
Journal of Machine Learning Research 10 (2009) 743-746 Submitted 11/07; Revised 7/08; Published 3/09

Nieme: Large-Scale Energy-Based Models

Francis Maes FRANCIS.MAES@LIP6.FR

Universite Pierre et Marie Curie
Laboratoire d’Informatique de Paris 6, UMR CNRS 7606
104, Avenue du President Kennedy
Paris, France

Editor: Cheng Soon Ong

Abstract
In this paper we introduce NIEME,1 a machine learning library for large-scale classification,re-
gression and ranking. NIEME relies on the framework ofenergy-based models (LeCun et al., 2006)
which unifies several learning algorithms ranging from simple perceptrons to recent models such as
the pegasos support vector machine or l1-regularized maximum entropy models. This framework
also unifies batch and stochastic learning which are both seen as energy minimization problems.
NIEME can hence be used in a wide range of situations, but is particularly interesting for large-scale
learning tasks where both the examples and the features are processed incrementally. Being able to
deal with new incoming features at any time within the learning process is another original feature
of the NIEME toolbox. NIEME is released under the GPL license. It is efficiently implemented
in C++, it works on Linux, Mac OS X and Windows and provides interfaces for C++, Java and
Python.

Keywords: large-scale machine learning, classification, ranking, regression, energy-based mod-
els, machine learning software

1. Introduction

Although many machine learning toolkits have been developed in the past years, it is often the
case that they do not scale well to real-world applications. Developing learning algorithms for
large-scale applications is a challenging design and implementation problem. In this paper, we
introduce NIEME, a C++ library that provides generic tools for large-scale learning. NIEME covers
two domains: supervised learning and learning in decision processes. Inthis paper, we focus on the
supervised learning part, made of classification, regression and ranking algorithms. The support of
decision processes is still in active development and will be more detailed in further versions of the
library.

2. Framework: Energy-based Models

Most learning machines in NIEME rely on the unified framework of energy-based models introduced
by LeCun et al. (2006). In this framework, illustrated in Figure 1, a learning machine can be
interpreted as a combination of an architectureA with parametersθ, a per-example lossL , a set
of regularizers{Ω1, . . . ,ΩR} and a learnerL . Given the architecture, the per-example loss and the

1. Code for NIEME can be found athttp://nieme.lip6.fr.

c©2009 Francis Maes.

MAES

Architecture

x1

x2

x3

x4

x5

y2

y1

Learner
(stochastic gradient descent)

for each example:

 gradient = computeGradient(architecture, loss, regularizers, example);

 parameters = parameters - gradient / T;

 T = T + 1;

Regularizers

e.g. linear, transfert, compose e.g. perceptron, exponential, log-binomial e.g. l1 norm, l2 norm

e.g. stochastic gradient descent, mini-batchs, batch quasi-newton

Per-example Loss

e.g. perceptron, log-binomial, exponential

Figure 1: This figure illustrates the framework of energy-based models. Top: the three components
that define the learning energy. Bottom: thelearner component that performs energy
minimization.

Model Architecture Loss Regularizers Learner
Perceptron linear perceptron none stochastic descent
Logistic regression linear log-binomial none batch quasi-newton
Pegasos linear SVM linear hinge loss l2 pegasos learner
Multilayer perceptron linear◦ transfer◦ linear perceptron none stochastic descent
L1-maxent classifier multi-class linear log-binomial l1 batch quasi-newton
Pegasos multi-class SVM multi-class linear hinge loss l2 pegasos learner
Least-square regression linear squared loss none batch quasi-newton
Custom linear◦ transfer absolute loss l1 + l2 batch rprop
Many others

Table 1: This table gives some examples of energy-based models. Each model is defined by its ar-
chitecture, per-example loss, regularizers and learner. The◦ symbols denotes architecture
composition.

regularizers, we can define a learning loss for a set of examplesS = {e1, . . .eN}:

LS(θ) =
1
N

N

∑
i=1

L(ei,Aθ)+
R

∑
i=1

Ωi(θ).

The aim of the learner is then to find parametersθ that minimize the learning loss given the
training setS. As illustrated in Table 1, many combinations are possible in the energy-basedframe-
work. Some correspond to well-known learning machines, others to more original approaches. We
describe the three components that define the learning lossLS(θ) in Section 2.1, describe learners
in Section 2.2 and discuss some aspects of features in NIEME in Section 2.3.

2.1 Learning Loss components

The architecture is a parameterized function which computes predictions given input vectors. A
simple example is the linear architecture, which computes a single output as a scalar product be-

744

NIEME - LARGE-SCALE ENERGY-BASED MODELS

tween the input vector and the parameter vector. NIEME supports elementary architectures (linear,
multi-class linear, neural network transfer function) as well as acomposition operation which al-
lows users to create a new architecture by chaining existing ones. The per-example loss quantifies
how bad an architecture and its parameters perform on a given learning example. Learning aims at
finding parameters which lead to low expected per-example loss. Currently NIEME implements four
different loss functions for discriminant learning (perceptron loss, hinge loss, log-binomial loss and
exponential loss) and two loss functions for regression (squared andabsolute loss). Regularizers are
functions which measure thecomplexity of an architecture and its parameters. It has been shown
(Vapnik, 1999) that penalizing complex models often leads to better generalization performance.
Up to now, NIEME includes the two most commonly used regularizers: the l1-norm and l2-norm of
the parameters.

2.2 Learners

The learner is the algorithmic component that performs learning loss minimization.NIEME im-
plements three batch learners: the large-scale limited-memory quasi-Newton method of Lio and
Nocedal (1989), the recently proposed method of Andrew and Gao (2007) for minimizing large-
scale l1-regularized models and the rprop method of Riedmiller and Braun (1993). If batch learning
is not possible for a given problem, NIEME proposes classical online methods such as stochastic
gradient descent. Finally, NIEME also offers mini-batch methods including the recent SVM solver
of Shalev-Shwartz et al. (2007).

2.3 Feature Space

In large-scale applications, such as text processing, natural language processing, or bioinformatics,
examples are often described with sparse feature representations. NIEME has thus been designed
for efficient processing of such vectors. Moreover, in online settings, NIEME has the key ability
to handle new incoming features at any time within the learning process. Everytime a new feature
appears, the parameters of the learning machines are automatically extendedto include this new
feature. This is particularly interesting when dealing with large data streams for which the feature set
cannot be known entirely before learning. Conceptually, all those features exist from the beginning
of the learning process although most of them have zero values. Practically, a feature does not affect
the learning parameters until it has been seen once.

3. Implementation

The core of NIEME is implemented in portable C++ and compiles currently under Windows (with
Visual C++), Mac OS X (with Xcode or Makefiles) and Linux (with Makefilesor KDevelop). The
implementation of about 14,000 lines of code is fully object-oriented and makes use of several
design-patterns. The code is clear and easy to extend. However, it is not necessary to have a
detailed understanding of the implementation in order to use NIEME. Indeed, NIEME includes an
easy-to-use interface that can be used from C++, Java or Python, asillustrated in Figure 2. Wrappers
for Java and Python are automatically generated thanks to the SWIG tool2 that makes the glue code.
NIEME could even be extended to support languages such as C# or OCaml.

2. SWIG can be found athttp://www.swig.org.

745

MAES

train = InstanceSet.loadClassificationData("example.data")
machine = EnergyBasedMachine.createMaxentClassifier()
machine.train(train)
machine.save("example.model")

InstanceSet train = InstanceSet.loadClassificationData("example.data");
LearningMachine machine = EnergyBasedMachine.createMaxentClassifier();
machine.train(train);
machine.save("example.model");

InstanceSet train = InstanceSet::loadClassificationData("example.data");
LearningMachine machine = EnergyBasedMachine::createMaxentClassifier();
machine.train(train);
machine.save("example.model");

Figure 2: This figure shows the same program in three languages (Python,Java and C++). The
program loads a classification data set, trains a maximum entropy classifier and saves the
resulting model in a file called “example.model”.

3.1 Tutorials, Documentation, License, Unit Tests

The NIEME website includes a quick-start guide with compilation instructions and tutorials to get
started with NIEME in C++, Python or Java. Furthermore, it includes a complete reference docu-
mentation of the interface. NIEME is released under the GPL license. All functions of NIEME’s
interface are unit-tested within thepython unittest framework.

References

G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In Zoubin Ghahra-
mani, editor,ICML 2007, pages 33–40. Omnipress, 2007.

Yann LeCun, Sumit Chopra, Raia Hadsell, Ranzato Marc’Aurelio, and Fu-Jie Huang. A tutorial on
energy-based learning. InPredicting Structured Data. MIT Press, 2006.

D. C. Lio and J. Nocedal. On the limited memory BFGS method for large scale optimization. Math.
Programming, 45(3):503–528, 1989.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learn-
ing: The RPROP algorithm. InICNN, pages 586–591, San Francisco, CA, 1993.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: primal estimated sub-gradient solver for
SVM. In Zoubin Ghahramani, editor,ICML 2007, pages 807–814. Omnipress, 2007.

V. N. Vapnik. An overview of statistical learning theory.Neural Networks, IEEE Transactions on,
10(5):988–999, 1999.

746

