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Abstract

Classical approaches used to learn Bayesian network structure from data have disadvantages in
terms of complexity and lower accuracy of their results. However, a recent empirical study has
shown that a hybrid algorithm improves sensitively accuracy and speed: it learns a skeleton with an
independency test (IT) approach and constrains on the directed acyclic graphs (DAG) considered
during the search-and-score phase. Subsequently, we theorize the structural constraint by intro-
ducing the concept of super-structure S, which is an undirected graph that restricts the search to
networks whose skeleton is a subgraph of S. We develop a super-structure constrained optimal
search (COS): its time complexity is upper bounded by O(γm

n), where γm < 2 depends on the max-
imal degree m of S. Empirically, complexity depends on the average degree m̃ and sparse structures
allow larger graphs to be calculated. Our algorithm is faster than an optimal search by several or-
ders and even finds more accurate results when given a sound super-structure. Practically, S can
be approximated by IT approaches; significance level of the tests controls its sparseness, enabling
to control the trade-off between speed and accuracy. For incomplete super-structures, a greedily
post-processed version (COS+) still enables to significantly outperform other heuristic searches.

Keywords: Bayesian networks, structure learning, optimal search, super-structure, connected
subset

1. Introduction

It is impossible to understand large raw sets of data obtained from a huge number of correlated
variables. Therefore, in order to simplify the comprehension of the system, various graphical models
have been developed to summarize interactions between such variables in a synoptic graph. Among
the existing models, Bayesian networks have been widely employed for decades in various domains
including artificial intelligence (Glymour, 2001), medicine (Cowell et al., 1999), bioinformatics
(Friedman et al., 2000), and even economy (Segal et al., 2005) and sociology (Heckerman, 1996).
Bayesian networks compactly represent a joint probability distribution P over the set of variables,
using DAG to encode conditional independencies between them (Pearl, 1988). The popularity of
this model is primarily due to its high expressive power, enabling the simultaneous investigation of
complex relationships between many variables of a heterogeneous nature (discrete or continuous).
Further, for Bayesian network model inference from data is comparatively simpler; incomplete or
noisy data are also usable and prior knowledge can be incorporated. When the DAG or structure of
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the model is known, the parameters of the conditional probability distributions can be easily fit to
the data; thus, the bottleneck of modeling an unknown system is to infer its structure.

Over the previous decades, various research directions have been explored through a numerous
literature to deal with structure learning, which let us propose the following observations. Maxi-
mizing a score function over the space of DAGs is a promising approach towards learning structure
from data. A search strategy called optimal search (OS) have been developed to find the graphs hav-
ing the highest score (or global optima) in exponential time. However, since it is feasible only for
small networks (containing up to thirty nodes), in practice heuristic searches are used. The resulting
graphs are local optima and their accuracy strongly depends on the heuristic search strategy. In
general, given no prior knowledge, the best strategy is still a basic greedy hill climbing search (HC).
In addition, Tsamardinos et al. (2006) proposed to constrain the search space by learning a skeleton
using an IT-based technique before proceeding to a restricted search. By combining this method
with a HC search, they developed a hybrid algorithm called max-min hill-climbing (MMHC) that is
faster and usually more accurate.

In the present study we are interested in OS since the optimal graphs will converge to the true
model in the sample limit. We aim to improve the speed of OS in order to apply it to larger net-
works; for this, a structural constraint could be of a valuable help. In order to keep the asymptotic
correctness of OS, the constraint has to authorize at least the edges of the true network, but it can
contain also extra edges. Following this minimal condition that should respect a constraint on the
skeletons to be sound, we formalize a flexible structural constraint over DAGs by defining the con-
cept of a super-structure. This is an undirected graph that is assumed to contain the skeleton of the
true graph (i.e., the true skeleton). In other word, the search space is the set of DAGs that have a sub-
graph of the given super-structure as a skeleton. A sound super-structure (that effectively contains
the true skeleton) could be provided by prior knowledge or learned from data much more easily
(with a higher probability) than the true skeleton itself. Subsequently, we consider the problem of
maximizing a score function given a super-structure, and we derive a constrained optimal search,
COS, that finds a global optimum over the restricted search space. Not surprisingly, our algorithm
is faster than OS since the search space is smaller; more precisely, its computational complexity is
proportional to the number of connected subsets of the super-structure. An upper bound is derived
theoretically and average complexity is experimentally showed to depend on the average degree of
the super-structure. Concretely, for sparse structures our algorithm can be applied to larger net-
works than OS (with an average degree around 2.1, graphs having 1.6 times more nodes could be
considered). Moreover, for a sound super-structure, learned graphs are more accurate than uncon-
strained optima: this is because, some incorrect edges are forbidden, even if their addition to the
graph improves the score.

Since the sparseness directly affects the speed, and therefore the feasibility of our search, it
remains to propose efficient methods to learn a sound and sparse super-structures without prior
knowledge. This is out of the scope of this present paper where we focus on the enunciation of our
constraint, its application to optimal search and optimizations of its implementation. Nevertheless,
in order to demonstrate our algorithm in practice, we propose a first basic strategy to approximate
a super-structure from data. The idea is to use “relaxed” independency testing to obtain an undi-
rected graph that may contain the true skeleton with a high probability, while yet being sparse. In
that case, we can consider the significance level of the independency tests, α, as a tool to choose
between accuracy (high values return dense but probably sound structures) and speed (low values
give sparse but incomplete structures). We tested our proposition on MMPC, the IT-based strategy
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used by Tsamardinos et al. (2006) in MMHC; our choice was motivated by the good results of their
algorithm that we also include in our comparative study. MMPC appears to be a good method to
learn robust and relatively sparse skeletons; unfortunately, soundness is achieved only for high sig-
nificance levels, α > 0.9, implying a long calculation and a denser structure. Practically, when the
constraint is learned with α = 0.05, in terms of accuracy, COS is worse than OS since the super-
structure is usually incomplete; still, COS outperforms most of the time greedy searches, although
it finds graphs of lower scores. Resulting graphs can be quickly improved by applying to them a
post-processing unconstrained hill-climbing (COS+). During that final phase, scores are strictly im-
proved, and usually accuracy also. Interestingly, even for really low significance levels (α ≈ 10−5),
COS+ returns graphs more accurate and of a higher score than both MMHC and HC. COS+ can be
seen as a bridge between HC (when α tends to 0) and OS (when α tends to 1) and can be applied up
to a hundred nodes by selecting a low enough significance level.

This paper is organized as follows. In Section 2, we discuss the existing literature on structure
learning. We clarify our notation in Section 3.1 and reintroduce OS in Section 3.2. Then, in Section
4, the core of this paper, we define super-structures and present our algorithm, proofs of its complex-
ity and practical information for implementation. Section 5 details our experimental procedures and
presents the results. Section 5.1.4 briefly recalls MMPC, the method we used during experiments
to learn the super-structures from data. Finally, in Section 6, we conclude and outline our future
works.

2. Related Works

The algorithms for learning the Bayesian network structure that have been proposed until now can
be regrouped into two different approaches, which are described below.

2.1 IT Approach

This approach includes IC algorithm (inductive causation) (Pearl, 1988), PC algorithm (after its
authors, Peter and Clark) (Spirtes et al., 2000), GS algorithm (grow and shrink) (Margaritis and
Thrun, 2000), and TPDA algorithm (three-phase dependency analysis) (Cheng et al., 2002). All of
them build the structure to be consistent with the conditional independencies among the variables
that are evaluated with a statistical test (G-square, partial correlation). Usually, algorithms start
by learning the skeleton of the graph (by propagating constraints on the neighborhood of each
variable) and then edges are oriented to cope with dependencies revealed from data. Finally, one
network is retained from the equivalent class consistent with the series of tests. Under the faithful
condition of P, such strategies have been proven to build a graph converging to the true network as
the size of the data approaches infinity. Moreover, their complexity is polynomial, assuming that
the maximal degree of the network, that is, the maximal size of nodes neighborhood, is bounded
(Kalisch and Bühlmann, 2007). However, in practice, the results are mixed because of the tests
sensitivity to noise: since these algorithms base their decisions on a single or few tests, they are
prone to accumulate errors (Margaritis and Thrun, 2000). Worse, they can obtain a set of conditional
independencies that is contradictory, or that cannot be faithfully encoded by a DAG, leading to a
failure of the algorithm. Moreover, except for sparse graphs, their execution time is generally longer
than that of algorithms from the scoring criteria-based approach (Tsamardinos et al., 2006).
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2.2 Scoring Criteria-Based Approach

Search-and-score methods are favored in practice and considered as a more promising research
direction. This second family of algorithms uses a scoring criterion, such as the posterior probability
of the network given the data, in order to evaluate how well a given DAG fits empirical results, and
returns the one that maximized the scoring function during the search. Since the search space is

known to be of a super exponential size on the number of nodes n, that is, O(n!2(n
2)) (Robinson,

1973), an exhaustive search is practically infeasible, implying that various greedy strategies have
been proposed to browse DAG space, sometimes requiring some prior knowledge.

Among them, the state-of-the-art greedy hill climbing (HC) strategy, although it is simple and
will find only a locally optimal network, remains one of the most employed method in practice,
especially with larger networks. There exist various implementations using different empirical tricks
to improve the score of the results, such as TABU list, restarting, simulated annealing, or searching
with different orderings of the variables (Chickering et al., 1995; Bouckaert, 1995). However a
traditional and basic algorithm will process in the following manner:

• Start the search from a given DAG, usually the empty one.

• Then, from a list of possible transformations containing at least addition, withdrawal or re-
versal of an edge, select and apply the transformation that improves the score most while also
ensuring that graph remains acyclic.

• Finally repeat previous step until strict improvements to the score can no longer be found.

More details about our implementation of HC are given in Section 5.1.3. Such an algorithm can
be used even for large systems, and if the number of variables is really high, it can be adapted by
reducing the set of transformations considered, or by learning parents of each node successively. In
any case, this algorithm finds a local optimum DAG but without any assertion about its accuracy
(besides its score). Further, the result is probably far from a global optimal structure, especially
when number of nodes increases. However, optimized forms of this algorithm obtained by using
one or more tricks have been considered to be the best search strategies in practice until recently.

Other greedy strategies have also been developed in order to improve either the speed or accu-
racy of HC one: sparse candidate (SC, Friedman et al., 1999) that limits the maximal number of
parents and estimate candidate parents for each node before the search, greedy equivalent search
(GES, Chickering, 2002b) that searches into the space of equivalence classes (PDAGs), and optimal
reinsertion (OR, Moore and Wong, 2003) that greedily applies an optimal reinsertion transformation
repeatedly on the graph.

SC was one of the first to propose a reduction in the search space, thereby sensitively improving
the score of resulting networks without increasing the complexity too much if candidate parents
are correctly selected. However, it has the disadvantage of a lack of flexibility, since imposing a
constant number of candidate parents to every node could be excessive or restrictive. Furthermore,
the methods and measures proposed to select the candidates, despite their intuitive interest, have not
been proved to include at least the true or optimal parents for each node.

GES has the benefit that it exploits a theoretically justified direction. Main scoring functions
have been proved to be score equivalent (Chickering, 1995), that is, two equivalent DAGs (repre-
senting the same set of independencies among variables) have the same score. Thus they define
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equivalent classes over networks that can be uniquely represented by CPDAGs. Therefore, search-
ing into the space of equivalent classes reduces the number of cases that have to be considered,
since one CPDAG represents several DAGs. Further, by using usual sets of transformations adapted
to CPDAGs, the space browsed during a greedy search becomes more connected, increasing the
chances of finding a better local maximum. Unfortunately, the space of equivalent classes seems to
be of the same size order than that of DAGs, and an evaluation of the transformations for CPDAGs is
more time consuming. Thus, GES is several times slower than HC, and it returns similar results. In-
terestingly, following the comparative study of Tsamardinos et al. (2006), if structural errors rather
than scores are considered as a measure of the quality of the results, GES is better than a basic HC.

In the case of OR, the algorithm had the advantage to consider a new transformation that globally
affects the graph structure at each step: this somehow enables the search to escape readily from local
optima. Moreover, the authors developed efficient data-structures to rationalize score evaluations
and retrieve easily evaluation of their operators. Thus, it is one of the best greedy methods proposed;
however, with increasing data, the algorithm will collapse due to memory shortage.

Another proposed direction was using the K2 algorithm (Cooper and Herskovits, 1992), which
constraints the causal ordering of variables. Such ordering can be seen to be a topological ordering
of the true graph, provided that such a graph is acyclic. Based on this, the authors proposed a
strategy to find an optimal graph by selecting the best parent set of a node among the subsets of
nodes preceding it. The resulting graph can be the global optimal DAG if it accepts the same
topological ordering. Therefore, given an optimal ordering, K2 can be seen as an optimal algorithm
with a time and space complexity of O(2n). Moreover, for some scoring functions, branch-pruning
can be used while looking for the best parent set of a node (Suzuki, 1998), thereby improving the
complexity. However, in practice, a greedy search that considers adding and withdrawing a parent
is applied to select a locally optimal parent set. In addition, the results are strongly depending on
the quality of the ordering. Some investigations have been made to select better orderings (Teyssier
and Koller, 2005) with promising results.

2.3 Recent Progress

One can wonder about the feasibility of finding a globally optimal graph without having to explicitly
check every possible graph, since nothing can be asserted with respect to the structural accuracy of
the local maxima found by previous algorithms. In a general case, learning Bayesian network from
data is an NP-hard problem (Chickering, 1996), and thus for large networks, only such greedy algo-
rithms are used. However, recently, algorithms for global optimization or exact Bayesian inference
have been proposed (Ott et al., 2004; Koivisto and Sood, 2004; Singh and Moore, 2005; Silander
and Myllymäki, 2006) and can be applied up to a few tens of nodes. Since they all principally share
the same strategy that we will introduce in detail subsequently, we will refer to it as optimal search
(OS). Even if such a method cannot be of a great use in practice, it could validate empirically the
search-and-score approach by letting us study how a global maximum converges to the true graph
when the data size increases; Also, it could be a meaningful gold standard to judge the performances
of greedy algorithms.

Finally, a recent noteworthy step was performed with the min-max hill climbing algorithm
(MMHC, Tsamardinos et al., 2006), since it was empirically proved to be the fastest and the best
method in terms of structural error based on the structural hamming distance. This algorithm can
be considered as a hybrid of the two approaches. It first learns an approximation of the skeleton of
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the true graph by using an IT strategy. It is based on a subroutine called min-max-parents-children
(MMPC) that reconstructs the neighborhood of each node; G-square tests are used to evaluate con-
ditional independencies. The algorithm subsequently proceeds to a HC search to build a DAG
limiting edge additions to the one present in the retrieved skeleton. As a result, it follows a similar
technique than that of SC, except that the number of candidate parents is tuned adaptively for each
node, and that the chosen candidates are sound in the sample limit. It is worth to notice that the
skeleton learned in the first phase can differ from the one of the final DAG, since all edges will not
be for sure added during the greedy search. However, it will be certainly a cover of the resulting
graph skeleton.

3. Definitions and Preliminaries

In this section, after explaining our notations and recalling some important definitions and results,
we discuss structure constraining and define the concept of a super-structure. Section 3.3 is dedi-
cated to OS.

3.1 Notation and Results for Bayesian Networks

In the rest of the paper, we will use upper-case letters to denote random variables (e.g., Xi, Vi) and
lower-case letters for the state or value of the corresponding variables (e.g., xi, vi). Bold-face will be
used for sets of variables (e.g., Pai) or values (e.g., pai). We will deal only with discrete probability
distributions and complete data sets for simplicity, although a continuous distribution case could
also be considered using our method.

Given a set X of n random variables, we would like to study their probability distribution P0. To
model this system, we will use Bayesian networks:

Definition 1. (Pearl, 1988; Spirtes et al., 2000; Neapolitan, 2003) Let P be a discrete joint probabil-
ity distribution of the random variables in some set V, and G = (V,E) be a directed acyclic graph
(DAG). We call (G,P) a Bayesian network (BN) if it satisfies the Markov condition, that is, each
variable is independent of any subset of its non-descendant variables conditioned on its parents.

We will denote the set of the parents of a variable Vi in a graph G by Pai, and by using the Markov
condition, we can prove that for any BN (G,P), the distribution P can be factored as follows:

P(V) = P(V1, · · · ,Vp) = ∏
Vi∈V

P(Vi|Pai).

Therefore, to represent a BN, the graph G and the joint probability distribution have to be en-
coded; for the latter, every probability P(Vi = vi|Pai = pai) should be specified. G directly encodes
some of the independencies of P and entails others (Neapolitan, 2003). More precisely, all inde-
pendencies entailed in a graph G are summarized by its skeleton and by its v-structures (Pearl,
1988). Consequently, two DAGs having the same skeleton and v-structures entail the same set of
independencies; they are said to be equivalent (Neapolitan, 2003). This equivalence relation defines
equivalent classes over space of DAGs that are unambiguously represented by completed partially
directed acyclic graphs (CPDAG) (Chickering, 2002b). Finally, if all and only the conditional in-
dependencies true in a distribution P are entailed by the Markov condition applied to a DAG G, we
say that the Bayesian Network (G,P) is faithful (Spirtes et al., 2000).
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In our case, we will assume that the probability distribution P0 over the set of random variables
X is faithful, that is, that there exists a graph G0, such that (G0,P0) is a faithful Bayesian network.
Although there are distributions P that do not admit a faithful BN (for example the case when parents
are connected to a node via a parity or XOR structure), such cases are regarded as “rare” (Meek,
1995), which justifies our hypothesis.

To study X, we are given a set of data D following the distribution P0, and we try to learn a graph
G, such that (G,P0) is a faithful Bayesian network. The graph we are looking for is probably not
unique because any member of its equivalent class will also be correct; however, the corresponding
CPDAG is unique. Since there may be numerous graphs G to which P0 is faithful, several definitions
are possible for the problem of learning a BN. We choose as Neapolitan (2003):

Definition 2. Let P0 be a faithful distribution and D be a statistical sample following it. The problem
of learning the structure of a Bayesian network given D is to induce a graph G so that (G,P0) is
a faithful BN, that is, G and G0 are on the same equivalent class, and both are called the true
structure of the system studied.

In every IT-based or constraint-based algorithm, the following theorem is useful to identify the
skeleton of G0:

Theorem 1. (Spirtes et al., 2000) In a faithful BN (G,P) on variables V, there is an edge between
the pair of nodes X and Y if and only if X depends on Y conditioning on every subset Z included in
V\{X ,Y}.

Thus, from the data, we can estimate the skeleton of G0 by performing conditional independency
tests (Glymour and Cooper, 1999; Cheng et al., 2002). We will return to this point in Section 4.1
since higher significance levels for the test could be used to obtain a cover of the skeleton of the true
graph.

3.2 General Optimal Search

Before presenting our algorithm, we should review the functioning of an OS. Among the few arti-
cles on optimal search (Ott et al., 2004; Koivisto and Sood, 2004; Singh and Moore, 2005; Silander
and Myllymäki, 2006), Ott and Miyano (2003) are to our knowledge the first to have published an
exact algorithm. In this section we present the algorithm of Ott et al. (2004) for summarizing the
main idea of OS. While investigating the problem of exact model averaging, Koivisto and Sood
(2004) independently proposed another algorithm that also learn optimal graphs proceeding on a
similar way. As for Singh and Moore (2005), they presented a recursive implementation that is
less efficient in terms of calculation; however, it has the advantage that potential branch-pruning
rules can be applied. Finally, Silander and Myllymäki (2006) detailed a practically efficient imple-
mentation of the search: the main advantage of their algorithm is to calculate efficiently the scores
by using contingency tables (still computational complexity remains the same). They empirically
demonstrated that optimal graphs could be learned up to n = 29.

To understand how OS finds global optima in O(n2n) without having to explicitly check ev-
ery DAG possible, we must first explain how a score function is defined. Various scoring criteria
for graphs have been defined, including Bayesian Dirichlet (specifically BDe with uniform priors,
BDeu) (Heckerman et al., 1995), Bayesian information criterion (BIC) (Schwartz, 1978), Akaike
information criterion (AIC) (Akaike, 1974), minimum description length (MDL) (Rissanen, 1978),
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and Bayesian network and nonparametric regression criterion (BNRC) (Imoto et al., 2002). They
are usually costly to evaluate; however, due to the Markov condition, they can be evaluated locally:

Score(G,D) =
n

∑
i=1

score(Xi,Pai,D).

This property is essential to enable efficient calculation, particularly with large graphs, and
is usually supposed while defining an algorithm. Another classical attribute is score equivalence,
which means that two equivalent graphs will have the same score. It was proved to be the case for
BDe, BIC, AIC, and MDL (Chickering, 1995). In our study, we will use BIC, thereby our score is
local and equivalent, and our task will be to find a DAG over X that maximizes the score given the
data D. Exploiting score locality, Ott et al. (2004) defined for every node Xi and every candidate
parent set A ⊆ X\{Xi}:

• The best local score on Xi: Fs(Xi,A) = max
B⊆A

score(Xi,B,D) ;

• The best parent set for Xi: Fp(Xi,A) = argmax
B⊆A

score(Xi,B,D) .

From now we omit writing D when referring to the score function. Fs can be calculated recur-
sively on the size of A using the following formulas:

Fs(Xi, /0) = score(Xi, /0), (1)

Fs(Xi,A) = max(score(Xi,A),max
X j∈A

(Fs(Xi,A\{X j})). (2)

Calculation of Fp directly follows; we will sometimes use F as a shorthand to refer to these two
functions. Noticing that we can dynamically evaluate F , one can think that it is thus directly pos-
sible to find the best DAG. However, it is also essential to verify that the graph obtained is acyclic
and hence, that there exists a topological ordering over the variables.

Definition 3. Let w be an ordering defined on A ⊆ X and H = (A,E) be a DAG. We say that H is
w-linear if and only if w(Xi) < w(X j) for every directed edge (Xi,X j) ∈ E.

By using Fp and given an ordering w on A we derive the best w-linear graph G∗
w as:

G∗
w = (A,E∗

w), with (X j,Xi) ∈ E∗
w if and only if X j ∈ Fp(Xi,Predw(Xi)). (3)

Here, G∗
w is directly obtained by selecting for each variable Xi ∈ A its best parents among the nodes

preceding Xi in the ordering w referred as Predw(Xi) = {X j with w(X j) < w(Xi)}. Therefore, to
achieve OS, we need to find an optimal w∗, that is, a topological ordering of an optimal DAG. With
this end, we define for every subset A ⊆ X not empty:

• The best score of graphs G on A: Ms(A) = max
G

Score(G)

• The last node of an optimal ordering on A: Ml(A)
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Another way to interpret Ml(A) is as a sink of an optimal graph on A, that is, a node that has no
children. Ms and Ml are simply initialized by:

∀Xi ∈ X : Ms({Xi}) = score(Xi, /0),
Ml({Xi}) = Xi.

(4)

When |A|= k > 1, we consider an optimal graph G∗ on that subset and w∗ one of its topological
ordering. The parents of the last element Xi∗ are for sure Fp(Xi∗ ,Bi∗), where B j = A\{X j}; thus its
local score is Fs(Xi∗ ,Bi∗). Moreover, the subgraph of G∗ induced when removing Xi∗ must be optimal
for Bi∗ ; thus, its score is Ms(Bi∗). Therefore, we can derive a formula to define Ml recursively:

Ml(A) = Xi∗ = argmax
X j∈A

(Fs(X j,B j)+Ms(B j)). (5)

This also enables us to calculate Ms directly. We will use M to refer to both Ms and Ml . M can
be computed dynamically and Ml enables us to build quickly an optimal ordering w∗; elements are
find in reverse order:

T = X
While T 6= /0

w∗(Ml(T)) = |T|
T = T\Ml(T)

(6)

Therefore, the OS algorithm is summarized by:

Algorithm 1 (OS). (Ott et al., 2004)

(a) Initialize ∀Xi ∈ X, Fs(Xi, /0) and Fp(Xi, /0) with (1)

(b) For each Xi ∈ X and each A ⊆ X\{Xi} :
Calculate Fs(Xi,A) and Fp(Xi,A) using (2)

(c) Initialize ∀Xi, Ms({Xi}) and Ml({Xi}) using (4)

(d) For each A ⊆ X with |A| > 1 :
Calculate Ms(A) and Ml(A) using (5)

(e) Build an optimal ordering w∗ using (6)

(f) Return the best w∗-linear graph G∗
w∗ using (3)

Note that in steps (b) and (d) subsets A are implicitly considered by increasing size to enable
formulae (2) and (5). With respect to computational complexity, in steps (a) and (b) F is calculated
for n2n−1 pairs of variable and parent candidate set. In each case, one score exactly is computed.
Then, M is computed over the 2n subsets of X (step (c) and (d)). w∗ and G∗

w are both build in O(n)
time at step (e) and (f); thus, the algorithm has a total time complexity of O(n2n) and evaluates
n2n−1 scores. Here, time complexity refers to the number of times that the formulae (2) or (5)
are computed; however, it should be pointed out that these formulae require at least O(n) basic
operations.
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As proposed (Ott et al., 2004), OS can be speed up by constraining with a constant c the maximal
size of parent sets. This limitation is easily justifiable, as graphs having many parents for a node are
usually strongly penalized by score functions. In that case, the computational complexity remains
the same; only formulas (2) is constrained, and score(Xi,A) is not calculated when |A| > c. Conse-
quently, the total number of score evaluated is reduced to O(nc+1), which is a decisive improvement
since computing a score is costly.

The space complexity of Algorithm 1 can be slightly reduced by recycling memory as mentioned
(Ott et al., 2004). In fact, when calculating functions F and M for subsets A of size k, only values
for subsets of size k−1 are required. Therefore, by computing simultaneously these two functions,
when values for subsets of a given size have been computed, the memory used for smaller set can
be reused. However, to be able to access G∗

w, we should redefine Ml to store optimal graphs instead
of optimal sinks. The worst memory usage corresponds to k = b n

2c+ 1 when we have to consider
approximately O( 2n√

n) sets: this approximation comes from Stirling formula applied to the binomial

coefficient of n and b n
2c (bxc is the highest integer less than or equal to x). At that time, O(

√
n2n)

best parent sets are stored by F , and O( 2n√
n) graphs by M. Since a parent set requires O(n) space and

a graph O(n2), we derive that the maximal memory usage with recycling is O(n
3
2 2n), while total

memory usage of F in Algorithm 1 was O(n22n). Actually, since Algorithm 1 is feasible only for
small n, we can consider that a set requires O(1) space (represented by less than k integers on a x-bit
CPU if n < kx): in that case also, the memory storage is divided by a factor

√
n with recycling.

Ott et al. (2005) also adapted their algorithm to list as many suboptimal graphs as desired. Such
capacity is precious in order to find which structural similarities are shared by highly probable
graphs, particularly when the score criteria used is not equivalent. However, for an equivalent score,
since the listed graphs will be mainly on the same equivalent classes, they will probably not bring
more information than the CPDAG of an optimal graph.

4. Super-Structure Constrained Optimal Search

Compare to a brute force algorithm that would browse all search space, OS achieved a consider-
able improvement. Graphs of around thirty nodes are still hardly computed, and many small real
networks such as the classical ALARM network (Beinlich et al., 1989) with 37 variables are not
feasible at all. The question of an optimal algorithm with a lower complexity is still open. In our
case, we focus on structural constraint to reduce the search space and develop a faster algorithm.

4.1 Super-Structure

To keep the property that the result of OS converges to the true graph in the sample limit, the
constraint should at least authorize the true skeleton. Since knowing the true skeleton is a strong as-
sumption and learning it with high confidence from finite data is a hard task, we propose to consider
a more flexible constraint than fixing the skeleton. To this end, we introduce a super-structure as:

Definition 4. An undirected graph S = (V,ES) is said to be a super-structure of a DAG G = (V,EG),
if the skeleton of G, G′ = (V,EG′) is a subgraph of S (i.e., EG′ ⊆ ES). We say that S contains the
skeleton of G.

Considering a structure learning task, a super-structure S is said to be true or sound if it contains
the true skeleton; otherwise it is said incomplete. Finally we propose to study the problem of model
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Figure 1: In a search constrained by S, G1 could be considered but not G2 because 〈X4,X5〉 6∈ ES.

inference from data given a super-structure S: S is assumed to be sound, and the search space is
restricted to DAGs whose skeletons are contained in S as illustrated in Figure 1. Actually, the
“skeleton” learned by MMPC is used as a super-structure in MMHC. In fact, the skeleton of the
graph returned by MMHC is not proven to be the same than the learned one; some edges can be
missing. It is the same for the candidate parents in SC. Thus, the idea of super-structure already
existed, but we define it explicitly, which has several advantages.

First, a dedicated terminology enables to emphasize two successive and independent phases in
structure learning problem: on one hand, learning with high probability a sound super-structure
S (sparse if possible); on the other hand, given such structure, searching efficiently the restricted
space and returning the best optimum found (global optimum if possible). This problem cutting
enables to make clearer the role and effect of each part. For example, since SC and MMHC use
the same search, comparing their results allow us directly to evaluate their super-structure learning
approach. Moreover, while conceiving a search strategy, it could be of a great use to consider a
super-structure given. This way, instead of starting from a general intractable case, we have some
framework to assist reasoning: we give some possible directions in our future work. Finally, this
manner to apprehend the problem already integrates the idea that the true skeleton will not be given
by an IT approach; hence, it could be better to learn a bit denser super-structure to reduce missing
edges, which should improve accuracy.

Finally, we should explain how practically a sound super-structure S can be inferred. Even
without knowledge about causality, a quick analysis of the system could generate a rough draft
by determining which interactions are impossible; localization, nature or temporality of variables
often forbid evidently many edges. In addition, for any IT-based technique to learn the skeleton,
the neighborhood of variables or their Markov blanket could be used to get a super-structure. This
one should become sound while increasing the significance level of the tests: this is because we
only need to reduce false negative discovery. Although the method used in PC algorithm could be
a good candidate to learn a not sparse but sound super-structure, we illustrate our idea with MMPC
in Section 5.1.

4.2 Constraining and Optimizing

From now on, we will assume that we are given a super-structure S = (X,ES) over X. We refer to
the neighborhood of a variable Xi in S by N(Xi), that is, the set of nodes connected to Xi in S (i.e.,
{X j | 〈Xi,X j〉 ∈ ES}); m is the maximal degree of S, that is, m = maxXi∈X |N(Xi)|. Our task is to
globally maximize the score function over our reduced search space.
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Since the parents of every Xi are constrained to be included in N(Xi), the function F has to be
defined only for ∀A ⊆ N(Xi). Consequently, computation of F in step (b) becomes:

(b*) For each Xi ∈ X and each A ⊆ N(Xi)
Calculate Fs(Xi,A) and Fp(Xi,A) using (2)

Only the underlined part has been modified; clearly, F still can be computed recursively since
∀X j ∈ A, the subset A\{X j} is also included in N(Xi), and its F value is already known. With this
slight modification, the time complexity of computing F becomes O(n2m), which is a decisive im-
provement opening many perspectives; more details are given at the end of this section. However, to
keep formulae (5) and (3) correct, F(Xi,A) for any subset A has to be replaced by F(Xi,A∩N(Xi)).
Before simplifying the calculation of M, it is necessary to introduce the notion of connectivity:

Definition 5. Given an undirected graph S = (X,ES), a subset A ⊆ X is said to be connected if
A 6= /0 and the subgraph of S induced by A, SA, is connected (cf. Figure 2).

In our study, connectivity will always refer to the connectivity in the super-structure S. Con(S)
will refer to the set of connected subsets of X. In addition, each not empty subset of X can be broken
down uniquely into the following family of connected subsets:

Definition 6. Given an undirected graph S = (X,ES) and a subset A⊆X, let S1 = (C1,E1), · · · ,Sp =
(Cp,Ep) be the connected components of the induced subgraph SA. The subsets C1, · · · ,Cp are
called the maximal connected subsets of A (cf. Figure 3).

The most important property of the maximal connected subsets C1, · · · ,Cp of a subset A is that,
when p > 1 (i.e., when A 6∈ Con(S)) for any pair Ci, C j with i 6= j, Ci ∩C j = /0 and there is no
edges in S between nodes of Ci and nodes of C j. Next we show that the value of M for subsets that
are unconnected do not have to be explicitly calculated, which is the second and last modification
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of Algorithm 1. The validity of our algorithm is simultaneously proved.

Theorem 2. A constrained optimal graph can be found by computing M only over Con(S).
Proof: First, let consider a subset A 6∈ Con(S), its maximal connected subsets C1, · · · ,Cp (p > 1),
and an optimal constrained DAG G∗ = (A,E∗). Since G∗ is constrained by the super-structure, and
following the definition of the maximal connected subsets, there cannot be edges in G∗ between any
element in Ci and any element in C j if i 6= j. Therefore, the edges of G∗ can be divided in p sets
E = E1∪·· ·∪Ep with Gi = (Ci,Ei) a DAG over every Ci. Moreover, all Gi are optimal constrained
graphs otherwise G∗ would not be. Consequently, we can derive the two following formulas:

Ms(A) =
p

∑
i=1

Ms(Ci), (7)

Ml(A) = Ml(C1). (8)

Formula (7) directly follows our previous considerations that maximizing the score over A is equiv-
alent to maximizing it over each Ci independently, since they cannot affect each other. Actually, any
Ml(Ci) is an optimal sink and could be selected in (8); we chose Ml(C1) since it is accessed faster
when using the data structure proposed in Section 4.3 for M. By using (7) and (8) the value of M
for unconnected subsets can be directly computed if needed from the values of smaller connected
subsets. Therefore, we propose to compute M only for connected subsets by replacing step (d) with
(d∗) in Algorithm 2 described below. Since each singleton {Xi} is connected, step (c) is not raising
a problem. In step (d∗) we consider A ∈Con(S) and apply formula (5), if there is X j ∈ A such that
B j = A\{X j} is not connected, we then can directly calculate Ms(B j) by applying (7). the values of
Ms for the maximal connected subsets of B j are already computed since these subsets are of smaller
sizes than A. Therefore, Ml(A) and Ms(A) can be computed. Finally, it is also possible to retrieve
w∗ from (6) by using (8) if T is not connected, which conclude the proof of this Theorem.

We can now formulate our optimized version of Algorithm 1 for optimal DAG search condi-
tioned by a super-structure S:

Algorithm 2.

(a*) Initialize ∀Xi ∈ X, Fs(Xi, /0) and Fp(Xi, /0) with (1)

(b*) For each Xi ∈ X and each A ⊆ N(Xi)
Calculate Fs(Xi,A) and Fp(Xi,A) using (2)

(c*) Initialize ∀Xi, Ms({Xi}) and Ml({Xi}) using (4)

(d*) For each A ∈Con(S) with |A| > 1
Calculate Ms(A) and Ml(A) using (5) and (7)

(e*) Build an optimal ordering w∗ using (6) and (8)

(f*) Return the best w∗-linear graph G∗
w∗ using (3)

The underlined parts of Algorithm 2 are the modifications introduced in Algorithm 1. Compu-
tational complexity and correctness of (b∗) has already been presented. With Theorem 2, validity
of our algorithm is assured and since in (c∗) and (d∗) every element of Con(S) are considered only
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once, the total computational complexity is in O(n2m + |Con(S)|); here again complexity refers to
the number of times formulae (2) or (5) are computed. We will describe in the next Section a method
to consider only connected subsets, and come over the number of connected subsets of S in Section
4.4. Although set operators are used heavily in our algorithm, such operations can be efficiently
implemented and considered of a negligible cost as compared to other operations, such as score cal-
culations. Concerning the complexity of calculating F , O(n2m) is in fact a large upper bound. Still,
since it depends only linearly on the size of the graphs, F can be computed for graphs of any size
if their maximal degree is less than around thirty. This enables usage of this function in new search
strategies for many real systems that could not be considered without constraint. We should remark
that some cases of interest still cannot be studied since this upper limitation on m constrains also
the maximal number of children of every variables. However, this difficulty concerns also many
IT-approaches since their complexity also depends exponentially on m (see Tsamardinos et al. 2006
for MMPC and Kalisch and Bühlmann 2007 for PC). Finally, like in Algorithm 1, the number of
scores calculated can be reduced to O(nmc) by constraining on the number of parents.

Although the number of M and F values calculated is strictly reduced, a potential drawback
of Algorithm 2 is that memory cannot be recycled anymore. First, when (5) is used during step
(d∗), now Fs(Xi,B j ∩N(Xi)) is required, and nothing can be said about |B j ∩N(Xi)| implying that
we should store every value of Fs computed before. Similar arguments hold for Fp in case Ml is
used to store optimal graphs, and for Ms and Ml because (7) and (8) could have to be used anytime
during (d∗) and (e∗) respectively. However, since space complexity of F is O(n2m) and the one
of M is O(|Con(S)|) (cf. next section), if m is bounded Algorithm 2 should use less memory than
Algorithm 1 even when recycling memory (i.e., O(

√
n2n) assuming that a set takes O(1) space).

This soften the significance of recycling memory in our case.
Finally, since our presentation of Algorithm 2 is mainly formal, we should detail how it is

practically possible to browse efficiently only the connected subsets of X. For this, we present in
the next section a simple data structure to store values of M and a method to build it.

4.3 Representation of Con(S)

For every A ∈Con(S) we define N(A) =
(

S

Xi∈A N(Xi)
)

\A, that is the set of variables neighboring
A in S. For every Xi 6∈ A, we note A+

i = A∪{Xi}, it is connected if and only if Xi ∈ N(A). Finally,
for a subset A not empty, let min(A) be the smallest index in A, that is, min(A) = i means that
Xi ∈ A and ∀X j ∈ A, j ≥ i; by convention, min( /0) = 0. Now we introduce an auxiliary directed
graph G? = (Con(S)?,E?), where Con(S)? = Con(S)∪{ /0} and the set of directed edges E? is such
that there is an edge from A to B if and only if A ⊂ B and |B| = |A|+ 1. In other words, with
the convention that N( /0) = X, E? = {(A,A+

i ), ∀A ∈ Con(S)? and ∀Xi ∈ N(A)}. Actually, G? is
trivially a DAG since arcs always go from smaller to bigger subsets. Finally, let define H as being
the spanning tree obtained from the following depth-first-search (DFS) on G? :

• The search starts from /0.

• While visiting A ∈ Con(S)?: for all Xki ∈ N(A) considered by increasing indices (i.e., such
that k1 < · · · < kp, where p = |N(A)|) visit the child A+

ki
if it was not yet done. When all

children are done, the search backtracks.

Since there is a path from the empty set to every connected subset in G?, the nodes of the tree
H represent unambiguously Con(S)?. We use H as a data structure to store the values of M in
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Figure 4: G? and H for a given S. Fb(A) is indicated in red above each node in H.

Algorithm 2; this structure is illustrated by an example in Figure 4. Further, we propose a method to
build H directly from S without having to build G? explicitly. First, we notice that after visiting A,
every B ∈Con(S) such that B ⊃ A have been visited for sure. When visiting A, we should consider
only the children of A that were not yet visited. For this, we define:

• Fb(A) is the set of forbidden variables of A, that is: for every B ∈Con(S) with B ⊃ A, B has
been already visited if and only if B ⊇ A+

j with X j ∈ Fb(A).

By defining recursively this forbidden set for every child of A that has not yet been visited, we
derive the following method to build H:

Method 1.
1: Create the root of H (i.e., /0), and initialize Fb( /0) = /0.
2: For i from 0 to n−1, and for all A in H such that |A| = i
3: Set Fb∗ = Fb(A),
4: For every Xk j ∈ N(A)\Fb(A) considered by increasing indices
5: Add to A the child A+

k j
in H and define Fb(A+

k j
) = Fb∗

6: Update Fb∗ = Fb∗+
k j

The correctness of Method 1 is proven in the next Theorem. In order to derive the time com-
plexity of step (d∗) in terms of basic operations, while using Method 1 in Algorithm 2, let consider
that the calculation takes place on a x-bit machine and that n is at maximum few times greater than
x. Thus, subsets requires O(1) space, and any operations on subsets are done in O(1) time, except
min(A) (in O(log(n)) time).

Theorem 3. The function M can be computed in time and space proportional to O(|Con(S)|), up to
some polynomial factors. With Method 1, M is computed in O(log(n)n2|Con(S)|) time and requires
O(|Con(S)|) space.

Proof: First, to prove correctness of Method 1, we show that if Fb(A) is correctly defined in regard
to our DFS, the search from A proceeds as expected and that before back tracking every connected
superset of A has been visited. The case when all the variables neighboring A are forbidden being
trivial, we directly consider all the elements Xk1 , · · · ,Xkp of N(A)\Fb(A) by increasing indices
like in DFS (with p ≥ 1). Then, A+

k1
should be visited first, and Fb(A+

k1
) = Fb(A) because ∀X j ∈
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Fb(A) among the supersets of A+
j there is also the supersets of A++

k1, j. Now let suppose that the
forbidden sets were correctly defined and that the visits correctly proceeded until A+

ki
: if i = p by

hypothesis we explored every connected supersets of the children of A and the search back track
correctly. Otherwise, we should define Fb(A+

ki+1
) = Fb(A)∪{Xk1}∪· · ·∪{Xki}= Fb(A+

ki
)+

ki
to take

into account all supersets visited during the previous recursive searches. Although Method 1 does
not proceed recursively (to follow the definition of M), since it uses the same formulae to define the
forbidden sets, and since Fb( /0) is correctly initialized, H is built as expected.

To be able to access easily M(A), we keep for every node an auxiliary set defined by Nb(A) =
N(A)\Fb(A) that is easily computed as processing Method 1. Since there is O(|Con(S)|) nodes
in H, each storing a value of M and two subsets requiring O(1) space, the assertion about space
complexity is correct.

Finally, building a node requires O(1) set operations. To access M(A) even for an unconnected
subset, we proceed on the following manner: we start from the root, and define T = A. Then, when
we rushed the node B ⊆ A, with i = min(Nb(B)∩T), we withdraw Xi from T, and go down to the
ith child of B. If i = 0 then if T = /0 we found the node of A; otherwise we rushed the first maximal
connected component of A, that is, C1 of which we can accumulate the M value in order to apply (7)
or (8). In that case, we continue the search by restarting from the root with the variables remaining
in T. In any cases, at maximum min is used O(n) times to find M(A), implying a time complexity
of O(log(n)n2) for formula (5).

It is interesting to notice that, even without memoization, the values of M can be calculated
in different order. For example, by calling Hi the subtree of H starting from {Xi}, only values of
M over H j such that j ≥ i are required. Then it is feasible to calculate M from Hn to H1, which
could be used to apply some branch-pruning rules based on known values of M or to apply different
strategies depending on the topology of the connected subset; these are only suppositions.

More practically, other approach could be proposed to build a spanning tree of G? and Method
1 is presented here only to complete our implementation and illustrate Theorem 3. We should note
that one can also implement the calculation of M over Con(S) in a top-down fashion using memo-
ization and an auxiliary function to list maximal connected components of a subset. However, such
implementations will be less efficient both in space and time complexity. Even without considering
the cost of recursive programming, listing connected components is in O(nm). Then, in order to not
waste an exponential factor of memory, self balanced trees should be used to store the memorized
values of M: it would require O(n) time to access a value and up to O(n2) if (7) is used. This
should be repeated O(n) times to apply (5), which implies a complexity of around O(n3|Con(S)|).
Consequently, we believe that Method 1 is a competitive implementation of step (d∗).

4.4 Counting Connected Subsets of a Graph

To understand the complexity of Algorithm 2, the asymptotic behavior of |Con(S)| should be
derived, depending on some attributes of S. Comparing the trivial cases of a linear graph (i.e.,
m ≤ 2) where |Con(S)| = O(n2) and a star graph (i.e., one node is the neighbor of all others) where
|Con(S)| = 2n−1 + n− 1 clearly indicates that |Con(S)| depends strongly on the degrees of Srather
than on the number of edges or number of cycles. One important result from Björklund et al. (2008)
is that |Con(S)| = O(βn

m) with βm = (2m+1 −1)
1

m+1 a coefficient that only depends on the maximal
degree m of S.
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Figure 5: Experimental derivation of γm, δm̃ and ñmax2(m̃).

Still, since this upper bound is probably over-estimated, we tried to evaluate a better one exper-
imentally. For every pair (m,n) of parameters considered , we randomly generated 500 undirected
graphs S pushing their structures towards a maximization of the number of connected subsets. For
this, all the nodes had exactly m neighbors and S should at least be connected. Then, since after a
first series of experiments the most complex structures appeared to be similar to full (m−1)-trees,
with a root having m children and leaves being connected to each other, only such structures were
considered during a second series of experiments. Finally, for each pair (m,n), from the maximal

number Rn,m of connected subsets found, we calculated exp(
ln(Rn, m)

n )) in order to search for an ex-
ponential behavior as shown in Figure 5(a).

Results 1. Our experimental measures led us to propose that |Con(S)| = O(γm
n) (cf. Figure 5(a)).

The weak point of our strategy is that more graphs should be consider while increasing n, since
the number of possible graphs also increases. Unfortunately, this is hardly feasible in practice since
counting gets longer with larger graphs. Nevertheless, Results 1 were confirmed during a more
detailed study of the case m = 3 using 10 times more graphs and up to n = 30. In addition, even this
estimated upper bound is practically of a limited interest since it still dramatically overestimates
|Con(S)| for real networks. Real networks are not, in general, as regular and as dense graphs as
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Complexity Algorithm 1 (OS) Algorithm 2 (COS)
Time (steps) O(n2n) O(|Con(S)|)

in details O(n22n) O(log(n)n2|Con(S)|)
scores computed n2n O(n2m)

if |Pai| < c O(nc+1) O(nmc)

Space O(
√

(n)2n) O(|Con(S)|)

Table 1: Improvement achieved by COS.

S |Con(S)| some values
Tree-like O(αn

m) α3 ≈ 1.58, α4 ≈ 1.65, α5 ≈ 1.707
General O(βn

m) β3 ≈ 1.968, β4 ≈ 1.987, β5 ≈ 1.995
Measured O(γn

m) γ3 ≈ 1.81, γ4 ≈ 1.92, γ5 ≈ 1.96
In average O(δn

m̃) δ1.5 ≈ 1.3, δ2 ≈ 1.5, δ2.5 ≈ 1.63, δ3 ≈ 1.74

Table 2: Results on |Con(S)|

the ones used in previous experiments. To illustrate that O(γm
n) is a pessimistic upper bound, we

derived the theoretical upper bound of |Con(S)| for tree-like structures of maximal degree m. This is
given as an example, although it might help estimation of |Con(S)| for structures having a bounded
number of cycles. The proof is deferred to the Appendix.

Proposition 1. If S is a forest, then |Con(S)| = O(αn
m) with αm = ( 2m−1+1

2 )
1

m−1 .

Finally, we studied the average size of |Con(S)| for a large range of average degrees m̃. For each
pair (n, m̃) considered, we generated 10000 random graphs and averaged the number of connected
subsets to obtain Rn, m̃. No constraint was imposed on m, since graphs were generated by randomly

adding edges until b nm̃
2 c. In each case, we calculated exp(

ln(Rn, m̃)
n )) to search for an asymptotic be-

havior on m̃.

Results 2. On average, for super-structures having an average degree of m̃, |Con(S)| increases
asymptotically as O(δm̃

n) , see Figure 5(b) and (c) for more details.

Based on the assumption that Algorithm 1 is feasible at maximum for graphs of size nmax1 = 30
(Silander and Myllymäki, 2006), we calculated ñmax2(m̃) = nmax1

ln(2)
ln(δm̃) that can be interpreted as an

estimation of the maximal size of graphs that can be considered by Algorithm 2 depending on m̃.
As shown in Figure 5(d), on average, it should be feasible to consider graphs having up to 50 nodes
with Algorithm 2 if m̃ = 2. Moreover, since lim

m̃→0
δm̃ = 1, our algorithm can be applied to graphs

of any sizes if they are enough sparse. Unfortunately, the case when m̃ < 2 is not really interesting
since it implies that networks are mainly unconnected.

To conclude, we summarize and compare the time and space complexities of both Algorithms
in Table 1, using the same hypothesis on the size of a subset as Section 4.3. We neglected the
complexity due to F in our algorithm, which is justified if m is not huge. Concerning the space
complexity of Algorithm 1, the maximal space needed while recycling memory is used. Results
on O(|Con(S)|) are listed in Table 2. If super-structures S are relatively sparse and have a bounded
maximal degree, the speed improvement of Algorithm 2 over Algorithm 1 should increase expo-
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nentially with n. Moreover, our algorithm can be applied to some small real networks that are not
feasible for Algorithm 1.

5. Experimental Evaluation

Although the demonstrations concerning correctness and complexity of Algorithm 2 enable us to
anticipate results obtained experimentally, some essential points remain to be studied. Among them,
we should demonstrate practically that, in the absence of prior knowledge, it is feasible to learn a
sound super-structure with a relaxed IT approach. We choose to test our proposition on MMPC
(Tsamardinos et al., 2006) in Section 5.2; the details of this algorithm are briefly reintroduced
in Section 5.1.4. Secondly, we compare COS to OS to confirm the speed improvement of our
method and study the effect of using a sound constraint in Section 5.3. We also should evaluate the
worsening in terms of accuracy due to the incompleteness of an approximated super-structure. In
this case we propose and evaluate a greedy method, COS+, to improve substantially the results of
COS. In Section 5.4, we compare our methods to other greedy algorithms to show that, even with an
incomplete super-structure, COS, and especially COS+, are competitive algorithms to study small
networks. Finally we illustrate this point by studying the ALARM Network (Beinlich et al., 1989)
in Section 5.5, a benchmark of structure learning algorithm for which OS is not feasible.

5.1 Experimental Approach

Except in the last real experiment, we are interested in comparing methods or algorithms for various
set of parameters, such as: the size of the networks n, their average degree m̃ (to measure effect of
sparseness on Algorithm 2), the size of data considered d and the significance level α used to learn
the super-structure.

5.1.1 NETWORKS AND DATA CONSIDERED

Due to the size limitation imposed by Algorithm 1, only small networks can be learned. Further,
since there it is hardly feasible to find many real networks for every pair (n, m̃) of interest, we
randomly generated the networks to which we apply structure learning. Given a pair (n, m̃), DAGs
of size n are generated by adding randomly b nm̃

2 c edges while assuring that cycles are not created.
For simplicity, we considered only Boolean variables; therefore, Bayesian networks are ob-

tained from each DAG by generating conditional probabilities P(Xi = 0|Pai = pak
i ) for all Xi and

all possible pak
i by choosing a random real number in ]0,1[. Then, d data are artificially generated

from such Bayesian networks, by following their entailed probability distribution.
Finally, the data are used to learn a network with every algorithm and some criteria are mea-

sured. In order to generalize our results, we repeat g times the previous steps for each quadruplet
(n, m̃,α,d). The values of each criterion of comparison for every algorithm are averaged on the g
learned graphs.

5.1.2 COMPARISON CRITERIA

While learning Bayesian networks, we evaluate the performances of every algorithm on three crite-
ria. Since the learning task consists in the maximization of the score function, a natural criterion to
evaluate the quality of the learned network is its score. In our experiments we use BIC because of
its speed of evaluation. Since we are interested in comparing results in terms of score depending on
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n or m̃ in a diagram, we do not directly represent scores (their values change radically for different
parameters) but use a score ratio to the optimal score: Score(GOS)

Score(GOther)
, where the label of the graph indi-

cates which Algorithm was used. The better is the score obtained by an algorithm, the closer to 1 is
its score ratio. We preferred to use the best score rather than the score of the true network, because
the true network is rarely optimal; its score is even strongly penalized if its structure is dense and
data sets are small. Therefore, it is not convenient to use it as a reference in terms of score.

The second criterion is a measure of the complexity estimated by the execution time of each
algorithm, referred as Time. Of course, this is not the most reliable way to estimate complexity, but
since calculations are done on the same machine, and since measures are averaged on few similar
calculations, execution time should approximate correctly the complexity. To avoid bias of this
criterion, common routines are shared among algorithms (such as the score function, the structure
learning method and the hill climbing search).

Finally, since our aim is to learn a true network, we use a structural hamming distance that
compares the learned graph with the original one. As proposed in Tsamardinos et al. (2006), to take
into consideration equivalence classes, the CPDAGs of both original and learned DAGs are built
and compared. This defines the structural error ratio SER of a learned graph, which is the number
of extra, missing, and wrongly oriented edges divided by the total number of edges in the original
graph. In our case, we penalize wrongly oriented edges only by half, because we consider that errors
in the skeleton are more “grave” than those in edges orientation. The reason is not only visual: a
missing edge, or an extra edge, implies more mistakes in terms of conditional independencies in
general than wrongly oriented ones. Moreover, in CPDAGs, the fact that an edge is not correctly
oriented is often caused by extra or missing edges. Furthermore, such a modification does not
intrinsically change the results, since it benefits every algorithm on the same manner.

5.1.3 HILL CLIMBING

Although hill climbing searches are used by different algorithms, we implemented only one search
that is used in all cases. This search can consider a structural constraint S, and is given a graph Ginit

from which to start the search. Then it processes as summarized in Section 2.2, selecting at each step
the best transformation among all edge withdrawals, edge reversals and edge additions according
to the structure constraint. The search stops as soons as the score cannot be strictly improved
anymore. If several transformations involve the same increase of the score, the first transformation
encountered is applyed. This implies that the results will depend on the ordering of the variables;
however, since the graphs considered are randomly generated, their topological ordering is also
random, and in average the results found by our search should not be biased.

5.1.4 RECALL ON MMPC

In Section 5.3 a true super-structure is given as a prior knowledge; otherwise we should use an IT-
approach to approximate the structural constraint S from data. Since MMHC algorithm is included
in our experiments, we decided to illustrate our idea of relaxed independency testing on MMPC
strategy (Tsamardinos et al., 2006).

In MMPC, the following independency test is used to infer independencies among variables.
Given two variables Xi and X j, it is possible to measure if they are independent conditioning on a
subsets of variables A ⊆ X\{Xi,X j} by using the G2 statistic (Spirtes et al., 2000), under the null
hypothesis of conditional independency holding. Referring by Nabc to the number of times that
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Xi = a, X j = b and A = c simultaneously in the data, G2 is defined by:

G2 = 2 ∑
a,b,c

Nabc ln

(

NabcNc

NacNbc

)

.

The G2 statistic is asymptotically distributed as χ2 under the null hypothesis. The χ2 test returns
a p-value, PIT (Xi,X j|A), that corresponds to the probability of falsely rejecting the null hypothesis
given it is true; in MMPC, the effective number of parameters defined in Steck and Jaakkola (2002)
is used as degree of freedom. Thus given a significance level α, if PIT ≤α null hypothesis is rejected,
that is, Xi and X j are considered as conditionally dependent. Otherwise, the hypothesis is accepted
(abusing somehow of the meaning of the test), and variables are declared conditionally independent.
The main idea of MMPC is: given a conditioning set A, instead of considering only PIT (Xi,X j|A) to
decide dependency, it is more robust to consider max

B⊆A
PIT (Xi,X j|B); that way, the decision is based

on more tests; p-values already computed are cached and reused to calculate this maximal p-value.
Finally, MMPC build the neighborhood of each variable Xi (called the set of parents and children, or
PC) by adding successively potential neighbors of Xi from a temporary set T. While conditioning
on the actual neighborhood PC, the variable Xk ∈ T that minimizes the maximal p-value defined
before is selected because it is the variable the most related to Xi. During this phase, every variable
that appears independent of Xi is not considered anymore and withdrawn from T. Then when Xk is
added to PC, we test if all neighbors are always conditionally dependent: if some are not, they are
withdrawn from PC and not considered anymore. This process ends when T becomes empty.

We present further the details of our implementation of MMPC, referred as Method 2; it is
slightly different from the original presentation of MMPC, but the main steps of the algorithm are
the same. One can prove by using Theorem 1 that if the independencies are correctly estimated, this
Method should return the true skeleton, which should be the case in the sample limit. About compu-
tational complexity, one can derive that MMPC should calculate around O(n22m) tests in average.
However, nothing can be said in practice about the maximal size of PC, especially if many false
dependencies occurs. Therefore, the time complexity of MMPC can be in the worst case O(n22n).

Method 2 (MMPC). (Tsamardinos et al., 2006)
1: For ∀Xi ∈ X
2: Initialize PC = /0 and T = X\{Xi}
3: While T 6= /0
4: For ∀X j ∈ T, if max

B⊆PC
PIT (Xi,X j|B) > α then T = T\{X j}

5: Define Xk = min
X j∈T

max
B⊆PC

PIT (Xi,X j|B) and PC = PC∪{Xk}
6: For ∀X j ∈ PC\{Xk}, if max

B⊆PC\{X j}
PIT (Xi,X j|B) > α Then PC = PC\{X j}

7: N(Xi) = PC

8: For ∀Xi ∈ X and ∀X j ∈ N(Xi)
9: If Xi 6∈ N(X j) Then N(Xi) = N(Xi)\{X j}

5.2 Learning a Super-structure with MMPC

To emphasize the feasibility of learning a super-structure from data, we study how changes the
skeleton learned by MMPC while α increases, considering various cases of (n, m̃,d). As proposed
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Figure 6: Effects of d and α on the results of Method 2.

before, we average our criteria of interest over g = 50 different graphs for every set of parameters.
In the present case our criteria are: the time of execution Time, the ratio of wrong edges (missing
and extra) Error, and the ratio of missing edges Miss of the learned skeleton. Here again, these
ratios are defined while comparing to the true skeleton and dividing by its total number of edges
b nm̃

2 c. While learning a skeleton, Error should be minimized; however in the case of learning a
super-structure, Miss is the criterion to minimize.
Results 3 limα→1 Miss(α) = 0, which validates our proposition of using higher α to learn super-
structures (cf. Figure 6(a)). Of course, we obtain the same results with increasing data,
limd→∞ Miss(α) = 0. However, since when α → 1, Time(α) ≈ O(n22n−2), high values of α can be
practically infeasible (cf. Figure 6(b)). Therefore, to escape a time-consuming structure-learning
phase, α should be kept under 0.25 if using MMPC.

In Figure 6(a), one can also notice that Error is minimized for α ≈ 0.01, that is why such values
are used while learning a skeleton. Next, we summarize the effect of n and m̃ on the criteria:

Results 4 Increasing α improves uniformly the ration of missing edges independently of n and m̃
(cf. Figure 7(c) and (d)). Miss(α) is not strongly affected by increasing n but it is by increasing m̃;
thus for dense graphs, the super-structures approximated by MMPC will probably not be sound.

Previous statement could be explained by the fact that when m̃ increases, the size of conditional
probability tables of each node increases enormously. Thus, the probability of creating weak or
nearly unfaithful dependencies between a node and some of its parents also increases. Therefore,
the proportion of edges that are difficult to learn increases as well. To complete analysis of Figure 7,
we can notice as expected that Time increases on a polynomial manner with n (cf. Figure 7 (e)),
which penalizes especially the usage of high α. Error(α) is minimized in general for α = 0.01 or
α = 0.05 depending on n and m̃: for a given m̃, lower α (such as α = 0.01) are better choices when
n increases (cf. Figure 7(a)); conversely, if m̃ increases for a fixed n, higher α (such as α = 0.05)
are favored (Figure 7(b)). This can be justified, since if m̃ is relatively high, higher α that are more
permissive in terms of dependencies will miss less edges, as opposed to lower ones with finite set
of data.

In conclusion, although α ≈ 0.01 is preferable while learning a skeleton with MMPC, higher
significance leves can be used to reduce the number of missing edges, and approximate a super-
structure. Still, in this case, due to the exponential time complexity of MMPC if α is too high,
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Figure 8: Comparing time complexity of OS, TCOS, and COS(α)

values of α should be selected to compromise between time complexity and ratio of missing edges.
Except for n < 30 with m̃ < 2.5 where α = 0.25 is feasible and gives good results, the learned
super-structure will be probably incomplete, especially if the original graph is dense: consequently,
COS will not perform as well as OS when S is approximated with MMPC.
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5.3 Comparison of OS and COS

In this second series of experiment, we compare Algorithm 1 and Algorithm 2 over a large sampling
of graphs, for confirming and evaluating results presented in Table 1. Algorithm 1, referred as OS,
is always given the true maximal number of parents c for each structure learning: this way, its
execution time is considerably reduced, and we could conduct our experiments in a reasonable
time. Still, to emphasize that this prior knowledge is considerably improving the speed of OS, we
also considered another version of Algorithm 1 that uses in all cases a standard maximal number
of parents equal to 10: it is referred as OS*. Regarding Algorithm 2, two cases are took into
consideration:

• TCOS: a sound super-structure is given to the algorithm; we use the true skeleton.

• COS(α): S is learned from the data by using MMPC and a significance level α: a wide range
of values are tested.

However, we know from previous section that MMPC will probably learn an incomplete super-
structure, and that GCOS(α) will be penalized both in its score and accuracy. Therefore, we check
the effect of applying a post-processing unconstrained hill climbing search starting from GCOS(α).
In fact, GCOS(α) might not be a local optimum if the super-structure constraint is removed; fur-
ther, it could be a good starting point for a hill climbing search. The post processed version of
COS is referred as COS+. Finally we compare all those algorithms for every n ∈ [6,8, · · · ,20],
m̃ ∈ [1,1.5, · · · ,3], d ∈ [500,1000, · · · ,10000] while averaging the criteria of interest over g = 30
graphs: in total 4800 random graphs were used. Since there was no relevant differences depending
on d, only the results for d = 10000 are reported here.

Results 5 As expected, TCOS and COS(α) proceed exponentially faster than OS, even with α ≈ 1
(cf. Figures 8 (a) and (b)).

Interestingly, the speed factor in Figure 8(a), is not purely exponential, especially for higher m̃.
This is because, the complexity of OS is due to the costly O(nc) score calculations (here c = O(m̃))
and the O(2n) steps (b) and (d) that dominate the complexity only for large n. As for TCOS, it only
calculates O(n) scores and needs around O(δn

m̃) steps. Thus, the speed factor starts by increasing fast

with n because of the O(nc) scores of OS, before decreasing to behave asymptotically as O(
(

2
δm̃

)n
).

In Figure 8(b), the complexity of OS* is also represented: without limitation on the number of
parents, the speed ratio would be purely exponential.

To evaluate the quality of the graphs learned depending on the algorithm used, for n = 12 and
m̃ = 2 we compare the SER and the score ratio of GCOS(α) and GCOS(α)+ depending on α with the
ones of GOS and GTCOS in Figure 9. Then in Figure 10, the criteria are represented depending on n
(with m̃ = 2.5), and on m̃ (with n = 16) for every algorithms: here, just three different values of α
are considered (0.001, 0.05 and 0.75).

Results 6 In average, GTCOS has a slightly lower score than GOS (cf. Figure 9 (b)), but it is more
accurate (cf. Figure 9 (c), Figures 10 (c) and (d)): it implies that global optima contain in general
extra edges. Hence, Algorithm 2 is preferable if a sound constraint is known.

This important result emphasizes again that the optima of a score function with finite data are
not the true networks usually: some false edges improve the score of a graph. Therefore, struc-
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Figure 9: Score and SER for COS(α) and COS(α)+

tural constraint should be generalized whenever a sound super-structure is known: by doing so, the
resulting graphs although having a lower score can be more accurate. It is the case for TCOS.

Results 7 Although Score(GCOS(α)) converges to Score(GOS) when α increases (cf. Figure 9(a)), it
is usually far lower, and worsen with larger networks or denser networks (cf. Figures 10 (a) and
(b)). However, SER(GCOS(α)) is converging faster to SER(GOS) when α increases, which enables
to find relatively accurate results for α ≥ 0.01 (cf. Figure 9(c)). In addition, n does not affect
sensitively SER(GCOS(α)) (cf. Figure 10 (c)), neither does m̃ if α is enough high, that is, α ≥ 0.05
(cf. Figure 10 (d)).

At first sight, these results sound really negative with regard to COS algorithm, or more exactly,
with regard to the super-structure learned by MMPC. However, although Score(GCOS(α)) is disap-
pointingly low, SER(GCOS(α)) is still relatively good: while SER(GOS)≈ 0.1, SER(GCOS)≈ 0.2 for
α as small as 0.01 in Figure 9 (c). Of course, following Results 6, we could think that for enough
high α, SER(GCOS(α)) ≤ SER(GOS), but it seems to be hardly feasible while using MMPC: in this
case, when IT are relaxed (i.e., α → 1), false edges that improve the score are learned faster than the
true ones missing. Still, as it appears in Figures 10 (c) and (d), for α = 0.75, COS finds graphs nearly
as accurate as the optimal ones. Therefore, when OS is not feasible, COS could be an alternative
to greedy searches (such situation is studied in following Sections). Interestingly, our assumption
about the potential interest of a hill climbing starting from GCOS(α) are encouraged since GCOS(α)

has a low score while being relatively accurate. Next, we focus on COS+.
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Figure 10: Evolution of Score and SER for every algorithm depending on n and m̃.

Results 8 For any α, after post-processing Score(GCOS(α)+) is nearly as good as Score(GOS) (cf.
Figure 9 (a), Figures 10 (a) and (b)). GCOS(α)+ is in general more accurate than GCOS(α) (cf. Figures
10 (c) and (d)), but it is not always the case. Still, SER is clearly improved for α < 0.01 (cf. Figure 9
(c)): COS+ could be feasible on larger networks while giving interesting results if sufficiently small
α are used.

As expected, GCOS(α) is not a local optima, and is at least a good starting point to maximize the
score. Figure 9 (b) presents a detailed view of Score(GCOS(α)+): with post processing, we cannot
be sure that Score(GCOS(α)+) increases strictly with α because of the greedy nature of hill climbing.
For the same reasons, previous results concerning the SER are true only in average. To complete
Results 8, we should remark that post-processing also appears to improve SER for dense graphs
(cf. Figure 10 (d)). This is probably due to the fact that MMPC misses many true edges when the
structure is dense: the greedy search would add more true edges missing than false ones, improving
consequently the SER.

To summarize this section, TCOS is superior to OS in terms of structure accuracy, while per-
forming faster. However, when S is learned from data, COS cannot perform as well as OS. One
efficient strategy to improve both score and accuracy of GCOS is to proceed to a post-processing un-
constrained hill climbing search. With such an improvement, both score and accuracy of GCOS(α)+

become similar for any α used, despite a relative superiority for higher significance levels. Con-
sequently, it would be interesting to compare COS and COS+ to greedy searches, to see if they
enable to learn efficiently more accurate graphs than other methods, while being given incomplete
super-structures.
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Figure 11: Score, SER and time of every algorithm depending on n and m̃.

5.4 COS and COS+ Compared to Heuristic Searches

In this last series of experiment, we compare COS and COS+ to other greedy searches. The
structural constraint is learned with MMPC and α = 0.05, it is used by COS and also by a con-
strained hill climbing search (MMHC). Like COS+, GMMHC is used to start an unconstrained hill
climbing (MMHC+). Finally, a classic hill climbing search from the empty graph is also consid-
ered (HC). Actually, OS is also performed, but it is not directly referred in this section. Every
n ∈ [6,10,14,18,20], m̃ ∈ [1,1.5,2,2.5,3], d ∈ [500,1000,5000,10000] are considered and criteria
are averaged over g = 30 graphs: in total 3000 graphs are used.

Figure 11 presents the three criteria in function of n and m̃; here d = 5000. Synoptic results
are presented in Figures 12 and 13, and summarized in Tables 3 and 4. To obtain these tables,
we ordered algorithms by score for all the 100 triplets (n, m̃,d) (the scores after averaging over
the g graphs were used). Subsequently, we counted the number of times each algorithm was at
a given rank: If two algorithms had equal results, they were given the same rank (cf. Table 3).
We then performed a similar ranking by comparing SER; the first ranked algorithm being the one
that minimized SER (cf. Table 4). In Figures 12 and 13 ranks are represented by colors and all
algorithms can be directly compared for every triplet (n, m̃,d). However, while considering the
impact of these results, one should take the fact that criteria are compared after averaging into
account since it accentuates the contrast between algorithms.
Results 9 In general, Score(GCOS+) ≥ Score(GMMHC+) ≥ Score(GHC) ≥ Score(GCOS) ≥
Score(GMMHC) (cf. Figures 11 (a), (b), 12 and Table 3). In other words, the super-structure penal-
izes the score in comparison with HC; however, starting a greedy search from a constrained optimal
graph enables to find better scores than HC.

Many of these inequalities are naturally following the definition of the algorithms; another part
comes from the fact that S is incomplete and penalizes the score of the results. Moreover, our
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Algorithm 1st 2nd 3rd 4th 5th

COS+ 84 8 8 0 0
MMHC+ 12 70 18 0 0

HC 7 28 65 0 0
COS 0 1 8 91 0

MMHC 0 0 1 8 91

Table 3: Classification by score.

Algorithm 1st 2nd 3rd 4th 5th

COS+ 85 9 6 0 0
COS 14 52 22 12 0

MMHC+ 6 29 28 35 2
MMHC 0 12 34 31 23

HC 1 2 17 24 56

Table 4: Classification by SER.

experiments confirm that in nearly every case Score(GCOS+) > Score(GMMHC+) > Score(GHC); A
reason could be that both constrained algorithms find good constrained optima, which are not locally
optimal when withdrawing the constraint. Then, since GCOS is better than GMMHC, it leads to better
local optima when applying the HC post-processing.
Results 10 In general, SER(GCOS+)≤ SER(GCOS)≤ SER(GMMHC+)≤ SER(GMMHC)≤ SER(GHC)
(cf. Figures 11 (c), (d), 13 and Table 4). The superiority of COS and COS+ is particularly clear
with larger data sets (cf. Figure 13).

Previous results are experimentally more confused than Results 9 since there are no theoretical
evidences about SER while comparing algorithms, especially as regards to MMHC+ and MMHC.
However, COS+ is clearly demonstrated to be in general the most accurate search. Interestingly,
COS+ can be viewed as a bridge between OS (when α = 1) and HC (when α = 0). Of course, as
long as OS is feasible, and without a sound constraint, COS+ is not really needed. However, it is
of a certain interest for n > 30. Its superiority as compared to HC comes from the fact that some
parent sets are optimally learned by COS even with the constraint. Such parent sets could not be
learned by the greedy strategy of HC in any cases: as for example in the case of a XOR structure
or any configurations for which HC should add several parents in the same time to obtain a score
improvement. That way, a HC starting from GCOS would benefit from such correct parent sets and
find more accurate graphs than a HC starting from the empty graph.

Although for the small networks considered here (n ≤ 20) our algorithms are as fast as other
greedy approaches (cf. Figures 11 (e) and (f)), of course their exponential complexity keeps us
from applying them to really large networks without decreasing α. Therefore, COS is restricted to
be used only for small networks or sparse ones (Figure 5 (d) gives an idea of what kind of graphs
can be considered). COS+ could be used for larger graphs by using lower α as we will see in the
next experiment.

5.5 A Real Case: The ALARM Network

In this last experiment, we illustrate a practical usage of COS and COS+ by studying a well-known
Bayesian network example, the ALARM network (Beinlich et al., 1989). This graph has n = 37
discrete variables having from 2 to 4 states: it is too large to be learned by OS. The maximal in-
degree is c = 4, the maximal neighborhood is m = 6, and the structure is relatively dense since
m̃ ≈ 2.5. Incidentally, the true skeleton entails 86818458 ≈ 226 connected subsets: if it was given
as a prior knowledge, Algorithm 2 could be applied. However, as in previous experiments, S is
learned by using MMPC. Nevertheless, α should be enough small so that the super-structure is
sparse enough to let execute COS.
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Figure 12: Comparison by score: for every (n, m̃,d), the worse is the rank of an algorithm
(i.e., the lower is the score), the darker is the box.
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COS COS+ MMHC MMHC+ HC
d = 3000 BIC -33340.5 -32849.5 -33492 -33116.1 -33299.3
α = 10−4 SER 0.15 0.12 0.29 0.38 0.45

t = 24 Time(s) 4.6 7.1 3.6 6.0 5.0

d = 3000 BIC -33680.8 -32821.4 -33653.2 -33133.2 -33349.9
α = 10−7 SER 0.17 0.10 0.29 0.39 0.47

t = 4 Time(s) 3.5 6.0 2.7 5.3 5.1

d = 10000 BIC -107834 -106246 -108035 -106808 -107383
α = 10−7 SER 0.13 0.08 0.26 0.37 0.51
t = 270 Time(s) 10.5 19.2 14.7 23.4 18.8

d = 10000 BIC -108753 -106468 -108420 -107066 -107571
α = 10−10 SER 0.15 0.10 0.25 0.35 0.49

t = 72 Time(s) 9.1 17.7 12.8 21.4 18.0

Table 5: Averaged criteria for some pairs (d,α) considered.

We consider the same algorithms than in Section 5.4, apart from OS. The significance level used
to learn the skeleton of MMHC is always set to 0.01, while various small values of α are tested when
learning the super-structure used by COS. For every d ∈ [3000,5000,10000], we start by learning S
with MMPC(α) to run COS afterwards. Since, the execution time of COS can be huge depending
on S, COS is stopped if its execution exceeds 20 seconds (on a cluster of 96 CPUs of 1050 MHz
each, with a total memory of 288GB). In that case, the experience is restarted on a new set of data.
If COS finishes on time, all other algorithms are also applied. Previous steps are repeated 20 times
for every pair (d,α). We also count the number t of times that COS had to be restarted. Finally, the
criteria are averaged over the 20 learned graphs as in the previous Sections.

In all cases results were sensibly the same: Table 5 presents the results obtained with the min-
imal and maximal values of d and α considered. With larger data sets, smaller significant levels
are required in order to obtain an enough sparse S since true edges are learned more confidently.
This is why, we can observe that t decreases with smaller α and increases with larger d (cf. Table
5). Therefore, for d = 10000 we tried values of α ∈ [10−7, · · · ,10−10], while for other data sets
α ∈ [10−4, · · · ,10−7]. In Figures 14 (a) and (b), box plot is used to layout the SER and score of
every algorithm over the 20 repetitions of structure learning for d = 5000 and α = 10−7. Figures 14
(c) and (d) represent the SER of COS and COS+ depending on d and α, respectively.

Results 11 COS+ is the best algorithm in terms of score, followed by MMHC+ (cf. Table 4 and
Figure 14 (a)), while COS+ and COS learn the most accurate networks (cf. Table 4 and Figure
14 (b)). Accuracy of these algorithms is not markedly modified by smaller α (cf. Figure (d)) and
slightly improves with bigger data sets (cf. Figure 14 (c)).

In other words, the present results are in total agreement with the ones derived from smaller and
random networks in the previous section. Actually, with ALARM network the contrast between
algorithms is even clearer. This is probably because random networks are harder to learn than real
ones since the parameters randomly selected can entail nearly unfaithful probability distributions.
Interestingly, even with the smallest α used (i.e., α = 10−10 in the case of d = 10000), only around
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Figure 14: Some detailed results on ALARM network.

6 edges were missing to S in order to be sound. Besides, although COS ran in few seconds for some
S, one extra edge in the same super-structure could lead to drastically longer computations. Such
a problem is easily understood in terms of the number of connected subsets and underline the fact
that some edges contribute particularly to the increase of |Con(S)|. Therefore it could be interesting
to develop a method to select and withdraw some edges from a learned super-structure, to enable
COS+ for larger networks: this way, extremely small α would not be required anymore.

6. Discussion and Conclusion

To conclude our discussion, we would like to recall and summarize the main results of our actual
research. First, it is possible to reduce the complexity of an optimal search of an exponential factor
by using a structural constraint such as a super-structure. It is then possible to consider larger
networks having a sparse skeleton. Moreover, if this super-structure is sound, the accuracy of the
resulting graph is improved. Consequently, more attention should be paid to learning sound super-
structures rather than true skeleton from data. This should be an easier task and it might improve
both speed and accuracy of other search strategies as well, except greedy HC. Next, we outline
bellow some strategies that could benefit from a sound super-structure.

In addition, current IT methods that learn a skeleton can be used for approximating a super-
structure by relaxing the independency testing. However, as revealed our experiments with MMPC,
sound super-structures are rarely learned except for high values of α that implies denser structures
and especially a long computation. Although some other IT approaches, such as the randomized
version of GS (Margaritis and Thrun, 2000), could solve the problem of complexity, they would
probably face the same difficulty to learn efficiently at least every true edge. Indeed, they were de-
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signed from the viewpoint of learning the true skeleton, and thereby they should also reject potential
extra edges. Learning sound and sparse super-structures is a problem that requires to be considered
as a whole, which is not our main concern in the present paper. Therefore, to offset the incomplete-
ness of the super-structures learned with MMPC that weakens the results of our algorithm COS, we
developed a greedy post processed search COS+. This algorithm enables to balance between speed
and accuracy as it sets up a bridge between optimal search and hill climbing search. In practice,
COS+ is demonstrated with success on the ALARM network. It is theoretically feasible for graphs
of any sizes but leads to a problem for selecting the significance level; further, we expect that the
larger is the graph, the less COS+ should improve over HC.

Therefore, our future research will concentrate on an elaboration of new greedy strategies that
benefit from super-structure constraint. As shown in Section 4.2, if S is not having a very high
maximal degree (i.e., m < 20), F can be calculated even for large networks. Then, by using formula
(3) of Section 3.2 we can build in linear time the best constrained graph of a given ordering. This
way a fast greedy search over topological orderings is efficiently feasible. With a good set of greedy
operations, a constrained optimal graph could be quickly approached using a hill climbing over
orderings, without having to calculate M values. Moreover, even for higher m, by fixing a limited
number of parents c, we could also manage to calculate F . Consequently, such ordering-based
strategy is theoretically feasible for any network size and only need to be evaluated experimentally.

Our second idea concerns only constrained optimal searches. When looking for an optimal
graph on A∈Con(S), if there exists Xi ∈A such that A\{Xi} is unconnected, an optimal graph can be
found on another manner. We just need to consider every candidate parent set on the neighborhood
of Xi, and search for each of them separately an optimal graph on each connected component of
A\{Xi}. Thus, if S is a tree, it would be feasible to find an optimal graph in polynomial time with
this different strategy. Then, we could develop an algorithm that would change S into a tree, learn
an optimal graph that would be post-processed greedily to add missing edges.

Besides, as illustrated in Section 4.4, COS can be used for large graphs, if S is sufficiently
sparse. Alternatively, when learning a super-structure, a “score” could be given to every edge that
would evaluate the “strength” of the dependency represented. For example, the highest p-value
encountered while learning the super-structure with an IT approach could be used. Thus, COS could
be used sequentially: the subset of the strongest edges would be considered first, while learning a
temporary optimal graph that would be used as a prior knowledge for a second search, this time
optimally “adding” a second set of edges. Therefore, by considering successively all the edges of
S by a sufficient number of sparse layers, we might be able to approximate accurately an optimal
graph. This strategy is potentially interesting since it always assumes the graph as a whole, although
the layer of edges should be mainly unconnected to allow COS to be applied to large networks.
However, other strategies such as rebuilding optimally the structure locally before merging results
could also be developed.

Finally if any of these algorithms were giving convincing empirical proofs of their capacities
to learn accurately large networks, we also would like to design strategies for learning sparse and
sound super-structures.
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Appendix A.

Proof of Proposition 1. The complete proof we found is long, complex, and not of the greatest
theoretical interest. Hence we will only present the main steps of the demonstration here without
explicitly developing every step.

• We start by considering any binary tree, which can be generated by successively applying
the following operation to the tree reduced to one leaf: Select a leaf, and change it to a
node with two leaves. Then, for the set of trees that have been generated by applying this
transformation t times, we define U(t) as the maximum number of sub-trees in these trees,
and V (t) as the maximum number of sub-trees that include a given leaf. Given such a tree
T , we apply the transformation to a leaf Li. This generates a node N ′

i and two leaves L′
i1

and L′
i2, where the prime indicates that we refer to the elements of the newly generated tree

T ′. By calling Sub(L) the set of sub-trees that contain L, we have: since |Sub(Li)| ≤ V (t),
|Sub(L′

i1)| ≤ 1+2V (t). If Li had a brother L j, we can show that |Sub(L′
j)| ≤ 5

2V (t) since only
half the sub-trees of Sub(L j) contain Li. Then, for leaves Lk at agreater distance from Li than
L j, since the proportion of sub-trees of Sub(Lk) that also contain Li is decreasing, Sub(L′

k) is
less increased. Thus, we can conclude that V (t +1) <

5
2V (t), and that V (t) <U(t) < O(( 5

2)t).

Finally, since n = 2t −1, we derive that |Con(S)| < O(α3
n) with α3 =

√

5
2 .

• Hereafter, we can apply the same reasoning to any k-tree, and find that |Con(S)| < O(αk+1
n)

with αk+1 = ( 2k+1
2 )

1
k .

• Then, start the fastidious part of the demonstration by considering a connected forest S of
maximal degree m. The idea of the demonstration is to first show that when we consider two
nodes of the tree, we can transfer from one node to the other every sub-rooted trees while
only increasing the number of connected subsets (actually it is possible to express exactly the
variation in the number of connected subsets depending on the unique path between the two
nodes and sub-rooted trees of the nodes in this path). Then, by selecting one of the nodes of
degree m from S, and fixing it as the root R0, we can sequentially build a nearly m-1-tree S′,
except for the root, and maybe for one node Ri, while increasing the number of connected
subsets. We do this by considering depth by depth descendants of R0 and transferring sub-
rooted trees from one to the other until all of them at a given depth have m−1 or 0 children,
taking sub-rooted trees deeper if necessary. Then, if the sons of Ri are not all leaves, we can
continue to apply transformations between it and its descendants until obtaining a nearly m-
1-tree S” except for its root, and one of its nodes that contain only p leaves. Since p ≤ m−1,
we add m− p leaves to this node, and we select as the root of this final tree S f one of the
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leaves; S f is like a m-1-tree except for the root that has only one son. In such a case, we can
use the results found for such structures, neither the root will sensitively affect the number
of connected subsets, nor the nodes that we added at the end; because they can be put in the
constant of O(αm

n), which is an upper bound since we built S f always taking care to increase
the number of connected subsets.
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