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Abstract

Electronic Health Record (EHR) phenotyping utilizes patient data captured through nor-
mal medical practice, to identify features that may represent computational medical phe-
notypes. These features may be used to identify at-risk patients and improve prediction
of patient morbidity and mortality. We present a novel deep multi-modality architecture
for EHR analysis (applicable to joint analysis of multiple forms of EHR data), based on
Poisson Factor Analysis (PFA) modules. Each modality, composed of observed counts, is
represented as a Poisson distribution, parameterized in terms of hidden binary units. In-
formation from different modalities is shared via a deep hierarchy of common hidden units.
Activation of these binary units occurs with probability characterized as Bernoulli-Poisson
link functions, instead of more traditional logistic link functions. In addition, we demon-
strate that PFA modules can be adapted to discriminative modalities. To compute model
parameters, we derive efficient Markov Chain Monte Carlo (MCMC) inference that scales
efficiently, with significant computational gains when compared to related models based on
logistic link functions. To explore the utility of these models, we apply them to a subset
of patients from the Duke-Durham patient cohort. We identified a cohort of over 16,000
patients with Type 2 Diabetes Mellitus (T2DM) based on diagnosis codes and laboratory
tests out of our patient population of over 240,000. Examining the common hidden units
uniting the PFA modules, we identify patient features that represent medical concepts.
Experiments indicate that our learned features are better able to predict mortality and
morbidity than clinical features identified previously in a large-scale clinical trial.
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1. Introduction

Electronic health records (EHR) are quickly becoming a primary depository of detailed pa-
tient health information. These data, if properly analyzed, have the potential to be a nidus
for novel insights that may improve patient diagnosis, treatment and safety. In particular,
there has been increasing focus on utilizing such data to rapidly identify disease cohorts or
“phenotypes” that can be leveraged in clinical and epidemiological studies. However, EHR
data, a by-product of the often messy day-to-day interactions of physicians and patients
in primary care hospital and emergency room settings, are often challenging to manipulate
and interpret without expert input.

Many of the initial EHR phenotyping methods in the literature (Hripcsak and Albers,
2013; Mareedu et al., 2009) relied and continue to rely explicitly on heuristics generated
through the collaboration of physicians and informatics. These “computable” phenotypes
identified clusters of patients that, for example, suffer from a particular ailment (Newton
et al., 2013). Computable phenotypes are often structured similar to decision trees that
utilize multiple modes of patients data captured by the EHR1 to filter patient groups.
These modes may include physician and nursing notes from prior encounters, procedure and
diagnosis codes, laboratory results, medications, radiology and pathology. Alternatively,
other methods have relied on physician-labeled case and control samples (Chen et al., 2013),
to identify patient features that may represent a patient phenotype.

Computable phenotypes resemble an analysis that physicians intuitively perform while
diagnosing patients. At a high level, physicians assign patients to a latent space of plausible
disease phenotypes that inform diagnosis and treatment. This assignment is based on
heterogeneous data from the patient interview and physical exam, in combination with
other data such as radiology reports, laboratory results and prior medication and medical
history. For example, a young child who presents with multiple respiratory infections at
an early age increases the probability of a cystic fibrosis phenotype, and thus may be a
candidate for associated genetic testing.

Despite their success in (i) advancing medical record data mining across large medical
institutions and (ii) genotype/phenotypes studies, efforts to develop computable pheno-
types are nonetheless iterative, manual and difficult to scale. Further, there appears to be
widespread variability in disease definitions for even putatively “well-defined” diseases. In
Richesson et al. (2013) it was shown that even for phenotypes where there is widespread
agreement on the disease definition, such as Type 2 Diabetes Mellitus, definitions by differ-
ent clinical groups captured different patient populations.

A complementary approach to modeling patient phenotypes from EHR data relies on
utilizing unsupervised models. These computational phenotypes have the ability to identify
not only feature sets that represent known medical concepts, but they may also discover
feature sets that may represent novel phenotypes that are: (i) subtypes of and/or (ii) run
counter to clinically intuited groups. Applied to health-system data and CMS (Centers for
Medicare & Medicaid Services) claims data, it has been demonstrated that sparse tensor

1. See https://phekb.org/.
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factorization of multimodal patient data, transformed into count data, generates concise
sets of sparse factors that are recognizable by medical professionals (Ho et al., 2014a,b).
Patients can then be treated as a weighted composites of such factors.

While these automated models are efficient at extracting phenotype data and reducing
manual input, they have several limitations (Chen et al., 2013; Ho et al., 2014a). Current
models are unable to capture correlation both between and within data modes. For example,
tensor factorization requires the presence of all modes of patient data within a limited time
window to capture the patient-physician interaction. As the number of modes increase, the
probability of all modes of data being captured within a limited time window decreases.
This prevents leveraging subsets of data modes from (often) limited patient interactions
with care givers. Meanwhile, models that concatenate multiple data modes, or evaluate
each mode separately, lose correlation between data types. Additionally, current models do
not allow one to integrate classification in a straightforward manner. Rather, prediction is
conducted in a step-wise manner relying on defining factors first and then entering them
into a classification procedure. Current models also often only incorporate a single layer of
information, depriving the model of potentially rich higher-level correlation structure within
and between modes.

Deep models, understood as multilayer modular networks, have recently generated sig-
nificant interest from the machine learning community, in part because of their ability
to obtain state-of-the-art performance in a wide variety of modalities. Commonly used
modules include, but are not limited to, Restricted Boltzmann Machines (RBMs) (Hinton,
2002), Sigmoid Belief Networks (SBNs) (Neal, 1992), convolutional networks (LeCun et al.,
1998), feedforward neural networks, and Dirichlet Processes (DPs) (Blei et al., 2004). Deep
models are often employed in topic modeling, modeling data characterized by vectors of
word counts. As discussed below, EHR data may often be expressed in terms of counts
of entities (e.g., counts of types of medications, tests or procedure codes, generalizing the
concept of words). Topic models are therefore of interest for EHR data. Examples of deep
topic models, composed of DP modules, include the nested Chinese Restaurant Process
(nCRP) (Blei et al., 2004), the hierarchical DP (HDP) (Teh et al., 2006), and the nested
HDP (nHDP) (Paisley et al., 2015). Alternatively, topic models built using modules other
than DPs have been proposed recently, for instance the Replicated Softmax Model (RSM)
(Hinton and Salakhutdinov, 2009) based on RBMs, the Neural Autoregressive Density Esti-
mator (NADE) (Larochelle and Lauly, 2012) based on neural networks, the Over-replicated
Softmax Model (OSM) (Srivastava et al., 2013) based on DBMs, and Deep Poisson Factor
Analysis (DPFA) (Gan et al., 2015a) based on SBNs.

DP-based models have attractive characteristics from the standpoint of interpretability,
in the sense that their generative mechanism is parameterized in terms of distributions over
topics, with each topic characterized by a distribution over words. Alternatively, non-DP-
based models, in which modules are parameterized by a deep hierarchy of binary units
(Hinton and Salakhutdinov, 2009; Larochelle and Lauly, 2012; Srivastava et al., 2013),
do not have parameters that are as readily interpretable in terms of topics of this type,
although model performance is often excellent. The DPFA model in Gan et al. (2015a)
is one of the first representations that characterizes documents based on distributions over
topics and words, while simultaneously employing a deep architecture based on binary units.
Specifically, Gan et al. (2015a) integrates the capabilities of Poisson Factor Analysis (PFA)
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(Zhou et al., 2012) with a deep architecture composed of SBNs (Gan et al., 2015b). PFA is
a nonnegative matrix factorization framework closely related to DP-based models. Results
in Gan et al. (2015a) show that DPFA outperforms other well-known deep topic models.

Building on the success of DPFA, this paper proposes a new deep multi-modality ar-
chitecture for topic modeling, based entirely on PFA modules. Our model merges two key
aspects of DP and non-DP-based architectures, namely: (i) its nonnegative formulation
relies on Dirichlet distributions, and is thus readily interpretable throughout all its layers,
not just at the base layer as in DPFA (Gan et al., 2015a); (ii) it adopts the rationale of
traditional non-DP-based models such as DBNs and DBMs, by connecting different modal-
ities and layers via binary units, to enable learning of high-order statistics and structured
correlations within and across modalities. The probability of a binary unit being on is
controlled by a Bernoulli-Poisson link (Zhou, 2015) (rather than a logistic link, as in the
SBN), allowing repeated application of PFA modules at all layers of the deep architecture.
An early version of our approach, for the special case of single-modality data, but mainly
focused on topic models was previously described in Henao et al. (2015).

The main contributions of this paper are as follows. (i) We develop a novel deep ar-
chitecture for topic models based entirely on PFA modules. (ii) The model has inherent
shrinkage in all its layers, thanks to the DP-like formulation of PFA. This is unlike DPFA,
which is based on SBNs. (iii) The proposed model yields greatly improved mixing, com-
pared to DPFA which requires sequential updates for its binary units; in our formulation
these are updated in block. (iv) The proposed approach provides the ability to build deep
multi-modality architectures and discriminative topic models with PFA modules. (v) We
develop an efficient MCMC inference procedure that scales as a function of the number of
non-zeros in the data and binary units. In contrast, models based on RBMs and SBNs scale
with the size of the data and binary units. Finally, (vi) we demonstrate the applicability
of this framework to the analysis of EHR data, with an associated interpretation of the
inferred data features (topics and meta-topics, as detailed below).

2. Model

2.1 Poisson factor analysis as a module

Assume xn is an M -dimensional vector containing counts of M different entities (e.g., words
in documents), for the n-th of N data vectors. We impose the model

xn ∼ Poisson (Ψ(θn ◦ hn)) , (1)

where Ψ ∈ RM×K+ is the factor loadings matrix with K factors, θn ∈ RK+ are factor in-
tensities, hn ∈ {0, 1}K is a vector of binary units indicating which factors are active for
observation n, and ◦ represents the element-wise (Hadamard) product. The representation
in (1) may be expressed as

xmn =

K∑
k=1

xmkn , xmkn ∼ Poisson(λmkn) , λmkn = ψmkθknhkn (2)

where ψk is column k of Ψ, ψmk is component m of ψk, xmn is component m of xn, θkn is
component k of θn, and hkn is component k of hn. In (2) we have used the additive property
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Figure 1: Graphical models. (a) Poisson Factor analysis module in (1)-(3). Nodes (bk, ẑn
and yn) and edges drawn with dashed lines correspond to the discriminative PFA described
in Section 2.5. (b) Deep Poisson factor model in (5). (c) Deep Multi-task Poisson factor
model in (6). Filled and empty nodes represent observed and latent variables, respectively.

of the Poisson distribution to decompose the m-th observed count of xn as K latent counts,
{xmkn}Kk=1.

One possible prior specification for the model in (1), recently introduced by Zhou et al.
(2012), is

ψk ∼ Dirichlet(η1M ) , θkn ∼ Gamma(rk, (1− b)b−1) , hkn ∼ Bernoulli(πkn) (3)

where 1M is an M -dimensional vector of all-ones. Furthermore, for simplicity we let η =
1/K, b = 0.5 and rk ∼ Gamma(1, 1). Prior distributions for η and b that result in closed
form conditionals exist, and can be used if desired; see for instance Escobar and West (1995)
for η, and Zhou and Carin (2015) for b.

There is one parameter in (3) for which we have not specified a prior distribution,
specifically E[p(hkn = 1)] = πkn. In Zhou et al. (2012), hkn is provided with a beta-Bernoulli
process prior by letting πkn = πk ∼ Beta(cε, c(1 − ε)), where usually c = 1 and ε = 1/K,
meaning that each of the N data vectors has on average the same probability of seeing a
particular topic as active. It further assumes topics are independent of each other. These
two assumptions are restrictive because: (i) in practice, the N data vectors often belong
to a heterogeneous population (e.g., patients); letting the data vectors have individual
topic activation probabilities allows the model to better accommodate heterogeneity in the
data. (ii) Some topics are likely to co-occur systematically, so being able to harness such
correlation structures can improve the ability of the model for fitting the data.

The hierarchical model in (1)-(3) is denoted xn ∼ PFA(Ψ,θn,hn; η, rk, b), short for
Poisson Factor Analysis (PFA), with graphical model representation shown in Figure 1(a).
The model in (1)-(3) is closely related to other widely known topic model approaches, such
as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), HDP (Teh et al., 2006) and Focused
Topic Modeling (FTM) (Williamson et al., 2010). Connections between these models are
discussed in Section 2.7.
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2.2 Deep representations with PFA modules

Several models have been proposed recently to address the limitations described in the
previous section (Blei et al., 2004; Blei and Lafferty, 2007; Gan et al., 2015a; Teh et al.,
2006). In particular, Gan et al. (2015a) proposed using multilayer SBNs (Neal, 1992) to
impose correlation structure across topics, while providing each data vector with the ability
to control its topic activation probabilities, without the need of a beta-Bernoulli process
(Zhou et al., 2012). Here we follow the same rationale as Gan et al. (2015a), but without
SBNs. We start by noting that for a binary vector hn with elements hkn, we can write

hkn = 1(zkn ≥ 1), zkn ∼ Poisson
(
λ̃kn

)
, (4)

where zkn is a latent count for variable hkn, parameterized by a Poisson distribution with
rate λ̃kn. The function 1(·) is defined as 1(·) = 1 if the argument is true, and 1(·) = 0
otherwise. The model in (4), recently proposed in Zhou (2015), is known as the Bernoulli-
Poisson Link (BPL) and is denoted hn ∼ BPL(λ̃n), for λ̃n ∈ RK+ . After marginalizing
out the latent count zkn (Zhou, 2015), the model in (4) has the interesting property that
p(hkn = 1) = Bernoulli(πkn), where πkn = 1−exp(−λ̃kn). In order to sample hkn we do not
need to instantiate latent count zkn but the rate of its underlying distribution λ̃kn. Hence,
rather than using the logistic function to represent binary unit probabilities as in SBNs, we
employ πkn = 1− exp(−λ̃kn).

The binary distribution based on p(h = 1) = Bernoulli(1−exp(−λ̃)) is reminiscent of the
complementary log-log link function (Piegorsch, 1992; Collett, 2002), where λ̃ = exp(−u)
and u ∈ R. Unlike the logistic function, that is symmetric around the origin, u = 0 for
p(h = 1) = Bernoulli(1/(1 + exp(−u))), the complementary log-log link is asymmetric,
making it appropriate for imbalanced modalities, where the proportion of zeros is large.
In our setting, this behavior is ideal because it encourages sparsity, in that it supports
the assumption that a given data vector (patient) is explained by a small subset of topics
selected via binary units, hn.

In (2) and (4) we have represented the Poisson rates as λmkn and λ̃kn, respectively, to
distinguish between the two. However, the fact that the count vector in (3) and the binary
variable in (4) are both represented in terms of Poisson distributions suggests the following
deep model, based on PFA modules

xn ∼ PFA
(
Ψ(1),θ(1)

n ,h(1)
n ; η(1), r

(1)
k , b(1)

)
, h(1)

n = 1
(
z(2)
n

)
,

z(2)
n ∼ PFA

(
Ψ(2),θ(2)

n ,h(2)
n ; η(2), r

(2)
k , b(2)

)
,

...

... h(L−1)
n = 1

(
z(L)
n

)
,

z(L)
n ∼ PFA

(
Ψ(L),θ(L)

n ,h(L)
n ; η(L), r

(L)
k , b(L)

)
, h(L)

n = 1
(
z(L+1)
n

)
,

(5)

where L is the number of layers in the model, and 1(·) is a vector operation in which
each component imposes the left operation in (4). In this Deep Poisson Factor Model
(DPFM), shown as a graphical model in Figure 1(b) and also previously described in Henao

et al. (2015), the binary units at layer ` ∈ {1, . . . , L} are drawn h
(`)
n ∼ BPL(λ

(`+1)
n ), for
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λ
(`)
n = Ψ(`)(θ

(`)
n ◦ h

(`)
n ). The form of the model in (5) introduces latent variables {z(`)

n }L+1
`=2

and the element-wise function 1(·), rather than explicitly drawing {h(`)
n }L`=1 from the BPL

distribution. Concerning the top layer, we let z
(L+1)
kn ∼ Poisson(λ

(L+1)
k ) and λ

(L+1)
k ∼

Gamma(a0, b0).

2.3 Deep multi-modality representation with PFA modules

In a multi-modality setting, each individual is characterized by D different count vectors,
each of which is characterized by a different vocabulary (different types of entities being
counted, i.e., different modalities). Individual n ∈ {1, . . . , N}, data type i ∈ {1, . . . , D} is

denoted as x
(i)
n , corresponding to an Mi-dimensional count vector. The dataset described

in Section 3 is composed of D = 3 data types: medications, laboratory tests and codes.
Since all D data types are composed of count vectors, we can in principle concatenate the

D vectors for patient n into a long
∑

iMi-dimensional vector,
[
(x

(1)
n )>, . . . , (x

(D)
n )>

]>
, that

we can model with the DPFM in (5). Such an approach will allow us to learn about the
correlation structure of the variables in the concatenated modalities, but it ignores the fact
that due to context, each data type in general has its own correlation structure. Another
simple approach consists of modeling each data type individually, again using (5); however,
this fails to acknowledge that different modality types can be correlated, as they represent
different contexts or “views” of a larger representational space. In Henao et al. (2015),
the authors employ this single-modality approach to model medications from the dataset
described in Section 3, however they do not provide insights on how to combine multiple
modalities. Motivated by the shortcoming of these two simplistic approaches, we modify
the model in (5) to learn correlation structures of individual modalities, but at the same
time to be able to share information across them to leverage their correlation structure. In
particular, we propose a data-type-specific first layer and a deep architecture of shared PFA
modules, formally written as

x(i)
n ∼ PFA(i,1) , h(i,1)

n = 1
(
z(i,2)
n

)
, i = 1, . . . , D ,

z(1,2)
n , . . . , z(D,2)

n ∼ MPFA(2) ,
...

... h(L−1)
n = 1

(
z(L)
n

)
,

z(L)
n ∼ PFA(L) , h(L)

n = 1
(
z(L+1)
n

)
,

(6)

where

PFA(i,1) def
= PFA

(
Ψ(i,1),θ(i,1)

n ,h(i,1)
n ; η(i,1), r

(i,1)
k , b(i,1)

)
, (7)

MPFA(2) def
=

D∏
i

PFA
(
Ψ(i,2),θ(2)

n ,h(2)
n ; η(2), r

(2)
k , b(2)

)
, (8)

z(i,2)
n ∼ PFA

(
Ψ(i,2),θ(2)

n ,h(2)
n ; η(2), r

(2)
k , b(2)

)
. (9)

The first layer in (6) is composed of D independent PFA modules as in (7), with explicit hier-
archical model in (3). The multi-modality PFA model, denoted MPFA in (8), is a PFA model
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in which each modality has an associated factor loadings matrix, Ψ(i,2), but shared factor in-

tensities, θ
(2)
n , binary units, h

(2)
k and parameters {η(2), r

(2)
k , b(2)}. This means that modality-

specific latent counts, z
(i,2)
n , can be drawn from a PFA module restricted to Ψ(i,2) as in (9).

The MPFA module in (8) is a novel specification, not previously considered by Henao et al.
(2015), that extends the functionality of Poisson factor analysis beyond applications in
electronic health records analysis. The architecture of the Deep Multi-modality Poisson
Factor Model (DMPFM) in (6) is fully specified by {K(1,1), . . . ,K(D,1),K(2), . . . ,K(L)} and
L, where K(i,1) are modality-specific loadings sizes (number of topics), K(k) are modality-
shared loadings sizes and L is the number of layers. For example, Figure 1 shows a graphical
model representation for a specification with D = 3 and L = 2. When the model is set for
a single-modality, D = 1, the architecture in (6) is equivalent to DPFM, as shown in (5)
and previously described by Henao et al. (2015).

2.4 Model interpretation

Consider modality i in layer 1 of (6), from which x
(i)
n is drawn. Assuming h

(i,1)
n is known,

this corresponds to a focused topic model (Williamson et al., 2010). The columns of Ψ(i,1)

correspond to modality-i topics, with the k-th column ψ
(i,1)
k defining the probability with

which entities (e.g., medications) of modality i are manifested for topic k (each ψ
(i,1)
k is

drawn from a Dirichlet distribution, as in (3)). Generalizing the notation from (2), λ
(i,1)
kn =

ψ
(i,1)
k θ

(i,1)
kn h

(i,1)
kn ∈ RM+ , is the rate vector associated with topic k, modality i and patient

n, and it is active when h
(i,1)
kn = 1. The entity-count vector for patient n in modality i

manifested from topic k is x
(i)
kn ∼ Poisson

(
λ

(i,1)
kn

)
, and x

(i)
n =

∑K(i,1)

k=1 x
(i)
kn, where K(i,1)

is the number of topics in the module. The columns of Ψ(i,1) define correlation among
the entities associated with the topics; for a given topic (column of Ψ(i,1)), some entities
co-occur with high probability, and other entities are likely jointly absent.

We now consider a two-layer model, with h
(2)
n assumed known. To generate h

(i,1)
n ,

we first draw z
(i,2)
n , which, analogous to above, may be expressed as z

(i,2)
n =

∑K2
k=1 z

(i,2)
kn ,

with z
(i,2)
kn ∼ Poisson

(
λ

(i,2)
kn

)
and λ

(i,2)
kn = ψ

(i,2)
k θ

(2)
knh

(2)
kn . Note that factor intensities and

binary units, respectively θ
(2)
kn and h

(2)
kn , are shared across the i = 1, . . . , D modalities.

Column k of Ψ(i,2) corresponds to a meta-topic specific to modality i, with ψ
(i,2)
k a K(i,1)-

dimensional probability vector, denoting the probability with which each of the modality-i

layer-1 topics are “on” when layer-2 “meta-topic” k is on (i.e., when h
(2)
kn = 1). The

columns of Ψ(i,2) define correlation among the modality-i layer-1 topics; for a given layer-2
meta-topic (column of Ψ(i,2)), some layer-1 topics co-occur with high probability, and other
layer-1 topics are likely jointly absent. Furthermore, columns of the concatenated meta-topic

matrix,
[
(Ψ(1,2))> . . . (Ψ(D,2))>

]>
, define correlation structure among all layer-1 topics at

the same time.

As one moves up the hierarchy, to layers ` > 2, the meta-topics become increasingly
more abstract and sophisticated, manifested in terms of probabilisitic combinations of topics
and meta-topics at the layers below. Because of the properties of the Dirichlet distribution,
each column of a particular Ψ(`) is encouraged to be sparse, implying that a column of Ψ(`)
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encourages use of a small subset of columns of Ψ(`−1), with this repeated all the way down
to the data layer, and the topics reflected in the columns of Ψ(1). This deep architecture
imposes correlation across the layer-1 topics in all modalities, and it does it through use of
PFA modules at all layers of the deep architecture, unlike Gan et al. (2015a) which uses an
SBN for layers 2 through L, and a PFA at the bottom layer. In addition to the elegance
of using a single class of modules at each layer, the proposed deep model has important
computational benefits, as discussed in Section 2.6.

We emphasize that
{
θ

(2)
kn , h

(2)
kn

}
are shared across all D data types, or modalities. The

hierarchy that resides above them is meant to model underlying latent correlations in aspects
of disease and health. The underlying state of the patient is independent of the modality

with which he/she is viewed. When h
(2)
kn = 1, the kth meta-topic of health/disease is “on”

for patient n; ψ
(i,2)
k characterizes how meta-topic k impacts the presence/absence of each

topic associated with modality i. The modality-dependence is manifested at the bottom
of the deep model, near the data, and the deep architecture above it imposes statistical
relationships among the meta-topics, and is meant to characterize latent health/disease.

2.5 PFA modules for multi-label classification

Assume there is a C-dimensional vector of binary labels yn ∈ {0, 1}C associated with
patient n (presence/absence of C maladies or illnesses). Provided that labels share the
same covariates (patient n, xn) and are oftentimes correlated, it is reasonable to model all
labels jointly as opposed to build individual models for each label. We seek to learn the
model for mapping xn → yn simultaneously with learning the deep topic representation in
Section (2.2). In fact, the mapping xn → yn is based on the deep generative process for xn
in (5). This means that we can leverage the correlation structure of count data vectors and
labels at the same time. We represent each element of yn, ycn, using (4). We impose the
model

ycn = 1(ẑcn ≥ 1) , ẑcn ∼ Poisson
(
λ̂cn

)
, (10)

where λ̂cn is element c of λ̂n. First considering the single-modality case, λ̂n = B(θ
(1)
n ◦h(1)

n )
and B ∈ RC×K+ is a matrix of nonnegative classification weights, with prior distribution
bk ∼ Dirichlet(ζ1C), where bk is a column of B. Here, we denote latent counts as ẑn =

[ẑ1n . . . ẑCn]> to differentiate them form those coming from the DPFM, denoted as z
(`)
n

in (5). The matrix of classification weights, B, in (10) serves two purposes: (i) learns
the correlation structure of labels, since large entries in bk, say bck and bc′k indicate their
corresponding labels, c and c′ are proportionally correlated; and (ii) provided that the prior
for B encourages sparsity, the resulting classifier is parsimonious and easier to interpret
than that of a classifier with dense B.

Figure 1(a) shows a graphical model representation of a PFA module connected to the
multi-label classifier in (10), where solid nodes and edges represent PFA module components
and dashed lines are specific to the classification model. Combining (5) with (10) allows us

to learn the mapping xn → yn via the shared first-layer local representation, θ
(1)
n ◦h(1)

n , that
encodes topic usage for document n. This sharing mechanism allows the model to learn

9
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topics, Ψ(1), and meta-topics, {Ψ(`)}L`=2, biased towards discrimination, as opposed to just
explaining the data, xn.

For the deep multi-modality model in (6), we learn the mapping x
(1)
n , . . . ,x

(D)
n → yn

through the first-layer local representations from all modalities, hence λ̂n =
∑D

i=1 Bi(θ
(i,1)
n ◦

h
(i,1)
n ), where Bi ∈ RC×K(i,1)

+ , for i = 1, . . . , D. In this case, the classifier uses information

from all modalities but at the same time biases modality-specific topics, Ψ(i,1), towards
discrimination. We call this construction discriminative deep multi-modality Poisson factor
model. In cases where multi-class, not multi-label classification is required, we can use the
formulation introduced by Henao et al. (2015), based on a multinomial likelihood function,
instead of a Bernoulli-Poisson link as in (10). Although other DP-based discriminative topic
models have been proposed (Lacoste-Julien et al., 2009; Mcauliffe and Blei, 2008), they rely
on approximations in order to combine the topic model, usually LDA, with softmax-based
classification approaches.

2.6 Inference

A convenient feature of the model in (5) and (6) is that all its conditional posterior distri-
butions can be written in closed form, due to local conjugacy. In this section, we focus on
Markov chain Monte Carlo (MCMC) via Gibbs sampling for our implementation. In appli-
cations where the fully Bayesian treatment becomes prohibitive computationally, Stochastic
Variational Inference (SVI) can be used (Henao et al., 2015). See Appendix A for details
about SVI implementation for models based on PFA modules. Other alternatives for scaling
up inference in Bayesian models such as the parameter server (Ho et al., 2013; Li et al.,
2014), conditional density filtering (Guhaniyogi et al., 2014) and stochastic gradient-based
approaches (Chen et al., 2014; Ding et al., 2014; Welling and Teh, 2011), are also possibile
but beyond the scope of this work.

Gibbs sampling for the model in (5) and (6) involves sampling in sequence from the
conditional posterior of all the parameters of the model. For instance, for the DPFM in (5),

we have {Ψ(`),θ
(`)
n ,h

(`)
n , r

(`)
k }, for ` = 1, . . . , L, and λ(L+1). For the multi-modality model

in (6) we also have to account for modality-specific parameters in (7). The remaining
parameters of the model are set to fixed values: η = 1/K, b = 0.5 and a0 = b0 = 1. We note
that priors for η, b, a0 and b0 exist that result in Gibbs-style updates, and can be readily
incorporated into the model if desired; however, we opted to keep the model as simple as
possible, without compromising flexibility. The most unique conditional posteriors for a
single PFA module are shown below, without layer index for clarity,

ψk ∼ Dirichlet(η + x1k·, . . . , η + xMk·) ,

θkn ∼ Gamma(rkhkn + x·kn, b
−1) ,

hkn ∼ δ(x·kn = 0)Bernoulli(π̃kn(π̃kn + 1− πkn)−1) + δ(x·kn ≥ 1) ,

(11)

where

xmk· =

N∑
n=1

xmkn , x·kn =

M∑
m=1

xmkn , π̃kn = πkn(1− b)rk .

10
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Complete details, including those for DMPFM and discriminative DMPFM in Sections 2.3
and 2.5, respectively, are provided in Appendix B.

Initialization is done at random from prior distributions, followed by modality-wise and
layer-wise fitting (pre-training). In the experiments, when pre-training we run 150 Gibbs
sampling cycles per layer. We have observed that 50 cycles are usually enough to obtain

good initial values of the global parameters of the model, namely {Ψ(i,1), r
(i,1)
k ,Ψ(`), r

(`)
k },

for i = 1, . . . , D, ` = 2, . . . , L and λ(L+1).

2.6.1 Importance of computations scaling with the number of non-zeros

From a practical standpoint, the most important feature of the models in (5) and (6) is that
inference does not scale as a function of the size of the total dataset, but as a function of its
number of non-zero elements, which is advantageous in cases where the input data is sparse
(often the case). For instance, ∼4% of the entries in the dataset described in Section 3 are
non-zero. Similar proportions are also observed in datasets traditionally used to bechmark
topic models (word documents), such as 20 Newsgroups, Reuters and Wikipedia (details
of which are discussed below). Furthermore, this feature also extends to all modalities

and layers of the model, regardless of {h(`)
n } being latent. Similarly, for the discriminative

DMPFM in Section 2.5, inference scales with the number of positive cases in {yn}Nn=1, not
CN . This is particularly appealing in cases where C is large and the number of positive
cases is small (a patient typically has a small subset of possible illnesses), ∼8% in the dataset
described in Section 3.

In order to show that this scaling behavior holds, it is enough to see that by construction,

from (2), if xmn =
∑K

k=1 xmkn = 0 (or z
(`)
mn for ` > 1), thus xmkn = 0, ∀k with probability

1. Besides, from (4) we see that if hkn = 0 then zkn = 0 with probability 1. As a result,

update equations for all parameters of the model except for {h(`)
n }, depend only on non-zero

elements of xn and {z(`)
n }. Updates for the binary variables can be cheaply obtained in block

from h
(`)
kn ∼ Bernoulli(π

(`)
kn) via λ

(`)
kn, as previously described.

It is worth mentioning that models based on multinomial or Poisson likelihoods such
as LDA (Blei et al., 2003), HDP (Teh et al., 2006), FTM (Williamson et al., 2010) and
PFA (Zhou et al., 2012), also enjoy this property (scaling based on number of non-zero
observations). However, the recently proposed deep PFA (Gan et al., 2015a) does not use
PFA modules on layers other than the first one; it uses SBNs or RBMs that are known to
scale with the number of binary variables as opposed to their non-zero elements.

2.7 Related work

2.7.1 Connections to other DP-based topic models

PFA is a nonnegative matrix factorization model with Poisson link, that is closely related
to other DP-based models. Specifically, Zhou et al. (2012) showed that by making p(hkn =
1) = 1 and letting θkn have a Dirichlet, instead of a gamma distribution as in (3), we can
recover LDA by using the equivalence between Poisson and multinomial distributions. By
looking at (11), we see that PFA and LDA have the same blocked Gibbs updates (Blei
et al., 2003), when Dirichlet distributions for θkn are used. An equivalent analogy for SVI
updates (Hoffman et al., 2010) can be derived from the update equations in Appendix A.
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In Zhou et al. (2012), the authors showed that using the Poisson-gamma representation of
the negative binomial distribution and a beta-Bernoulli specification for p(hkn) in (3), we
can recover the FTM formulation and inference in Williamson et al. (2010). More recently,
Zhou and Carin (2015) showed that PFA is comparable to HDP in that the former builds
group-specific DPs with normalized gamma processes. A more direct relationship between
a three-layer HDP (Teh et al., 2006) and a two-layer version of (5) can be established
by grouping count data vectors by categories. In the HDP, three DPs are set for topics,
data-dependent topic usage and category-wise topic usage. In our model, Ψ(1) represent

K1 topics, θ
(1)
n ◦h

(1)
n encodes data-vector-wise topic usage and Ψ(2) encodes topic usage for

K2 categories. In HDP, data vectors are assigned to categories a priori, but in our model

data-vector-category soft assignments are estimated and encoded via θ
(2)
n ◦h(2)

n . As a result,
the model in (5) is a more flexible alternative to HDP in that it groups data vectors into
categories in an unsupervised manner.

2.7.2 Similar models

Non-DP-based deep models for topic modeling employed in the deep learning literature
typically utilize RBMs or SBNs as building blocks. For instance, Hinton and Salakhutdinov
(2009) and Maaloe et al. (2015) extended RBMs via DBNs to topic modeling. In addition,
Srivastava et al. (2013) proposed the over-replicated softmax model, a deep version of RSM
that generalizes RBMs.

Recently, Ranganath et al. (2014) proposed a framework for generative deep models
using exponential family modules. Although they consider Poisson-Poisson and gamma-
gamma factorization modules akin to our PFA modules, their model lacks the explicit
binary unit linking between layers commonly found in traditional deep models. Further,
their inference approach, black-box variational inference, is not as conceptually simple, but
it scales with the number of non-zeros of our model.

DPFA, proposed in Gan et al. (2015a), is the model closest to ours. Nevertheless, our
proposed model has a number of key differentiating features. (i) Both models learn topic
correlations by building a multilayer modular representation on top of PFA. Our model
uses PFA modules throughout all layers in a conceptually simple and easy to interpret way.
DPFA uses Gaussian distributed weight matrices within SBN modules; these are hard to
interpret in the context of topic modeling. (ii) SBN architectures have the shortcoming
of not having block closed-form conditional posteriors for their binary variables, making
them difficult to estimate, especially as the number of variables increases. (iii) Factor
loading matrices in PFA modules have natural shrinkage to counter overfitting, thanks to
the Dirichlet prior used for their columns. In SBN-based models, shrinkage has to be added
via variable augmentation at the cost of increasing inference complexity. (iv) Inference for
SBN modules scales with the number of hidden variables in the model, not with the number
of non-zero elements, as in our case.

In Henao et al. (2015), we presented an early version of our approach, for the single-
modality case in (5), but mainly focused on topic models. In this previous work, we intro-
duced inference procedures based on Gibbs sampling and stochastic variational inference,
and considered a discriminative model for multi-class classification. In the present work, we
extend the DPFA architecture to multiple modalities (DMPFA) and introduce a discrimi-
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native model specification for multi-label classification, of particular interest in electronic
health records applications, as one patient may suffer from multiple illnesses at the same
time. In the experiments, we will show the benefits of explicitly modeling multiple modalities
using a DMPFM specification, as opposed to naive constructs based on the single-modality
model of Henao et al. (2015).

Several deep architectures have been recently proposed for multi-modality problems
(Srivastava and Salakhutdinov, 2012, 2014; Sohn et al., 2014). These models use RBMs
as building blocks and are traditionally geared towards applications with image (pixel in-
tensities) and text (word counts) modalities. The main goals of these applications are
classification based on image and text latent features, and information retrieval, that is,
predicting values of one modality given observations of the others. Unlike our discrimina-
tive DMPFM and SupDocNADE (Supervised Document Neural Autoregressive Distribution
Estimator Zheng et al., 2014) based on SBNs, most existing deep multi-modality models
based on RBMs build classifiers as a two-step procedure, not jointly with the generative
model as is our case. In its current form, our model does not allow for mixed data-types,
however it is not too difficult to extend it to such case, as we can seamlessly use sparse
Gaussian factor models (Carvalho et al., 2008; Henao and Winther, 2011; Henao et al.,
2014) and rank-likelihood factor models (Yuan et al., 2015) as first-layer modules for real
and ordinal-valued data, respectively. We leave these extensions as interesting future work.

3. Motivating Data

We utilize three modes of data: self-reported medication usage, laboratory tests, and diag-
nosis and procedure codes. Count matrices for each mode for each patient were extracted
from a Duke University 5-year dataset. Specifically, we consider electronic health data gen-
erated from 2007 to 2011 in the care of Durham County residents within the Duke University
Health System (DUHS), including three hospitals and an extensive network of outpatient
clinics. This dataset includes over 240,000 patients with over 4.4 million patient visits.

3.1 Data Reconciliation

Patient data originated from the various hospitals and outpatient clinics of DUHS. As names
for medications, laboratory tests and diagnosis and procedure codes are uniquely named at
each facility, the data must first be reconciled to a common data dictionary.

Our dataset included 39,429 medication names. These names, which included both
brand and generic names at various dosages and formulations, were mapped to their phar-
maceutical active ingredients (AI) using a custom Python script that leveraged the RxNorm
API2. RxNorm is a depository of medication information maintained by the National Li-
brary of Medicine and includes trade names, brand names, dosage information and active
ingredients (Nelson et al., 2011). Compound medications that include multiple active in-
gredients incremented counts for all AI in that medication. We discovered 1,694 unique AI
in our dataset.

The data also include 4,391 types of laboratory tests, mapped to the Logical Observa-
tion Identifiers Names and Codes (LOINC) ontology (Vreeman et al., 2015). The LOINC

2. See http://rxnav.nlm.nih.gov/RxNormAPIs.html.
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standard is common terminology for laboratory and clinical observations maintained by the
Regenstrief Institute3. Mappings to the LOINC database were performed with the RELMA
tool4. Each suggested mapping was reviewed by a physician to ensure that appropriate test
and measurement units were aligned. Counts for patient laboratory tests reflect the number
of times a test appears in a patients record. We discovered 1,869 unique LOINC tests in
the data.

Lastly, the data include 21,305 diagnosis and procedure codes. These were mapped
using their unique ICD-9 (International Statistical Classification of Diseases and Related
Health Problem) and CPT (Current Procedural Terminology) identifiers. ICD codes are
the international diagnostic coding system, and are maintained by the World Health Orga-
nization5. CPT procedure codes are maintained by the American Medical Association and
are designed to ease uniform communication performed medical services6. We identified
21,013 unique ICD-9 and CPT codes in the dataset.

3.2 Cohort and Count Matrix Generation

To narrow our analysis, we focused on a cohort of Type-2 Diabetes Mellitus (T2DM) pa-
tients, using previous phenotype criteria for T2DM (Richesson et al., 2013). T2DM is
a chronic disease with high disease and treatment costs. Patients with diabetes are at
increased risk of complications such as Coronary Heart Disease (CHD), Acute Myocardial
Infarction (AMI), Cerebral Vascular Disease (CVD), Chronic Renal Failure (CRF), and am-
putation (American Diabetes Association, 2014). Prediction of these outcomes is important
for communicating prognosis and targeting treatment to the high-risk patients.

We identified 16,756 patients in the dataset, by filtering for the following criteria: (i)
at least two counts of 250.xx ICD-9 codes, (ii) at least one laboratory measurement of
hemoglobin A1c (HgbA1C) greater than 4.5%, and (iii) a medication record including at
least one of the following T2DM medications: insulin, metformin, sufonylurea, or sitagliptin.
We generated counts for each data mode by mapping each patient’s records to the common
data elements as described above. We then counted the total number of occurrences for each
data element over a defined time window. In our initial experiment exploring the mapping
of medical concepts to discovered factors, this time window represented two years of data.
In our classification experiment, this time window was six months prior to the classification
date.

3.3 Classification

3.3.1 UK Prospective Diabetes Study (UKPDS) Outcomes Model

Prediction equations to determine the risk of various complications in diabetes have been
studied extensively (Wilson et al., 1998; Clarke et al., 2004; van Dieren et al., 2011). These
risk estimates are helpful for identifying high-risk populations that may need closer clinical
observation and higher intensity treatment (Simmons et al., 2009). Several equations are
currently available to estimate CHD, AMI and CVD risk (Metcalf et al., 2008; Tao et al.,

3. See http://loinc.org/.
4. See http://loinc.org/downloads/relma.
5. See http://www.who.int/classifications/icd/en/.
6. See http://www.ama-assn.org/ama.
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Outcome ICD-9 codes CPT codes

Acute Myocardial Infarction 410.* —
Amputation 84.1* —

Cardiac Catheterization — 37.2*
Coronary Artery Disease 411.*, 413* and 414* 45.8*

Depression 293.*, 296.*, 300.4 and 311.* —
Heart Failure 428.* —

Kidney Disease 585.*, 249.* and 250.4* 56.1*
Neurological Diseases 249.6* and 250.6* —

Obesity 278.* 85.*
Ophthalmic Disease 249.5* and 250.5* —

Stroke 346.6*, 430.*, 431.*, 432.*, 433.*, 434.* and 435* —
Unstable Angina 411.1 —

Death date of death in the medical record

Table 1: Definition of the 13 T2DM related outcomes for multi-label classification experi-
ment in Section 2.5.

2013). UKPDS is a multicenter randomized trial involving 5,102 newly diagnosed patients
with T2DM, recruited from 23 UK centers (King et al., 1999; Stevens et al., 2001); it has
been utilized to generate outcome models for cardiovascular and cerebrovascular disease
(Lu et al., 2012; Tao et al., 2013).

In the UKPDS model, the 1-year probability of CHD is:

p(CHD) ∝ b0 + b1 ∗ (Age− 55)− b2Female− b3AfroCaribbean

+ b4Smoking + b5(HgbA1c− 6.72) + b6(SPB− 135.7)/10

+ b7(log(TC/HDL)− 1.59) ,

(12)

where mean Total Cholesterol (TC), mean High Density Lipoprotein (HDL), mean Systolic
Blood Pressure (SPB), and mean Hemoglobin A1c (HgbA1c) are used, and {bi}7i=0 are
pre-specified classification weights (Stevens et al., 2001).

While patient care has changed rapidly since this study was performed (the original
patients were recruited and followed prospectively from 1977-1997), numerous studies have
since explored its application in more recent clinical cohorts. These differences as well as
regional variation in health care access and disease burden compelled us to estimate the
UKPDS parameters in our cohort to improve its classification results for our patients.

3.3.2 Outcomes Identification

We generated training and test cohorts for our classification experiment in Section 4.3 by
defining well-known T2DM disease morbidities with diagnosis and procedure codes (Amer-
ican Diabetes Association, 2014). For each patient we capture the date of the 13 outcomes
in Table 1.
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3.3.3 Generating Test and Train Cohorts

To generate training and test cohorts from our dataset, we selected a reference date that
allowed us to (i) capture a large patient population with multiple patient encounters prior
to the date, and (ii) evaluate encounters after the date for the existence of an outcome.

For the classification experiment we generated count matrices for each data mode by
aggregating patient data for a six month period prior to the patient visit. We then deter-
mined if the patient had one or more of the above outcomes within 1 year of that visit. For
the training cohort, the patient visit was defined as the encounter immediately prior to the
date threshold of January 1, 2010. For our test set, we used a January 1, 2011 threshold
date. We cleaned our data to remove any patients (i) that already had outcomes 6 months
prior to the patient visit and (ii) removed any codes with less than 10 observations over the
entire cohort. Lastly, we removed from the test set any patients that were in the original
test set and did not have any additional visits since the training set threshold date. We also
removed any individuals who did not have laboratory or vitals data in the prior 2 years,
preventing us from computing a UKPDS risk score.

4. Experiments

In this section we start by presenting benchmark results using well-known corpora for topic
models, the goal being to show how DPFM (single modality) compares to related deep
models. Additional results for the single-modality case can be found in Henao et al. (2015).
Next, we present extensive experiments using the motivating data described in Section 3.
In particular, we evaluate DPFM and DMPFM in terms of model fit and classification
performance. Finally, we analyze the topics estimated by DMPFM. All experiments were
conducted on a 2.2GHz desktop machine with 8GB RAM. The code used, implemented in
Matlab, will be made publicly available.

4.1 Benchmark corpora

We first evaluate the performance of the basic version of our model, specifically the deep
single modality model in (5). For this purpose, we present experiments on three corpora: 20
Newsgroups (20 News), Reuters corpus volume I (RCV1) and Wikipedia (Wiki). 20 News is
composed of 18,845 documents and 2,000 words, partitioned into a 11,315 document training
set and a 7,531 document test set. RCV1 has 804,414 newswire articles containing 10,000
words. A random 10,000 subset of documents is used for testing. For Wiki, we obtained
107 random documents, from which a subset of 1,000 is set aside for testing. Following
Hoffman et al. (2010), we keep a vocabulary consisting of 7,702 words taken from the top
10,000 words in the Project Gutenberg Library.

As performance measure, we use held-out perplexity, a commonly used performance
metric for topic models defined as the geometric mean of the inverse marginal likelihood of
every word in the set. We cannot evaluate the intractable marginal for the model in (5), thus
we compute the predictive perplexity on a 20% subset of the held-out set. The remaining

80% is used to learn document-specific variables of the model, {θ(`)
n ,h

(`)
n }, for n = 1, . . . , N

and ` = 1, . . . , L. The training set is used to estimate the global parameters of the model,

{Ψ(`), r
(`)
k }, for ` = 2, . . . , L and λ(L+1). For PFA-based models, the test perplexity for a
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Model Method Size 20 News RCV1 Wiki

DPFM MCMC 128-64 780 908 783
DPFA-SBN SGNHT 1024-512-256 —– 942 770
DPFA-SBN SGNHT 128-64-32 827 1143 876
DPFA-RBM SGNHT 128-64-32 896 920 942
nHDP SVI (10,10,5) 889 1041 932

LDA Gibbs 128 893 1179 1059
FTM Gibbs 128 887 1155 991
RSM CD5 128 877 1171 1001

Table 2: Held-out perplexities for 20 News, RCV1 and Wiki. Size indicates number of
topics and/or binary units, accordingly.

single modality can be calculated as (Zhou et al., 2012)

perplexity = exp

(
− 1
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where we have omitted modality and layer indices for clarity, S is the total number of
collected samples, x·· =

∑M
m=1

∑N
n=1 xmn and xmn, ψmk, θkn and hkn are elements of xn,

Ψ, θn and hn, respectively.

We compare our single-modality deep model in (5) (denoted DPFM), against LDA (Blei
et al., 2003), FTM (Williamson et al., 2010), RSM (Hinton and Salakhutdinov, 2009), nHDP
(Paisley et al., 2015) and DPFA with SBNs (DPFA-SBN) and RBMs (DPFA-RBM) (Gan
et al., 2015a). For all these models, we use the settings described in Gan et al. (2015a).
Inference methods for RSM and DPFA are contrastive divergence with step size 5 (CD5)
and stochastic gradient Nose-Hoover thermostats (SGNHT), respectively. For our model,
(after the aforementioned pre-training) we run 3,000 samples, from which the first 2,000 are
discarded (burnin). For the Wiki corpus, MCMC-based DPFM is run on a random subset
of 106 documents.

Table 2 shows results for the corpora being considered. Figures for methods other than
DPFM were taken from Gan et al. (2015a). We see that multilayer models (DPFM, DPFA
and nHDP) consistently outperform single layer ones (LDA, FTM and RSM), and that
DPFM has the best performance across all corpora for models of comparable size. We
verified empirically (results not shown) that doubling the number of hidden units, adding a
third layer or increasing the number of samples/iterations for DPFM does not significantly
change the results in Table 2. As a note on computational complexity, one iteration of the
two-layer model on the 20 News corpus takes approximately 2 seconds. For comparison, we
also ran the DPFA-SBN model in Gan et al. (2015a) using a two-layer model of the same
size; in their case it takes about 24, 4 and 5 seconds to run one iteration using MCMC,
conditional density filtering (CDF) and SGNHT, respectively. Runtimes for DPFA-RBM
are similar to those of DPFA-SBN. Additional results for DPFM using stochastic variational
inference can be found in Henao et al. (2015).
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Naive1 Naive2 DMPFM
Size Med Lab Code Med Lab Code Med Lab Code

64–32 1.930 76.724 210.690 1.930 76.575 208.785 1.865 72.919 194.260
96–48 1.851 76.736 192.851 1.825 76.787 193.782 1.788 72.662 176.737
128–64 1.803 76.538 182.803 1.759 76.495 182.049 1.748 72.415 167.423

64–32–16 1.918 76.648 207.932 1.911 76.400 209.652 1.861 72.773 191.854
96–48–24 1.822 76.967 192.530 1.816 76.660 192.505 1.759 72.531 176.451
128–64–32 1.787 76.556 182.365 1.764 76.528 180.806 1.730 72.364 166.759

Table 3: Held-out perplexity for EHR data. Size indicates number of topics and/or binary
units, accordingly. Naive1 uses one DPFM per modality and Naive2 one DPFM for stacked
modalities (Meds, Labs and Codes). Naive2 and DMPFM use all modalities at once but
perplexities are computed separately.

4.2 Model fitting

We evaluate the ability of the multi-modality model in (6) to fit the data introduced in
Section 3. The data consist of 16,756 patients, and of these 7,892 were used for model fitting
and 8,864 for testing. We considered the three modalities discussed above: 1,694 of the
entities corresponded to medications (Meds), 1,869 corresponded to laboratory tests (Labs),
and 21,013 corresponded to diagnosis and procedure codes (Codes). We filtered out variables
with less than 10 occurrences over the entire cohort, reducing the data to 253, 606 and 4,222
entities for Meds, Labs and Codes, respectively. We consider three different models: (i) A
single-modality approach, in which we treat each modality independently using (5) (denoted
Naive1); (ii) another single-modality approach, in which all modalities are stacked into
one data matrix, then modeled using (5) (denoted Naive2); and (iii) the multi-modality
approach using (6) (denoted DMPFM). Note that Naive1 and Naive2 constitute direct
applications of the DPFM model introduced by Henao et al. (2015). In all cases we collect
1,200 samples after running 1,200 burnin iterations. As the perfomance measure, we report
held-out perplexities for each modality on a randomly selected 20% subset (the test set).

Table 3 shows predictive perplexities for different architectures. We consider two- and
three-layer specifications (Size) in three different binary unit sizes each, for a total of 6
models. We see that Naive2 and DMPFM consistently outperform Naive1. These results
demonstrate that sharing information across modalities produces a model with a richer
correlation structure and improved model fit, compared to Naive1 and Naive2 that use
the DPFM of Henao et al. (2015). We also see that DMPFM performs the best in all
configurations, which highlights the importance of modeling correlation structure within and
across modalities. In terms of number of layers, we see a modest perplexity improvement
going from two to three layers in all cases. This is probably due to the size of the dataset;
it is likely that more significant gains will be observed from cohorts with a larger number
of variables and patients. It is worth noting that since our model is sparse, size K (on each
layer) can be understood as an upper bound on the number of factors in the sense that
the model has the ability of turning off entire factors by letting all its activations, hkn, to
be zero. In this experiment we present results for increasing values of K to show that the
model is able to capture increasing amounts of detail (evidenced by decreasing perplexity)
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Naive1 Naive2 DMPFM
Size Med Lab Code All All

64–32 0.592±0.05 0.594±0.05 0.745±0.06 0.751±0.06 0.771±0.07

96–48 0.596±0.04 0.583±0.05 0.727±0.06 0.750±0.06 0.781±0.06

128–64 0.590±0.04 0.590±0.05 0.725±0.06 0.751±0.06 0.779±0.06

64–32–16 0.601±0.05 0.594±0.05 0.726±0.05 0.742±0.06 0.771±0.06

96–48–24 0.587±0.04 0.588±0.06 0.735±0.06 0.758±0.07 0.785±0.07

128–64–32 0.590±0.04 0.588±0.05 0.732±0.05 0.757±0.06 0.784±0.07

Table 4: Mean test AUCs with standard deviations over 13 binary classification tasks. Size
indicates number of topics and/or binary units, accordingly. Naive1 is one discriminative
DPFM per modality and Naive2 is one discriminative DPFM for stacked modalities (Meds,
Labs and Codes). Naive2 and DMPFM use all modalities to build classifiers.

as the model size grows, but also as a way to highlight that the model does not overfit,
meaning that test performance (perplexity) does not deteriorate as the model size increases.

In terms of computational complexity, Naive1 and Naive2 take between 180 and 310 CPU
depending on the size of the model; DMPFM takes between 190 and 480 minutes. Note
that runtime include model fit, testing and perplexity calculations. In any case, runtimes
are deemed reasonable considering the size of the dataset and the complexity of the models
being evaluated.

4.3 Multi-label classification

We evaluate the discriminative DMPFM in Section 2.5 on the multi-label classification prob-
lem outlined in Section 3. We consider 13 well-known T2DM-related outcomes in Table 1,
namely, Acute Myocardial Infarction (AMI), amputation, cardiac catheterization, coronary
artery disease, depression, heart failure, chronic kidney disease, neurological disease, obe-
sity, ophthalmic disease, stroke, unstable angina and death. We compare our discriminative
DMPFM to discriminative versions of Naive1 and Naive2 based on DPFMs. For a baseline
comparison, we use the UKPDS model in (12) and sparse logistic regression (Friedman
et al., 2001). For the UKPDS model we estimate model coefficients, {bi}7i=0, for each
outcome independently in a logistic regression setting. Note that UKPDS was originally
intended for coronary heart disease, however we use its covariates (age, sex, race, smoking
status, HgbA1c, SPB, TC and HDL) to build classifiers for all outcomes. We also use coro-
nary heart disease interchangeably with coronary artery disease, which is the build up of
plaque in the arteries of the heart and results in coronary heart disease. For PFA-based
models, we collect 1,200 samples after running 1,200 burnin iterations. As a performance
measure, we report area under the receiving operating characteristic (AUC) values on the
test set (Fawcett, 2006). Provided that all classification tasks are very imbalanced, about
8% positive outcomes in average, we do not report test accuracies. Optimal thresholds can
be obtained from ROC curves using outcome-specific prevalence information, if desired.
Once threshold values have been selected, accuracies, true positive rates and true negative
rates can be readily computed.
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Figure 2: Test AUC and ROC curves from multi-label classification experiment. (a) AUC
values for UKPDS, sparse logistic regression (LASSO) and DMPFM. Values beside each
bar group correspond to AUC values obtained by DMPFM. (b) ROC curves from DMPFM.
Each curve represents represents a classification task for an outcome. The dashed line is
the AUC of a random classifier.

Table 4 shows average test AUCs for Naive1, Naive2 and DMPFM and different model
architectures. Averages are computed over the 13 outcomes in Table 1. We see from the
results for Naive1 that Codes carry significantly more classification power than Med and
Lab modalities. Naive2, which combines all modalities into a single data matrix performs
consistently better than Naive1, and DMPFM perfroms the best by a considerable margin,
taking into account the size of the test set. In terms of model size, the largest three-layer
model performs the best, closely followed by models of size 96–48–24 and 96–48.

Results in Figure 2a show test AUC values as bars for each outcome individually. We
compare DMPFM against two baselines, UKPDS and sparse logistic regression. We see that
DPFM outperforms the others in nearly all classification tasks except for heart failure, in
which sparse logistic regression (LASSO) performs best, and amputation, where DMPFM
and LASSO perform about the same. Note that LASSO is considerably sparser than our
model, because it tends to exclude heavily correlated variables, however we observed that
our model tends to include the same variables deemed important by LASSO, as a subset.
In Figure 2a we also show test AUC values obtained by DMPFM sorted in decreasing order,
with corresponding ROC curves in Figure 2b.

The outcomes with the greatest predictive power was amputation and the lowest was
obesity. Upon further examination these have potentially interesting clinical drivers. For
example amputation of limbs in diabetic patients is often the result of longstanding neu-
ropathy and microvascular damage hindering the ability of patients to not only identify
injuries but also heal. We note that the second and fourth authors are medical doctors,
and provided all medical analysis. A common clinical scenario involves patients with foot
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Figure 3: Top classification weights and topics associated with amputation. We show the
top 10 words (bottom panel) from first-layer topics with the largest 3 classification weights
(top panel), namely meds # 126, labs #7 and codes #67.

ulcerations that go undetected and result in gangrenous limbs and ultimately amputation.
By plotting the classification coefficients for amputation (see Figure 3:top), we identify
the top three contributors to this outcome (medications #126, labs #7, and codes #67)
in Figure 3:bottom. In medications topic #126, we find the usage of standard diabetes,
cholesterol and hypertension medications. Notably we also found Amitriptyline, which can
be used to treat patients with diabetic neuropathy. In Labs #7, we identify laboratory
tests that would be common in evaluating neuropathy (thiamine deficiency) and a test for a
bacterial species common in skin infections, Streptococcus Pyogenes Antigen. This would a
be common antigen for a patient with skin infections including foot ulcerations. Lastly, the
codes #67 refer to foot ulcers and peripheral vascular disease. Peripheral vascular disease
can result from the accumulation of fatty deposits in the vasculature of the extremities and
can be exacerbated by the microvascular damage of diabetes. While additional evaluation
of topics with high classification coefficients may elicit unexpected predictors of amputa-
tion, this initial analysis revealed that the highest scoring topics correlated well with clinical
intuition.

The poor predictive power for obesity likely rests with its prevalence in T2DM pop-
ulations. Metabolic syndrome, a constellation of symptoms including hyperlipidemia, hy-
pertension and obesity is a strong risk factor for obesity. An examination of contributing
first-layer topics reveals medications that would be typical for a patient with symptoms of
metabolic syndrome. The main lab first-layer topic shares the same topic #7 as in ampu-
tation. Interestingly, morbidly obese patients also share a high incidence of skin infections

21



Henao, Lu, Lucas, Ferranti and Carin

#3 #13 #19

acid medication digoxin clonidine
duloxetine belladonna alkaloids simvastatin
metformin albuterol valproate
budesonide duloxetine colchicine

fluphenazine acebutolol fluphenazine
dexamethasone pseudoephedrine hydralazine
insulin lispro azithromycin omeprazole
atazanavir cyclosporine bromfenac

azithromycin alprostadil meloxicam
glimepiride acai berry extract acid medication

Table 5: Selected topics from medications modality. We show the top 10 words from first-
layer topics #3, #13 and #19.

and pressure induced ulcerations due to their sedentary behaviors. Lastly, the code topics
have codes related to abnormal weight gain.

4.4 Analysis of multi-modality model

We also examined the ability of the DPFA model to generate topics that represent intuitive
medical concepts. For illustrative purposes, we discuss the intra-modality correlation of
first and second level topics (meta-topics), starting with the medications mode and expand
to other modalities. We plot the correlations between medication topics in Figure 4. We
show first-layer topics (boxes) within a modality. Each box contains the first four words
with the highest probability mass in that topic. The topics are connected into meta-topics
(blue circles) representing both intra- and inter-modality correlations. As we see, the graph
is considerably sparse taking into account that each meta-topic can have up to 128 edges.
As a quantitative summary of graph sparsity, we note that the average node degree of the
complete7 medication graph is 18 (edges in the graph are present if their weight is larger
than 1e-2).

The center of the plot in Figure 4 includes topics (based on lowest layer in the model,
touching the data) and meta-topics (based on the second layer in the model) with the high-
est level of correlation with other topics. Unsurprisingly, the central medicine topic (#3, see
Table 5) includes the medication metformin, a first-line treatment for T2DM, and duloxe-
tine, a treatment for peripheral neuropathy. Interestingly, this topic also includes several
steroids including dexamethasone and budesonide, which can induce or worsen T2DM.

To better interpret the correlation structure, we started with meta-topics and explored
both intra- and inter-modality correlation. To ease interpretability we focused on meta-
topics with fewer connections. We found that many of the meta-topics represented coherent
clinical narratives based on the discovered first-layer topics and meta-topics. For example
the meta-topic #29 in Figure 5, includes first-layer medicine topics #19 #13 in Table 5.
These two collections represent a wide variety of medications used to treat co-morbidities
common to T2DM. However, this list also includes opioid pain killers and a chemothera-
peutic agent, cyclosporine. While difficult to interpret with only intra-modality correlation,

7. The graph in Figure 4 only shows top four connections for clarity.
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Figure 4: Graph representation obtained for medication interactions. Meta-topic are de-
noted by blue circles and first-layer topics as boxes, with word lists corresponding to the

top four medications in first-layer topics, ψ
(1)
k . For clarity, we only show the top four

connections between meta-topics and their associated topics.
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Figure 5: Top weights and topics associated with meta-topic #29. We show the top 10
words (bottom panel) from first-layer topics with the largest 3 meta-topic weights (top
panel), namely labs #118 and codes #25 and #84.

further examination of first-layer topics across modalities that contribute disproportionately
to this meta-topic identified laboratory and diagnostics codes which expand the narrative of
this meta-topic. A patient weighted heavily with this meta-topic would have laboratory re-
sults characterized by hematuria (blood in urine) and prostate specific antigen testing. The
combination of these medication and laboratory topics suggests a patient with metastatic
prostate cancer causing pain and hematuria. This is confirmed when examining the first-
layer code topic #84, which includes the code for malignant prostate cancer.

In another example, we explore meta-topic #3 in Figure 6, a topic that does not nec-
essarily make intuitive sense, but could hint at the power of DPFA to identify novel cor-
relations between different data. This meta-topic has two prominent first-layer medication
topics. While the first medication topic, #33, contains a mix of hypertensive and antiviral
medications, the second topic, #120, includes two notable drugs alprazolam (Xanax) and
baclofen, a muscle relaxant. While these two medications may relate to the anxiety, myalgia
and insomnia codes, we see in first-layer topic #19 for codes, it would be interesting to ex-
plore other first-layer topics contribute to this meta-topic and connect with other conditions
identified such as major depressive disorder and chronic pain.

5. Discussion

In 2012, the American Diabetes Association estimated that the economic burden of diabetes
in the United States exceeded 245 billion dollars8. High-throughput and widely available

8. See http://diabetes.org/advocacy/news-events/cost-of-diabetes.html.
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Figure 6: Top weights and topics associated with meta-topic #3. We show the top 10
words (bottom panel) from first-layer topics with the largest 3 meta-topic weights (top
panel), namely labs #19 and codes #33 and #120.

methods to predict morbidity and mortality outcomes for patients would improve the de-
ployment of medical resources, and may reduce costs through increased preventative care
or reduced futile care.

Our initial evaluation of the proposed method illustrated that DMPFM can identify
multiple candidate phenotypes from EHR data without expert or user supervision. Further,
these candidate topics, when defined in the context of a classification task, can significantly
outperform current benchmarks for risk prediction derived from large-scale clinical studies.
This was perhaps unsurprising as we are able to utilize much richer datasets (in both number
of clinical variables and patient numbers) than most clinical studies. We are also able to
estimate the important factors directly from the data, thus minimizing bias on the behalf
of the original study designers.

Despite these encouraging findings, many challenges remain before such high-throughput
phenotyping efforts can be used in a clinical setting. First, the clinical evaluation of DMPFM
for EHR relied on two clinical experts (second and fourth authors) to perform the data rec-
onciliation and evaluate the topic groupings. This evaluation is subject to bias, and a
more extensive study involving a panel of clinicians is necessary to validate this method’s
robustness. Second, as discussed above, some of the clinical phenotypes are not easily inter-
preted. Although our method encourages sparsity there remains a high level of correlation
both within and between topics. These topics have many interconnections that remain to
be fully explored. In addition, the appropriate metrics to evaluate words (entities), top-
ics and meta-topics for clinical applications requires further research. Third, even in cases
where we can generate a narrative around candidate phenotypes, many topics still contained
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words/entities from each modality that appeared irrelevant to the larger meta-topic. Addi-
tional research is needed to establish the clinical relevance of these words/entities. Fourth,
although we present a generative process for DMPFM, we did not perform experiments
exploring the generation of topics weights for new patients. It would also be interesting to
explore the number of patients that would be required to generate a fully comprehensive but
sparse set of topics for any given patient population. Lastly, although it appears that we
can generate meta-topics that represent patients, we did not perform case review of these
patients that review those topics/meta-topics. It would be necessary to perform off-line re-
view by physicians to establish clinical correlation between computational phenotypes and
the true patient status.

The DMPFM is an extensible model applicable to any data modalities that can be
represented with count data. This would naturally extend to free-text physician and nursing
notes (in this case the counts are of actual words) as well as notes from specialty services,
such as radiology and pathology. With the panoply of additional data that is contained
with the medical record, we are confident that we can develop improved representations of
patient traits that may lead to better diagnosis and treatment outcomes.
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Appendix A. Stochastic variational inference

SVI is a scalable algorithm for approximating posterior distributions consisting of EM-style
local-global updates, in which subsets of a dataset (mini-batches) are used to update in
closed-form the variational parameters controlling both the local and global structure of
the model in an iterative fashion Hoffman et al. (2013). This is done by using stochastic
optimization with noisy natural gradients to optimize the variational objective function.
Additional details and theoretical foundations of SVI can be found in Hoffman et al. (2013).

In practice the algorithm proceeds as follows, where again we have omitted the layer

index for clarity: (i) let {Ψ(t), r
(t)
k ,λ(t)} be the global variables at iteration t. (ii) Sample a

mini-batch from the full dataset. (iii) Compute updates for the variational parameters of
the local variables using (layer index omitted for clarity)

φmkn ∝ exp(E[logψmk] + E[log θkn]) ,

θkn ∼ Gamma

(
E[rk]E[hkn] +

M∑
m=1

φmkn, b
−1

)
,

hkn ∼ E[p(x·kn = 0)]Bernoulli
(
E[π̃kn](E[π̃kn] + 1− E[πkn)]−1

)
+ E[p(x·kn ≥ 1)]

rk ∼ Gamma

(
1 +

∑
n

E[ukn], 1−
∑
n

E[p(hkn = 1)] log(1− b)

)
,

zkn ∼ E[p(hkn = 1)]Poisson+

(
λ̃kn

)
,
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where

E[xmkn] = φmkn , E[π̃kn] = E[πkn](1− bn)E[rk] , E[ukn] =

x·kn∑
j=1

E[rk](E[rk] + j − 1)−1 .

In practice, expectations for θkn and hkn are computed in log-domain. (iv) Compute a local
update for the variational parameters of the global variables (only Ψ is shown) using

ψ̂mk = η +
N

NB

NB∑
n=1

xmnφmkn , (13)

where N and NB are sizes of the corpus and mini-batch, respectively. Finally, we update the

global variables as ψ
(t+1)
k = (1− ρt)ψ(t)

k + ρtψ̂k, where ρt = (t+ τ)−κ. The forgetting rate,
κ ∈ (0.5, 1] controls how fast previous information is forgotten and the delay, τ ≥ 0, down-
weights early iterations. These conditions for κ and τ guarantee that the iterative algorithm
converges to a local optimum of the variational objective function. In the experiments, we
set κ = 0.7 and τ = 128.

Appendix B. Inference details

Conditional posteriors for Gibbs sampling (layer index omitted for clarity):

ψk ∼ Dirichlet(η + x1k·, . . . , η + xMk·) ,

θkn ∼ Gamma(rkhkn + x·kn, b
−1) ,

hkn ∼ δ(x·kn = 0)Bernoulli
(
π̃kn(π̃kn + 1− πkn)−1

)
+ δ(x·kn ≥ 1) ,

rk ∼ Gamma

(
1 +

∑
n

ukn, 1−
∑
n

hkn log(1− b)

)
,

zkn ∼ δ(hkn = 1)Poisson+

(
λ̃kn

)
,

where Poisson+(·) is the zero-truncated Poisson distribution and

xmk· =

N∑
n=1

xmkn ,

x·kn =
M∑
m=1

xmkn ,

π̃kn = πkn(1− b)rk ,

ukn =

x·kn∑
j=1

uknj , uknj ∼ Bernoulli

(
rk

rk + j − 1

)
.

(14)

Note that for multilayer models, π
(`)
kn = 1− exp(λ

(`+1)
kn ). The data augmentation scheme for

rk via ukn is described in Zhou and Carin (2015).
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For the discriminative DPFM, lets denote latent counts for ŷn as x̂ckn, with summaries
analogous to (14), as x̂ck· and x̂·kn. Then,

bk ∼ Dirichlet(ζ + x̂1k·, . . . , ζ + x̂Ck·) ,

θkn ∼ Gamma(rkhkn + x·kn + x̂·kn, b
−1) ,

hkn ∼ δ(x·kn = 0 ∧ x̂·kn = 0)Bernoulli
(
π̃kn(π̃kn + 1− πkn)−1

)
+ δ(x·kn ≥ 1 ∨ x̂·kn ≥ 1) .

Provided that θn and hn are shared by two PFA modules, one for the count data, xn,
and the other for the labels, ŷn, their conditional posteriors are functions of latent counts
coming from both sources, x·kn and x̂·kn, respectively.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Mu Li, David G. Andersen, Alex J. Smola, and Kai Yu. Communication efficient dis-
tributed machine learning with the parameter server. In Advances in Neural Information
Processing Systems, 2014.

Shou-En Lu, Gloria L. Beckles, Jesse C. Crosson, Dorian Bilik, Andrew J. Karter, Robert B.
Gerzoff, Yong Lin, Sonja V. Ross, Laura N. McEwen, Beth E. Waitzfelder, David Marrero,
Norman Lasser, and Arleen F. Brown. Evaluation of risk equations for prediction of
short-term coronary heart disease events in patients with long-standing type 2 diabetes:
the Translating Research Into Action for Diabetes (TRIAD) study. BMC Endocrine
Disorders, 12(12):1–10, 2012.

Lars Maaloe, Morten Arngren, and Ole Winther. Deep belief nets for topic modeling.
arXiv:1501.04325, 2015.

Ravi K. Mareedu, Falgun M. Modhia, Elenita I. Kanin, James G. Linneman, Terrie Kitch-
ner, Catherine A. McCarty, Ronald M. Krauss, and Russell A. Wilke. Use of an electronic
medical record to characterize cases of intermediate statin-induced muscle toxicity. Pre-
ventive cardiology, 12(2):88–94, 2009.

Jon D. Mcauliffe and David M. Blei. Supervised topic models. In Advances in Neural
Information Processing Systems, 2008.

Patricia A. Metcalf, Susan Wells, Robert K. R. Scragg, and Rod Jackson. Comparison of
three different methods of assessing cardiovascular disease risk in New Zealanders with
type 2 diabetes mellitus. The New Zealand medical journal, 121(1281):49–57, 2008.

Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):
71–113, 1992.

30



DPFM for EHR Analysis

Stuart J. Nelson, Kelly Zeng, John Kilbourne, Tammy Powell, and Robin Moore. Nor-
malized names for clinical drugs: RxNorm at 6 years. Journal of the American Medical
Informatics Association, 18(4):441–8, 2011.

Katherine M. Newton, Peggy L. Peissig, Abel Ngo Kho, Suzette J. Bielinski, Richard L.
Berg, Vidhu Choudhary, Melissa Basford, Christopher G Chute, Iftikhar J. Kullo,
Rongling Li, Jennifer A. Pacheco, Luke V. Rasmussen, Leslie Spangler, and Joshua C.
Denny. Validation of electronic medical record-based phenotyping algorithms: results and
lessons learned from the eMERGE network. Journal of the American Medical Informatics
Association, 20(e1):e147–54, 2013.

John Paisley, Chong Wang, David M. Blei, and Michael I. Jordan. Nested hierarchical
Dirichlet processes. Pattern Analysis and Machine Intelligence, 37(2):256–270, 2015.

Walter W. Piegorsch. Complementary log regression for generalized linear models. The
American Statistician, 46(2):94–99, 1992.

Rajesh Ranganath, Linpeng Tang, Laurent Charlin, and David M. Blei. Deep exponential
families. In International Conference on Artificial Intelligence and Statistics, 2014.

Rachel L. Richesson, Shelley A. Rusincovitch, Douglas Wixted, Bryan C. Batch, Mark N.
Feinglos, Marie Lynn Miranda, W. Ed Hammond, Robert M. Califf, and Susan E. Spratt.
A comparison of phenotype definitions for diabetes mellitus. Journal of the American
Medical Informatics Association, 20(e2):e319–26, 2013.

Rebecca K. Simmons, Ruth L. Coleman, Hermione C. Price, Rury R. Holman, Kay T. Khaw,
Nicholas J. Wareham, and Simon J. Griffin. Performance of the UK prospective diabetes
study risk engine and the Framingham risk equations in estimating cardiovascular disease
in the EPIC-Norfolk cohort. Diabetes Care, 32(4):708–13, 2009.

Kihyuk Sohn, Wenling Shang, and Honglak Lee. Improved multimodal deep learning with
variation of information. In Advances in Neural Information Processing Systems, pages
2141–2149, 2014.

Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep Boltzmann
machines. In Advances in Neural Information Processing Systems, 2012.

Nitish Srivastava and Ruslan Salakhutdinov. Multimodal learning with deep Boltzmann
machines. Journal of Machine Learning Research, 15:2949–2980, 2014.

Nitish Srivastava, Ruslan Salakhutdinov, and Geoffrey E. Hinton. Modeling documents
with deep Boltzmann machines. In Uncertainty in Artificial Intelligence, 2013.

R. J. Stevens, V. Kothari, A. I. Adler, I. M. Stratton, and United Kingdom Prospective
Diabetes Study (UKPDS) Group. The UKPDS risk engine: a model for the risk of
coronary heart disease in type ii diabetes (UKPDS 56). Clinical science (London), 101
(6):671–9, 2001.

31



Henao, Lu, Lucas, Ferranti and Carin

Libo Tao, Edward C. F. Wilson, Simon J. Griffin, Rebecca K. Simmons, and ADDITION-
Europe study team. Performance of the UKPDS outcomes model for prediction of my-
ocardial infarction and stroke in the ADDITION-Europe trial cohort. Value Health, 16
(6):1074–80, 2013.

Yee W. Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet
processes. Journal of the American Statistical Association, 101(476):1566–1581, 2006.
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