
Journal of Machine Learning Research 16 (2015) 1573-1578 Submitted 11/13; Revised 11/14; Published 8/15

RLPy: A Value-Function-Based Reinforcement Learning
Framework for Education and Research

Alborz Geramifard12 agf@csail.mit.edu

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139 – USA

Christoph Dann1 cdann@cmu.edu

Machine Learning Department, Carnegie Mellon University,

5000 Forbes Ave., Pittsburgh, PA 15213 – USA

Robert H. Klein1 bobklein2@alum.mit.edu

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139 – USA

William Dabney2 wddabney@amazon.com

Amazon.com,

440 Terry Ave. N, Seattle, WA 98109 – USA

Jonathan P. How jhow@mit.edu

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

77 Massachusetts Ave., Cambridge, MA 02139 – USA

Editor: Geoff Holmes

Abstract

RLPy is an object-oriented reinforcement learning software package with a focus on value-
function-based methods using linear function approximation and discrete actions. The
framework was designed for both educational and research purposes. It provides a rich
library of fine-grained, easily exchangeable components for learning agents (e.g., policies
or representations of value functions), facilitating recently increased specialization in re-
inforcement learning. RLPy is written in Python to allow fast prototyping, but is also
suitable for large-scale experiments through its built-in support for optimized numerical
libraries and parallelization. Code profiling, domain visualizations, and data analysis
are integrated in a self-contained package available under the Modified BSD License at
http://github.com/rlpy/rlpy. All of these properties allow users to compare various
reinforcement learning algorithms with little effort.

Keywords: reinforcement learning, value-function, empirical evaluation, open source

1. Introduction

An integral part of most artificial intelligence courses are value-function-based methods
using linear function approximation for solving Markov decision processes (such as linear
Q-learning or SARSA). In addition, many researchers build upon this well-understood and

1. The first three authors contributed equally to this work.
2. The majority of this work was done prior to Amazon involvement of the authors. This paper does not

reflect the views of the Amazon company.

©2015 Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, and Jonathan P. How.

http://github.com/rlpy/rlpy

Geramifard, Dann, Klein, Dabney and How

powerful framework and aim at improving existing methods by, for example, feature learning
(Keller et al., 2006; Parr et al., 2007; Geramifard et al., 2011), or policies with better
exploration-exploitation trade-off (Nouri and Littman, 2009; Jaksch et al., 2010; Li, 2012).

The need to unify and increase reusability of software packages for reinforcement learning
research has been widely discussed (Tanner and White, 2009; Schaul et al., 2010), and many
successful tools have been created (see Section 2). However, it is desirable to have a software
framework that is 1) easily accessible by novices so that they may compare and understand
existing algorithms, and 2) efficient for researchers who perform large scale experiments and
advance the state-of-the-art.

By focusing on the prominent class of value-function-based methods with linear function
approximation using discrete actions, RLPy aims at being such a software framework that
provides simple and convenient tools for conducting sequential decision making experiments.
In the following, we present the main features of RLPy and highlight those that distinguish
it from existing frameworks.

2. Existing Frameworks

The following existing software packages have some overlap with RLPy:

1. RL-Toolbox: (Neumann, 2005) C++ RL toolbox focusing on continuous state-spaces
2. CLSquare: (Riedmiller et al., 2012) C++ RL framework focused on interfaces with several robotics
3. libPG: (Aberdeen, 2007) RL library focused on high-performance policy-gradient algorithm implementations
4. rllib (Frezza-Buet and Geist, 2013): Template-based C++ RL library for value-function methods
5. rl-texplore-ros-pkg:(Hester, 2013) ROS package for RL algorithms
6. JRLF: (Kochenderfer, 2006) Small-scale Java-Framework for RL experiments
7. PIQLE: (de Comite, 2006) Java-Framework for RL experiments
8. RLPark:(Degris, 2013) Java reinforcement learning library
9. RLLib: (Abeyruwan, 2013) Port of RLPark into C++

10. RL-Glue, RL-Library: (Tanner and White, 2009) Protocol for RL experiments and reference implementations
11. ApproxRL: (Busoniu, 2010) Matlab Toolbox with RL and dynamic programming algorithms
12. MMLF: (Metzen and Edgington, 2011) Python-based framework for reinforcement learning
13. PyBrain (Schaul et al., 2010): Machine learning library focused on neural networks with RL support

For the sake of brevity, we do not compare RLPy against each of the existing frameworks
in detail but highlight key differences in the following section by referencing the list above.

3. Why RLPy?

Improved Granularity of Agents with Linear Value Functions. RL has advanced signifi-
cantly over the past decade, leading researchers to narrow their focus towards specialized,
independent aspects of RL agents, such as approximate function representations, explo-
ration schemes, and learning rates. The structure of numerous existing frameworks (2, 6,
7, 10, 12) does not properly account for this increased specialization and makes it cumber-
some to exchange, for example, the way the value function is represented in a learning agent.
RLPy addresses this issue by separating these components into exchangeable classes (shown
as green boxes in Figure 1) and other minor components such as learning rates into separate
functions. This division reduces implementation effort, promotes reusability, and facilitates
automated testing. Code for an example experiment that exploits this modularity is shown
in Figure 2. In addition, the assumption of linearly parameterizing the value function allows
RLPy to provide many tools and helpers for designing state features. For example, in large

1574

RLPy: A Reinforcement Learning Framework for Education and Research

Domain

Learning
Algorithm

Representation

Policy
⇡

Q, V

at

st+1, rt+1
RL Agent

Experiment

Figure 1: RLPy framework - Green components constitute an RL agent which did not exist
as separate components in previous RL frameworks. The experiment module
handles the interaction between the agent and the domain; gray arrows depict
the information flow in a conventional RL framework (Sutton and Barto, 1998).

import rlpy

Domain

domain = rlpy.Domains.InfCartPoleBalance ()

Agent

representation = rlpy.Representations.Tabular(domain , discretization =20)

policy = rlpy.Policies.eGreedy(representation , epsilon =0.1)

agent = rlpy.Agents.SARSA(policy , representation , domain.discount_factor)

Experiment

experiment = rlpy.Experiments.Experiment(agent , domain , max_steps =100000)

experiment.run()

experiment.save()

Figure 2: RLPy code for setting up and running an experiment: SARSA learning for
100, 000 steps how to balance an inverted pole on a cart while following an ε-
greedy policy and using discretized tabular features.

MDPs where using a tabular representation is infeasible, the IndependentDiscretization

representation creates features by ignoring dependency among dimensions of states.

Rapid Prototyping with Python. RLPy is fully object-oriented and based primarily on
the Python language (van Rossum and de Boer, 1991). Low-level, computationally-intensive
tools are implemented in Cython (a compiled and typed version of Python) or C++. In
contrast to other packages (1 – 9) written solely in C++ or Java, this approach leverages
the user-friendliness, conciseness, and portability of Python while supplying computational
efficiency where needed. This combination allows researchers to prototype new ideas quickly
and comfortably without sacrificing the computing speed necessary to conduct large-scale
experiments. In addition, the Python-based approach of RLPy is particularly suited for
education as it does not require any proprietary software (in contrast to 11).

“Batteries Included” – Many Existing Components and Benchmarks. RLPy includes
an ever-growing repository of components which may be combined to form new RL agents.
While many frameworks (1, 3, 4, 6) only include classic benchmark domains such as Puddle-
World or an Inverted Pendulum on Cart, RLPy supplies a large number of more challenging
domains such as HIV-Treatment, Hovering a Helicopter, and Pac-Man. In addition to im-
plementations of most value-function-based RL algorithms, RLPy includes experimental
support for dynamic programming methods that require full domain knowledge but yield
optimal policies. This is especially useful as a baseline for comparison with (often sub-
optimal) policies generated by RL agents.

1575

Geramifard, Dann, Klein, Dabney and How

0 20000 40000 60000 80000 100000
Learning Steps

1000

1500

2000

2500

3000

S
te
p
s

Figure 3: RLPy sample outputs of RLPy plotting (left) and profiling (right) tools: A portion
of the profiling graph of the example code (Figure 2) in which the green box shows
the statistics of executing the learn function 105 times. It required 37.38% of
the CPU-time for completion, out of which its main body was responsible only
for 7.15% of the computation while the rest was spent in other called functions.

Ease of Use and Development. Numerous tools are shipped with RLPy that facili-
tate ease of use and efficiency. One example is the code profiler, which produces a visual
runtime graph of the source code (c.f. Figure 3 right) and identifies slow routines. This
information allows the researcher to reduce the runtime of an algorithm with minimal effort
and discourages premature runtime optimization. Additionally, every RLPy domain has a
visualization, an important feature lacking in other frameworks (3, 4, 7). These visuals help
user quickly assess and gain intuition about the algorithm and domain behavior.

Automation of Experiments. RLPy aims to promote reproducible research. To this
end, it provides a suite of tools to automate the entire experiment pipeline. For example,
RLPy allows concise specification of experiment settings (see Figure 2) and automated and
efficient hyperparameter optimization with the hyperopt package (Yamins et al., 2013).
Researchers can share their experimental setups by publishing short settings files, and col-
leagues can reproduce the results when running the scripts independent of their hardware
or operating system. Additionally, RLPy experiments are natively parallelizable. Once pa-
rameters are selected, the user simply specifies the number of CPU cores RLPy can utilize
for multiple experiments to test statistical significance. RLPy enables further scaling by
switching seamlessly from a single machine to a job-based cluster (e.g. HTCondor) while
ensuring results remain identical across varying hardware. RLPy also provides automated
tools for generation of final publication-ready plots of results (see Figure 3 left); researchers
need only specify the quantities that should appear on the plot. To the best of our knowledge
this degree of automation of the entire experimentation pipeline is unique to RLPy.

4. Conclusion

RLPy is a new reinforcement learning framework focused on value-function-based reinforce-
ment learning using linear function approximation with discrete actions. It simplifies the
construction of learning agents and makes it easier for novices and experts alike to evaluate
and compare algorithms, representations, environments, and other RL components. RLPy
also provides many tools for conducting reproducible experiments from initial prototyping
to final plotting. The framework is entirely open-source and all contributions are welcome.

1576

RLPy: A Reinforcement Learning Framework for Education and Research

References

Douglas Aberdeen. LibPGRL: A high performance reinforcement learning library in C++,
2007. URL https://code.google.com/p/libpgrl.

Saminda Abeyruwan. RLLib reinforcement learning c++ template library, 2013. URL
http://web.cs.miami.edu/home/saminda/rllib.html.

Lucian Busoniu. Approxrl: A matlab toolbox for approximate reinforcement learning and
dynamic programming, 2010. URL http://busoniu.net/files/repository/readme_

approxrl.html.

Francesco de Comite. PIQLE: A platform for implementation of Q-learning experiments,
2006. URL http://piqle.sourceforge.net.

Thomas Degris. RLPark, 2013. URL http://rlpark.github.io.

Herve Frezza-Buet and Matthieu Geist. A C++ template-based reinforcement learning
library: Fitting the code to the mathematics. Journal of Machine Learning Research
(JMLR), 14:625–628, 2013.

Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How. Online
discovery of feature dependencies. In International Conference on Machine Learning
(ICML), 2011.

Todd Hester. rl-texplore-ros-pkg: Reinforcement learning framework, agents, and
environments with ROS interface, 2013. URL https://code.google.com/p/

rl-texplore-ros-pkg.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforce-
ment learning. Journal of Machine Learning Research (JMLR), 11:1563–1600, 2010.

Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic basis function construc-
tion for approximate dynamic programming and reinforcement learning. In International
Conference on Machine Learning (ICML), 2006.

Mykel Kochenderfer. JRLF: Java reinforcement learning framework, 2006. URL http:

//mykel.kochenderfer.com/jrlf.

Lihong Li. Sample complexity bounds of exploration. In Marco Wiering and Martijn van
Otterlo, editors, Reinforcement Learning: State of the Art. Springer Verlag, 2012.

Jan Hendrik Metzen and Mark Edgington. Maja machine learning framework, 2011. URL
http://mmlf.sourceforge.net.

Gerhard Neumann. The reinforcement learning toolbox, reinforcement learning for optimal
control tasks, 2005.

Ali Nouri and Michael L. Littman. Multi-resolution exploration in continuous spaces. In
Advances in Neural Information Processing Systems (NIPS), 2009.

1577

https://code.google.com/p/libpgrl
http://web.cs.miami.edu/home/saminda/rllib.html
http://busoniu.net/files/repository/readme_approxrl.html
http://busoniu.net/files/repository/readme_approxrl.html
http://piqle.sourceforge.net
http://rlpark.github.io
https://code.google.com/p/rl-texplore-ros-pkg
https://code.google.com/p/rl-texplore-ros-pkg
http://mykel.kochenderfer.com/jrlf
http://mykel.kochenderfer.com/jrlf
http://mmlf.sourceforge.net

Geramifard, Dann, Klein, Dabney and How

Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Analyzing
Feature Generation for Value-Function Approximation. In International Conference on
Machine Learning (ICML), 2007.

Martin Riedmiller, Manuel Blum, and Thomas Lampe. CLS2: Closed loop simulation
system, 2012. URL http://ml.informatik.uni-freiburg.de/research/clsquare.

Tom Schaul, Justin Bayer, Daan Wierstra, Yi Shun, Martin Felder, Frank Sehnke, Thomas
Rückstieß, and Jürgen Schmidhuber. PyBrain. Journal of Machine Learning Research
(JMLR), 11:743–746, 2010.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

Brian Tanner and Adam White. RL-Glue : Language-independent software for
reinforcement-learning experiments. Journal of Machine Learning Research (JMLR),
10:2133–2136, 2009.

Guido van Rossum and Jelke de Boer. Interactively testing remote servers using the python
programming language. CWI Quarterly, 4(4):283–303, 1991.

Daniel Yamins, David Tax, and James S. Bergstra. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In In-
ternational Conference on Machine Learning (ICML), 2013.

1578

http://ml.informatik.uni-freiburg.de/research/clsquare

	Introduction
	Existing Frameworks
	Why RLPy?
	Conclusion

