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Abstract

Causal reasoning is primarily concerned with what would happen to a system under external in-
terventions. In particular, we are often interested in predicting the probability distribution of some
random variables that would result if some other variables were forced to take certain values. One
prominent approach to tackling this problem is based on causal Bayesian networks, using directed
acyclic graphs as causal diagrams to relate post-intervention probabilities to pre-intervention prob-
abilities that are estimable from observational data. However, such causal diagrams are seldom
fully testable given observational data. In consequence, many causal discovery algorithms based
on data-mining can only output an equivalence class of causal diagrams (rather than a single one).
This paper is concerned with causal reasoning given an equivalence class of causal diagrams, rep-
resented by a (partial) ancestral graph. We present two main results. The first result extends Pearl
(1995)’s celebrated do-calculus to the context of ancestral graphs. In the second result, we focus
on a key component of Pearl’s calculus—the property of invariance under interventions, and give
stronger graphical conditions for this property than those implied by the first result. The second
result also improves the earlier, similar results due to Spirtes et al. (1993).
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1. Introduction

Intellectual curiosity aside, an important reason for people to care about causality or causal expla-
nation is the need—for example, in policy assessment or decision making—to predict consequences
of actions or interventions before actually carrying them out. Sometimes we can base that predic-
tion on similar past interventions or experiments, in which case the inference is but an instance of
the classical inductive generalization. Other times, however, we do not have access to sufficient
controlled experimental studies for various reasons, and can only make passive observations before
interventions take place. Under the latter circumstances, we need to reason from pre-intervention or
observational data to a post-intervention setting.

A prominent machinery for causal reasoning of this kind is known as causal Bayesian network
(Spirtes et al., 1993; Pearl, 2000), which we will describe in more detail in the next section. In this
framework, once the causal structure—represented by a directed acyclic graph (DAG) over a set of
attributes or random variables—is fully given, every query about post-intervention probability can
be answered in terms of pre-intervention probabilities. So, if every variable in the causal structure is
(passively) observed, the observational data can be used to estimate the post-intervention probability
of interest.
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Complications come in at least two ways. First, some variables in the causal DAG may be
unobserved, or worse, unobservable. So even if the causal DAG (with latent variables) is fully
known, we may not be able to predict certain intervention effects because we only have data from
the marginal distribution over the observed variables instead of the joint distribution over all causally
relevant variables. The question is what post-intervention probability is or is not identifiable given
a causal DAG with latent variables. Much of Pearl’s work (Pearl, 1995, 1998, 2000), and more
recently Tian and Pearl (2004) are paradigmatic attempts to address this problem.

Second, the causal structure is seldom, if ever, fully known. In the situation we are concerned
with in this paper, where no substantial background knowledge or controlled study is available, we
have to rely upon observational data to inform us about causal structure. The familiar curse is that
very rarely can observational data determine a unique causal structure, and many causal discovery
algorithms in the literature output an equivalence class of causal structures based on observational
data (Spirtes et al., 1993; Meek, 1995a; Spirtes et al., 1999; Chickering, 2002).1 Different causal
structures in the class may or may not give the same answer to a query about post-intervention
probability. For a simple illustration, consider two causal Bayesian networks (see Section 2 below),
X → Y → Z and X ← Y → Z, over three variables X ,Y and Z. The two causal structures are
indistinguishable (without strong parametric assumptions) by observational data. Suppose we are
interested in the post-intervention probability distribution of Y given that X is manipulated to take
some fixed value x. The structure X → Y → Z entails that the post-intervention distribution of Y
is identical to the pre-intervention distribution of Y conditional on X = x, whereas the structure
X ← Y → Z entails that the post-intervention distribution of Y is identical to the pre-intervention
marginal distribution of Y . So the two structures give different answers to this particular query. By
contrast, if we are interested in the post-intervention distribution of Z under an intervention on Y ,
the two structures give the same answer.

The matter becomes formidably involved when both complications are present. Suppose we
observe a set of random variables O, but for all we know, the underlying causal structure may involve
extra latent variables. We will not worry about the estimation of the pre-intervention distribution of
O in this paper, so we may well assume for simplicity that the pre-intervention distribution of O is
known. But we are interested in queries about post-intervention probability, such as the probability
of Y conditional on Z that would result under an intervention on X (where X,Y,Z ⊆ O). The
question is whether and how we can answer such queries from the given pre-intervention distribution
of O.

This problem is naturally divided into two parts. The first part is what some causal discovery al-
gorithms attempt to achieve, namely, to learn something about the causal structure—usually features
shared by all causal structures in an equivalence class—from the pre-intervention distribution of O.
The second part is to figure out, given the learned causal information, whether a post-intervention
probability is identifiable in terms of pre-intervention probabilities.

This paper provides some results concerning the second part, assuming the available causal in-
formation is summarized in a (partial) ancestral graph. Ancestral graphical models (Richardson
and Spirtes, 2002, 2003) have proved to be an elegant and useful surrogate for DAG models with
latent variables (more details follow in Section 3), not the least because provably correct algorithms
are available for learning an equivalence class of ancestral graphs represented by a partial ances-
tral graph from the pre-intervention distribution of the observed variables—in particular, from the

1. The recent work on linear non-Gaussian structural equation models (Shimizu et al., 2006) is an exception. However,
we do not make parametric assumptions in this paper.
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conditional independence and dependence relations implied by the distribution (Spirtes et al., 1999;
Zhang, forthcoming).

We have two main results. First, we extend the do-calculus of Pearl (1995) to the context of
ancestral graphs (Section 4), so that the resulting calculus is based on an equivalence class of causal
DAGs with latent variables rather than a single one. Second, we focus on a key component of Pearl’s
calculus—the property of invariance under interventions studied by Spirtes et al. (1993), and give
stronger graphical conditions for this property than those implied by the first result (Section 5).
Our result improves upon the Spirtes-Glymour-Scheines conditions for invariance formulated with
respect to the so-called inducing path graphs, whose relationship with ancestral graphs is discussed
in Appendix A.

2. Causal Bayesian Network

A Bayesian network for a set of random variables V consists of a pair 〈G ,P〉, where G is a directed
acyclic graph (DAG) with V as the set of vertices, and P is the joint probability function of V, such
that P factorizes according to G as follows:

P(V) = ∏
Y∈V

P(Y |PaG (Y ))

where PaG (Y ) denotes the set of parents of Y in G . In a causal Bayesian network, the DAG G is
interpreted causally, as a representation of the causal structure over V. That is, for X ,Y ∈ V, an
arrow from X to Y (X → Y ) in G means that X has a direct causal influence on Y relative to V. We
refer to a causally interpreted DAG as a causal DAG. The postulate that the (pre-intervention) joint
distribution P factorizes according to the causal DAG G is known as the causal Markov condition.

What about interventions? For simplicity, let us focus on what Pearl (2000) calls atomic
interventions—interventions that fix the values of the target variables—though the results in Sec-
tion 5 also apply to more general types of interventions (such as interventions that confer a non-
degenerate probability distribution on the target variables). In the framework of causal Bayesian
network, an intervention on X ⊆ V is supposed to be effective in the sense that the value of X is
completely determined by the intervention, and local in the sense that the conditional distributions
of other variables (variables not in X) given their respective parents in the causal DAG are not af-
fected by the intervention. Graphically, such an intervention amounts to erasing all arrows into X
in the causal DAG (because variables in X do not depend on their original parents any more), but
otherwise keeping the graph as it is. Call this modified graph the post-intervention causal graph.

Based on this understanding of interventions, the following postulate has been proposed by
several authors in various forms (Robins, 1986; Spirtes et al., 1993; Pearl, 2000):

Intervention Principle Given a causal DAG G over V and a (pre-intervention) joint distri-
bution P that factorizes according to G , the post-intervention distribution PX:=x(V)—that is,
the joint distribution of V after X⊆ V are manipulated to values x by an intervention—takes
a similar, truncated form of factorization, as follows:

PX:=x(V) =

{

∏Y∈V\X P(Y |PaG (Y )) for values of V consistent with X = x,

0 otherwise.

Note that in the case of a null intervention (when X = Ø), the intervention principle implies the
factorization of the pre-intervention distribution P according to G , which is just the causal Markov
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condition. So the intervention principle generalizes the causal Markov condition: it assumes that the
post-intervention distribution also satisfies the causal Markov condition with the post-intervention
causal graph.

By the intervention principle, once the causal DAG is given, the post-intervention joint distribu-
tion can be calculated in terms of pre-intervention probabilities.2 So if every variable is observed,
and hence those pre-intervention probabilities can be estimated, any post-intervention probability is
estimable as well.

It is time to recall the two complications mentioned in the last section. First, the intervention
principle is only plausible when the given set of variables is causally sufficient. Here is what causal
sufficiency means. Given a set of variables V, and two variables A,B ∈ V, a variable C (not neces-
sarily included in V) is called a common direct cause of A and B relative to V if C has a direct causal
influence on A and also a direct causal influence on B relative to V∪{C}. V is said to be causally
sufficient if for every pair of variables V1,V2 ∈ V, every common direct cause of V1 and V2 relative
to V is also a member of V. It is well known that the causal Markov condition tends to fail for a
causally insufficient set of variables (Spirtes et al., 1993), and even more so with the intervention
principle. But in most real situations, there is no reason to assume that the set of observed variables
is causally sufficient, so the causal Bayesian network may well involve latent variables.

Second, the causal DAG is not fully learnable with observational, pre-intervention data. The
causal discovery algorithms in the literature—some of which are provably correct in the large sam-
ple limit assuming the causal Markov condition and its converse, causal Faithfulness condition—
typically return an equivalence class of DAGs that imply the same conditional independence rela-
tions among the observed variables (according to the Markov condition), with some causal features
in common that constitute the learned causal information. Given such limited causal information, a
post-intervention probability may or may not be uniquely identifiable.

Taking both complications into account, the interesting question is this: what causal reasoning is
warranted given the causal information learnable by algorithms that do not assume causal sufficiency
for the set of observed variables, such as the FCI algorithm presented in Spirtes et al. (1999)? Before
we explore the question, let us make it a little more precise with the formalism of ancestral graphs.

3. Ancestral Graphical Models

Ancestral graphical models are motivated by the need to represent data generating processes that
may involve latent confounders and/or selection bias,3 without explicitly modelling the unobserved
variables (Richardson and Spirtes, 2002). We do not deal with selection bias in this paper, so we
use only part of the machinery.

A (directed) mixed graph is a vertex-edge graph that may contain two kinds of edges: directed
edges (→) and bi-directed edges (↔). Between any two vertices there is at most one edge. The two
ends of an edge we call marks. Obviously there are two kinds of marks: arrowhead (>) and tail
(−). The marks of a bi-directed edge are both arrowheads, and a directed edge has one arrowhead

2. A technical issue is that some conditional probabilities may be undefined in the pre-intervention distribution. In this
paper we ignore that issue by assuming that the pre-intervention distribution is strictly positive. Otherwise we just
need to add the proviso “when all the conditional probabilities involved are defined” to all our results.

3. Roughly speaking, there is selection bias if the probability of a unit being sampled depends on certain properties of
the unit. The kind of selection bias that is especially troublesome for causal inference is when two or more properties
of interest affect the probability of being sampled, giving rise to “misleading” associations in the sample.
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Figure 1: (a) an ancestral graph that is not maximal; (b) a maximal ancestral graph.

and one tail. We say an edge is into (or out of) a vertex if the mark of the edge at the vertex is an
arrowhead (or tail).

Two vertices are said to be adjacent in a graph if there is an edge (of any kind) between them.
Given a mixed graph G and two adjacent vertices X , Y therein, X is called a parent of Y and Y a
child of X if X → Y is in G ; X is called a spouse of Y (and Y a spouse of X) if X ↔ Y is in G . A
path in G is a sequence of distinct vertices 〈V0, ...,Vn〉 such that for all 0≤ i≤ n−1, Vi and Vi+1 are
adjacent in G . A directed path from V0 to Vn in G is a sequence of distinct vertices 〈V0, ...,Vn〉 such
that for all 0≤ i≤ n−1, Vi is a parent of Vi+1 in G . X is called an ancestor of Y and Y a descendant
of X if X = Y or there is a directed path from X to Y . We use PaG ,ChG ,SpG ,AnG ,DeG to denote
the set of parents, children, spouses, ancestors, and descendants of a vertex in G , respectively. A
directed cycle occurs in G when Y → X is in G and X ∈ AnG (Y ). An almost directed cycle occurs
when Y ↔ X is in G and X ∈ AnG (Y ).4

Given a path p = 〈V0, ...,Vn〉 with n > 1, Vi (1 ≤ i ≤ n− 1) is a collider on p if the two edges
incident to Vi are both into Vi, that is, have an arrowhead at Vi; otherwise it is called a noncollider on
p. In Figure 1(a), for example, B is a collider on the path 〈A,B,D〉, but is a non-collider on the path
〈C,B,D〉. A collider path is a path on which every vertex except for the endpoints is a collider. For
example, in Figure 1(a), the path 〈C,A,B,D〉 is a collider path because both A and B are colliders
on the path. Let L be any subset of vertices in the graph. An inducing path relative to L is a path
on which every vertex not in L (except for the endpoints) is a collider on the path and every collider
is an ancestor of an endpoint of the path. For example, any single-edge path is trivially an inducing
path relative to any set of vertices (because the definition does not constrain the endpoints of the
path). In Figure 1(a), the path 〈C,B,D〉 is an inducing path relative to {B}, but not an inducing path
relative to the empty set (because B is not a collider). However, the path 〈C,A,B,D〉 is an inducing
path relative to the empty set, because both A and B are colliders on the path, A is an ancestor of
D, and B is an ancestor of C. To simplify terminology, we will henceforth refer to inducing paths
relative to the empty set simply as inducing paths.5

Definition 1 (MAG) A mixed graph is called a maximal ancestral graph (MAG) if

i. the graph does not contain any directed or almost directed cycles (ancestral); and

4. The terminology of “almost directed cycle” is motivated by the fact that removing the arrowhead at Y on Y ↔ X
results in a directed cycle.

5. They are called primitive inducing paths by Richardson and Spirtes (2002).
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ii. there is no inducing path between any two non-adjacent vertices (maximal).

The first condition is obviously an extension of the defining condition for DAGs. It follows
that in an ancestral graph an arrowhead, whether on a directed edge or a bi-directed edge, implies
non-ancestorship. The second condition is a technical one, but the original motivation is the familiar
pairwise Markov property of DAGs: if two vertices are not adjacent, then they are d-separated by
some set of other vertices. The notion of d-separation carries over to mixed graphs in a straight-
forward way, as we will see shortly. But in general an ancestral graph does not need to satisfy the
pairwise Markov property, or what is called maximality here. A sufficient and necessary condition
for maximality turns out to be precisely the second clause in the above definition, as proved by
Richardson and Spirtes (2002). So although the graph in Figure 1(a) is ancestral, it is not maximal
because there is an inducing path between C and D (i.e., 〈C,A,B,D〉), but C and D are not adjacent.
However, each non-maximal ancestral graph has a unique supergraph that is ancestral and maximal.
For example, Figure 1(b) is the unique MAG that is also a supergraph of Figure 1(a); the former has
an extra bi-directed edge between C and D.

It is worth noting that both conditions in Definition 1 are obviously met by a DAG. Hence,
syntactically a DAG is also a MAG, one without bi-directed edges.

An important notion in directed graphical models is that of d-separation, which captures exactly
the conditional independence relations entailed by a DAG according to the Markov condition. It
is straightforward to extend the notion to mixed graphs, which, following Richardson and Spirtes
(2002), we call m-separation.

Definition 2 (m-separation) In a mixed graph, a path p between vertices X and Y is active (or
m-connecting) relative to a (possibly empty) set of vertices Z (X ,Y /∈ Z) if

i. every non-collider on p is not a member of Z;

ii. every collider on p is an ancestor of some member of Z.

X and Y are said to be m-separated by Z if there is no active path between X and Y relative to
Z.

Two disjoint sets of variables X and Y are m-separated by Z if every variable in X is m-
separated from every variable in Y by Z.

In DAGs, obviously, m-separation reduces to d-separation. The (global) Markov property of ances-
tral graphical models is defined by m-separation.

A nice property of MAGs is that they can represent the marginal independence models of DAGs
in the following sense: given any DAG G over V = O∪L—where O denotes the set of observed
variables, and L denotes the set of latent variables—there is a MAG over O alone such that for any
disjoint X,Y,Z⊆O, X and Y are d-separated by Z in G (and hence entailed by G to be independent
conditional on Z) if and only if they are m-separated by Z in the MAG (and hence entailed by the
MAG to be independent conditional on Z). The following construction gives us such a MAG:

Input: a DAG G over 〈O,L〉
Output: a MAG MG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in MG if and only if there is an
inducing path between them relative to L in G ;
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2. for each pair of adjacent variables A,B in MG , orient the edge as A→ B in MG if A is an
ancestor of B in G ; orient it as A← B in MG if B is an ancestor of A in G ; orient it as A↔ B
in MG otherwise.

It can be shown that MG is indeed a MAG and represents the marginal independence model over O
(Richardson and Spirtes, 2002; also see Lemma 20 below). More importantly, MG also retains the
ancestral relationships—and hence causal relationships under the standard interpretation—among
O. So, if G is the causal DAG for 〈O,L〉, it is fair to call MG the causal MAG for O. Henceforth
when we speak of a MAG over O representing a DAG over 〈O,L〉, we mean that the MAG is the
output of the above construction procedure applied to the DAG.

Different causal DAGs may correspond to the same causal MAG. So essentially a MAG rep-
resents a set of DAGs that have the exact same d-separation structures and ancestral relationships
among the observed variables. A causal MAG thus carries uncertainty about what the true causal
DAG is, but also reveals features that must be satisfied by the underlying causal DAG.

There is then a natural causal interpretation of the edges in MAGs, derivative from the causal
interpretation of DAGs. A directed edge from A to B in a MAG means that A is a cause of B (which
is a shorthand way of saying that there is a causal pathway from A to B in the underlying DAG);
a bi-directed edge between A and B means that A is not a cause of B and B is not a cause of A,
which implies that there is a latent common cause of A and B (i.e., there is a latent variable L in the
underlying DAG such that there is a directed path from L to A and a directed path from L to B6).

We borrow a simple example from Spirtes et al. (1993) to illustrate various concepts and results
in this paper. Suppose we are able to observe the following variables: Income (I), Parents’ smoking
habits (PSH), Smoking (S), Genotype (G) and Lung cancer (L). The data, for all we know, are
generated according to an underlying mechanism which might involve unobserved common causes.
Suppose, unknown to us, the structure of the causal mechanism is the one in Figure 2, where Pro-
fession is an unmeasured common cause of Income and Smoking.7

Income Smoking Lung Cancer

Genotype

Profession

Parents’ smoking habits

Figure 2: A causal DAG with a latent variable.

6. Note that a latent common cause is not necessarily a common direct cause as defined on page 4. The path from L to
A, for example, may include other observed variables.

7. This example is used purely for illustrative purposes, so we will not worry why Profession is not observed but
Genotype is. The exact domains of the variables do not matter either.
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The causal MAG that corresponds to the causal DAG is depicted in Figure 3(a)—which syntac-
tically happens to be a DAG in this case. This MAG can represent some other DAGs as well. For
example, it can also represent the DAG with an extra latent common cause of PSH and S.

S LI

PSH G

S LI

PSH G

(a) (b)

Figure 3: Two Markov Equivalent MAGs.

In general a MAG is still not fully testable with observational data. Just as different DAGs can
share the exact same d-separation features and hence entail the exact same conditional independence
constraints, different MAGs can entail the exact same constraints by the m-separation criterion. This
is known as Markov equivalence. Several characterizations of the Markov equivalence between
MAGs are available (Spirtes and Richardson, 1996; Ali et al., 2004; Zhang and Spirtes, 2005; Zhao
et al., 2005). For the purpose of the present paper, it suffices to note that, as is the case with
DAGs, all Markov equivalent MAGs have the same adjacencies and usually some common edge
orientations as well. For example, the two MAGs in Figure 3 are Markov equivalent.

This motivates the following representation of equivalence classes of MAGs. Let partial mixed
graphs denote the class of graphs that can contain four kinds of edges: →,↔, ◦−−◦ and ◦→, and
hence three kinds of end marks for edges: arrowhead (>), tail (−) and circle (◦).

Definition 3 (PAG) Let [M ] be the Markov equivalence class of an arbitrary MAG M . The partial
ancestral graph (PAG) for [M ], P[M ], is a partial mixed graph such that

i. P[M ] has the same adjacencies as M (and any member of [M ]) does;

ii. A mark of arrowhead is in P[M ] if and only if it is shared by all MAGs in [M ]; and

iii. A mark of tail is in P[M ] if and only if it is shared by all MAGs in [M ].8

Basically a PAG represents an equivalence class of MAGs by displaying all common edge marks
shared by all members in the class and displaying circles for those marks that are not common,
much in the same way that a so-called Pattern (a.k.a. a PDAG or an essential graph) represents an
equivalence class of DAGs (see, e.g., Spirtes et al., 1993, chap. 5; Chickering, 1995; Andersson et
al., 1997). For instance, the PAG for our running example is drawn in Figure 4, which displays all
the commonalities among MAGs that are Markov equivalent to the MAGs in Figure 3.

8. This defines what Zhang (2006, pp. 71) calls complete or maximally oriented PAGs. In this paper, we do not consider
PAGs that fail to display all common edge marks in an equivalence class of MAGs (as, e.g., allowed in Spirtes et al.,
1999), so we will simply use ‘PAG’ to mean ‘maximally oriented PAG’.
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S LI

PSH G

Figure 4: The PAG in our five-variable example.

Different PAGs, representing different equivalence classes of MAGs, entail different sets of
conditional independence constraints. Hence a PAG is in principle fully testable by the conditional
independence relations among the observed variables. Assuming the causal Markov condition and
its converse, the causal Faithfulness condition,9 there is a provably correct independence-constraint-
based algorithm to learn a PAG from an oracle of conditional independence relations (Spirtes et
al., 1999; Zhang, 2006, chap. 3).10 Score-based algorithms for learning PAGs are also under
investigation.

Directed paths and ancestors/descendants in a PAG are defined in the same way as in a MAG. In
addition, a path between X and Y , 〈X = V0, ...,Vn = Y 〉, is called a possibly directed path from X to
Y 11 if for every 0 < i≤ n, the edge between Vi−1 and Vi is not into Vi−1. Call X a possible ancestor
of Y (and Y a possible descendant of X) if X = Y or there is a possibly directed path from X to Y in
the PAG.12 For example, in Figure 4, the path 〈I,S,L〉 is a possibly directed path, and I is a possible
ancestor of L. We use PossibleAnP (Y ) to denote the set of possible ancestors of Y in P .

In partial mixed graphs two analogues of m-connecting paths will play a role later. Let p be any
path in a partial mixed graph, and W be any (non-endpoint) vertex on p. Let U and V be the two
vertices adjacent to W on p. W is a collider on p if, as before, both the edge between U and W and
the edge between V and W are into W (i.e., have an arrowhead at W , U∗→W ←∗V ). W is called a
definite non-collider on p if the edge between U and W or the edge between V and W is out of W

9. We have introduced the causal Markov condition in its factorization form. In terms of d-separation, the causal
Markov condition says that d-separation in a causal DAG implies conditional independence in the (pre-intervention)
population distribution. The causal Faithfulness condition says that d-connection in a causal DAG implies conditional
dependence in the (pre-intervention) population distribution. Given the exact correspondence between d-separation
relations among the observed variables in the causal DAG and m-separation relations in the causal MAG, the two
conditions imply that conditional independence relations among the observed variables correspond exactly to m-
separation in the causal MAG, which forms the basis of constraint-based learning algorithms.

10. It is essentially the FCI algorithm (Spirtes et al., 1999), but with slight modifications (Zhang, 2006, chap. 3). The
implemented FCI algorithm in the Tetrad IV package (http://www.phil.cmu.edu/projects/tetrad/tetrad4.html) is the
modified version. By the way, if we also take into account the possibility of selection bias, then we need to consider
a broader class of MAGs which can contain undirected edges, and the FCI algorithm needs to be augmented with
additional edge inference rules (Zhang, 2006, chap. 4; forthcoming).

11. It is named a potentially directed path in Zhang (2006, pp. 99). The present terminology is more consistent with the
names for other related notions, such as possible ancestor, possibly m-connecting path, etc.

12. The qualifier ’possible/possibly’ is used to indicate that there is some MAG represented by the PAG in which the
corresponding path is directed, and X is an ancestor of Y . This is not hard to establish given the valid procedure for
constructing representative MAGs from a PAG presented in Lemma 4.3.6 of Zhang (2006) or Theorem 2 of Zhang
(forthcoming).
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(i.e., has a tail at W , U ←W ∗−−∗V or U ∗−−∗W →V ), or both edges have a circle mark at W and
there is no edge between U and V (i.e., U ∗−−◦W ◦−−∗V , where U and V are not adjacent).13 The
first analogue of m-connecting path is the following:

Definition 4 (Definite m-connecting path) In a partial mixed graph, a path p between two ver-
tices X and Y is a definite m-connecting path relative to a (possibly empty) set of vertices Z
(X ,Y /∈ Z) if every non-endpoint vertex on p is either a definite non-collider or a collider and

i. every definite non-collider on p is not a member of Z;

ii. every collider on p is an ancestor of some member of Z.

It is not hard to see that if there is a definite m-connecting path between X and Y given Z in a
PAG, then in every MAG represented by the PAG, the corresponding path is an m-connecting path
between X and Y given Z. For example, in Figure 4 the path 〈I,S,G〉 is definitely m-connecting
given L, and this path is m-connecting given L in every member of the equivalence class. A quite
surprising result is that if there is an m-connecting path between X and Y given Z in a MAG, then
there must be a definite m-connecting path (not necessarily the same path) between X and Y given
Z in its PAG, which we will use in Section 5.

Another analogue of m-connecting path is the following:

Definition 5 (Possibly m-connecting path) In a partial mixed graph, a path p between vertices X
and Y is possibly m-connecting relative to a (possibly empty) set of vertices Z (X ,Y /∈ Z) if

i. every definite non-collider on p is not a member of Z;

ii. every collider on p is a possible ancestor of some member of Z.

Obviously a definite m-connecting path is also a possibly m-connecting path, but not necessarily
vice versa. In particular, on a possibly m-connecting path it is not required that every (non-endpoint)
vertex be of a “definite” status. Figure 5 provides an illustration. The graph on the right is the PAG
for the equivalence class that contains the MAG on the left (in this case, unfortunately, no informa-
tive edge mark is revealed in the PAG). In the PAG, the path 〈X ,Y,Z,W 〉 is a possibly m-connecting
path but not a definite m-connecting path relative to {Y,Z}, because Y and Z are neither collid-
ers nor definite non-colliders on the path. Note that in the MAG, 〈X ,Y,Z,W 〉 is not m-connecting
relative to {Y,Z}. In fact, X and W are m-separated by {Y,Z} in the MAG. So unlike a definite
m-connecting path, a mere possibly m-connecting path in a PAG does not necessarily correspond
to a m-connecting path (or imply the existence of a m-connecting path) in a representative MAG in
the equivalence class.14

As we will see, the main result in Section 4 is formulated in terms of absence of possibly m-
connecting paths (what we will call, for want of a better term, definite m-separation), whereas the

13. ’*’ is used as wildcard that denotes any of the three possible marks: circle, arrowhead, and tail. When the graph is a
PAG for some equivalence class of MAGs, the qualifier ’definite’ is used to indicate that the vertex is a non-collider
on the path in each and every MAG represented by the PAG, even though the circles may correspond to different
marks in different MAGs. The reason why U ∗−−◦W ◦−−∗V is a definite non-collider when U and V are not adjacent
is because if it were a collider, it would be shared by all Markov equivalent MAGs, and hence would be manifest in
the PAG.

14. This case is even more extreme in that in every MAG that belongs to the equivalence class, X and W are m-separated
by Y and Z. So this example can be used to show that the do-calculus developed in Section 4 is not yet complete,
though it is not clear how serious the incompleteness is.
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ZYZY

WX X W

Figure 5: Difference between possible and definite m-connecting paths: in the PAG on the right,
〈X ,Y,Z,W 〉 is a possibly m-connecting path relative to {Y,Z} but not a definite m-
connecting path relative to {Y,Z}. Also note that 〈X ,Y,Z,W 〉 is not m-connecting relative
to {Y,Z} in the MAG on the left, even though the MAG is a member of the equivalence
class represented by the PAG.

main result in Section 5 is formulated in terms of absence of definite m-connecting paths. This
is one important aspect in which the result in Section 5 is better than that in Section 4 (and than
the analogous results presented in Spirtes et al., 1993) regarding the property of invariance under
interventions. We will come back to this point after we present the PAG-based do-calculus.

4. Do-Calculus

Pearl (1995) developed an elegant do-calculus for identifying post-intervention probabilities given
a single causal DAG with (or without) latent variables. To honor the name of the calculus, in this
section we will use Pearl’s ‘do’ operator to denote post-intervention probabilities. Basically, the
notation we used for the post-intervention probability function under an intervention on X, PX:=x(•),
will be written as P(•|do(X = x)).

The calculus contains three inference rules whose antecedents make reference to surgeries on
the given causal DAG. There are two types of graph manipulations:

Definition 6 (Manipulations of DAGs) Given a DAG G and a set of variables X therein,

• the X-lower-manipulation of G deletes all edges in G that are out of variables in X, and
otherwise keeps G as it is. The resulting graph is denoted as GX.

• the X-upper-manipulation of G deletes all edges in G that are into variables in X, and
otherwise keeps G as it is. The resulting graph is denoted as GX .

The following proposition summarizes Pearl’s do-calculus. (Following Pearl, we use lower case
letters to denote generic value settings for the sets of variables denoted by the corresponding upper
case letters. So for simplicity we write P(x) to mean P(X = x), and do(x) to mean do(X = x).)

Proposition 7 (Pearl) Let G be the causal DAG for V, and U,X,Y,W be disjoint subsets of V. The
following rules are sound:

1. if Y and X are d-separated by U∪W in GU, then

P(y|do(u),x,w) = P(y|do(u),w).
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2. if Y and X are d-separated by U∪W in GXU, then

P(y|do(u),do(x),w) = P(y|do(u),x,w).

3. if Y and X are d-separated by U∪W in GUX′ , then

P(y|do(u),do(x),w) = P(y|do(u),w)

where X′ = X\AnGU
(W) = X\(∪W∈WAnGU

(W )).

The proposition follows from the intervention principle (Pearl, 1995). The first rule is actually not
independent—it can be derived from the other two rules (Huang and Valtorta, 2006), but it has long
been an official part of the calculus. The soundness of the calculus ensures that any post-intervention
probability that can be reduced via the calculus to an expression that only involves pre-intervention
probabilities of observed variables is identifiable. Recently, the completeness of the calculus was
also established, in the sense that any identifiable post-intervention probability can be so reduced
using the calculus (Huang and Valtorta, 2006; Shpister and Pearl, 2006).

Our goal is to develop a similar calculus when the available causal information is given in a
PAG. A natural idea is to formulate analogous inference rules in terms of (manipulated) PAGs, to
the effect that if a certain rule is applicable given a PAG, the corresponding rule in Pearl’s calculus
will be applicable given the (unknown) true causal DAG. How to guarantee that? Recall that a PAG
represents an equivalence class of MAGs; each MAG, in turn, represents a set of causal DAGs. The
union of all these sets is the set of DAGs represented by the PAG—one of them is the true causal
DAG. So a sure way to get what we want is to formulate analogous rules in terms of PAGs such that
if the rule is applicable given a PAG, then for every DAG represented by the PAG, the corresponding
rule in Pearl’s calculus is applicable.

For this purpose, it is natural to develop the desired calculus in two steps. First, we derive an
analogous do-calculus based on MAGs, such that if a rule is applicable given a MAG, then for every
DAG represented by the MAG, the corresponding rule in Pearl’s calculus is applicable. Second, we
extend that to a do-calculus based on PAGs, such that if a rule is applicable given a PAG, then for
every MAG in the equivalence class represented by the PAG, the corresponding rule in the MAG-
based calculus is applicable.

Before we define appropriate analogues of graph manipulations on MAGs, it is necessary to
distinguish two kinds of directed edges in a MAG, according to the following criterion.

Definition 8 (Visibility) Given a MAG M , a directed edge A→B in M is visible if there is a vertex
C not adjacent to B, such that either there is an edge between C and A that is into A, or there is a
collider path between C and A that is into A and every vertex on the path is a parent of B. Otherwise
A→ B is said to be invisible.

Figure 6 gives the possible configurations that make a directed edge A→ B visible. The distinc-
tion between visible and invisible directed edges is important because of the following two facts.

Lemma 9 Let G be a DAG over O∪L, and M be the MAG over O that represents the DAG. For
any A,B ∈ O, if A ∈ AnG (B), and there is an inducing path relative to L between A and B that is
into A in G , then there is a directed edge A→ B in M that is invisible.
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Figure 6: Possible configurations of visibility for A→ B.

Proof See Appendix B.

Taking the contrapositive of Lemma 9 gives us the fact that if A→ B is visible in a MAG, then in
every DAG represented by the MAG, there is no inducing path between A and B relative to the set of
latent variables that is also into A. This implies that for every such DAG G, GA—the graph resulting
from eliminating edges out of A in G—will not contain any inducing path between A and B relative
to the set of latent variables, which means that the MAG that represents GA will not contain any
edge between A and B. So intuitively, deleting edges out of A in the underlying DAG corresponds
to deleting visible arrows out of A in the MAG.

How about invisible arrows? Here is the relevant fact.

Lemma 10 Let M be any MAG over a set of variables O, and A→ B be any directed edge in M .
If A→ B is invisible in M , then there is a DAG whose MAG is M in which A and B share a latent
parent, that is, there is a latent variable LAB in the DAG such that A← LAB→ B is a subgraph of
the DAG.

Proof See Appendix B.

Obviously A ← LAB → B is an inducing path between A and B relative to the set of latent
variables. So if A→ B in a MAG is invisible, at least for some DAG G represented by the MAG—
and for all we know, this DAG may well be the true causal DAG—GA contains A← LAB→ B, and
hence corresponds to a MAG in which A↔ B appears.

Finally, for either A↔ B or A→ B in a MAG, it is not hard to show that for every DAG rep-
resented by the MAG, there is no inducing path in the DAG between A and B relative to the set of
latent variables that is also out of B (since otherwise B would be an ancestor of A, violating the defi-
nition of ancestral graphs). So deleting edges into B in the underlying DAG corresponds to deleting
edges into B in the MAG. These considerations motivate the following definition.

Definition 11 (Manipulations of MAGs) Given a MAG M and a set of variables X therein,

• the X-lower-manipulation of M deletes all those edges that are visible in M and are out
of variables in X, replaces all those edges that are out of variables in X but are invisible in
M with bi-directed edges, and otherwise keeps M as it is. The resulting graph is denoted as
MX.
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• the X-upper-manipulation of M deletes all those edges in M that are into variables in X,
and otherwise keeps M as it is. The resulting graph is denoted as MX .

We stipulate that lower-manipulation has a higher priority than upper-manipulation, so that MYX
(or MXY) denotes the graph resulting from applying the X-upper-manipulation to the Y-lower-
manipulated graph of M .

A couple of comments are in order. First, unlike the case of DAGs, the lower-manipulation for
MAGs may introduce new edges, that is, replacing invisible directed edges with bi-directed edges.
Again, the reason we do this is that an invisible directed edge from A to B allows the possibility of
a latent common parent of A and B in the underlying DAG. If so, the A-lower-manipulated DAG
will correspond to a MAG in which there is a bi-directed edge between A and B. Second, because
of the possibility of introducing new bi-directed edges, we need the priority stipulation that lower-
manipulation is to be done before upper-manipulation. The stipulation is not necessary for DAGs,
because no new edges would be introduced in the lower-manipulation of DAGs, and hence the order
does not matter.

Ideally, if M is the MAG of a DAG G , we would like MYX to be the MAG of GYX. But this
is not always possible, as two DAGs represented by the same MAG before a manipulation may
correspond to different MAGs after the manipulation. But we still have the following fact:

Lemma 12 Let G be a DAG over O∪L, and M be the MAG of G over O. Let X and Y be two
possibly empty subsets of O, and MGYX

be the MAG of GYX. For any A,B ∈O and C⊆O that does

not contain A or B, if there is an m-connecting path between A and B given C in MGYX
, then there

is an m-connecting path between A and B given C in MYX.

Proof See Appendix B.

Recall that a graphical model is called an independence map of another if any independence
implied by the former is also implied by the latter (Chickering, 2002). So another way of putting
Lemma 12 is that MYX is an independence map of MGYX

, which we write as MGYX
≤MYX. The

diagram in Figure 7 visualizes what is going on.

G
mc

- M

GYX

gm

?

mc
- MGYX

≤ MYX

mm

?

Figure 7: Illustration of Lemma 12: mc refers to MAG construction introduced in Section 3; gm
refers to DAG manipulation; and mm refers to MAG manipulation.
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Corollary 13 Let M be a MAG over O, and X and Y be two subsets of O. For any A,B ∈ O and
C ⊆ O that does not contain A or B, if A and B are m-separated by C in MYX, then A and B are
d-separated by C in GYX for every G represented by M .

Proof By Lemma 12, if A and B are m-separated by C in MYX, they are also m-separated by C in
MGYX

, for every G represented by M , which in turn implies that A and B are d-separated by C in
GYX for every G represented by M , because d-separation relations among O in a DAG correspond
exactly to m-separation relations in its MAG.

The converse of Corollary 13, however, is not true in general. To give the simplest example,
consider the MAG M in Figure 8(a): X ← Y → Z (which happens to be a DAG syntactically). The
two DAGs, G1 in 8(b) and G2 in 8(c), are both represented by M . By the definition of lower-
manipulation, MY is the graph X ↔ Y ↔ Z. On the other hand, G1Y is X ← L1→ Y Z; and G2Y

is X Y ← L2→ Z. Obviously, the MAG of G1Y is X↔Y Z, and the MAG of G2Y is X Y ↔ Z,
both of which are proper subgraphs of MY . So an m-separation relation in MY —for example, X and
Z are m-separated by the empty set—corresponds to a d-separation relation in both G1Y and G2Y ,
in accord with Corollary 13.

By contrast, the converse of Corollary 13 fails for M . It can be checked that for every G
represented by M , X and Z are d-separated by Y in GY , as evidenced by G1Y and G2Y . But X and
Z are not m-separated by Y in MY .

L1

X Z

(b)

Y X ZY

L2

(c)

X Y Z

(a)

Figure 8: A counterexample to the converse of Corollary 13.

However, Definition 11 is not to be blamed for this limitation. In this simple example, one can
easily enumerate all possible directed mixed graphs over X ,Y,Z and see that for none of them do
both Corollary 13 and its converse hold. Intuitively, this is because the MAG in Figure 8(a) implies
that either 〈X ,Y 〉 does not have a common latent parent or 〈Y,Z〉 does not have a common latent
parent in the underlying DAG. So under the Y -lower-manipulation of the underlying DAG, for all
we know, either 〈X ,Y 〉 or 〈Y,Z〉 will become unconnected. But this disjunctive information cannot
be precisely represented by a single graph.

More generally, no matter how we define MYX, as long as it is a single graph, the converse of
Corollary 13 will not hold in general, unless Corollary 13 itself fails. MYX, as a single graph, can
only aim to be a supergraph (up to Markov equivalence) of MGYX

for every G represented by M
(which makes Corollary 13 true). To this end, Definition 11 is ‘minimal’ in the following sense: two
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variables are adjacent in MYX if and only if there exists a DAG G represented by M such that the
two variables are adjacent in MGYX

. In this regard, MYX does not have more edges than necessary.
One can, for example, check this fact for the simple case in Figure 8.

We are now ready to state the intermediate theorem on MAG-based do-calculus.

Theorem 14 (do-calculus given a MAG) Let M be the causal MAG over O, and U,X, Y, W be
disjoint subsets of O. The following rules are valid, in the sense that if the antecedent of the rule
holds, then the consequent holds no matter which DAG represented by M is the true causal DAG.

1. if Y and X are m-separated by U∪W in MU, then

P(y|do(u),x,w) = P(y|do(u),w).

2. if Y and X are m-separated by U∪W in MXU, then

P(y|do(u),do(x),w) = P(y|do(u),x,w).

3. if Y and X are m-separated by U∪W in MUX′ , then

P(y|do(u),do(x),w) = P(y|do(u),w)

where X′ = X\AnMU
(W).

Proof This readily follows from Proposition 7, Corollary 13, and the fact that for every G repre-
sented by M , AnGU

(W)∩O = AnMU
(W).

As already noted, the true causal MAG is not uniquely recoverable from the pre-intervention
distribution, thanks to Markov equivalence. So the main value of Theorem 14 is to facilitate the
development of a PAG-based do-calculus. However, it is worth noting that when supplemented with
some background causal knowledge, such as knowledge of the form that some variable is not a
cause of another variable, it is in principle possible to determine that the true causal MAG belongs
to a proper subset of the full equivalence class represented by the PAG. Depending on how strong
the background knowledge is, the subset could be as big as the full equivalence class or as small as
a singleton. In this sense, Theorem 14 and Theorem 17 below may be viewed as two extreme cases
of a more general do-calculus based on a subset of Markov equivalent MAGs.

To extend the calculus to PAGs, we need to define manipulations on PAGs. They are essentially
the same as the manipulations of MAGs. The definition of visibility still makes sense in PAGs,
except that we will call a directed edge in a PAG definitely visible if it satisfies the condition for
visibility in Definition 8, in order to emphasize that this edge is visible in all MAGs in the equiv-
alence class. Despite the extreme similarity to manipulations on MAGs, let us still write down the
definition of PAG manipulations for easy reference.

Definition 15 (Manipulations of PAGs) Given a PAG P and a set of variables X therein,

• the X-lower-manipulation of P deletes all those edges that are definitely visible in P and
are out of variables in X, replaces all those edges that are out of variables in X but are not
definitely visible in P with bi-directed edges, and otherwise keeps P as it is. The resulting
graph is denoted as PX.
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• the X-upper-manipulation of P deletes all those edges in P that are into variables in X, and
otherwise keeps P as it is. The resulting graph is denoted as PX .

We stipulate that lower-manipulation has a higher priority than upper-manipulation, so that PYX
(or PXY) denotes the graph resulting from applying the X-upper-manipulation to the Y-lower-
manipulated graph of P .

We should emphasize that except in rare situations, PYX is not a PAG any more (i.e., not a PAG
for any Markov equivalence class of MAGs). But from PYX we still gain information about m-
separation in MYX, where M is a MAG that belongs to the Markov equivalence class represented
by P . Here is a simple connection. Given a MAG M and the PAG P that represents [M ], a trivial
fact is that a m-connecting path in M is also a possibly m-connecting path in P . This is also true
for MYX and PYX.

Lemma 16 Let M be a MAG over O, and P be the PAG for [M ]. Let X and Y be two subsets of
O. For any A,B ∈ O and C ⊆ O that does not contain A or B, if a path p between A and B is m-
connecting given C in MYX, then p, the same sequence of variables, forms a possibly m-connecting

path between A and B given C in PYX.15

Proof See Appendix B.

If there is no possibly m-connecting path between A and B given C in a partial mixed graph, we
say that A and B are definitely m-separated by C in the graph. A do-calculus follows:

Theorem 17 (do-calculus given a PAG) Let P be the causal PAG for O, and U,X, Y,W be disjoint
subsets of O. The following rules are valid:

1. if Y and X are definitely m-separated by U∪W in PU, then

P(y|do(u),x,w) = P(y|do(u),w).

2. if Y and X are definitely m-separated by U∪W in PXU, then

P(y|do(u),do(x),w) = P(y|do(u),x,w).

3. if Y and X are definitely m-separated by U∪W in PUX′ , then

P(y|do(u),do(x),w) = P(y|do(u),w)

where X′ = X\PossibleAnPU
(W).

15. For our purpose, what we need is the obvious consequence of the lemma that if there is an m-connecting path in
MYX, then there is a possibly m-connecting path in PYX. We suspect that a stronger result might hold as well: if

there is an m-connecting path in MYX, then there is a definite m-connecting path in PYX. We can’t prove or disprove
the stronger result at the moment.
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Proof It follows from Lemma 16 and Theorem 14. The only caveat is that in general AnMU
(W) 6=

PossibleAnPU
(W) for an arbitrary M represented by P . But it is always the case that AnMU

(W)⊆

PossibleAnPU
(W), which means that X\AnMU

(W) ⊇ X\PossibleAnPU
(W) for every M repre-

sented by P . So it is possible that for rule (3), PUX′ leaves more edges in than necessary, but it does
not affect the validity of rule (3).

The possibility that PUX′ leaves more edges in than necessary is one of three aspects in which our
do-calculus may be “incomplete” in the following sense: it is possible that a rule in the PAG-based
do-calculus is not applicable, but for every DAG compatible with the given PAG, the corresponding
rule in Pearl’s DAG-based calculus is applicable. The other two aspects are already noted: (1) the
calculus is formulated in terms of the absence of possibly m-connecting paths (cf. Footnote 14,
and more on this in the next section); and (2) the MAG-based do-calculus is based on Corollary 13
whose converse does not hold. Therefore, the PAG-based do-calculus as currently formulated may
be further improved.

S L S L

G
PSH PSH

II

G

(b)(a)

Figure 9: PAG Surgery: PS and PS.

That said, let us illustrate the utility of the do-calculus with the simple example used in Section
3. Given the PAG in Figure 4 we can infer that P(L|do(S),G) = P(L|S,G) by rule 2, because L and
S are definitely m-separated by {G} in PS (Figure 9(a)); and P(G|do(S)) = P(G) by rule 3, because
G and S are definitely m-separated in PS (Figure 9(b)). It follows that

P(L|do(S)) = ∑
G

P(L,G|do(S))

= ∑
G

P(L|do(S),G)P(G|do(S))

= ∑
G

P(L|S,G)P(G).

By contrast, it is not valid in the do-calculus that P(L|do(G),S) = P(L|G,S) because L and G
are not definitely m-separated by {S} in PG, which is depicted in Figure 10. (Notice the bi-directed
edge between L and G.)

5. Invariance Under Interventions

We now develop stronger results for a key component of do-calculus, the property of invariance
under interventions, first systematically studied in Spirtes et al. (1993). The idea is simple. A
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Figure 10: PAG Surgery: PG.

conditional probability P(Y = y|Z = z) is said to be invariant under an intervention X := x—or
do(X = x)—if PX:=x(y|z) = P(y|z).16 This concept (under the name of ‘observability’) plays an im-
portant role in some interesting theoretical work on observational studies (e.g., Pratt and Schlaifer,
1988; for a good review see Winship and Morgan, 1999), and also forms the basis of the prediction
algorithm presented in Spirtes et al. (1993), which seeks to identify a post-intervention probability
by searching for an expression in terms of invariant probabilities.

It is also the corner stone of Pearl’s do-calculus. To see this, let us take a closer look at the second
and third rules in the do-calculus. The second rule of the calculus gives a graphical condition for
when we can conclude

P(y|do(u),do(x),w) = P(y|do(u),x,w).

If we take U to be the empty set and write the above equation in the subscript notation, we get

PX:=x(y|w) = P(y|x,w).

Since PX:=x(X = x) = 1, thanks to the supposed effectiveness of the intervention, we have

PX:=x(y|w) = PX:=x(y|x,w).

So a special case of the second rule is a condition for PX:=x(y|x,w) = P(y|x,w), that is, for when
P(y|x,w) is invariant under the intervention X := x. In fact, the second rule is nothing but a gener-
alization of this condition to tell when a post-intervention probability Pu(y|x,w) would be invariant
under a further intervention X := x.

The third rule is more obviously about invariance. It is a generalization of the condition for
PX:=x(y|w) = P(y|w), that is, for when P(y|w) is invariant under the intervention X := x. The
difference between rule 2 and rule 3 is that rule 2 is about invariance of P(y|z) under an intervention
on X in case X ⊆ Z (= X∪W), whereas rule 3 is about invariance of P(y|z) under an intervention
on X in case X and Z (= W) are disjoint. As we mentioned earlier, the first rule is not essential, so
the do-calculus is in effect a generalization of conditions for invariance.

We now focus on this key component of do-calculus, and present better graphical conditions for
judging invariance given a PAG than those that are implied by the PAG-based do-calculus presented
in the last section. The conditions for invariance implied by Pearl’s (DAG-based) do-calculus can

16. Here we allow that X and Z have a non-empty intersection, and assume that the conditioning operation is applied
to the post-intervention population (i.e., intervening comes before conditioning). As a result, when we speak of
PX:=x(y|z), we implicitly assume that x and z are consistent regarding the values for variables in X∩Z, for otherwise
the quantity is undefined.
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be equivalently formulated without referring to manipulated graphs, as given in Spirtes et al. (1993,
Theorem 7.1) before the do-calculus was invented. In this section we develop corresponding condi-
tions in terms of PAGs. The conditions will be not only sufficient in the sense that if the conditions
are satisfied, then every DAG compatible with the given PAG entails invariance, but also necessary
in the sense that if the conditions fail, then there is at least one DAG compatible with the given PAG
that does not entail invariance. In this aspect, the conditions are also superior to earlier results on
invariance given an equivalence class of DAGs due to Spirtes et al. (1993, Theorems 7.3 and 7.4).

We first state the conditions for judging invariance given a DAG, originally presented in Spirtes
et al. (1993, Theorem 7.1).

Proposition 18 (Spirtes, Glymour, Scheines) Let G be the causal DAG for O∪L, and X,Y,Z⊆O
be three sets of variables such that X∩Y = Y∩Z = Ø (but X and Z can overlap). P(y|z) is invariant
under an intervention on X if

(1) for every X ∈ X∩Z, there is no d-connecting path between X and any member of Y given
Z\{X} that is into X;

(2) for every X ∈X∩ (AnG (Z)\Z), there is no d-connecting path between X and any member of
Y given Z; and

(3) for every X ∈ X\AnG (Z), there is no d-connecting path between X and any member of Y
given Z that is out of X.17

Remark: Because Z⊆AnG (Z), X∩Z,X∩ (AnG (Z)\Z) and X\AnG (Z) form a partition of X. So
for each member of X, only one of the conditions is relevant.

The proposition is an equivalent formulation of Theorem 7.1 in Spirtes et al. (1993). It is
not hard to check that the proposition follows from rules 2 and 3 in the DAG-based do-calculus
(Proposition 7); the talk of d-separation in manipulated graphs is replaced by the talk of absence of
d-connecting paths of certain orientations in the original graph. Conversely, the proposition implies
the special case of rules 2 and 3 where the background intervention do(U) is empty. Specifically,
clause (1) in the proposition corresponds to rule 2 in the do-calculus; clauses (2) and (3) correspond
to rule 3 in the do-calculus.

Spirtes et al. (1993, pp. 164-5) argued that these conditions are also “almost necessary” for
invariance. What they meant is that if the conditions are not satisfied, then the causal structure does
not entail the invariance, although there may exist some particular distribution compatible with the
causal structure such that P(y|z) is invariant under some particular intervention on X. From now on
when we speak of invariance entailed by the causal DAG, we mean that the conditions in Proposition
18 are satisfied—or equivalently, that the invariance follows from an application of rule 2 or rule 3 in
the DAG-based do-calculus.18 Our purpose is to demonstrate that there are corresponding graphical

17. It is not hard to see that (3) is equivalent to saying that for every X ∈ X\AnG (Z), there is no directed path from X to
any member of Y. Lemma 23 below is an immediate corollary of this equivalent formulation.

18. This stipulation is of course not intended to be a definition of the notion of structurally entailed invariance. A
proper definition would be to the effect that for every distribution compatible with the causal structure, P(y|z) is
invariant under any intervention of X. The argument given by Spirtes et al. (1993, pp. 164-5) for (their equivalent
formulation of) Proposition 18 suggests that the conditions are sufficient and necessary for structurally entailed
invariance. Their argument uses the device of what they call policy variables, extra variables introduced into the
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conditions relative to a PAG that are sufficient and necessary for the conditions in Proposition 18 to
hold for each and every DAG compatible with the PAG.

Once again, we develop the conditions in two steps: first to MAGs and then to PAGs. In the
first step, our goal is to find sufficient and necessary conditions for invariance entailed by a MAG,
as defined below:

Definition 19 (Invariance entailed by a MAG) Let M be a causal MAG over O, and X, Y, Z ⊆
O be three sets of variables such that X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under
interventions on X given M if for every DAG G(O,L) represented by M , P(y|z) is entailed to be
invariant under interventions on X given G (i.e., the conditions in Proposition 18 are satisfied).

The question is how to judge invariance entailed by a MAG without doing the intractable job
of checking the conditions in Proposition 18 for each and every compatible DAG. The next few
lemmas, Lemmas 20-23, state useful connections between d-connecting paths in a DAG and m-
connecting paths in the corresponding MAG. Lemma 20 records the important result due to Richard-
son and Spirtes (2002) that d-separation relations among observed variables in a DAG with latent
variables correspond exactly to m-separation relations in its MAG.

Lemma 20 Let G be any DAG over O∪L, and M be the MAG of G over O. For any A,B ∈O and
C⊆O that does not contain A or B, there is a path d-connecting A and B given C in G if and only
if there is a path m-connecting A and B given C in M .

Proof This is a special case of Lemma 17 and Lemma 18 in Spirtes and Richardson (1996), and
also a special case of Theorem 4.18 in Richardson and Spirtes (2002).

Given Lemma 20, we know how to tell whether clause (2) of Proposition 18 holds in all DAGs
compatible with a given MAG. For the other two conditions in Proposition 18, we need to take into
account the orientations of d-connecting paths.

Lemma 21 Let G be any DAG over O∪L, and M be the MAG of G over O. For any A,B ∈O and
C ⊆ O that does not contain A or B, if there is a path d-connecting A and B given C in G that is
into A, then there is a path m-connecting A and B given C in M that is either into A or contains an
invisible edge out of A.

Proof See Appendix B.

Lemma 22 Let M be any MAG over O. For any A,B ∈O and C⊆O that does not contain A or B,
if there is a path m-connecting A and B given C in M that is either into A or contains an invisible
edge out of A, then there exists a DAG G over O∪L (for some extra variables L) whose MAG is
M , such that in G there is a path d-connecting A and B given C that is into A.

causal DAG to represent interventions. Given the causal DAG G , a policy variable for a variable X is an (extra) parent
of X but otherwise not adjacent to any other variables in G . Interventions can then be simulated by conditioning on
the intervention variables, and invariance can be reformulated as conditional independence involving intervention
variables. The conditions in Proposition 18 are equivalent to saying that the variables in Y are d-separated from
the policy variables for X by Z (in the graph augmented by the policy variables). It thus seems plausible that these
conditions are sufficient and necessary for structurally entailed invariance, given that d-separation is a sufficient
and necessary condition for structurally entailed conditional independence (Geiger et al., 1990; Meek, 1995b). But
Spirtes et al. did not give a rigorous proof for necessity. As an anonymous reviewer points out, the rigorous proof, if
any, would need to be carefully made, and in particular, one should be careful in treating policy variables as random
variables. We will not take on this task here.
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Proof See Appendix B.

Obviously these two lemmas are related to adapting clause (1) in Proposition 18 to MAGs. The
next lemma is related to clause (3).

Lemma 23 Let G be any DAG over O∪L, and M be the MAG of G over O. For any A,B ∈ O
and C⊆O that does not contain B or any descendant of A in G (or in M , since G and M have the
same ancestral relations among variables in O), there is a path d-connecting A and B given C in G
that is out of A if and only if there is a path m-connecting A and B given C in M that is out of A.

Proof See Appendix B.

Given these lemmas, the conditions in Proposition 18 are readily translated into the following
conditions for invariance given a MAG.

Theorem 24 Suppose M is the causal MAG over a set of variables O. For any X,Y,Z ⊆ O,
X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under interventions on X given M if and only
if

(1) for every X ∈ X∩Z, there is no m-connecting path between X and any member of Y given
Z\{X} that is into X or contains an invisible edge out of X;

(2) for every X ∈ X∩ (AnM (Z)\Z), there is no m-connecting path between X and any member
of Y given Z; and

(3) for every X ∈ X\AnM (Z), there is no m-connecting path between X and any member of Y
given Z that is out of X.

Proof Given Lemma 21, if (1) holds, then for every DAG represented by M , the first condition
in Proposition 18 holds. Given Lemma 20 and the fact that M and all DAGs represented by M
have the exact same ancestral relations among O, if (2) holds, the second condition in Proposition
18 holds for every DAG represented by M . Moreover, given Lemma 23, if (3) holds, the third
condition in Proposition 18 holds for every DAG represented by M . So (1), (2) and (3) together
imply that P(y|z) is invariant under interventions on X given M .

Conversely, if (1) fails, then by Lemma 22, there is a DAG represented by M in which the first
condition in Proposition 18 fails. Likewise with conditions (2) and (3), in light of Lemmas 20 and
23 and the fact that M and a DAG represented by M have the exact same ancestral relations among
O. So (1), (2) and (3) are also necessary for P(y|z) to be entailed to be invariant under interventions
on X given M .

For example, given the MAG in Figure 3(a), P(L|G,S) is invariant under interventions on S,
because the only m-connecting path between L and S given G is 〈L,S〉, which contains a visible
directed edge out of L, and so the relevant clause in Theorem 24, clause (1), is satisfied. By contrast,
P(L|G,S) is not entailed to be invariant under interventions on G given the MAG—in the sense that
there exists a causal DAG compatible with the MAG given which P(L|G,S) is not entailed to be
invariant under interventions on G—because clause (1) is not satisfied.

In a similar fashion, we can extend the result to invariance entailed by a PAG. Definition first:
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Definition 25 (Invariance entailed by a PAG) Let P be a PAG over O, and X,Y,Z ⊆ O be three
sets of variables such that X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under interven-
tions on X given P if for every MAG M in the Markov equivalence class represented by P , P(y|z)
is entailed to be invariant under interventions on X given M .

We need a few lemmas that state connections between m-connecting paths in a MAG and def-
inite m-connecting paths (as opposed to mere possibly m-connecting paths) in its PAG. By the
definition of definite m-connecting paths (Definition 4), definite m-connection in a PAG implies
m-connection in every MAG represented by the PAG. It is not obvious, however, that m-connection
in a MAG will always be revealed as definite m-connection in its PAG. Fortunately, this turns out
to be true. However, the proof is highly involved, and relies on many results about the properties of
PAGs and the transformation between PAGs and MAGs presented in Zhang (2006, chapters 3-4),
which would take up too much space and might distract readers from the main points of the present
paper. So we will simply state the fact here, and refer interested readers to Zhang (2006, chap. 5,
Lemma 5.1.7) for the proof.

Lemma 26 Let M be a MAG over O, and P be the PAG that represents [M ]. For any A,B ∈ O
and C ⊆ O that does not contain A or B, if there is a path m-connecting A and B given C in M ,
then there is a path definitely m-connecting A and B given C in P . Furthermore, if there is an
m-connecting path in M that is either into A or out of A with an invisible directed edge, then there
is a definite m-connecting path in P that does not start with a definitely visible edge out of A.

Proof See the proof of Lemma 5.1.7 in Zhang (2006, pp. 207).

The converse to the second part of Lemma 26 is also true.

Lemma 27 Let P be a PAG over O. For any A,B ∈ O and C ⊆ O that does not contain A or B,
if there is a path definitely m-connecting A and B given C in P that does not start with a definitely
visible edge out of A, then there exists a MAG M in the equivalence class represented by P in which
there is a path m-connecting A and B given C that is either into A or includes an invisible directed
edge out of A.

Proof See Appendix B.

Lemmas 26 and 27 are useful for establishing conditions analogous to clauses (1) and (2) in
Theorem 24. For clause (3), we need two more lemmas.

Lemma 28 Let M be a MAG over O, and P be the PAG that represents [M ]. For any A,B∈O and
C⊆O that does not contain B or any descendant of A in M , if there is a path m-connecting A and
B given C in M that is out of A, then there is a path definitely m-connecting A and B given C in P
that is not into A (i.e., the edge incident to A on the path is either A◦−−◦, or A◦→, or A→).

Proof See Appendix B.

Lemma 29 Let P be a PAG over O. For any A,B ∈ O and C ⊆ O that does not contain A or B, if
there is a path definitely m-connecting A and B given C in P that is not into A, then there exists a
MAG M represented by P in which there is a path m-connecting A and B given C that is out of A.
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Proof See Appendix B.

The main theorem follows.

Theorem 30 Suppose P is the causal PAG over a set of variables O. For any X,Y,Z⊆O such that
X∩Y = Y∩Z = Ø, P(y|z) is entailed to be invariant under interventions on X given P if and only
if

(1) for every X ∈ X∩Z, every definite m-connecting path, if any, between X and any member of
Y given Z\{X} is out of X with a definitely visible edge;

(2) for every X ∈ X∩ (PossibleAnP (Z)\Z), there is no definite m-connecting path between X
and any member of Y given Z; and

(3) for every X ∈ X\PossibleAnP (Z), every definite m-connecting path, if any, between X and
any member of Y given Z is into X.

Proof We show that (1), (2) and (3) are sufficient and necessary for the corresponding conditions
in Theorem 24 to hold for all MAGs represented by P . It follows from Lemma 26 that if (1) holds,
then the first condition in Theorem 24 holds for all MAGs represented by P . Note moreover that
for every MAG M represented by P , AnM (Z) ⊆ PossibleAnP (Z). It again follows from Lemma
26 that if (2) holds, then the second condition in Theorem 24 holds for all MAGs represented by P .
Finally, it follows from Lemma 28 (and Lemma 26) that if (3) holds, the third condition in Theorem
24 holds for all MAGs represented by P . Hence (1), (2) and (3) are sufficient.

Conversely, if (1) fails, then by Lemma 27, there exists a MAG represented by P for which the
first condition in Theorem 24 fails.

To show the necessity of (2), we need the fact mentioned in Footnote 11 that if X is a possible
ancestor of a vertex Z ∈ Z in P , then there exists a MAG represented by P , in which X is an
ancestor of Z. So if (2) fails, that is, there is a definite m-connecting path between a variable
X ∈ X∩ (PossibleAnP (Z)\Z) and a member of Y given Z in P , then there exists a MAG M
represented by P in which X ∈X∩(AnM (Z)\Z), and there is an m-connecting path between X and
a member of Y given Z, which violates clause (2) of Theorem 24.

Lastly, if (3) fails, that is, there is a definite m-connecting path between a variable X ∈
X\PossibleAnP (Z) and a member of Y given Z that is not into X , then it follows from Lemma
29 that there exists a MAG M represented by P in which there is an m-connecting path between X
and a member of Y given Z that is out of X . Moreover, since X ∈ X\PossibleAnP (Z), X cannot be
an ancestor of Z in M , that is, X ∈ X\AnM (Z). So M fails clause (3) of Theorem 24. Therefore,
the conditions are also necessary.

For a simple illustration, consider again the PAG in Figure 4. Given the PAG, it can be inferred
that P(L|G,S) is invariant under interventions on I, because there is no definite m-connecting path
between L and I given {G,S}, satisfying the relevant clause—clause (2)—in Theorem 30. P(L|G,S)
is also invariant under interventions on S because the only definitely m-connecting path between L
and S given {G} is S→ L which contains a definitely visible edge out of S, satisfying the relevant
clause—clause (1)—in Theorem 30.
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On the other hand, for example, P(S) is not entailed to be invariant under interventions on I.
Note that given the MAG of Figure 3(b), P(S) is indeed entailed to be invariant under interven-
tions on I, but this invariance is not unanimously implied in the equivalence class. Given some
other MAGs in the class, such as the one in Figure 3(a), P(S) is not entailed to be invariant under
interventions on I.

As briefly noted in the last section, the PAG-based do-calculus in its current form is not com-
plete. We mentioned three issues that might be responsible for this (cf. the comments right after
Theorem 17), but only one of them we are sure leads to counterexamples—examples in which a
rule in the DAG-based calculus is applicable for all DAGs compatible with the given PAG, but
the corresponding rule in the PAG-based calculus is not applicable. It is the fact that the calcu-
lus is formulated in terms of absence of possibly m-connecting paths. Consider the example we
used to illustrate the difference between definite and possibly m-connecting paths in Section 3.
Given the PAG in Figure 5, we cannot apply rule 2 of the PAG-based do-calculus to conclude that
P(W |do(X),Y,Z) = P(W |Y,Z), because there is a possibly m-connecting path between X and W
relative to {Y,Z} in the PAG (note that since X ∈ PossibleAn({Y,Z}), the rule does not require
manipulating the graph). However, it can be shown that for every DAG compatible with the PAG,
X and W are d-separated by {Y,Z} in either the X-upper-manipulation of the DAG or in the DAG
itself. So rule 2 of the DAG-based do-calculus is actually applicable given any DAG compatible
with the PAG.

Although we suspect that such counterexamples may not be encountered often in practice, it is
at least theoretically interesting to handle them. Our results in this section provide an improvement
in regard to the important special case of invariance. That is, the conditions given in Theorem 30
are complete for deriving statements of invariance, in the following sense: if the conditions therein
fail relative to a PAG, then there exists a DAG represented by the PAG given which the conditions in
Proposition 18 do not hold. The example in Figure 5 is not a counterexample to the completeness of
Theorem 30. Unlike the do-calculus presented in Theorem 17, Theorem 30 implies that P(W |Y,Z)
is entailed to be invariant under interventions on X given the PAG (and hence we can conclude that
P(W |do(X),Y,Z) = P(W |Y,Z)), because there is no definite m-connecting path between X and W
relative to {Y,Z} in the PAG. Whether it is valid to formulate the PAG-based do-calculus in terms
of definite m-connecting paths is an open question at this point (cf. Footnote 15).19

Theorem 30 is in style very similar to Theorems 7.3 and 7.4 in Spirtes et al. (1993). The
latter are formulated with respect to a partially oriented inducing path graph (POIPG). We include
in Appendix A a description of the inducing path graphs (IPGs) as well as their relationship to
ancestral graphs. As shown there, syntactically the class of ancestral graphs is a proper subclass of
the class of inducing path graphs. In consequence a PAG in general reveals more qualitative causal
information than a POIPG. In addition, it seems MAGs are easier to parameterize than IPGs. (For a
linear parametrization of MAGs, see Richardson and Spirtes, 2002.)

Apart from the advantages of working with MAGs and PAGs over IPGs and POIPGs, our The-
orem 30 is superior to Spirtes et al.’s theorems in that our theorem is formulated in terms of definite
m-connecting paths, whereas theirs, like the results in the last section, are formulated in terms of

19. Here is another way to view the open problem. As explained earlier, do-calculus is essentially a generalization of the
invariance conditions. Not only does it address the question of when (y|z) is invariant under an intervention X := x,
it also addresses the more general question of when a post-intervention probability Pu(y|z) would be invariant under
a further intervention X := x. Our results in this section do not cover the latter question. To generalize the results in
terms of definite m-connecting paths to address the latter question is parallel to improving the do-calculus.
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possibly m-connecting paths. As a result, their conditions are only sufficient but not necessary. Re-
garding the case in Figure 5, for example, their theorems do not imply that P(W |Y,Z) is entailed
to be invariant under interventions on X , due to the presence of the possibly m-connecting path in
the graph (which in this case is also the POIPG). Furthermore, since definite m-connecting paths
are special cases of possibly m-connecting paths, there are more possibly m-connecting paths than
definite m-connecting paths to check in a PAG. This may turn out to be a computational advantage
for our theorem.

6. Conclusion

Causal reasoning about consequences of interventions has received rigorous and interesting treat-
ments in the framework of causal Bayesian networks. Much of the work assumes that the structure
of the causal Bayesian network, represented by a directed acyclic graph, is fully given. In this paper
we have provided some results about causal reasoning under weaker causal assumptions, repre-
sented by a maximal ancestral graph or a partial ancestral graph, the latter of which is fully testable
with observational data (assuming the causal Faithfulness condition).

Theorem 17 in Section 4 gives us a do-calculus under testable causal assumptions, represented
by a PAG. The idea is that when any rule in the calculus is applicable given the PAG, the correspond-
ing rule in Pearl’s original do-calculus is applicable relative to each and every DAG compatible with
the PAG. The converse, however, is not true; it is not the case that whenever all DAGs compatible
with the PAG sanction the application of a certain rule in the do-calculus, the corresponding rule in
the PAG-based calculus is also applicable. An interesting project is to either improve the calculus,
or to investigate more closely the extent to which the current version is not complete.

As a first step towards improvement, we examined in Section 5 an important special case of the
do-calculus—the graphical conditions for invariance under interventions—and presented sufficient
and necessary conditions for invariance given a PAG. These conditions are very similar but also
superior to the analogous results proved by Spirtes et al. (1993). In the latter work, there is also an
algorithm (named Prediction Algorithm) for identifying post-intervention probabilities based on the
conditions for invariance. The results in this paper can certainly be used to improve that algorithm.

The search for a syntactic derivation in the do-calculus to identify a post-intervention probabil-
ity is no minor computational task. For this reason, it is worth deriving handy graphical criteria for
identifiability from the do-calculus. Since invariant quantities are the most basic identifiable quan-
tities, the condition for invariance is the most basic among such graphical criteria. Other graphical
criteria in the literature, including the well known “back door criterion” and “front door criterion”,
should be extendible to PAGs in the same way as we did for invariance. On the other hand, a novel
approach to identification has been developed recently by Tian and Pearl (2004), which proves
computationally attractive. To adapt that approach to ancestral graphs is probably a worthy project.
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Appendix A. Inducing Path Graphs

The theory of invariance under interventions developed in this paper is largely parallel to that de-
veloped in Spirtes et al. (1993). Their theory is based on a graphical representation called inducing
path graphs. This graphical object is not given an independent syntactic definition, but defined via a
construction relative to a DAG (with latent variables). It is clear from the construction that this rep-
resentation is closely related to MAGs. In this appendix we specify the exact relationship between
them. In particular, we justify an independent syntactic definition of inducing path graphs, which
makes it clear that syntactically the class of MAGs is a subclass of inducing path graphs.

An inducing path graph (IPG) is a directed mixed graph, defined relative to a DAG, through the
following construction:

Input: a DAG G over 〈O,L〉
Output: an IPG IG over O

1. for each pair of variables A,B ∈ O, A and B are adjacent in IG if and only if there is an
inducing path between them relative to L in G ;

2. for each pair of adjacent vertices A,B in IG , mark the A-end of the edge as an arrowhead if
there is an inducing path between A and B that is into A, otherwise mark the A-end of the edge
as a tail.

It can be shown that the construction outputs a mixed graph IG in which the set of m-separation
relations matches exactly the set of d-separation relations among O in the original DAG G (Spirtes
and Verma, 1992). Furthermore, IG encodes information about inducing paths in the original graph,
which in turn implies features of the original DAG that bear causal significance. Specifically, we
have two useful facts: (i) if there is an inducing path between A and B relative to L that is out of A,
then A is an ancestor of B in G ; (ii) if there is an inducing path between A and B relative to L that
is into both A and B, then A and B have a common ancestor in L unmediated by any other observed
variable.20 So IG , just like the MAG for G , represents both the conditional independence relations
and (features of) the causal structure among the observed variables O. Since the above construction
produces a unique graph given a DAG G , it is fair to call IG the IPG for G .

Therefore a directed mixed graph over a set of variables is an IPG if it is the IPG for some DAG.
We now show that a directed mixed graph is an IPG if and only if it is maximal and does not contain
a directed cycle.

Theorem 31 For any directed mixed graph I over a set of variables O, there exists a DAG G over
O and possibly some extra variables L such that I = IG —that is, I is the IPG for G—if and only if

(i1) There is no directed cycle in I ; and

(i2) I is maximal (i.e., there is no inducing path between two non-adjacent variables).

Proof We first show that the conditions are necessary (only if). Suppose there exists a DAG G(O,L)
whose IPG is I . In other words, I is the output of the IPG construction procedure given G . If there
is any directed cycle in I , say c = 〈O1, . . . ,On,O1〉, then between any pair of adjacent nodes in the
cycle, Oi and Oi+1 (1≤ i≤ n and On+1 = O1), there is an inducing path between them in G relative

20. For more details of the causal interpretation of IPGs, see Spirtes et al. (1993, pp. 130-138).
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to L, which, by one of the facts mentioned earlier, implies that Oi is an ancestor of Oi+1 in G . Thus
there would be a directed cycle in G as well, a contradiction. Therefore there is no directed cycle in
I . To show that it is also maximal, consider any two non-adjacent nodes A and B in I . We show that
there is no inducing path in I between A and B. Otherwise let p = 〈A,O1, . . . ,On,B〉 be an inducing
path. By the construction, there is an inducing path relative to L in G between A and O1 that is
into O1, and an inducing path relative to L in G between B and On that is into On, and for every
1≤ i≤ i−1, there is an inducing path relative to L in G between Oi and Oi+1 that is into both. By
Lemma 32 in Appendix B, it follows that there is an inducing path between A and B relative to L in
G , and so A and B should be adjacent in I , a contradiction. Therefore I is also maximal.

Next we demonstrate sufficiency (if). If the two conditions hold, construct a DAG G as follows:
retain all the directed edges in I , and for each bi-directed edge A↔ B in I , introduce a latent
variable LAB in G and replace A↔ B with A← LAB→ B.21 It is easy to see that the resulting graph
G is a DAG, as in I there is no directed cycle. We show that I = IG , the IPG for G . For any pair of
variables A and B in I , there are four cases to consider:

Case 1: A→ B is in I . Then A→ B is also in G , so A and B are adjacent in IG . In IG , the
edge between A and B is not A← B, because otherwise B would have to be an ancestor of A in G ,
a contradiction. The edge is not A↔ B either, because otherwise there would have to be a latent
variable that is a parent of both A and B, which by the construction of G is not the case. So A→ B
is also in IG .

Case 2: A← B is in I . By the same argument as in Case 1, A← B is also in IG .
Case 3: A↔ B is in I . Then there is a LAB such that A← LAB → B is in G . Then obviously

〈A,LAB,B〉 is an inducing path relative to L in G that is into both A and B, and hence A↔ B is also
in IG .

Case 4: A and B are not adjacent in I . We show that they are not adjacent in IG either. For this,
we only need to show that there is no inducing path between A and B relative to L in G . Suppose
otherwise that there is such an inducing path p between A and B in G . Let 〈A,O1, . . . ,On,B〉 be the
sub-sequence of p consisting of all observed variables on p. By the definition of inducing path, all
Oi’s (1≤ i≤ n) are colliders on p and are ancestors of either A or B. By the construction of G , it is
easy to see that Oi’s are also ancestors of either A or B in I . It is also easy to see that either A→O1

or A← LAO1 → O1 appears in G , which implies that there is an edge between A and O1 that is into
O1 in I . Likewise, there is an edge between On and B that is into On in I , and there is an edge
between Oi and Oi+1 that is into both in I for all 1≤ i≤ n−1. So 〈A,O1, . . . ,On,B〉 constitutes an
inducing path between A and B in I , which contradicts the assumption that I is maximal. So there
is no inducing path between A and B relative to L in G , which means that A and B are not adjacent
in IG .

Therefore I = IG , the IPG for G .

Given this theorem, it is clear that we can define IPGs in terms of (i1) and (i2). So a MAG is also
an IPG, but an IPG is not necessarily a MAG, as the former may contain an almost directed cycle.
The simplest IPG which is not a MAG is shown in Figure 11.

Spirtes et al. (1993) uses partially oriented inducing path graphs (POIPGs) to represent Markov
equivalence classes of IPGs. The idea is exactly the same as PAGs. A (complete) POIPG displays
(all) common marks in a Markov equivalence class of IPGs. An obvious fact is that given a set of
conditional independence facts that admits a faithful representation by a MAG, the Markov equiva-

21. This is named canonical DAG in Richardson and Spirtes (2002).
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O1

O3O2

Figure 11: A simplest IPG that is not a MAG

lence class of MAGs is included in the Markov equivalence class of IPGs. It follows that the POIPG
cannot contain more informative marks than the PAG, but may contain fewer. So a PAG usually
reveals more qualitative causal information than a POIPG does.

Appendix B. Proofs of the Lemmas

In proving some of the lemmas, we will use the following fact, which was proved in, for example,
Spirtes et al. (1999, pp. 243):

Lemma 32 Let G(O,L) be a DAG, and 〈V0, . . . ,Vn〉 be a sequence of distinct variables in O. If (1)
for all 0 ≤ i ≤ n− 1, there is an inducing path in G between Vi and Vi+1 relative to L that is into
Vi unless possibly i = 0 and is into Vi+1 unless possibly i = n− 1; and (2) for all 1 ≤ i ≤ n− 1,
Vi is an ancestor of either V0 or Vn in G; then there is a subpath s of the concatenation of those
inducing paths that is an inducing path between V0 and Vn relative to L in G . Furthermore, if the
said inducing path between V0 and V1 is into V0, then s is into V0, and if the said inducing path
between Vn−1 and Vn is into Vn, then s is into Vn.

Proof This is a special case of Lemma 10 in Spirtes et al. (1999, pp. 243). See their paper for a
detailed proof. (One may think that the concatenation itself would be an inducing path between V0

and Vn. This is almost correct, except that the concatenation may contain the same vertex multiple
times. So in general it is a subsequence of the concatenation that constitutes an inducing path be-
tween V0 and Vn.)

Lemma 32 gives a way to argue for the presence of an inducing path between two variables in a
DAG, and hence is very useful for demonstrating that two variables are adjacent in the correspond-
ing MAG. We will see several applications of this lemma in the subsequent proofs.

Proof of Lemma 9
Proof Since there is an inducing path between A and B relative to L in G , A and B are adjacent in
M . Furthermore, since A ∈ AnG (B), the edge between A and B in M is A→ B. We now show that
it is invisible in M . To show this, it suffices to show that for any C, if in M there is an edge between
C and A that is into A or there is a collider path between C and A that is into A and every vertex on
the path is a parent of B, then C is adjacent to B, which means that the condition for visibility cannot
be met.
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Let u be an inducing path between A and B relative to L in G that is into A. For any C, we
consider the two possible cases separately:

Case 1: There is an edge between C and A in M that is into A. Then, by the way M is
constructed from G , there must be an inducing path u′ in G between A and C relative to L. Moreover,
u′ is into A, for otherwise A would be an ancestor of C, so that the edge between A and C in M would
be out of A. Given u, u′ and the fact that A ∈ AnG (B), we can apply Lemma 32 to conclude that
there is an inducing path between C and B relative to L in G , which means C and B are adjacent in
M .

Case 2: There is a collider path p in M between C and A that is into A and every non-endpoint
vertex on the path is a parent of B. For every pair of adjacent vertices 〈Vi,Vi+1〉 on p, the edge is
Vi↔Vi+1 if Vi 6= C, and otherwise either C↔Vi+1 or C→Vi+1. It follows that there is an inducing
path in G between Vi and Vi+1 relative to L such that the path is into Vi+1, and is into Vi unless
possibly Vi = C. Given these inducing paths and the fact that every variable other than C on p is an
ancestor of B, we can apply Lemma 32 to conclude that there is an inducing path between C and B
relative to L in G , which means C and B are adjacent in M .

Therefore, the edge A→ B is invisible in M .

Proof of Lemma 10
Proof Construct a DAG from M as follows:

1. Leave every directed edge in M as it is. Introduce a latent variable LAB and add A← LAB→ B
to the graph.

2. for every bi-directed edge Z↔W in M , delete the bi-directed edge. Introduce a latent vari-
able LZW and add Z← LZW →W to the graph.

The resulting graph we denote by G , a DAG over (O,L), where L = {LAB}∪ {LZW |Z ↔W is in
M }. Obviously G is a DAG in which A and B share a latent parent. We need to show that M = MG ,
that is, M is the MAG of G . For any pair of variables X and Y , there are four cases to consider:

Case 1: X→Y is in M . Since G retains all directed edges in M , X→Y is also in G , and hence
is also in MG .

Case 2: X ← Y is in M . Same as Case 1.
Case 3: X ↔ Y is in M . Then there is a latent variable LXY in G such that X ← LXY → Y

appears in G . Since X ← LXY → Y is an inducing path between X and Y relative to L in G , X and
Y are adjacent in MG . Furthermore, it is easy to see that the construction of G does not create any
directed path from X to Y or from Y to X . So X is not an ancestor of Y and Y is not an ancestor of
X in G . It follows that in MG the edge between X and Y is X ↔ Y .

Case 4: X and Y are not adjacent in M . We show that in G there is no inducing path between X
and Y relative to L. Suppose otherwise that there is one. Let p be an inducing path between X and
Y relative to L in G that includes a minimal number of observed variables. Let 〈X ,O1, . . . ,On,Y 〉 be
the sub-sequence of p consisting of all observed variables on p. By the definition of inducing path,
all Oi’s (1≤ i≤ n) are colliders on p and are ancestors of either X or Y in G . Since the construction
of G does not create any new directed path from an observed variable to another observed variable,
Oi’s are also ancestors of either X or Y in M . Since O1 is a collider on p, either X → O1 or
X ← LXO1 → O1 appears in G . Either way there is an edge between X and O1 that is into O1 in M .
Likewise, there is an edge between On and Y that is into On in M .
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Moreover, for all 1≤ i≤ n−1, the path p in G contains Oi← LOiOi+1 → Oi+1, because all Oi’s
are colliders on p. Thus in M there is an edge between Oi and Oi+1. Regarding these edges, by
construction of the MAG, either all of them are bi-directed, or one of them is A→ B and others are
bi-directed. In the former case, 〈X ,O1, . . . ,On,Y 〉 constitutes an inducing path between X and Y in
M , which contradicts the maximality of M . In the latter case, without loss of generality, suppose
〈A,B〉 = 〈Ok,Ok+1〉. Then 〈X ,O1, ...,Ok = A〉 is a collider path into A in M . We now show by
induction that for all 1≤ i≤ k−1, Oi is a parent of B in M .

Consider Ok−1 in the base case. Ok−1 is adjacent to B, for otherwise A→ B would be visible
in M because there is an edge between Ok−1 and A that is into A. The edge between Ok−1 and B
is not Ok−1← B, for otherwise there would be A→ B→ Ok−1 and yet an edge between Ok−1 and
A that is into A in M , which contradicts the fact that M is ancestral. The edge between them is
not Ok−1↔ B, for otherwise there would be an inducing path between X and Y relative to L in G
that includes fewer observed variables than p does, which contradicts our choice of p. So Ok−1 is a
parent of B in M .

In the inductive step, suppose for all 1 < m + 1 ≤ j ≤ k− 1, O j is a parent of B in M , and we
need to show that Om is also a parent of B in M . The argument is essentially the same as in the base
case. Specifically, Om and B are adjacent because otherwise it follows from the inductive hypothesis
that A→ B is visible. The edge is not Om← B on pain of making M non-ancestral; and the edge
is not Om↔ B on pain of creating an inducing path that includes fewer observed variables than p
does. So Om is also a parent of B.

Now we have shown that for all 1 ≤ i ≤ k− 1, Oi is a parent of B in M . It follows that X
is adjacent to B, for otherwise A→ B would be visible. Again, the edge is not X ← B on pain of
making M non-ancestral. So the edge between X and B in M is into B, but then there is an inducing
path between X and Y relative to L in G that includes fewer observed variables than p does, which
is a contradiction with our choice of p.

So our initial supposition is false. There is no inducing path between X and Y relative to L in
G , and hence X and Y are not adjacent in MG .

Therefore M = MG .

Proof of Lemma 12
Proof Recall the diagram in Figure 7:

G
mc

- M

GYX

gm

?

mc
- MGYX

≤ MYX

mm

?

What we need to show is that MYX is an I-map of MGYX
, or in other words, whatever m-separation

relation is true in the former is also true in the latter. To show this, it suffices to show that MYX is
Markov equivalent to a supergraph of MGYX

.
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For that purpose, we first establish two facts: (1) every directed edge in MGYX
is also in MYX;

and (2) for every bi-directed edge S↔ T in MGYX
, S and T are also adjacent in MYX; and the edge

between S and T is either a bi-directed edge or an invisible directed edge in MYX.
(1) is relatively easy to show. Note that for any P→ Q in MGYX

, P /∈ Y, for otherwise P would
not be an ancestor of Q in GYX, and hence would not be a parent of Q in MGYX

; and likewise Q /∈X,
for otherwise Q would not be a descendant of P in GYX, and hence would not be a child of P in
MGYX

. Furthermore, because GYX is a subgraph of G , any inducing path between P and Q relative
to L in GYX is also present in G , and any directed path from P to Q in the former is also present in
the latter. This entails that P→ Q is also in M , the MAG of G . Since P /∈ Y and Q /∈ X, P→ Q is
also present in MYX. So (1) is true.

(2) is less obvious. First of all, note that if S↔ T is in MGYX
, then there is an inducing path

between S and T relative to L in GYX that is into both S and T . This implies that S,T /∈ X, and
moreover there is also an inducing path between S and T relative to L in G that is into both S and
T . Hence there is an edge between S and T in M , the MAG of G . The edge in M is either S↔ T
or, by Lemma 9, an invisible directed edge (S← T or S→ T ).

Because S,T /∈ X, if S↔ T appears in M , it also appears in MYX. If, on the other hand, the
edge between S and T in M is directed, suppose without loss of generality that it is S→ T . Either
S ∈Y, in which case we have S↔ T in MYX, because S→ T is invisible in M ; or S /∈Y, and S→ T
remains in MYX. In the latter case we need to show that S→ T is still invisible in MYX. Suppose
for the sake of contradiction that S→ T is visible in MYX, that there is a vertex R not adjacent to T ,
such that either R∗→ S is in MYX or there is a collider path c in MYX between R and S that is into
S on which every collider is a parent of T . We show that S→ T is also visible in M . Consider the
two possible cases separately:

Case 1: R∗→ S is in MYX. If the edge is R→ S, it is also in M , because manipulations of a
MAG do not create new directed edges. We now show that R and T are not adjacent in M . Suppose
otherwise. The edge between R and T has to be R→ T in M . Note that R /∈ Y for otherwise
R→ S would be deleted or changed into a bi-directed edge; and we have already shown that T /∈X.
It follows that R→ T would be present in MYX as well, a contradiction. Hence R and T are not
adjacent in M , and so the edge S→ T is also visible in M .

Suppose, on the other hand, the edge between R and S in MYX is R↔ S. In M the edge is either
(i) R↔ S, or (ii) R→ S. (It can’t be R← S because then S ∈ Y and the edge S→ T would not
remain in MYX.)

If (i) is the case, we argue that R and T are not adjacent in M . Since R↔ S→ T is in M , if R
and T are adjacent, it has to be R↔ T or R→ T . In the former case, R↔ T would still be present in
MYX (because obviously R,T /∈ X), which is a contradiction. In the latter case, R→ T is invisible
in M , for otherwise it is easy to see that S→ T would also be visible. So either R→ T remains in
MYX (if R /∈ Y), or it turns into R↔ T (if R ∈ Y). In either case R and T would still be adjacent in
MYX, a contradiction. Hence R and T are not adjacent in M , and so the edge S→ T is also visible
in M .

If (ii) is the case, then either R and T are not adjacent in M , in which case S→ T is also visible
in M ; or R and T are adjacent in M , in which case we now show that S→ T is still visible. The edge
between R and T in M has to be R→ T (in view of R→ S→ T ). Since R and T are not adjacent in
MYX, and R→ S is turned into R↔ S in MYX, by the definition of lower-manipulation (Definition
11), R→ T is visible but R→ S is invisible in M . Because R→ T is visible, by definition, there is
a vertex Q not adjacent to T such that Q∗→ R is in M or there is a collider path in M between Q
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and R that is into R on which every collider is a parent of T . But R→ S is not visible, from which
we can derive that S→ T is visible in M . Here is a sketch of the argument. If Q∗→ R is in M , then
Q and S must be adjacent (since otherwise R→ S would be visible). It is then easy to derive that
the edge between Q and S must be into S, which makes S→ T visible. On the other hand, suppose
there is a collider path c into R on which every collider is a parent of T . Then if there is a collider P
on c such that P↔ S is in M , we immediately get a collider path between Q and S that is into S on
which every collider is a parent of T . This path makes S→ T visible. Finally, if no collider on the
path is a spouse of S, it is not hard to show that in order for R→ S to be invisible, there has to be an
edge between Q and S that is into S, which again makes S→ T visible.

Case 2: There is a collider path c in MYX between R and S that is into S on which every collider is
a parent of T . We claim that every arrowhead on c, except possibly one at R, is also in M . Because
if an arrowhead is added at a vertex Q (which could be S) on c by the lower-manipulation, then
Q ∈ Y, but then the edge Q→ T would not remain in MYX, a contradiction. So c is also a collider
path in M that is into S. Furthermore, no new directed edges are introduced by lower-manipulation
or upper-manipulation, so every collider on c is still a parent of T in M .

It follows that if R and T are not adjacent in M , then S→ T is visible in M . On the other hand,
if R and T are adjacent in M , it is either R↔ T or R→ T . Note that this edge is deleted in MYX.
This implies that it is not R↔ T in M : otherwise, the edge incident to R on c has to be bi-directed
as well (since otherwise M is not ancestral), and hence if R↔ T is deleted, either the edge incident
to R on c or the edge S→ T should be deleted in MYX, which is a contradiction. So the edge is
R→ T in M . Since T /∈ X (for otherwise S→ T would be deleted), R ∈ Y, and R→ T is visible in
M . But then it is easy to see that S→ T is also visible in M .

To summarize, we have shown that if S→ T is visible in MYX, it is also visible in M . Since
it is not visible in M , it is invisible in MYX as well. Thus the edge between S and T is either a
bi-directed edge or an invisible directed edge in MYX. Hence we have established (2).

The strategy to complete the proof is to show that MYX can be transformed into a supergraph
of MGYX

via a sequence of equivalence-preserving mark changes (Zhang and Spirtes, 2005; Tian,
2005). By (1) and (2), if MYX is not yet a supergraph of MGYX

, it is because some bi-directed edges
in MGYX

correspond to directed edges in MYX. For any such directed edge P→ Q in MYX (with
P↔ Q in MGYX

), (2) implies that P→ Q is invisible. It is then not hard to check that conditions in

Lemma 1 of Zhang and Spirtes (2005)22 hold for P→ Q in MYX, and thus it can be changed into
P↔ Q while preserving Markov equivalence. Furthermore, making this change will not make any
other such directed edge in MYX visible. It follows that MYX can be transformed into a Markov
equivalent graph that is a supergraph of MGYX

. (We skip the details as they involve conditions for
Markov equivalence we didn’t have enough space to cover.)

Denote the supergraph by I . It follows that if there is an m-connecting path between A and B
given C in MGYX

, the path is also m-connecting in I , the supergraph of MGYX
. Because MYX and I

are Markov equivalent, there is also an m-connecting path between A and B given C in MYX.

22. Here is the Lemma: Let M be a MAG, and A→ B a directed edge in M . Let M ′ be the graph identical to M except
that the edge between A and B is A↔ B in M ′. (In other words, M ′ is the result of simply changing A→ B into
A↔ B in M .) M ′ is a MAG and Markov equivalent to M if and only if
(t1) there is no directed path from A to B other than A→ B in M ;
(t2)] For every C→ A in M , C→ B is also in M ; and for every D↔ A in M , either D→ B or D↔ B is in M ; and
(t3) there is no discriminating path for A on which B is the endpoint adjacent to A in M .
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Proof of Lemma 16
Proof It is not hard to check that for any two variables P,Q ∈ O, if P and Q are adjacent in MYX,
then they are adjacent in PYX (though the converse is not necessarily true, because an edge not defi-
nitely visible in P may still be visible in M ). Furthermore, when they are adjacent in both MYX and
PYX, every non-circle mark on the edge in PYX is “sound” in that the mark also appears in MYX.
The lemma obviously follows.

Proof of Lemma 21
Proof Spirtes and Richardson (1996), in proving their Lemma 18, gave a construction of an m-
connecting path in M from a d-connecting path in G . We describe the construction below.23

Let p be a minimal d-connecting path between A and B relative to C in G that is into A, minimal
in the sense that no other d-connecting path between A and B relative to C that is into A is composed
of fewer variables than p is.24 Construct a sequence of variables in O in three steps.

Step 1: Form a sequence T of variables on p as follows. T[0] = A, and T[n+1] is chosen to be
the first vertex after T[n] on p that is either in O or a (latent) collider on p, until B is included in T.

Step 2: Form a sequence S0 of variables in O of the same length as T, which we assume contains
m variables. For each 0≤ n≤ m−1, if T[n] is in O, then S0[n] = T[n]; otherwise T[n] is a (latent)
collider on p, which, by the fact that p is d-connecting given C, implies that there is a directed path
from T[n] to a member of C. So in this case, S0[n] is chosen to be the first observed variable on a
directed path from T[n] to a member of C.

Step 3: Run the following iterative procedure:

k:=0

Repeat

If in Sk there is a triple of vertices 〈Sk[i− 1],Sk[i],Sk[i + 1]〉 such that (1) there is an
inducing path between Sk[i−1] and Sk[i] relative to L in G that is into Sk[i]; (2) there is
an inducing path between Sk[i] and Sk[i+1] relative to L in G that is into Sk[i]; and (3)
Sk[i] is in C and is an ancestor of either Sk[i−1] or Sk[i+1]; then let sequence Sk+1 be
Sk with Sk[i] being removed;

k := k+1

Until there is no such triple of vertices in the sequence Sk.

Let SK denote the final outcome of the above three steps. Spirtes and Richardson (1996), in
their Lemma 18, showed that SK constitutes an m-connecting path between A and B relative to C in
M . We refer the reader to their paper for the detailed proof of this fact. What is left for us to show
here is that the path constituted by SK in M is either into A or out of A with an invisible edge.

In other words, we need to show that if the edge between A = SK [0] and SK [1] in M is A→ SK [1],
then this edge is invisible. Given Lemma 9, it suffices to show that there is an inducing path between

23. Their lemma addresses the more general case in which there may also be selection variables. The construction given
here is an adaptation of theirs to fit our case.

24. In Spirtes and Richardson (1996), minimality means more than that the d-connecting path is a shortest one, but for
this proof one only need to choose a shortest path.
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A and SK [1] relative to L in G that is into A. This is not hard to show. In fact, we can show by
induction that for all 0 ≤ k ≤ K, there is in G an inducing path between A and Sk[1] relative to L
that is into A.

In the base case, notice that either (i) S0[1] is an observed variable on p such that every variable
between A and S0[1] on p, if any, belongs to L and is a non-collider on p, or (ii) S0[1] is the first
observed variable on a directed path d starting from T[1] such that T[1] belongs to L, lies on p and
every variable between A and T[1] on p, if any, belongs to L and is a non-collider on p. In case
(i), p(A,S0[1]) is an inducing path relative to L, which is into A, because p is into A. In case (ii),
consider p(A,T[1]) and d(T[1],S0[1]). Let W be the variable nearest to A on p(A,T[1]) that is also
on d(T[1],S0[1]). (W exists because p(A,T[1]) and d(T[1],S0[1]) at least intersect at T[1].) Then
it is easy to see that a concatenation of p(A,W ) and d(W,S0[1]) forms an inducing path between A
and S0[1] relative to L in G , which is into A because p is into A.

Now the inductive step. Suppose there is in G an inducing path between A and Sk[1] relative
to L that is into A. Consider Sk+1[1]. If Sk+1[1] = Sk[1], it is trivial that there is an inducing path
between A and Sk+1[1] that is into A. Otherwise, Sk[1] was removed in forming Sk+1. But given
the three conditions for removing Sk[1] in Step 3 above, we can apply Lemma 32 (together with
the inductive hypothesis) to conclude that there is an inducing path between A and Sk+1[1] = Sk[2]
relative to L in G that is into A. This concludes our argument.

Proof of Lemma 22
Proof This lemma is fairly obvious given Lemma 10. Let u be the path m-connecting A and B given
C in M . Let D (which could be B) be the vertex next to A on u. Construct a DAG G from M in the
usual way: keep all the directed edges, replacing each bi-directed edge X ↔ Y with X ← LXY → Y .
Furthermore, if the edge between A and D is A→ D, it is invisible, so we can add A← LAD→ D to
the DAG. Then G is a DAG represented by M . It is easy to check that there is a d-connecting path
in G between A and B given C that is into A.

Proof of Lemma 23
Proof Note that because A is not an ancestor of any member of C, if there is a path out of A d-
connecting A and B given C in G , the path must be a directed path from A to B. For otherwise there
would be a collider on the path that is also a descendant of A, which implies that A is an ancestor of
some member of C. The sub-sequence of that path consisting of observed variables then constitutes
a directed path from A to B in M , which is of course out of A and also m-connecting given C in M .
The converse is as easy to show.

Proof of Lemma 27
Proof A path definitely m-connecting A and B given C in P is m-connecting in every MAG repre-
sented by P , which is an immediate consequence of the definition of PAG. Let D be the vertex next
to A on the definite m-connecting path in P between A and B given C. All we need to show is that
if the edge between A and D is not a definitely visible edge A→ D in P , then there exists a MAG
represented by P in which the edge between A and D is not a visible edge out of A.

Obviously if the edge in P is not A→D, there exists a MAG represented in P in which the edge
is not A→ D, which follows from the fact that P , by definition, displays all edge marks that are
shared by all MAGs in the equivalence class.
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So we only need to consider the case where the edge in P is A→ D, but it is not definitely
visible. Now we need to use a fact proved in Lemma 3.3.4 of Zhang (2006, pp. 80): that we
can turn P into a MAG by first changing every ◦→ edge in P into a directed edge →, and then
orienting the circle component—the subgraph of P that consists of ◦−−◦ edges—into a DAG with
no unshielded colliders.25 Moreover, it is not hard to show, using the result in Meek (1995a), that
we can orient the circle component—a chordal graph—into a DAG free of unshielded colliders in
which every edge incident to A is oriented out of A.

Let the resulting MAG be M . We show that A→ D is invisible in M . Suppose for the sake of
contradiction that it is visible in M . Then there exists in M a vertex E not adjacent to D such that
either E∗→ A or there is a collider path between E and A that is into A and every collider on the path
is a parent of D. In the former case, since A→ D is not definitely visible in P , the edge between E
and A is not into A in P , but then that edge will not be oriented as into A by our construction of M .
So the former case is impossible.

In the latter case, denote the collider path by 〈E,E1, ...,Em,A〉. Obviously every edge on
〈E1, ...,Em,A〉 is bi-directed, and so also occurs in P (because our construction of M does not
introduce extra bi-directed edges). There are then two cases to consider:

Case 1: The edge between E and E1 is also into E1 in P . Then the collider path appears in
P . We don’t have space to go into the details here, but there is an orientation rule in constructing
PAGs that makes use of a construct called “discriminating path” (e.g., Spirtes et al., 1999; Zhang,
forthcoming), which would imply that if the collider path appears in P , and every Ei (1≤ i≤ m) is
a parent of D in a representative MAG M , then every Ei is also a parent of D in P . It follows that
A→ D is definitely visible in P , a contradiction.

Case 2: The edge between E and E1 is not into E1 in P , but is oriented as into E1 in M . This is
possible only if the edge is E ◦−−◦E1 in P . But we also have E1↔ E2 (E2 could be A) in P , which,
by Lemma 3.3.1 in Zhang (2006, pp. 77), implies that E ↔ E2 is in P . Then 〈E,E2, . . . ,A〉 makes
A→ D definitely visible in P , which is a contradiction.

Proof of Lemma 28
Proof Note that since A does not have a descendant in C, an m-connecting path out of A given C
in M has to be a directed path from A to B such that every vertex on the path is not in C. Then
a shortest such path has to be uncovered,26 and so will correspond to a definite m-connecting path
between A and B given C in P (on which every vertex is a definite non-collider). This path is not
into A in P because P is the PAG for M in which the path is out of A.

Proof of Lemma 29
Proof Let D be the vertex next to A on the definite m-connecting path in P . Since the edge between
A and D is not into A in P , there exists a MAG represented by P in which the edge is out of A
(which follows from the definition of PAG). Such a MAG obviously satisfies the lemma.

25. A triple of vertices 〈X ,Y,Z〉 in a graph is called an unshielded triple if there is an edge between X and Y , an edge
between Y and Z, but no edge between X and Z. It is an unshielded collider if both the edge between X and Y and
the edge between Z and Y are into Y .

26. A path is called uncovered if every consecutive triple on the path is unshielded (cf. Footnote 25).
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