier led to the lowest misclassification rate.

We also analyzed two high-dimensional benchmark data sets, namely, lightning-2 data
and colon data (Alon et al., 1999). The first data set is from the UCR time series classi-
fication archive (http://www.cs.ucr.edu/~eamonn/time_series_data/), while the other
one is taken from the R library rda. In each case, we formed 500 training and test sets
by randomly partitioning each data into two almost equal parts. The average test set
misclassification rates of different classifiers are reported in Table 5.

Table 5: Misclassification rates (in %) of different classifiers in real data sets.

Data d J Sample size LDA † SVM SVM k-NN KDE TREE RF SPD LSPD
set Train Test (linear) (RBF)

Lightning-2 637 2 60 61 31.86 35.64 28.73 29.89 28.11 33.69 22.08 * 27.70 27.16
(0.25) (0.35) (0.32) (0.20) (0.30) (0.34) (0.34) (0.30) (0.30)

Colon 2000 2 31 31 14.47 16.38 21.48 22.47 23.20 28.78 19.28 19.66 19.05
(0.21) (0.23) (0.25) (0.27) (0.28) (0.35) (0.24) (0.31) (0.30)

† Id was used instead of the pooled sample covariance matrix.

Lightning-2 data consist of observations that are realizations of a time series. In this data
set, RF had the best performance followed by the LSPD classifier. The SPD classifier also
worked well and yielded the third best performance. The class distributions for this data
set turn out to be non-elliptic (can be verified using the method proposed by Li et al., 1997)
with low intrinsic dimensions (Levina and Bickel, 2004). As a consequence, the classifier
based on KDE and k-NN yielded reasonably good performances.
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Colon data contain micro-array expression levels of 2000 genes for ‘normal’ and ‘colon
cancer’ tissues. There was a good linear separation among the observations from the two
competing classes, and the linear classifiers lead to low misclassification rates. Among
the other classifiers, the LSPD classifier yielded the minimum misclassification rate closely
followed by RF and the SPD classifier. These three classifiers were less affected by the curse
of dimensionality.

In these high-dimensional benchmark data sets, the data had low intrinsic dimensions
due to high correlation among the the measurement variables (Levina and Bickel, 2004).
Moreover, data from the competing classes differed mainly in their locations. As a conse-
quence, though the proposed LSPD classifier had a good overall performance, its superiority
over the nonparametric methods was not as prominent as it was in the simulated examples.
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Appendix A. Proofs and Mathematical Details

Lemma 7 If F has a spherically symmetric density f(x) = g(‖x‖) on Rd with d > 1, then
‖EF [u(x−X)]‖ is a non-negative monotonically increasing function of ‖x‖.

Proof of Lemma 7 : In view of spherical symmetry of f(x), S(x) = ‖EF [u(x −X)]‖ is
invariant under orthogonal transformations of x. Consequently, S(x) = η(‖x‖) for some
non-negative function η. Consider now x1 and x2 such that ‖x1‖ < ‖x2‖. Using spherical
symmetry of f(x), without loss of generality, we can assume xi = (ti, 0, . . . , 0)T for i = 1, 2
such that |t1| < |t2|. For any x = (t, 0, . . . , 0)T , we have

S(x) =

∣∣∣∣EF[ (t−X1)√
(t−X1)2 +X2

2 + . . .+X2
d

]∣∣∣∣,
due to spherical symmetry of f(x). For any x ∈ Rd with d > 1, EF [‖x −X‖] is a strictly
convex function of x in this case. Consequently, it is a strictly convex function of t. Observe
now that S(x) with this choice of x is the absolute value of the derivative of EF [‖x−X‖]
w.r.t. t. This derivative is a symmetric function of t that vanishes at t = 0. Hence, S(x) is
an increasing function of |t|, and this proves that η(‖x1‖) < η(‖x2‖).

Proof of Theorem 1 : If the population distribution fj(x) is elliptically symmetric, we

have fj(x) = |Σj |−1/2gj(δ(x, Fj)), where δ(x, Fj) = ‖Σ−1/2j (x − µj)‖ is the Mahalanobis

distance for 1 ≤ j ≤ J . Since SPD∗(x, Fj) = 1−‖E[u(Σ
−1/2
j (x−µj))]‖ is affine invariant, it

is a function of δ(x, Fj). Again, as Σ
−1/2
j (X−µj) has a spherically symmetric distribution
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with its center at the origin, from Lemma 7 it follows that SPD∗(x, Fj) is a monotonically
decreasing function of δ(x, Fj). Therefore, δ(x, Fj) is also a function of SPD∗(x, Fj) and
using this fact fj(x) can also be expressed as

fj(x) = ψj(SPD∗(x, Fj)) for all 1 ≤ j ≤ J,

where ψj is an appropriate real-valued function that depends on gj . Now, one can check
that

log
[ p(j|x)

p(J |x)

]
= log(πj/πJ) + logψj(SPD∗(x, Fj))− logψJ(SPD∗(x, FJ)).

for 1 ≤ j ≤ (J − 1). Now, if we define ϕjj(z) = log πj + logψj(z) and ϕij(z) = 0 for
1 ≤ j 6= i ≤ (J − 1); and ϕ1J(z) = · · · = ϕ(J−1)J(z) = − log πJ − logψJ(z), then the proof
is complete.

Remark 8 If fj(x) is unimodal, ψj(z) is monotonically increasing for 1 ≤ j ≤ J . More-
over, if the distributions differ only in their locations, then the ψjs are same for all classes.
In that case, fj(x) > fi(x) ⇔ δ(x, Fj) < δ(x, Fi) ⇔ SPD∗(x, Fj) > SPD∗(x, Fi) for
1 ≤ i 6= j ≤ J , and hence the classifier turns out to be the maximum SPD classifier.

Proof of Theorem 3(a) : Let h < 1. For any fixed x ∈ Rd and the distribution function
Fj , we have LSPD∗h(x, Fj) = EFj [Kh(t)]− ‖EFj [Kh(t)u(t)]‖, where t = Σj

−1/2(x−X) for
1 ≤ j ≤ J . For the first term in the expression of LSPD∗h(x, Fj) above, we have

EFj [Kh(t)] =

∫
Rd

1

hd
Kh(Σ

−1/2
j (x− v))fj(v)dv = |Σj |1/2

∫
Rd

K(y)fj(x− hΣ
1/2
j y)dy,

where y = h−1Σ
−1/2
j (x− v). So, using Taylor’s expansion of fj(x), we get

EFj [Kh(t)] = |Σj |1/2fj(x)− h|Σj |1/2
∫
Rd

K(y) (Σ
1/2
j y)T∇fj(ξ)dy,

where ξ lies on the line joining x and (x−hΣ
1/2
j v). Using the Cauchy-Schwartz inequality,

one gets
∣∣∣EFj [Kh(t)]−|Σj |1/2fj(x)

∣∣∣ ≤ h|Σj |1/2λ1/2j M◦jMK , where M◦j = supx∈Rd ‖∇fj(x)‖,

MK =
∫
‖y‖K(y)dy, and λj is the largest eigenvalue of Σj . This implies

∣∣∣EFj [Kh(t)] −

|Σj |1/2fj(x)
∣∣∣→ 0 as h→ 0 for 1 ≤ j ≤ J .

For the second term in the expression of LSPD∗h(x, Fj), a similar argument yields

EFj [Kh(t)u(t)] = |Σj |1/2
∫
Rd

K(y)u(y)fj(x− hΣ
1/2
j y)dy

= −h|Σj |1/2
∫
Rd

K(y)u(y) (Σ
1/2
j y)T∇fj(ξ)dy (as

∫
Rd

K(y)u(y)dy = 0).

Now, ‖EFj [Kh(t)u(t)]‖ ≤ h|Σj |1/2λ1/2j M◦jMK → 0 and this implies that LSPD∗h(x, Fj) →
|Σj |1/2fj(x), as h → 0. Consequently, we have z∗h(x) → (|Σ1|1/2f1(x), . . . , |ΣJ |1/2fJ(x))T

as h→ 0.
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Proof of Theorem 3(b) : Here we consider the case h > 1. Take any fixed x ∈ Rd
and a j with 1 ≤ j ≤ J . For any fixed t, since K(t/h) → K(0) as h → ∞
and K is bounded, using Dominated Convergence Theorem (DCT), one can show that
LSPD∗h(x, Fj) → K(0)SPD∗(x, Fj) as h → ∞. So, z∗h(x) → (K(0)SPD∗(x, F1), . . . ,K(0)
SPD∗(x, FJ))T as h→∞.

Proof of Theorem 5 : Define the sets Bn = {x = (x1, . . . , xd) : ‖x‖ ≤
√
dn}, and

An = {x : n2xi is an integer and |xi| ≤ n for all 1 ≤ i ≤ d}. Clearly An ⊂ Bn ⊂ Rd, the
set Bn is a closed ball and the set An has cardinality (2n3 + 1)d. We will prove almost sure
(a.s.) uniform convergence on three disjoint sets: (i) An, (ii) Bn \An and (iii) Bc

n.
Consider any fixed h ∈ (0, 1]. Recall that for this choice of h, LSPD◦h(x, F ) (see equation
(3)) and LSPD◦h(x, Fn) are defined as follows:

LSPD◦h(x, Fn) =
1

nhd

n∑
i=1

K
(x−Xi

h

)
−
∥∥∥ 1

nhd

n∑
i=1

K
(x−Xi

h

)
u(x−Xi)

∥∥∥, and

LSPD◦h(x, F ) =
1

hd
E
[
K
(x−X

h

)]
− 1

hd

∥∥∥E[K(x−X

h

)
u(x−X)

]∥∥∥.
(i) Define Zi = K(h−1(x−Xi))u(x − Xi) − E[K(h−1(x−X))u(x − X)] for 1 ≤ i ≤ n.
Note that Zis are independent and identically distributed (i.i.d.) with E(Zi) = 0 and
‖Zi‖ ≤ 2K(0). Fix an ε > 0. Using the exponential inequality for sums of i.i.d. random

vectors (see Yurinskii, 1976, p. 491), we obtain P
(
‖n−1

∑n
i=1 Zi‖ ≥ ε

)
≤ 2e−C0nε2 . Here

C0 is a positive constant that depends on K(0) and ε. This now implies that

P

(∥∥∥ 1

nhd

n∑
i=1

K
(x−Xi

h

)
u(x−Xi)

∥∥∥− ∥∥∥ 1

hd
E
[
K
(x−X

h

)
u(x−X)

]∥∥∥ ≥ ε)

≤ P
(∥∥∥ 1

nhd

n∑
i=1

K
(x−Xi

h

)
u(x−Xi)−

1

hd
E
[
K
(x−X

h

)
u(x−X)

]∥∥∥ ≥ ε)

= P
(∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥ ≥ hdε) ≤ 2e−C0nh2dε2 . (6)

For a fixed value of h,
∑n

i=1K(h−1(x−Xi)) is a sum of i.i.d. bounded random variables.
Using Bernstein’s inequality, we obtain

P

(∣∣∣ 1
n

n∑
i=1

K
(x−Xi

h

)
− E

[
K
(x−X

h

)]∣∣∣ ≥ ε) ≤ 2e−C1nε2 ,

for some suitable positive constant C1. This implies

P

(∣∣∣ 1

nhd

n∑
i=1

K
(x−Xi

h

)
− 1

hd
E
[
K
(x−X

h

)]∣∣∣ ≥ ε) ≤ 2e−C1nh2dε2 . (7)

Combining (6) and (7), we get P (|LSPD◦(x, Fn) − LSPD◦(x, F )| ≥ ε) ≤ C3e
−C4nh2dε2 for

some suitable constants C3 and C4. Since the cardinality of An is (2n3 + 1)d, we have

P

(
sup

x∈An

|LSPD◦(x, Fn)− LSPD◦(x, F )| ≥ ε
)
≤ C3(2n

3 + 1)de−C4nh2dε2 . (8)
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Now,
∑

n≥1(2n
3 + 1)de−C4nh2dε2 < ∞. So, an application of Borel-Cantelli lemma implies

that supx∈An
|LSPD◦h(x, Fn)− LSPD◦h(x, F )| a.s.→ 0 as n→∞.

(ii) Consider the set Bn \ An. Given any x in Bn \ An, there exists y ∈ An such that
‖x−y‖ ≤

√
2/n2. First we will show that |LSPD◦(y, Fn)−LSPD◦(x, Fn)| a.s.→ 0 as n→∞.

Using the mean-value theorem, one obtains∣∣∣∣∣ 1

nhd

n∑
i=1

K
(x−Xi

h

)
− 1

nhd

n∑
i=1

K
(y−Xi

h

)∣∣∣∣∣ ≤ 1

nhd+1

n∑
i=1

∣∣∣∣(x− y)T∇K
(ξ −Xi

h

)∣∣∣∣ ,
where ξ lies on the line joining x and y. Note that the right hand side is less than

M
′
K

hd+1

√
2

n2
,

and M
′
K = supt ‖∇K(t)‖. This upper bound is free of x, and goes to 0 as n→∞. Now,∥∥∥∥∥ 1

nhd

n∑
i=1

K
(x−Xi

h

)
u(x−Xi)

∥∥∥∥∥−
∥∥∥∥∥ 1

nhd

n∑
i=1

K
(y−Xi

h

)
u(y−Xi)

∥∥∥∥∥
≤

∥∥∥∥∥ 1

nhd

n∑
i=1

[
K
(x−Xi

h

)
u(x−Xi)−K

(y−Xi

h

)
u(y−Xi)

]∥∥∥∥∥ (9)

≤

∣∣∣∣∣ 1

nhd

n∑
i=1

[
K
(x−Xi

h

)
−K

(y−Xi

h

)]∣∣∣∣∣+K(0)

∥∥∥∥∥ 1

nhd

n∑
i=1

[u(x−Xi)− u(y−Xi)]

∥∥∥∥∥ .
We have proved above that the first part converges to 0 in a.s. sense.

For the second part, consider a ball of radius 1/n around x (say, B(x, 1/n)). Now,∥∥∥∥∥ 1

nhd

n∑
i=1

[u(x−Xi)− u(y−Xi)]

∥∥∥∥∥ ≤
∣∣∣∣ 2

nhd

n∑
i=1

I[Xi ∈ B(x, 1/n)]

∣∣∣∣+
2n

hd
‖x− y‖

≤ 2

hd

∣∣∣∣ 1n
n∑
i=1

I[Xi ∈ B(x, 1/n)]− P [X1 ∈ B(x, 1/n)]

∣∣∣∣
+

2

hd
P [X1 ∈ B(x, 1/n)] +

2n
√

2

n2hd
.

Note that I[Xi ∈ B(x, 1/n)]s are i.i.d. bounded random variables with expectation
P [X ∈ B(x, 1/n)]. Therefore, a.s. convergence of the first term follows from Bernstein’s
inequality. Since P [X ∈ B(x, 1/n)] ≤ Mfn

−d (where Mf = supx f(x) < ∞), the second
term converges to 0. For any fixed h, the third term also converges to 0 as n→∞. So, we
have |LSPD◦h(x, Fn)− LSPD◦h(y, Fn)| a.s.→ 0 as n→∞.

Similarly, one can prove that |LSPD◦h(x, F ) − LSPD◦h(y, F )| a.s.→ 0 as n → ∞. In
the arguments above, all the bounds are free from x and y. We have also proved that
supy∈An

|LSPD◦h(y, Fn) − LSPD◦h(y, F )| a.s.→ 0 as n → ∞. Combining all these results, we

have supx∈Bn\An
|LSPD◦h(x, Fn)− LSPD◦h(x, F )| a.s.→ 0 as n→∞.

(iii) Now, consider the region outside Bn (i.e., the set Bc
n). First note that

sup
x∈Bc

n

|LSPD◦h(x, Fn)−LSPD◦h(x, F )| ≤ sup
x∈Bc

n

1

nhd

n∑
i=1

K
(x−Xi

h

)
+ sup

x∈Bc
n

1

hd
E
[
K
(x−X

h

)]
.
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We will show that both of these terms become sufficiently small as n→∞.
Fix an ε > 0. We can choose two constants M1 and M2 such that P (‖X‖ ≥ M1) ≤

hdε/2K(0) and K(t) ≤ hdε/2 when ‖t‖ ≥M2. Now, one can check that

1

hd
E
[
K
(x−X

h

)]
≤ 1

hd
E
[
K
(x−X

h

)
I(‖X‖ ≤M1)

]
+

1

hd
K(0)P (‖X‖ > M1).

If x ∈ Bc
n and ‖X‖ ≤ M1, then h−1‖x−X‖ ≥ h−1|

√
dn−M1|. Choose n large enough so

that |
√
dn−M1| ≥M2h, and this implies K(h−1(x−X)) ≤ hdε/2. So, we obtain

1

hd
E
[
K
(x−X

h

)]
≤ ε

2
+

1

hd
K(0)P (‖X‖ > M1) ≤ ε, and

1

nhd

n∑
i=1

K
(x−Xi

h

)
≤ ε

2
+

1

hd
K(0)

1

n

n∑
i=1

I(‖Xi‖ > M1)

≤ ε+
1

hd
K(0)

∣∣∣∣∣ 1n
n∑
i=1

I(‖Xi‖ > M1)− P (‖X‖ > M1)

∣∣∣∣∣ .
The Glivenko-Cantelli theorem implies that the last term on the right hand side converges
to 0 as n→∞. So, we have supx∈Bc

n
|LSPD◦h(x, Fn)− LSPD◦h(x, F )| a.s.→ 0 as n→∞.

Combining the arguments in parts (i), (ii) and (iii) and for a fixed h ∈ (0, 1], we get
supx |LSPD◦h(x, Fn)−LSPD◦h(x, F )| a.s.→ 0 as n→∞. If we have h > 1, then this convergence
result can be proved in a similar way. For this case, recall that the definition of LSPD◦(x, F )
does not involve the hd term in the denominator (see equation (3)).

Remark 9 Following the proof of Theorem 5, it is easy to check that a.s. convergence holds
when h diverges to infinity with n.

Remark 10 The result continues to hold when h → 0 as well. However, for a.s. conver-
gence in part (i) (to use the Borel-Cantelli lemma) we require nh2d/ log n→∞ as n→∞.
In part (iii), we need M1 and M2 to vary with n. Assume the first moment of the density
corresponding to F to be finite, and

∫
‖t‖K(t)dt < ∞ (which implies that ‖t‖K(t) → 0

as ‖t‖ → ∞). Also, assume that nh2d/ log n → ∞ as n → ∞. We can now choose
M1 = M2 =

√
n to ensure that both P (‖X‖ ≥ M1) ≤ hdε/2K(0) and K(t) ≤ hdε/2 for

‖t‖ ≥M2 hold for a sufficiently large n.

Proof of Theorem 6(a) : Consider two independent random vectors X = (X(1), . . .,

X(d))T ∼ Fj and X1 = (X
(1)
1 , . . . , X

(d)
1 )T ∼ Fj , where 1 ≤ j ≤ J . It follows from (C1) and

(C2) that ‖X−X1‖/
√
d
a.s.→
√

2σ2j as d→∞. So, for almost every realization x of X ∼ Fj ,

‖x−X1‖/
√
d
a.s.→
√

2σ2i as d→∞. (10)

Next, consider two independent random vectors X ∼ Fj and X1 ∼ Fi for 1 ≤ i 6= j ≤ J .

Using (C1) and (C2), we get ‖X−X1‖/
√
d
a.s.→
√
σ2j + σ2i + νji as d → ∞. Consequently,

for almost every realization x of X ∼ Fj

‖x−X1‖/
√
d
a.s.→
√
σ2j + σ2i + νji as d→∞. (11)
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Let us next consider 〈x − X1,x − X2〉, where X ∼ Fj , X1,X2 ∼ Fi are independent
random vectors, and 〈·, ·〉 denotes the inner product in Rd. Therefore, for almost every
realization x of X, arguments similar to those used in (10) and (11) yield

〈x−X1,x−X2〉
d

a.s.→ σ2j as d→∞ if 1 ≤ i = j ≤ J, and (12)

〈x−X1,x−X2〉
d

a.s.→ σ2j + νji as d→∞ if 1 ≤ i 6= j ≤ J. (13)

Observe now that ‖EFj [u(x − X)]‖2 = 〈EFj [u(x − X1)], EFj [u(x − X2)]〉 = EFj [〈u(x −
X1), u(x−X2)〉], where X1,X2 ∼ Fj are independent random vectors for 1 ≤ j ≤ J .

Since we are dealing with expectations of random vectors with bounded norm, a simple
application of DCT implies that for almost every realization x of X ∼ Fj (1 ≤ j ≤ J), as
d→∞,

SPD◦(x, Fj)
a.s.→ 1−

√
1

2
and SPD◦(x, Fi)

a.s.→ 1−

√
σ2j + νji

σ2j + σ2i + νji
for i 6= j. (14)

Thus, for X ∼ Fj , we get z◦(X) = (SPD◦(X, F1), . . . ,SPD◦(X, FJ))T
a.s.→ cj as d→∞.

Proof of Theorem 6(b) : Recall that for h > 1, LSPD◦h(x, F ) = EF [hdKh(t)] −
‖EF [hdKh(t)u(t)]‖. Since we have assumed Xs to be standardized, here we get hdKh(t) =
K((x−X)/h) = g0(‖x−X‖/h). Let X ∼ Fj and Xi ∼ Fi with 1 ≤ i, j ≤ J . Using (10) and
(11) above, and the continuity of g0, for almost every realization x of X ∼ Fj , one obtains
the following

g0

(
‖x−Xi‖√

d

√
d

h

)
a.s.→ g0(0) or g0(ejiA0),

depending on whether
√
d/h → 0 or A0. The proof follows from an application of DCT,

and the arguments used in the proof of Theorem 6(a).

Proof of Theorem 6(c) : Since g0(s)→ 0 as s→∞, using the same argument as used in
the proof of Theorem 6(b), for Xi ∼ Fi and almost every realization x of X ∼ Fj , we have

g0

(
‖x−Xi‖√

d

√
d

h

)
a.s.→ 0 as

√
d/h→∞.

The proof now follows from a simple application of DCT.

Lemma 11 Recall cj and c′j for 1 ≤ j ≤ J defined in Theorem 6(a) and (b), respectively.
For any 1 ≤ j 6= i ≤ J , cj = ci if and only if σj = σi and νji = νij = 0. Similarly, c′j = c′i
if and only if σj = σi and νji = νij = 0.

Proof of Lemma 11 : The ‘if’ part is easy to check in both cases. So, it is enough to prove
the ‘only if’ part and that too for the case of J = 2. If c1 = (c11, c12)

T and c2 = (c21, c22)
T

are equal, then we have

σ21 + ν12
σ21 + σ22 + ν12

= 1/2 and
σ22 + ν12

σ21 + σ22 + ν12
= 1/2.
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These two equations hold simultaneously only if σ21 = σ22 and ν12 = ν21 = 0.
Consider the case c′1 = c′2. Recall that c′11 = g0(A0

√
2σ1)c11, c

′
22 = g0(A0

√
2σ2)c22,

c′12 = g0(A0

√
σ21 + σ22 + ν12)c12 and c′21 = g0(A0

√
σ22 + σ21 + ν21)c21. If possible, assume

that σ1 > σ2. This implies that A0

√
σ21 + σ22 + ν12 > A0

√
2σ1 and hence we obtain

g0(A0

√
2σ1) > g0(A0

√
σ21 + σ22 + ν12) (since g0 is monotonically decreasing). (15)

Also, if σ1 > σ2, we must have

1/2 <
σ21

σ21 + σ22
<

σ21 + ν12
σ21 + σ22 + ν12

< 1⇔ 1−
√

1/2 > 1−

√
σ21 + ν12

σ21 + σ22 + ν12
. (16)

Combining (15) and (16), we have c′11 > c′21, and this implies c′1 6= c′2. Similarly, if σ1 < σ2,
we get c′12 > c′22 and hence c′1 6= c′2. Again, if σ1 = σ2 but ν12 = ν21 > 0, similar arguments
lead to c′1 6= c′2 . This completes the proof.
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