
Journal of Machine Learning Research 9 (2008) 23-48 Submitted 5/07; Published 1/08

Linear-Time Computation of Similarity Measures for Sequential Data

Konrad Rieck KONRAD.RIECK@FIRST.FRAUNHOFER.DE

Pavel Laskov PAVEL.LASKOV@FIRST.FRAUNHOFER.DE

Fraunhofer FIRST.IDA
Kekuĺestraße 7
12489 Berlin, Germany

Editor: Nello Cristianini

Abstract
Efficient and expressive comparison of sequences is an essential procedure for learning with se-
quential data. In this article we propose a generic framework for computation of similarity mea-
sures for sequences, covering various kernel, distance andnon-metric similarity functions. The
basis for comparison is embedding of sequences using a formal language, such as a set of natu-
ral words,k-grams or all contiguous subsequences. As realizations of the framework we provide
linear-time algorithms of different complexity and capabilities using sorted arrays, tries and suffix
trees as underlying data structures.

Experiments on data sets from bioinformatics, text processing and computer security illustrate
the efficiency of the proposed algorithms—enabling peak performances of up to 106 pairwise com-
parisons per second. The utility of distances and non-metric similarity measures for sequences as
alternatives to string kernels is demonstrated in applications of text categorization, network intru-
sion detection and transcription site recognition in DNA.
Keywords: string kernels, string distances, learning with sequential data

1. Introduction

Sequences of discrete symbols are one of the fundamental data representations in computer sci-
ence. A great deal of applications—from search engines to document ranking, from gene finding to
prediction of protein functions, from network surveillance tools to anti-virus programs—critically
depend on analysis of sequential data. Providing an interface to sequential data is therefore an
essential prerequisite for applications of machine learning in these domains.

Machine learning algorithms have been traditionally designed for vectorial data—probably due
to the availability of well-defined calculus and mathematical analysis tools. A largebody of such
learning algorithms, however, can be formulated in terms of pairwise relationships between objects,
which imposes a much looser constraint on the type of data that can be handled. Thus, a powerful
abstraction between algorithms and data representations can be established.

The most prominent example of such abstraction iskernel-based learning(e.g., Müller et al.,
2001; Scḧolkopf and Smola, 2002) in which pairwise relationships between objects areexpressed
by a Mercer kernel, an inner product in a reproducing kernel Hilbertspace. Following the seminal
work of Boser et al. (1992), various learning methods have been re-formulated in terms of kernels,
such as PCA (Scḧolkopf et al., 1998b), ridge regression (Cherkassky et al., 1999), ICA (Harmeling
et al., 2003) and many others. Although the initial motivation for the “kernel trick” was to allow
efficient computation of an inner product in high-dimensional feature spaces, the importance of an

c©2008 Konrad Rieck and Pavel Laskov.

RIECK AND LASKOV

abstraction from data representation has been quickly realized (e.g., Vapnik, 1995). Consequently
kernel-based methods have been proposed for non-vectorial domains, such as analysis of images
(e.g., Scḧolkopf et al., 1998a; Chapelle et al., 1999), sequences (e.g., Jaakkolaet al., 2000; Watkins,
2000; Zien et al., 2000) and structured data (e.g., Collins and Duffy, 2002; Gärtner et al., 2004).

Although kernel-based learning has gained significant attention in recentyears, a Mercer kernel
is only one of many possibilities for defining pairwise relationships between objects. Numerous
applications exist for which relationships are defined as metric or non-metricdistances (e.g., An-
derberg, 1973; Jacobs et al., 2000; von Luxburg and Bousquet, 2004), similarity or dissimilarity
measures (e.g., Graepel et al., 1999; Roth et al., 2003; Laub and Müller, 2004; Laub et al., 2006) or
non-positive kernel functions (e.g., Ong et al., 2004; Haasdonk, 2005). It is therefore imperative to
address pairwise comparison of objects in a most general setup.

The aim of this contribution is to develop ageneral frameworkfor pairwise comparison of
sequences. Its generality is manifested by the ability to handle a large number of kernel func-
tions, distances and non-metric similarity measures. From considerations of efficiency, we focus
on algorithms with linear-time asymptotic complexity in the sequence lengths—at the expense of
narrowing the scope of similarity measures that can be handled. For example, we do not consider
super-linear comparison algorithms such as the Levenshtein distance (Levenshtein, 1966) and the
all-subsequences kernel (Lodhi et al., 2002).

The basis of our framework is embedding of sequences in a high-dimensional feature space
using aformal language, a classical tool of computer science for modeling semantics of sequences.
Some examples of such languages have been previously used for string kernels, such as the bag-
of-words,k-gram or contiguous-subsequence kernel. Our formalization allows oneto use a much
larger set of possible languages in a unified fashion, for example subsequences defined by a finite
set of delimiters or position-dependent languages. A further advantageof embedding using formal
languages is separation of embedding models from algorithms, which allows one to investigate
different data structures to obtain optimal efficiency in practice.

Several data structures have been previously considered for specific similarity measures, such
as hash tables (Damashek, 1995), sorted arrays (Sonnenburg et al.,2007), tries (Leslie et al., 2002;
Shawe-Taylor and Cristianini, 2004; Rieck et al., 2006), suffix trees using matching statistics (Vish-
wanathan and Smola, 2004), suffix trees using recursive matching (Rieck et al., 2007) and suffix
arrays (Teo and Vishwanathan, 2006). All of these data structures allow one to develop linear-time
algorithms for computation of certain similarity measures. Most of them are also suitable for the
general framework developed in this paper; however, certain trade-offs exist between their asymp-
totic run-time complexity, implementation difficulty and restrictions on embedding languages they
can handle. To provide an insight into these issues, we propose and analyze three data structures
suitable for our framework:sorted arrays, tries andsuffix treeswith an extension to suffix arrays.
The message of our analysis, supported by experimental evaluation, is that the choice of an optimal
data structure depends on the embedding language to be used.

This article is organized as followed: In Section 2 we review related work onsequence com-
parison. In Section 3 we introduce a general framework for computation of similarity measures for
sequences. Algorithms and data structures for linear-time computation are presented in Section 4.
We evaluate the run-time performance and demonstrate the utility of distinct similaritymeasures in
Section 5. The article is concluded in Section 6

24

SIMILARITY MEASURES FORSEQUENTIAL DATA

2. Related Work

Assessing the similarity of two sequences is a classical problem of computer science. First ap-
proaches, the string distances of Hamming (1950) and Levenshtein (1966), originated in the domain
of telecommunication for detection of erroneous data transmissions. The degree of dissimilarity be-
tween two sequences is determined by computing the shortest trace of operations—insertions, dele-
tions and substitutions—that transform one sequence into the other (Sankoff and Kruskal, 1983).
Applications in bioinformatics motivated extensions and adaptions of this concept, for example
defining sequence similarity in terms of local and global alignments (Needleman and Wunsch, 1970;
Smith and Waterman, 1981). However, similarity measures based on the Hamming distance are re-
stricted to sequences of equal length and measures derived from the Levenshtein distance (e.g., Liao
and Noble, 2003; Vert et al., 2004), come at the price of computational complexity: No linear-time
algorithm for determining the shortest trace of operations is currently known. One of the fastest
exact algorithms runs inO(n2/ logn) for sequences of lengthn (Masek and Patterson, 1980).

A different approach to sequence comparison originated in the field of information retrieval with
the vector space or bag-of-words model (Salton et al., 1975; Salton, 1979). Textual documents are
embedded into a vector space spanned by weighted frequencies of contained words. The similarity
of two documents is assessed by an inner-product between the corresponding vectors. This concept
was extended tok-grams—k consecutive characters or words—in the domain of natural language
processing and computer linguistic (e.g., Suen, 1979; Cavnar and Trenkle, 1994; Damashek, 1995).
The idea of determining similarity of sequences by an inner-product was revived in kernel-based
learning in the form of bag-of-words kernels (e.g., Joachims, 1998; Drucker et al., 1999; Joachims,
2002) and various string kernels (e.g., Zien et al., 2000; Leslie et al., 2002; Vishwanathan and
Smola, 2004). Moreover, research in bioinformatics and text processing advanced the capabilities of
string kernels, for example, by considering gaps, mismatches and positionsin sequences (e.g., Lodhi
et al., 2002; Leslie et al., 2003; Leslie and Kuang, 2004; Rousu and Shawe-Taylor, 2005; R̈atsch
et al., 2007). The comparison framework proposed in this article shares the concept of embedding
sequences with all of the above kernels, in fact most of the linear-time stringkernels (e.g., Joachims,
1998; Leslie et al., 2002; Vishwanathan and Smola, 2004) are enclosed inthe framework.

A further alternative for comparison of sequences are kernels derived from generative proba-
bility models, such as the Fisher kernel (Jaakkola et al., 2000) and the TOPkernel (Tsuda et al.,
2002). Provided a generative model, for example a HMM trained over a corpus of sequences or
modeled from prior knowledge, these kernel functions essentially correspond to inner-products of
partial derivatives over model parameters. The approach enables thedesign of highly specific sim-
ilarity measures which exploit the rich structure of generative models, for example, for prediction
of DNA splice sites (R̈atsch and Sonnenburg, 2004). The run-time complexity of the kernel com-
putation, however, is determined by the number of model parameters, so thatonly simple models
yield run-time linear in the sequence lengths. Moreover, obtaining a suitable parameter estimate for
a probabilistic model can be difficult or even infeasible in practical applications.

3. Similarity Measures for Sequential Data

Before introducing the framework for computation of similarity measures, we need to establish
some basic notation. Asequencex is a concatenation of symbols from analphabetA. The set of
all possible concatenations of symbols fromA is denoted byA∗ and the set of all concatenations

25

RIECK AND LASKOV

of lengthk by Ak. A formal language L⊆A∗ is any set of finite-length sequences drawn fromA
(Hopcroft and Motwani, 2001). The length of a sequencex is denoted by|x| and the size of the
alphabet by|A|. A contiguous subsequencew of x is denoted byw ⊑ x, a prefix ofx by w ⊑p x
and a suffix byw ⊑s x. Alternatively, a subsequencew of x ranging from positioni to j is referred
to asx[i .. j].

3.1 Embedding Sequences using a Formal Language

The basis for embedding of a sequencex is a formal languageL, whose elements are sequences
spanning an|L|-dimensional feature space. We refer toL as theembedding languageand to a
sequencew ∈ L as awordof L. There exist numerous ways to defineL reflecting particular aspects
of application domains, yet we focus on three definitions that have been widely used in previous
research:

1. Bag-of-words. In this model,L corresponds to a set of words from a natural language.L can
be either defined explicitly by providing a dictionary or implicitly by partitioning sequences
according to a set of delimiter symbolsD ⊂A (e.g., Salton, 1979; Joachims, 2002).

L = Dictionary (explicit), L = (A\D)∗ (implicit).

2. K-grams andblended k-grams. For the case ofk-grams (in bioinformatics often referred
to ask-mers),L is the set of all sequences of lengthk (e.g., Damashek, 1995; Leslie et al.,
2002). The model ofk-grams can further be “blended” by considering all sequences from
length j up tok (e.g., Shawe-Taylor and Cristianini, 2004).

L =A
k (k-grams), L =

k
⋃

i= j

A
i (blendedk-grams).

3. Contiguous sequences. In the most general case,L corresponds to the set of all contiguous
sequences or alternatively to blendedk-grams with infinitek (e.g., Vishwanathan and Smola,
2004; Rieck et al., 2007).

L =A
∗ or L =

∞
⋃

i=1

A
i .

Note that the alphabetA in the embedding languages may also be composed of higher semantic
constructs, such as natural words or syntactic tokens. In these casesa k-gram corresponds tok
consecutive words or tokens, and a bag-of-words models could represent textual clauses or phrases.

Given an embedding languageL, a sequencex can be mapped into the|L|-dimensional feature
space by calculating a functionφw(x) for everyw ∈ L appearing inx. The embedding function8
for a sequencex is given by

8 : x 7→ (φw(x))w∈L with φw(x) := occ(w,x) ·Ww (1)

where occ(w,x) is the number of occurrences ofw in the sequencex andWw a weighting assigned
to individual words. Alternatively occ(w,x) may be defined as frequency, probability or binary flag
for the occurrences ofw in x.

26

SIMILARITY MEASURES FORSEQUENTIAL DATA

While the choice and design of an embedding languageL offer a large degree of flexibility,
it is often necessary to refine the amount of contribution for each wordw ∈ L, for example it is
a common practice in text processing to ignore stop words and terms that do not carry semantic
content. In the embedding function (1) such refinement is realized by the weighting termWw. The
following three weighting schemes for definingWw have been proposed in previous research:

1. Corpus dependent weighting.The weightWw is based on the occurrences ofw in the corpus
of sequences (see Salton et al., 1975). Most notable is the inverse document frequency (IDF)
weighting, in whichWw is defined over the number of documentsN and the frequencyd(w)

of w in the corpus.
Ww = log2 N− log2 d(w)+1.

If occ(w,x) is the frequency ofw in x, the embedding function (1) corresponds to the well-
known term frequency and inverse document frequency (TF-IDF) weighting scheme.

2. Length dependent weighting.The weightWw is based on the length|w| (see Shawe-Taylor
and Cristianini, 2004; Vishwanathan and Smola, 2004), for example, so that longer words
contribute more than shorter words to a similarity measure. A common approach isdefining
Ww using a decay factor 0≤ λ≤ 1.

Ww = λ−|w|.

3. Position dependent weighting.The weightWw is based on the position ofw in x. Vish-
wanathan and Smola (2004) propose a direct weighting scheme, in whichWw is defined over
positional weightsW(k,x) for each positionk in x as

Ww =Wx[i .. j] =
j

∑

k=i

W(k,x).

An indirect approach to position dependent weighting can be implemented by extending the
alphabetA with positional information toÃ=A×N, so that every element(a,k) ∈ Ã of the
extended alphabet is a pair of a symbola and a positionk.

The introduced weighting schemes can be coupled to further refine the embedding based on
L, for example, in text processing the impact of a particular term might be influenced by the term
frequency, inverse document frequency and its length.

3.2 Vectorial Similarity Measures for Sequences

With an embedding languageL at hand, we can now express common vectorial similarity measures
in the domain of sequences. Table 1 and 2 list well-known kernel and distance functions (see Vapnik,
1995; Scḧolkopf and Smola, 2002; Webb, 2002) in terms ofL. The histogram intersection kernel
in Table 1 derives from computer vision (see Swain and Ballard, 1991; Odone et al., 2005) and the
Jensen-Shannon divergence in Table 2 is defined usingH(x, y)= x log 2x

x+y + y log 2y
x+y .

A further and rather exotic class of vectorial similarity measures aresimilarity coefficients(see
Sokal and Sneath, 1963; Anderberg, 1973). These coefficients have been designed for comparison
of binary vectors and often express non-metric properties. They are constructed using three summa-
tion variablesa,b andc, which reflect the number of matching components (1/1), left mismatching

27

RIECK AND LASKOV

Kernel k(x,y)

Linear
∑

w∈L φw(x)φw(y)

Polynomial
(∑

w∈L φw(x)φw(y)+ θ
)p

Sigmoidal tanh
(∑

w∈L φw(x)φw(y)+ θ
)

Gaussian exp
(
−d(x,y)2

2σ2

)

Histogram intersection
∑

w∈L min(φw(x),φw(y))

Table 1: Kernel functions for sequential data.

Distance d(x,y)

Manhattan
∑

w∈L |φw(x)−φw(y)|

χ2 distance
∑

w∈L
(φw(x)−φw(y))2

φw(x)+φw(y)

Canberra
∑

w∈L
|φw(x)−φw(y)|
φw(x)+φw(y)

Minkowskip
∑

w∈L |φw(x)−φw(y)|p

Distance d(x,y)

Chebyshev maxw∈L |φw(x)−φw(y)|

Geodesic arccos
∑

w∈L φw(x)φw(y)

Hellinger2
∑

w∈L
(
√

φw(x)−
√

φw(y))2

Jensen-Shannon
∑

w∈L H(φw(x),φw(y))

Table 2: Distance functions for sequential data.

components (0/1) and right mismatching components (1/0) in two binary vectors. Common similar-
ity coefficients are given in Table 3. For application to non-binary vectorsthe summation variables
a,b,c can be extended in terms of an embedding languageL (Rieck et al., 2006):

a=
∑

w∈L

min(φw(x),φw(y)),

b=
∑

w∈L

[φw(x)−min(φw(x),φw(y))] ,

c=
∑

w∈L

[φw(y)−min(φw(x),φw(y))] .

The above definition ofa matches the histogram intersection kernelk provided in Table 1, so that
alternatively all summation variables can be expressed by

a= k(x,y), b= k(x,x)−k(x,y), c= k(y,y)−k(x,y). (2)

Sim. Coeff. s(x,y)

Simpson a/min(a+b,a+c)

Jaccard a/(a+b+c)

Braun-Blanquet a/max(a+b,a+c)

Czekanowski,
Sørensen-Dice

2a/(2a+b+c)

Sim. Coeff. s(x,y)

Kulczynski (1) a/(b+c)

Kulczynski (2)
1
2(a/(a+b)+a/(a+c))

Otsuka, Ochiai a/
√

(a+b)(a+c)

Sokal-Sneath,
Anderberg

a/(a+2(b+c))

Table 3: Similarity coefficients for sequential data

28

SIMILARITY MEASURES FORSEQUENTIAL DATA

Hence, one can consider the similarity coefficients given in Table 3 as variations of the histogram
intersection kernel, for example, the Jaccard coefficient can be formulated solely in terms ofk:

s(x,y)=
a

a+b+c
=

k(x,y)

k(x,x)+k(y,y)−k(x,y)
.

3.3 A Generic Framework for Similarity Measures

All of the similarity measures introduced in the previous section share a similar mathematical con-
struction: an inner component-wise function is aggregated over each dimension using an outer
operator, for example, the linear kernel is defined as the sum of component-wise products and the
Chebyshev distance as the maximum of component-wise absolute differences.

One can exploit this shared structure to derive a unified formulation for similarity measures
(Rieck et al., 2006, 2007), consisting of an inner functionm and an outer operator⊕ as follows

s(x,y)=
⊕

w∈L

m(φw(x),φw(y)). (3)

For convenience in later design of algorithms, we introduce a “multiplication” operator⊗ which
corresponds to executing the⊕ operationk times. Thus, for anyn ∈ N andx ∈ R, we define⊗ as

x⊗ n := x⊕ . . .⊕ x
︸ ︷︷ ︸

n

.

Given the unified form (3), kernel and distance functions presented inTable 1 and 2 can be
re-formulated in terms of⊕ andm. Adaptation of similarity coefficients to the unified form (3)
involves a re-formulation of the summation variablesa, b andc. The particular definitions of outer
and inner functions for the presented similarity measures are given in Table4. The polynomial and
sigmoidal kernels as well as the Geodesic distance are not shown since they can be expressed using
a linear kernel. For the Chebyshev distance the operator⊗ represents the identity function, while
for all other similarity measures it represents a multiplication.

Kernel ⊕ m(x, y)

Linear + x · y
Histogram inters. + min(x, y)

Sim. Coef. ⊕ m(x, y)

Variablea + min(x, y)

Variableb + x−min(x, y)

Variablec + y−min(x, y)

Distance ⊕ m(x, y)

Manhattan + |x− y|
χ2 distance + (x− y)2/(x+ y)

Canberra + |x− y|/(x+ y)

Minkowskip + |x− y|p
Chebyshev max |x− y|
Hellinger2 + (

√
x−√y)2

Jensen-Shannon + H(x, y)

Table 4: Unified formulation of similarity measures.

As a last step towards the development of comparison algorithms, we need to address the high
dimensionality of the feature space induced by the embedding languageL. The unified form (3)
theoretically involves computation ofm over allw ∈ L, which is practically infeasible for mostL.
Yet the feature space induced byL is sparse, since a sequencex comprises only a limited number of
contiguous subsequences—at most(|x|2+|x|)/2 subsequences. As a consequence of the sparseness

29

RIECK AND LASKOV

only very few termsφw(x) andφw(y) in the unified form (3) have non-zero values. We exploit this
fact by definingm(0,0)= e, wheree is the neutral element for the operator⊕, so that for anyx ∈R

holds
x⊕ e= x, e⊕ x = x.

By assigningm(0,0) to e, the computation of a similarity measure can be reduced to cases where
eitherφw(x) > 0 or φw(y) > 0, as the termm(0,0) does not affect the result of expression (3). We
can now refine the unified form (3) by partitioning the similarity measures intoconjunctiveand
disjunctivemeasures using an auxiliary functionm̃:

s(x,y)=
⊕

w∈L

m̃(φw(x),φw(y)).

1. Conjunctive similarity measures. The inner functionm only accounts pairwise non-zero
components, so that for anyx ∈ R holdsm(x,0)= eandm(0,x)= e.

m̃(x, y)=
{

m(x, y) if x > 0 and y > 0

e otherwise.

Kernel functions fall into this class, except for the distance-based RBFkernel. By using a
kernel to express similarity coefficients as shown in expression (2), similarity coefficients
also exhibit the conjunctive property.

2. Disjunctive similarity measures. The inner functionm requires at least one component to
be non-zero, otherwisem(0,0)= eholds.

m̃(x, y)=
{

m(x, y) if x > 0 or y > 0

e otherwise.

Except for the Geodesic distance, all of the presented distances fall intothis class. Depend-
ing on the embedding language, this class is computational more expensive than conjunctive
measures.

As a result, any similarity measure, including those in Table 1, 2 and 3, composed of an inner
and outer function can be applied for efficient comparison of embedded sequences, if (a) a neutral
elemente for the outer function⊕ exists and (b) the inner functionm is either conjunctive or
disjunctive, that is at leastm(0,0)= eholds.

4. Algorithms and Data Structures

We now introduce data structures and algorithms for efficient computation ofthe proposed similarity
measures. In particular, we present three approaches differing in capabilities and implementation
complexity covering simple sorted arrays, tries and generalized suffix trees. For each approach,
we briefly present the involved data structure, provide a discussion of the comparison algorithm
and give run-time bounds for extraction and comparison of embedded sequences. Additionally, we
provide implementation details that improve run-time performance in practice.

As an example running through this section we consider the two sequencesx = abbaaand
y= baaaabfrom the binary alphabetA= {a,b} and the embedding language of 3-grams,L =A3.
For a data structure storing multiple wordsw ∈ L of possibly different lengths, we denote byk the
length of longest words.

30

SIMILARITY MEASURES FORSEQUENTIAL DATA

4.1 Sorted Arrays

Data structure. A simple and intuitive representation for storage of embedded sequences are
sorted arraysor alternatively sorted lists (Joachims, 2002; Rieck et al., 2006; Sonnenburg et al.,
2007). Given an embedding languageL and a sequencex, all wordsw ∈ L satisfyingw ⊑ x are
maintained in an arrayX along with their embedding valuesφw(x). Each fieldx of X consists of
two attributes: the stored wordword[x] and its embedding valuephi[x]. The length of an arrayX
is denoted by|X|. In order to support efficient comparison, the fields ofX are sorted by contained
words, for example, using the lexicographical order of the alphabetA. Figure 1 illustrates the sorted
arrays of 3-grams extracted from the two example sequencesx andy.

X

word[x] phi[x]

abb | 1 baa | 1 bba | 1

Y aaa | 2 aab | 1 baa | 1

Figure 1: Sorted arrays of 3-grams forx = abbaa and y = baaaab. The number in each field
indicates the number of occurrences.

Algorithm. Comparison of two sorted arraysX andY is carried out by looping over the fields
of both arrays in the manner of merging sorted arrays (Knuth, 1973). During each iteration the
inner functionm is computed over contained words and aggregated using the operator⊕. The
corresponding comparison procedure in pseudo-code is given in Algorithm 1. Herein, we denote
the case where a wordw is present inx andy asmatchand the case ofw being contained in either
x or y asmismatch. For run-time improvement, these mismatches can be ignored in Algorithm 1 if
a conjunctive similarity measure is computed (cf. Section 3.3).

Algorithm 1 Array-based sequence comparison
1: function COMPARE(X,Y : Array) : R

2: s← e, i ← 1, j ← 1
3: while i ≤ |X| or j ≤ |Y| do
4: x← X[i], y← Y[j]
5: if y= NIL or word[x] < word[y] then ⊲ Mismatch atx
6: s← s⊕m(phi[x],0)

7: i ← i +1
8: else ifx = NIL or word[x] > word[y] then ⊲ Mismatch aty
9: s← s⊕m(0,phi[y])

10: j ← j +1
11: else ⊲ Match atx andy
12: s← s⊕m(phi[x],phi[y])
13: i ← i +1, j ← j +1

14: return s

31

RIECK AND LASKOV

Run-time. The comparison algorithm based on sorted arrays is simple to implement, yet it does
not enable linear-time comparison for all embedding languages, for example, if L =A∗. However,
sorted arrays enable linear-time similarity measures, if there existO(|x|) words withw ⊑ x, which
implies allw ∈ L have no or constant overlap inx. Examples are the common bag-of-words and
k-gram embedding languages.

Under these constraints a sorted array is extracted from a sequencex in O(k|x|) time using
linear-time sorting, for example, radix sort (Knuth, 1973), wherek is the maximum length of all
wordsw ∈ L in x. The comparison algorithm requires at most|x|+ |y| iterations, so that the worst-
case run-time isO(k(|x|+ |y|)). For extraction and comparison the run-time complexity is linear in
the sequence lengths due to the constraint on constant overlap of words, which impliesk|x| ∈ O(|x|)
for anyk andx.

Implementation notes. The simple design of the sorted array approach enables a very efficient
extension. If we consider a CPU with registers ofb bits, we restrict the maximum word lengthk, so
that every word fits into a CPU register. This restriction enables storage and comparison operations
to be performed directly on the CPU, that is operations on wordsw with |w| ≤ k are executed in
O(1) time. Depending on the size of the alphabet|A| and the CPU bitsb, the maximum word
length is⌊b/ log2 |A|⌋. In many practical applications one can strongly benefit from this extensions,
ask is either bounded anyway, for example, fork-grams, or longer words are particular rare and
do not increase accuracy significantly. For example on current 64 bit CPU architectures one can
restrictk to 32 for DNA sequences with|A| = 4 and tok= 10 for textual documents with|A| ≤ 64.
Alternatively, embedded words may also be represented using hash values of b bits, which enables
considering words of arbitrary length, but introduces a probability for hash collisions (Knuth, 1973).

Another extension for computation of conjunctive measures using sorted arrays has been pro-
posed by Sonnenburg et al. (2007). If two sequencesx and y have unbalanced sizes|x| ≪ |y|,
one loops over the shorter sorted arrayX and performs a binary search procedure onY, in fa-
vor of processing both sorted arrays in parallel. The worst-case run-time for this comparison is
O(k(|x| log2 |y|)), so that one may automatically apply this extension if for two sequencesx andy
holds|x| log2 |y|< |x|+ |y|.

4.2 Tries

Data structure. A trie is a tree structure for storage and retrieval of sequences. The edgesof a
trie are labeled with symbols ofA (Fredkin, 1960; Knuth, 1973). A path from the root to a marked
nodex represents a stored sequence, hereafter denoted byx̄. A trie nodex contains a vector of size
|A| linking to child nodes, a binary flag to indicate the end of a sequencemark[x] and an embedding
valuephi[x].1 The i -th child node representing thei -th symbol inA is accessed viachild[x, i]. If
the i -th child is not presentchild[x, i] = NIL .

A sequencesx is embedded using a trieX by storing allw ∈ L with w ⊑ x and corresponding
φw(x) in X (Shawe-Taylor and Cristianini, 2004). Figure 2 shows tries of 3-grams for the two ex-
ample sequencesx andy. Note, that for the embedding language ofk-grams considered in Figure 2
all marked nodes are leaves, while for other embedding languages they maycorrespond to inner
nodes, for example, for the case of blendedk-grams, where every node in a trie marks the end of a
sequence.

1. For convenience, we assume that child nodes are maintained in a vector, while in practice sorted lists, balanced trees
or hash tables may be preferred.

32

SIMILARITY MEASURES FORSEQUENTIAL DATA

mark[x]
phi[x]

X Y

a b a b

b a b a a

b a a a b a

(1) (1) (1) (2) (1) (1)

Figure 2: Tries of 3-grams forx = abbaa and y = baaaab. The number in brackets at leaves
indicate the number of occurrences. Marked nodes are squared. Whitenodes are implicit
and not maintained in a compact trie representation.

Algorithm. Comparison of two tries is performed as in Algorithm 2: Starting at the root nodes,
one recursively traverses both tries in parallel. If the traversal passes at least one marked node the in-
ner functionm is computed as either a matching or mismatching word occurred (Rieck et al., 2006).
To simplify presentation of the algorithm, we assume thatmark[NIL] returns false andchild[NIL , i]
returnsNIL .

Algorithm 2 Trie-based sequence comparison
1: function COMPARE(X,Y : Trie) : R

2: s← e
3: if X = NIL and Y = NIL then ⊲ Base case
4: return s
5: for i ← 1, |A| do
6: x← child[X, i], y← child[Y, i]
7: if mark[x] and not mark[y] then ⊲ Mismatch atx
8: s← s⊕m(phi[x],0)

9: if not mark[x] and mark[y] then ⊲ Mismatch aty
10: s← s⊕m(0,phi[y])

11: if mark[x] and mark[y] then ⊲ Match atx andy
12: s← s⊕m(phi[x],phi[y])

13: s← s⊕COMPARE(x, y)

14: return s

Run-time. The trie-based approach enables linear-time similarity measures over a larger set of
formal languages than sorted arrays. For tries we require allw ∈ L with w⊑ x to have either constant
overlap inx or to be prefix of another word, for example, as for the blendedk-gram embedding
languages.

To determine the run-time complexity on tries, we need to consider the following property: A
trie storingn words of maximum lengthk has depthk and at mostkn nodes. Thus, a sequencex
containingO(|x|) words of maximum lengthk is embedded using a trie inO(k|x|) run-time. As an

33

RIECK AND LASKOV

invariant for the comparison procedure, the nodesx andy in Algorithm 2 stay at the same depth in
each recursion. Hence, the comparison algorithm visits at mostk|x|+k|y| nodes, which results in
a worst-case run-time ofO(k(|x| + |y|)). The extraction and comparison run-time is linear in the
sequence lengths, as we require words to either have constant overlap, which impliesk|x| ∈ O(|x|),
or to be prefix of another word, which implies that both words share an identical path in the trie.

Implementation notes. The first extension for the trie data structure is aggregation of embedding
values in nodes. If in Algorithm 2 a mismatch occurs at nodex, the algorithm recursively descends
to all child nodes ofx. At this point, however, it is clear that all nodes belowx will also be
mismatches, as all wordsw with x̄ ⊑p w are not present in the compared trie. This fact can be
exploited by maintaining an aggregated valueϕx at each nodex given by

ϕx :=
⊕

w∈I

φw(x) with I = {w ∈ L | x̄ ⊑p w}.

Instead of recursively descending at a mismatching nodex, one usesϕx to retrieve the aggregation
of all lower embedding values. The extension allows disjunctive similarity measures to be computed
as efficient as conjunctive measures at a worst-case run-time ofO(kmin(|x|, |y|)).

The second extension originates from the close relation of tries and suffixtrees. The nodes
of a trie can be classified asimplicit if they link to only one child node and asexplicit otherwise.
By iteratively removing implicit nodes and appending their labels to edges of explicit parent nodes
one obtains acompact trie(cf. Knuth, 1973; Gusfield, 1997). Edges are labeled by subsequences
encoded using indicesi and j pointing tox[i .. j]. The major benefit of compact tries is reduced
space complexity, which decreases fromO(k|x|) to O(|x|) independent of the maximum lengthk
of stored words.

4.3 Generalized Suffix Trees

Data structure. A generalized suffix tree(GST) is a compact trie containing all suffixes of a set of
sequencesx1, . . . ,xl (Gusfield, 1997). Every path in a GST from the root to a leaf corresponds to one
suffix. A GST is obtained by extending each sequencexi with a delimiter $i /∈A and constructing
a suffix tree from the concatenationz= x1$1 . . .xl $l .

For each GST nodev we denote bychildren[v] the set of child
root

v

depth[v]

length[v]

nodes, bylength[v] the number of symbols on the incoming edge, by
depth[v] the total number of symbols on the path from the root node to
v and byphi[v, i] the number of suffixes ofxi passing through nodev.
As every subsequence ofxi is a prefix of some suffix,phi[v, i] reflects
the occurrences (alternatively frequency or binary flag) for all subse-
quences terminating on the edge tov. An example of a GST is given in

Figure 3. In the remaining part we focus on the case of two sequencesx andy delimited by $1 and
$2, computation of similarity measures over a set of sequences being a straightforward extension.

Algorithm. Computation of similarity measures is carried out by traversing a GST in depth-first
order (Rieck et al., 2007). An implementation in pseudo-code is given in Algorithm 3. At each
nodev the inner functionm is computed usingphi[v,1] andphi[v,2]. To account for different
words along an edge and to support various embedding languages the function FILTER is employed,
which selects appropriate contributions similar to the weighting introduced by Vishwanathan and

34

SIMILARITY MEASURES FORSEQUENTIAL DATA

a $1 $2 b

(2,4) (2,2)

a $1 b aa $2 baa$1

(1,3) (1,1) (1,1)

a $1 b$2 $2 baa$1 aab$2 $1

(0,2)

ab$2 b$2

Figure 3: Generalized suffix tree forx= abbaa$1 andy= baaaab$2. The numbers in brackets at
each inner nodev correspond tophi[v,1] andphi[v,2]. Edges are shown with associated
subsequences instead of indices.

Smola (2004). At a nodev the function takeslength[v] anddepth[v] of v as arguments to determine
how much the node and its incoming edge contribute to the similarity measure, for example, for the
embedding language ofk-grams only nodes up to a path depth ofk need to be considered.

Algorithm 3 GST-based sequence comparison
1: function COMPARE(X,Y : A∗) : R

2: T← CONCAT(X,Y)

3: S← SUFFIXTREE(T)

4: return TRAVERSE(root[S])

5: function TRAVERSE(v : Node) :R
6: s← e
7: for c← children[v] do
8: s← s⊕ TRAVERSE(c) ⊲ Depth-first traversal

9: n← FILTER(length[v],depth[v]) ⊲ Filter words on edge tov
10: s← s⊕m(phi[v,1],phi[v,2])⊗ n
11: return s

Algorithm 4 shows a filter function fork-grams. The filter returns 0 for all edges that do not
correspond to ak-gram, either because they are too shallow or too deep in the GST, and returns 1 if
ak-gram terminates on the edge to a nodev.

Algorithm 4 Filter function fork-grams,L =Ak

function FILTER(v : Node) :N
if depth[v] ≥ k and depth[v]− length[v] < k then

return 1
return 0

35

RIECK AND LASKOV

Another example of a filter is given in Algorithm 5. The filter implements the embedding
languageL =A∗. The incoming edge to a nodev contributes to a similarity measure bylength[v],
because exactlylength[v] contiguous subsequences terminate on the edge tov.

Algorithm 5 Filter function for all contiguous subsequences,L =A∗

function FILTER(v : Node) :N
return length[v]

The bag-of-words model can be implemented either by encoding each wordas a symbol ofA or
by augmenting nodes to indicate the presence of delimiter symbols on edges. Further definitions of
weighting schemes for string kernels, which are suitable for Algorithm 3, are given by Vishwanathan
and Smola (2004).

Run-time. Suffix trees are well-known for their ability to enhance run-time performance of string
algorithms (Gusfield, 1997). The advantage exploited herein is that a suffix tree comprises a
quadratic amount of information, namely all suffixes, in a linear representation. Thus, a GST en-
ables linear-time computation of similarity measures, even if a sequencex containsO(|x|2) words
and the embedding language corresponds toL =A∗.

There are well-known algorithms for linear-time construction of suffix trees(e.g., Weiner, 1973;
McCreight, 1976; Ukkonen, 1995), so that a GST for two sequencesx andy can be constructed in
O(|x|+ |y|) using the concatenationz= x$1y$2 . As a GST contains at most 2|z| nodes, the worst-
case run-time of any traversal isO(|z|) = O(|x| + |y|). Consequently, computation of similarity
measures between sequences using a GST can be realized in time linear in the sequence lengths
independent of the complexity ofL.

Implementation notes. In practice the GST algorithm may suffer from high memory consump-
tion, due to storage of child nodes and suffix links. To alleviate this problem an alternative data
structure with similar properties—suffix arrays—was proposed by Manber and Myers (1993). A
suffix array is an integer array enumerating the suffixes of a sequencez in lexicographical order. It
can be constructed in linear run-time, however, algorithms with super-linearrun-time are surpris-
ingly faster on real-world data (see Manzini and Ferragina, 2004; Maniscalco and Puglisi, 2007).

Abouelhoda et al. (2004) propose a generic procedure for replacing suffix trees with enhanced
suffix array, for example, as performed for the string kernel computation of Teo and Vishwanathan
(2006). This procedure involves several auxiliary data structures for maintenance of child nodes and
suffix links. In our implementation we follow a different approach based onthe work of Kasai et al.
(2001a) and Kasai et al. (2001b). Using a suffix array and an array of longest-common prefixes
(LCP) for suffixes, we replace the traversal of the GST by looping over a generalized suffix array in
linear time.

Application of suffix arrays reduces memory requirements by a factor of 4. About 11|z| bytes
are required for the modified GST algorithm: 8 bytes for a suffix and inverse suffix array, 2 bytes
for sequence indices and on average 1 byte for an LCP array. In comparison, a suffix tree usu-
ally requires over 40|z| bytes (Abouelhoda et al., 2004) and the enhanced suffix array of Teoand
Vishwanathan (2006) about 19|z| bytes.

36

SIMILARITY MEASURES FORSEQUENTIAL DATA

5. Experiments and Applications

In order to evaluate the run-time performance of the proposed comparisonalgorithms in practice and
to investigate the effect of different similarity measures on sequential data,we conducted experi-
ments on real world sequences. We chose nine data sets from the domains of bioinformatics, text
processing and computer security. Details about each data set, containedsequences and references
are given in Table 5.

Name Sequence type # |A| |x|µ Reference
Bioinformatics
ARTS DNA sequences 46794 4 2400 Sonnenburg et al. (2006)
C.Elegans DNA sequences 10025 4 10000 Wormbase WS120
SPROT Protein sequences 150807 23 467 O’Donovan et al. (2002)
Text processing
Reuters News articles 19042 92 839 Lewis (1997)
Heise News articles 30146 96 1800www.heise.de
RFC Text documents 4589 106 49954www.rfc-editor.org
Computer security
HIDS System call traces 25979 83 156 Lippmann et al. (2000)
NIDS Connection payloads 21330 116 1274 Lippmann et al. (2000)
Spam Emails bodies 33702 176 1539 Metsis et al. (2006)

Table 5: Data sets of sequences. The number of sequences in each setis denoted by #, the alphabet
size by|A| and the average sequence length by|x|µ.

5.1 Run-time Experiments

The linear-time algorithms presented in Section 4 build on data structures of increasing complexity
and capability—sorted arrays are simple but limited in capabilities, tries are more involved, yet
they do not cover all embedding languages and generalized suffix treesare relatively complex and
support the full range of embedding languages. In practice, however, it is the absolute and not
asymptotic run-time that matters. Since the absolute run-time is affected by hiddenconstant factors,
depending on design and implementation of an algorithm, it can only be evaluatedexperimentally.

Therefore each algorithm was implemented using enhancements covered in implementation
notes. In particular, for Algorithm 1 we incorporated 64-bit variables to realize a sorted 64-bit ar-
ray, for Algorithm 2 we implemented a compact trie representation and for Algorithm 3 we used
generalized suffix arrays in favor of suffix trees. For each of thesealgorithms we conducted experi-
ments using different embedding languages to assess the run-time on the datasets given in Table 5.

We applied the following experimental procedure and averaged run-time over 10 individual
runs: 500 sequences are randomly drawn from a data set and a 500×500 matrix is computed for the
Manhattan distance using a chosen embedding language. The run-time of thematrix computation is
measured and reported in pairwise comparisons per second. Note, that due to the symmetry of the
Manhattan distance only(n2+n)/2 comparisons need to be performed for ann×n matrix.

37

RIECK AND LASKOV

1 2 3 4 5 6 7 8

10
3

10
4

10
5

Comparison of word k−grams (Heise)
op

er
at

io
ns

 p
er

 s
ec

on
d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 2 3 4 5 6 7 8

10
3

10
4

10
5

Comparison of word k−grams (Reuters)

op
er

at
io

ns
 p

er
 s

ec
on

d
k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 2 3 4 5 6 7 8

10
3

10
4

10
5

Comparison of word k−grams (RFC)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

Figure 4: Run-time of sequences comparison over wordk-grams for different algorithms. The x-
axis gives the wordk-gram lengths. The y-axis shows the number of comparison opera-
tions per second in log-scale.

Embedding language: bag-of-words. As a first embedding language, we consider the bag-of-
words model. Since natural words can be defined only for textual data, we limit the focus of this
experiment to text data sets in Table 5. In particular, we use the embedding language ofword
k-grams—covering the classic “bag of words” as word 1-grams—by using an alphabet of words
instead of characters. Each symbol of the alphabet is stored in 32 bits, sothat up to 232 different
words can be represented. Experiments are conducted for values ofk ranging from 1 to 8.

Figure 4 shows the run-time performance of the implemented algorithms as a function of k on
the Reuters, Heise and RFC data sets. The sorted array approach significantly outperforms the other
algorithms on all data sets, yet it can only be applied fork ≤ 2, as it is limited to 64 bits. For small
values ofk suffix arrays require more time for each comparison compared to compact tries, while
for k > 5 their performance is similar to compact tries. This difference is explained bythe number
of uniquek-gramsνx in each sequencex. For small values ofk often holdsνx < |x|, so that a trie
comparison requiresO(k(νx+ νy)) time in contrast toO(|x| + |y|) for a suffix array. The worse
run-time performance on the RFC data set is due to longer sequences.

Embedding language: k-grams. For this experiment we focus on the embedding language ofk-
grams, which is not limited to a particular type of sequences, so that experiments were conducted for
all data sets in Table 5. In contrast to the previous setup,k-grams are associated with the original
alphabet of each data set: DNA bases and proteins for bioinformatics, characters for texts, and
system calls and bytes for computer security. For each data set the value of k is varied from 1 to 19.

The run-time as a function ofk for each data set and algorithm is given in Figure 5. The sorted
array approach again yields the best performance on all data sets. Moreover, the limitation of sorted
arrays to 64 bits does not effect all data sets, so that for DNA allk-gram lengths can be computed.
The suffix array slightly outperforms the trie comparison for larger value of k, as its worst-case
run-time is independent of the length ofk-grams. Absolute performance in terms of the number of
comparisons per second differs among data sets due to different average sequence lengths. For data
sets with short sequences (e.g., HIDS, ARTS) performance rates up to 106 comparisons per second

38

SIMILARITY MEASURES FORSEQUENTIAL DATA

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (ARTS)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (C.Elegans)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (SPROT)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (Heise)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (Reuters)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (RFC)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (HIDS)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (NIDS)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

1 4 7 10 13 16 19

10
2

10
3

10
4

10
5

10
6

Comparison of k−grams (Spam)

op
er

at
io

ns
 p

er
 s

ec
on

d

k−gram length

Sorted 64−bit arrays
Compact tries
Generalized suffix array

Figure 5: Run-time of sequences comparison overk-grams for different algorithms. The x-axis
gives thek-gram lengths. The y-axis shows the number of comparison operations per
second in log-scale.

39

RIECK AND LASKOV

are attainable, while for data sets with longer sequences (e.g., Spam, RFC) generally up to 103−104

comparisons per second are achievable at best.

5.2 Applications

We now demonstrate that the ability of our approach to compute diverse similaritymeasures is
beneficial in real applications, especially in unsupervised learning scenarios. Our experiments are
performed for: (a) categorization of news articles, (b) intrusion detection in network traffic (c) tran-
scription start site recognition in DNA sequences.

Unsupervised text categorization. For this experiment news articles from the topics “Coffee”,
“Interest”, “Sugar” and “Trade” in the Reuters data set are selected.The learning task is to cate-
gorize these articles using clustering, without any prior knowledge of labels. As preprocessing we
remove all stop words and words that occur in single articles only. We then compute dissimilar-
ity matrices for the Euclidean, Manhattan and Jensen-Shannon distances using the bag-of-words
embedding language as discussed in Section 3. The embedded articles are finally assigned to four
clusters using complete linkage clustering (see Duda et al., 2001).

Figure 6(a) shows projections of the embedded articles obtained from the dissimilarity matrices
using multidimensional scaling (see Duda et al., 2001). Although projections are limited in describ-
ing high-dimensional data, they visualize structure and, thus, help to interpret clustering results.
For example, the projection of the Euclidean distances in Figure 6(a) noticeably differs in shape
compared to the Manhattan and Jensen-Shannon distances.

The cluster assignments are presented in Figure 6(b) and the distribution oftopic labels among
clusters is given in Figure 6(c). For the Euclidean distance the clustering fails to unveil features
discriminative for article topics, as the majority of articles is assigned to a single cluster. In compar-
ison, the Manhattan and Jensen-Shannon distance allow categorization ofthe topics “Coffee” and
“Sugar”, due to observed high frequencies of respective words in articles. However, the Manhattan
distance does no allow discrimination of the other two topics, as both are mixed among two clus-
ters. The Jensen-Shannon distance enables better separation of all four topics. The topics “Coffee”
and “Sugar” are almost perfectly assigned to clusters and the topics “Interest” and “Trade” each
constitute the majority in a respective cluster.

Network intrusion detection. Network intrusion detection aims to automatically identify hacker
attacks in network traffic. As labels for such data are hard to obtain in practice, unsupervised
learning has gained attention in intrusion detection research. The NIDS dataset used for the run-
time experiments (cf. Table 5) is known to contain major artifacts (see McHugh,2000). In order
to provide a fair investigation of the impact of various similarity measures on detection of attacks,
we generated a smaller private data set. Normal traffic was recorded from the members of our
laboratory by providing a virtual network. Additionally attacks were injectedby a security expert.

For this experiment we pursue an unsupervised learning approach to network intrusion detection
(Rieck and Laskov, 2007). The incoming byte sequences of network connections are embedded
using the language of 5-grams, and Zeta, an unsupervised anomaly detection method based onk-
nearest neighbors, is applied over the following similarity measures: the Euclidean, Manhattan and
Jensen-Shannon distance and the second Kulczynski coefficient (see Section 3.2).

ROC curves for the detection of attacks in the network protocols HTTP, FTPand SMTP are
shown in Figure 7. Application of the Jensen-Shannon distance and second Kulczynski coefficient

40

SIMILARITY MEASURES FORSEQUENTIAL DATA

Projection of Euclidean distances Projection of Manhattan distances

Coffee
Interest
Sugar
Trade

Projection of Jensen−Shannon distances

(a) Projection of embedded articles with true topic label assignments

Clustering of Euclidean distances Clustering of Manhattan distances

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Clustering of Jensen−Shannon distances

(b) Projection of embedded articles with cluster assignments

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Clusters

T
op

ic
 r

at
io

Topic ratio for Euclidean distance

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

Clusters

T
op

ic
 r

at
io

Topic ratio for Manhattan distance

Coffee
Interest
Sugar
Trade

1 2 3 4
0

0.1

0.2

0.3

0.4

Clusters

T
op

ic
 r

at
io

Topic ratio for Jensen−Shannon distance

(c) Ratio of topic labels in clusters of embedded articles

Figure 6: Clustering of Reuters articles using different similarity measures (bag-of-words).

yield the highest detection accuracy. Over 78% of all attacks are identifiedwith no false-positives
in an unsupervised setup. In comparison, the Euclidean and Manhattan distance give significantly
lower detection rates on the FTP and SMTP protocols. The poor detection performance of the latter
two similarity measures emphasizes that choosing a discriminative similarity measureis crucial for
achieving high accuracy in a particular application.

Transcription start site recognition. The last application focuses on recognition of transcription
start sites (TSS), which mark the beginning of genes in DNA. We consider the ARTS data set, which
comprises human DNA sequences that either cover the TSS of protein coding genes or have been
extracted randomly from the interior of genes. Following the approach of Sonnenburg et al. (2006)
these sequences are embedded using the language of 6-grams and a support vector machine (SVM)
and a baggedk-nearest neighbor classifier are trained and evaluated on the different partitions of

41

RIECK AND LASKOV

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e
Anomaly detection (HTTP traffic)

Euclidean
Manhattan
Jensen−Shannon
Kulczynski (2)

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Anomaly detection (FTP traffic)

Euclidean
Manhattan
Jensen−Shannon
Kulczynski (2)

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Anomaly detection (SMTP traffic)

Euclidean
Manhattan
Jensen−Shannon
Kulczynski (2)

Figure 7: ROC curves for unsupervised anomaly detection on 5-grams ofnetwork connections and
attacks recorded at our laboratory.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Unsupervised TSS recognition

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Supervised TSS recognition

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Euclidean
Manhattan
Kulczynski

Euclidean
Manhattan
Kulczynski

Figure 8: ROC curves for supervised and unsupervised recognition of transcription start sites (TSS)
on 6-grams of DNA sequences (ARTS data set).

the data set. Each method is evaluated for the Euclidean distance, the Manhattan distance and
the second Kulczynski coefficient. As only 10% of the sequences in the data set correspond to
transcription start sites, we additionally apply the unsupervised outlier detection method Gamma
(Harmeling et al., 2006), which is similar to the method employed in the previous experiment.

Figure 8 shows the performance achieved by the baggedk-nearest neighbor classifier and the
unsupervised learning method.2 The accuracy in both setups strongly depends on the chosen sim-
ilarity measures. The metric distances yield better accuracy in the supervisedsetup. The second
Kulczynski coefficient and also the Manhattan distance perform significantly better than the Eu-
clidean distance in unsupervised application. In the absence of labels these measures express better
discriminative properties for TSS recognition, that are difficult to accessthrough Euclidean dis-
tances. For the supervised application, the classification performance is limited for all similarity

2. Results for the SVM are similar to the baggedk-nearest neighbor classifier and have been omitted.

42

SIMILARITY MEASURES FORSEQUENTIAL DATA

measures, as only some discriminative features for TSS recognition are encapsulated ink-gram
models (cf. Sonnenburg et al., 2006).

6. Conclusions

The framework for comparison of sequences proposed in this article provides means for efficient
computation of a large variety of similarity measures, including kernels, distances and non-metric
similarity coefficients. The framework is based on embedding of sequencesin a high-dimensional
feature space using formal languages, such ask-grams, contiguous subsequences, etc. Three im-
plementations of the proposed framework using different data structureshave been discussed and
experimentally evaluated.

Although all three data structures that were considered—sorted arrays, tries and generalized
suffix trees—have asymptotically linear run-time, significant differences inthe absolute run-time
have been observed in our experiments. The constant factors are affected by various design issues
illustrated by our remarks on implementation of the proposed algorithms. In general, we have
observed a consistent trade-off between run-time efficiency and complexity of embedding languages
a particular data structure can handle. Sorted arrays are the most efficient data structure; however,
their applicability is limited tok-grams and bag-of-words models. On the other end of the spectrum
are generalized suffix trees (and their more space-efficient implementationusing suffix arrays) that
can handle unrestricted embedding languages—at a cost of more complicated algorithms and lower
efficiency. The optimal data structure for computation of similarity measures thus depends on the
embedding language to be used in a particular application.

The proposed framework offers machine learning researchers an opportunity to use a large va-
riety of similarity measures for applications that involve sequential data. Although an optimal sim-
ilarity measure—as it is well known and has been also observed in our experiments—depends on
a particular application, the technical means for seamless incorporation of various similarity mea-
sures can be of great utility in practical applications of machine learning. Especially appealing is the
possibility for efficient computation of non-Euclidean distances over embedded sequences, which
extend applicable similarity measures for sequences beyond inner-products and kernel functions.

In general, the proposed framework demonstrates an important advantage of abstracting data
representation—in the form of pairwise relationships—from learning algorithms, which will hope-
fully motivate further investigation of learning algorithms using a general form of such abstraction.

Acknowledgments

The authors gratefully acknowledge the funding fromBundesministerium für Bildung und Forschung
under the project MIND (FKZ 01-SC40A) and REMIND (FKZ 01-IS07007A). The authors would
like to thank Klaus-Robert M̈uller, S̈oren Sonnenburg, Mikio Braun and Vojtech Franc for fruitful
discussions and support.

References

M. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees withenhanced suffix arrays.
Journal of Discrete Algorithms, 2(1):53–86, 2004.

43

RIECK AND LASKOV

M. Anderberg.Cluster Analysis for Applications. Academic Press, Inc., New York, NY, USA, 1973.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin classifiers. In D. Haus-
sler, editor,Proceedings of COLT, pages 144–152. ACM Press, 1992.

W. B. Cavnar and J. M. Trenkle. N-gram-based text categorization. InProceedings of SDAIR, pages
161–175, Las Vegas, NV, USA., Apr. 1994.

O. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram-based image classification. IEEE
Transaction on Neural Networks, 10(5):1055–1064, 1999.

V. Cherkassky, S. Xuhui, F. Mulier, and V. Vapnik. Model complexity control for regression using
vc generalization bounds.IEEE Transactions on Neural Networks, 10(5):1075–1089, 1999.

M. Collins and N. Duffy. Convolution kernel for natural language. InAdvances in Neural Informa-
tion Proccessing Systems, pages 625–632, 2002.

M. Damashek. Gauging similarity withn-grams: Language-independent categorization of text.
Science, 267(5199):843–848, 1995.

H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spamcategorization.IEEE Trans-
actions on Neural Networks, 10(5):1048–1054, 1999.

R. Duda, P.E.Hart, and D.G.Stork.Pattern Classification. John Wiley & Sons, second edition, 2001.

E. Fredkin. Trie memory.Communications of ACM, 3(9):490–499, 1960.

T. Gärtner, J. Lloyd, and P. Flach. Kernels and distances for structured data.Machine Learning, 57
(3):205–232, 2004.

T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification on pairwise prox-
imity data. InAdvances in Neural Information Processing Systems, volume 11, 1999.

D. Gusfield.Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.

B. Haasdonk. Feature space interpretation of svms with indefinite kernels.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(4):482–492, 2005.

R. W. Hamming. Error-detecting and error-correcting codes.Bell System Technical Journal, 29(2):
147–160, 1950.

S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear blind source
separation.Neural Computation, 15:1089–1124, 2003.

S. Harmeling, G. Dornhege, D. Tax, F. C. Meinecke, and K.-R. Müller. From outliers to prototypes:
ordering data.Neurocomputing, 69(13–15):1608–1618, 2006.

J. Hopcroft and J. Motwani, R. Ullmann.Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 2 edition, 2001.

T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative frameworkfor detecting remote protein
homologies.Journal of Computational Biology, 7:95–114, 2000.

44

SIMILARITY MEASURES FORSEQUENTIAL DATA

D. Jacobs, D. Weinshall, and Y. Gdalyahu. Classification with nonmetric distances: Image retrieval
and class representation.IEEE Transactions on Pattern Analysis and Machine Intelligence, 22
(6):583–600, 2000.

T. Joachims.Learning to Classify Text using Support Vector Machines. Kluwer, 2002.

T. Joachims. Text categorization with support vector machines: Learningwith many relevant fea-
tures. InProceedings of ECML, pages 137 – 142. Springer, 1998.

T. Kasai, H. Ariumar, and A. Setsuo. Efficient substring traversal with suffix arrays. Technical
report, 185, Department of Informatics, Kyushu University, 2001a.

T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-common-prefix com-
putation in suffix arrays and its applications. InCombinatorial Pattern Matching (CPM), 12th
Annual Symposium, pages 181–192, 2001b.

D. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, 1973.

J. Laub and K.-R. M̈uller. Feature discovery in non-metric pairwise data.Journal of Machine
Learning, 5(Jul):801–818, July 2004.

J. Laub, V. Roth, J. Buhmann, and K.-R. Müller. On the information and representation of non-
euclidean pairwise data.Pattern Recognition, 39(10):1815–1826, Oct. 2006.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences.Journal
of Machine Learning Research, 5:1435–1455, 2004.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: A string kernelfor SVM protein classifi-
cation. InProc. Pacific Symp. Biocomputing, pages 564–575, 2002.

C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. Noble. Mismatch string kernel for discriminative
protein classification.Bioinformatics, 1(1):1–10, 2003.

V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.Doklady
Akademii Nauk SSSR, 163(4):845–848, 1966.

D. Lewis. Reuters-21578 text categorization test collection. AT&T Labs Research, 1997.

L. Liao and W. Noble. Combining pairwise sequence similiarity and support vector machines for
detecting remote protein evolutionary and structural relationships.Journal of Computational
Biology, 10:857–868, 2003.

R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das. The 1999 DARPA off-line intrusion
detection evaluation.Computer Networks, 34(4):579–595, 2000.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels.Journal of Machine Learning Research, 2:419–444, 2002.

U. Manber and G. Myers. Suffix arrays: a new method for on-line stringsearches.SIAM Journal
on Computing, 22(5):935–948, 1993.

45

RIECK AND LASKOV

M. Maniscalco and S. Puglisi. An efficient, versatile approach to suffix sorting. Journal of Experi-
mental Algorithmics, 12, Article No. 1.2, 2007.

G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction algorithm.Algo-
rithmica, 40:33–50, 2004.

W. Masek and M. Patterson. A faster algorithm for computing string edit distance. Journal of
Computer and System sciences, 20(1):18–31, 1980.

E. M. McCreight. A space-economical suffix tree construction algorithm.Journal of the ACM, 23
(2):262–272, 1976.

J. McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intru-
sion detection system evaluations as performed by Lincoln Laboratory.ACM Transactions on
Information Systems Security, 3(4):262–294, 2000.

V. Metsis, G. Androutsopoulos, and G. Paliouras. Spam filtering with naive bayes - which naive
bayes? InProc. of the 3rd Conference on Email and Anti-Spam (CEAS), 2006.

K.-R. Müller, S. Mika, G. R̈atsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based
learning algorithms.IEEE Neural Networks, 12(2):181–201, May 2001.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarties in
the amino acid sequence of two proteins.Journal of Molecular Biology, 48:443–453, 1970.

F. Odone, A. Barla, and A. Verri. Building kernels from binary strings for image matching.IEEE
Transactions on Image Processing, 14(2):169–180, 2005.

C. O’Donovan, M. Martin, A. Gattiker, E. Gasteiger, A. Bairoch, and R.Apweiler. High-quality
protein knowledge resource: SWISS-PROT and TrEMBL.Briefings in Bioinformatics, 3(3):
275–284, 2002.

C. Ong, X. Mary, S. Canu, and A. Smola. Learning with non-positive kernels. In R. Greiner and
D. Schuurmans, editors,Proceedings of ICML, pages 639–646. ACM Press, 2004.

G. Rätsch and S. Sonnenburg. Accurate splice site prediction for caenorhabditis elegans. InKernel
Methods in Computational Biology, pages 277–298. MIT Press, 2004.

G. Rätsch, S. Sonnenburg, J. Srinivasan, H. Witte, R. Sommer, K.-R. Müller, and B. Scḧolkopf. Im-
proving the c. elegans genome annotation using machine learning.PLoS Computational Biology,
3:e20, 2007.

K. Rieck and P. Laskov. Language models for detection of unknown attacks in network traffic.
Journal in Computer Virology, 2(4):243–256, 2007.

K. Rieck, P. Laskov, and K.-R. M̈uller. Efficient algorithms for similarity measures over sequential
data: A look beyond kernels. InPattern Recognition, Proc. of 28th DAGM Symposium, LNCS,
pages 374–383, Sept. 2006.

46

SIMILARITY MEASURES FORSEQUENTIAL DATA

K. Rieck, P. Laskov, and S. Sonnenburg. Computation of similarity measures for sequential data
using generalized suffix trees. InAdvances in Neural Information Processing Systems 19, pages
1177–1184, Cambridge, MA, 2007. MIT Press.

V. Roth, J. Laub, M. Kawanabe, and J. Buhmann. Optimal cluster preserving embedding of non-
metric proximity data.IEEE Trans. PAMI, 25:1540–1551, Dec. 2003.

J. Rousu and J. Shawe-Taylor. Efficient computation of gapped substring kernels for large alphabets.
Journal of Machine Leaning Research, 6:1323–1344, 2005.

G. Salton. Mathematics and information retrieval.Journal of Documentation, 35(1):1–29, 1979.

G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Communications
of the ACM, 18(11):613–620, 1975.

D. Sankoff and J. Kruskal.Time wraps, String edits, and Macromulecules: The Theory and Practice
of Sequence Comparison. Addision-Wesley Publishing Co., 1983.

B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Scḧolkopf, P. Simard, A. Smola, and V. Vapnik. Prior knowledge in support vector kernels. In
Advances in Neural Information Processing Systems, volume 10, pages 640–646, Cambridge,
MA, 1998a. MIT Press.

B. Scḧolkopf, A. Smola, and K.-R. M̈uller. Nonlinear component analysis as a kernel eigenvalue
problem.Neural Computation, 10:1299–1319, 1998b.

J. Shawe-Taylor and N. Cristianini.Kernel methods for pattern analysis. Cambridge University
Press, 2004.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195–197, 1981.

R. Sokal and P. Sneath.Principles of Numerical Taxonomy. W.H. Freeman and Company, San
Francisco, CA, USA, 1963.

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: Accurate Recognition of Transcription Starts in
Human.Bioinformatics, 22(14):e472–e480, 2006.

S. Sonnenburg, G. R̈atsch, and K. Rieck. Large scale learning with string kernels. InLarge Scale
Kernel Machines. MIT Press, 2007.

C. Y. Suen. N-gram statistics for natural language understanding and text processing.IEEE Trans.
Pattern Analysis and Machine Intelligence, 1(2):164–172, Apr. 1979.

M. Swain and D. Ballard. Color indexing.International Journal of Computer Vision, 7(1), 1991.

C. Teo and S. Vishwanathan. Fast and space efficient string kernels using suffix arrays. InProceed-
ings of ICML, pages 939–936. ACM Press, 2006.

K. Tsuda, M. Kawanabe, G. R̈atsch, S. Sonnenburg, and K. Müller. A new discriminative kernel
from probabilistic models.Neural Computation, 14:2397–2414, 2002.

47

RIECK AND LASKOV

E. Ukkonen. Online construction of suffix trees.Algorithmica, 14(3):249–260, 1995.

V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. InKernel
methods in Computational Biology, pages 131–154. MIT Press, 2004.

S. Vishwanathan and A. Smola. Fast kernels for string and tree matching. In K. Tsuda, B. Scḧolkopf,
and J. Vert, editors,Kernels and Bioinformatics, pages 113–130. MIT Press, 2004.

U. von Luxburg and O. Bousquet. Distance-based classification with Lipschitz functions.Journal
of Machine Learning Research, 5:669–695, 2004.

C. Watkins. Dynamic alignment kernels. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans,
editors,Advances in Large Margin Classifiers, pages 39–50, Cambridge, MA, 2000. MIT Press.

A. Webb.Statistical Pattern Recognition. John Wiley and Sons Ltd., 2002.

P. Weiner. Linear pattern matching algorithms. InProc. 14th Annual Symposium on Switching and
Automata Theory, pages 1–11, 1973.

A. Zien, G. R̈atsch, S. Mika, B. Scḧolkopf, T. Lengauer, and K.-R. M̈uller. Engineering Support
Vector Machine Kernels That Recognize Translation Initiation Sites.BioInformatics, 16(9):799–
807, Sept. 2000.

48

