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Sébastien Loustau LOUSTAU@CMI.UNIV-MRS.FR

Laboratoire d’Analyse, Topologie et Probabilités (UMR CNRS 6632)
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Abstract
This paper investigates statistical performances of Support Vector Machines (SVM) and considers
the problem of adaptation to the margin parameter and to complexity. In particular we provide a
classifier with no tuning parameter. It is a combination of SVM classifiers.

Our contribution is two-fold: (1) we propose learning rates for SVM using Sobolev spaces
and build a numerically realizable aggregate that converges with same rate; (2) we present practi-
cal experiments of this method of aggregation for SVM using both Sobolev spaces and Gaussian
kernels.
Keywords: classification, support vector machines, learning rates, approximation, aggregation of
classifiers

1. Introduction

We consider the binary classification setting. Let X ×{−1,1} be a measurable space endowed
with P an unknown probability distribution on X ×{−1,1}. Let Dn = {(Xi,Yi), i = 1, . . .n} be n
realizations of a random variable (X ,Y ) with law P (in the sequel we also write PX for the marginal
distribution of X). Given this training set Dn, the goal of Learning is to predict class Y of new
observation X . In other words, a classification algorithm builds a decision rule from X to {−1,1}
or more generally a function f from X to R where the sign of f (x) determines the class of an input
x.

The efficiency of a classifier is measured by the generalization error

R( f ) := P(sign( f (X)) 6= Y ),

where sign(y) denotes the sign of y ∈ R with the convention sign(0) = 1. A well-known minimizer
over all measurable functions of the generalization error is called the Bayes rule, defined by

f ∗(x) := sign(2η(x)−1)

where η(x) := P(Y = 1|X = x) for all x ∈ X . Unfortunately, the dependence of f ∗ on the unknown
conditional probability function η makes it uncomputable in practice.

A natural way to overcome this difficulty is to provide an empirical decision rule or classifier
based on the data Dn. It has to mimic the Bayes. The way one measures the efficiency of a classifier
f̂n := f̂n(Dn) is via its excess risk:

R( f̂n, f ∗) := R( f̂n)−R( f ∗), (1)
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where here R( f̂n) := P(sign( f̂n(X)) 6=Y |Dn). Given P, we hence say that a classifier f̂n is consistent
if the expectation of (1) with respect to P⊗n (the distribution of the training set) goes to zero as n
goes to infinity. Finally, we can look for a way of quantifying this convergence. A classifier f̂n

learns with rate (ψn)n∈N if there exists an absolute constant C > 0 such that for all integer n,

ER( f̂n, f ∗) ≤Cψn, (2)

where in the sequel E is the expectation with respect to P⊗n. Of course (2) ensures consistency of
f̂n whenever (ψn) goes to zero with n.

It has been shown in Devroye (1982) that no classifier can learn with a given rate for all distri-
butions P. However several authors propose different rates reached by restricting the class of joint
distributions. Pionneering works of Vapnik (Vapnik and Chervonenkis, 1971, 1974) investigate the
statistical procedure called Empirical Risk Minimization (ERM). The ERM estimator consists in
searching for a classifier that minimizes the empirical risk

Rn( f ) =
1
n

n

∑
i=1

1I{sign( f (Xi))6=Yi}, (3)

over a class of prediction rules F , where 1IA denotes the indicator function of the set A. If we
suppose that the class of decision rules F has finite VC dimension, ERM reaches the parametric
rate n−

1
2 in (2) when f ∗ belongs to the class F . Moreover, if P is noise-free (i.e., R( f ∗) = 0), the

rate becomes n−1. This is a fast rate.
More recently, Tsybakov (2004) describes intermediate situations using a margin assumption.

This assumption adds a control on the behavior of the conditional probability function η at the level
1
2 (see (10) below). Under this condition, Tsybakov (2004) gets minimax fast rates of convergence
for classification with ERM estimators over a class F with controlled complexity (in terms of en-
tropy). These rates depend on two parameters : the margin parameter and the complexity of the
class of candidates f ∗ (see also Massart and Nédélec, 2006). Another study of the behavior of ERM
is presented in Bartlett and Mendelson (2006).

It is well known, however, that minimizing (3) is computationally intractable for many non
trivial classes of functions (Arora et al., 1997). It comes from the non convexity of the functional
(3). It suggests that we must use a convex surrogate Φ for the loss. The main idea is to minimize an
empirical Φ-risk

AΦ
n ( f ) =

1
n

n

∑
i=1

Φ(Yi f (Xi)),

over a class F of real-valued functions. Then f̂n = sign(F̂n) where F̂n ∈ Argmin f∈F AΦ
n ( f ) has a

small excess risk. Recently a number of methods have been proposed, such as boosting (Freund,
1995) or Support Vector Machines. The statistical consequences of choosing a convex surrogate is
well treated by Zhang (2004) and Bartlett et al. (2006). In this paper it is proposed to use the hinge
loss Φ(v) = (1− v)+ (where (·)+ denotes the positive part) as surrogate, that is, to focus on the
SVM algorithm.

SVM was first proposed by Boser et al. (1992) for pattern recognition. It consists in minimizing
a regularized empirical Φ-risk over a Reproducing Kernel Hilbert Space (RKHS for short in the
sequel). Given a training set Dn, the SVM optimization problem without offset can be written:

min
f∈HK

(
1
n

n

∑
i=1

l(Yi, f (Xi))+αn‖ f‖2
K

)
, (4)
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where in the sequel:

1. The functional l is called the hinge loss and is now written l(y, f (x)) = (1− y f (x))+. The
first term of the minimization (4) is then the empirical Φ-risk AΦ

n for Φ(v) = (1− v)+.

2. The space HK is a RKHS with reproducing kernel K. Under some mild conditions over K, it
consists of continuous functions from X to R or C with the reproducing property:

∀ f ∈ HK ,∀x ∈ X , f (x) =< K(x, ·), f >HK
.

Recall that every positive definite kernel has an essentially unique RKHS (Aronszajn, 1950).

3. The sequence αn is a decreasing sequence that depends on n. This smoothing parameter has
to be determined explicitly. Such a problem will be studied in this work.

4. The norm ‖.‖K is the norm associated to the inner product in the Hilbert space HK .

For a survey on this kernel method we refer to Cristianini and Shawe-Taylor (2000).
This algorithm is at the heart of many theoretical considerations. However, its good practical

performances are not yet completely understood. The study of statistical consistency of the algo-
rithm and approximation properties of kernels can be found in Steinwart (2001) or more recently
in Steinwart (2005). Blanchard et al. (2006) propose a model selection point of view for SVM. Fi-
nally, several authors provide learning rates to the Bayes for SVM (Wu and Zhou, 2006; Wu et al.,
2007; Steinwart and Scovel, 2007, 2005). In these papers, both approximation power of kernels and
estimation results are presented. Wu and Zhou (2006) state slow rates (logarithmic with the sample
size) for SVM using a Gaussian kernel with fixed width. It holds under no margin assumption for
Bayes rule with a given regularity. Steinwart and Scovel (2007) give, under a margin assumption,
fast rates for SVM using a decreasing width (which depends on the sample size). An additional
geometric hypothesis over the joint distribution is necessary to get a control of the approximation
using Gaussian kernels.

These results focus on SVM using Gaussian kernels. The goal of this work is to clarify both
practical and theoretical performances of the algorithm using two different classes of kernels. In a
first theoretical part, we consider a family of kernels generating Sobolev spaces as RKHS. It gives
an alternative to the extensively studied Gaussian kernels. We quantify the approximation power
of these kernels. It depends on the regularity of the Bayes prediction rule in terms of Besov space.
Then under the margin assumption, we give learning rates of convergence for SVM using Sobolev
spaces. It holds by choosing optimally the tuning parameter αn in (4). This choice strongly depends
on the regularity assumption over the Bayes and the margin assumption. As a result, it is non-
adaptive. Then we turn out into more practical considerations. Following Lecué (2007a), we give a
procedure to construct directly from the data a classifier with similar statistical performances. It uses
a method called aggregation with exponential weights. Finally, we show practical performances of
this aggregate and compare it with a similar classifier using Gaussian kernels and results of Steinwart
and Scovel (2007).

The paper is organized as follows. In Section 2, we give statistical performances of SVM using
Sobolev spaces. Section 3 presents the adaptive procedure of aggregation and show the perfor-
mances of the data-dependent aggregate. This procedure does not damage the learning rates stated
in Section 2. We show practical experiments in Section 4 and conclude in Section 5 with a discus-
sion. Section 6 is devoted to the proofs.
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2. Statistical Performances

As a regularization procedure, minimization (4) generates two types of errors: the estimation error
and the approximation error. The use of a finite sample size produces the estimation error. The
approximation error can be seen as the distance between the hypothesis space and the Bayes decision
rule. It comes from the use of a RKHS of continuous functions in the minimization whereas the
Bayes is not continuous. The first one is random and depends on the fluctuation of the training set.
The second one is deterministic and depends on the size of the RKHS. We can see coarsely that
these errors are antagonist. Theorem 7 gives a choice of the regularization parameter αn that makes
the trade-off between these two errors.

For the estimation error, we will state an oracle-type inequality of the form :

ERl( f̂n, f ∗) ≤C inf
f∈HK

(
Rl( f , f ∗)+αn‖ f‖2

K

)
+ εn, (5)

where Rl( f , f ∗) := EPl(Y, f (X))−EPl(Y, f ∗(X)) is the excess l-risk of f . The term εn must be a
residual term and satisfies:

εn ≤C′ inf
f∈HK

(
Rl( f , f ∗)+αn‖ f‖2

K

)
,

where C′ > 0. Inequality (5) deals with the estimation error. It depends on the complexity of the
class of functions HK and the difficulty of the problem.

Hence it remains to control the infimum in the right hand side (RHS for short) of (5). Steinwart
and Scovel (2007) define the approximation error function as:

a(αn) := inf
f∈HK

(
Rl( f , f ∗)+αn‖ f‖2

K

)
. (6)

This function represents the theoretical version of the empirical minimization (4). It depends on the
chosen HK and the behaviour of αn as a function of n.

Using this approach, Steinwart and Scovel (2007) study the statistical performances of SVM
minimization (4) with the parametric family of Gaussian kernels. For σ ∈R, we define the Gaussian
kernel Kσ(x,y) = exp

(
−σ2‖x− y‖2

)
on the closed unit ball of R

d (denoted X ). The parameter σ−1

is called the width of the Gaussian kernel. In this paper, under a margin assumption and a geometric
assumption over the distribution, they state fast learning rates for SVM. These rates hold under
some specific choices of tuning parameters recalled in Sect. 4. Following Lecué (2007a), we will
use this result and more precisely these choices of tuning parameters to implement the aggregate
using Gaussian kernels.

2.1 Sobolev Smooth Kernels

We propose to deal with other class of kernels than the Gaussian kernels. First we need to introduce
some notations. Let us consider the set of complex-valued and integrable (resp. square-integrable)
functions on R

d denoted as L1(Rd) (resp. L2(Rd)). On this set, we define the Fourier transform of
f to be:

f̂ (ω) =
1

(2π)d/2

Z

Rd
f (t)e−iω.tdt,∀ω ∈ R

d ,
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where x.y denotes the usual scalar product of R
d between two points x,y ∈ R

d .
After the usual extension from L1(Rd) to L2(Rd) with Plancherel, this operator is an isometry

on L2(Rd). It allows us to define, for any s ∈ R
+, the Sobolev space W 2

s (often called fractional
Sobolev space) as the following subspace of L2(Rd) (Malliavin, 1974):

W 2
s := { f ∈ L2(Rd) : ‖ f‖2

s =
Z

Rd
| f̂ (ω)|2(1+‖ω‖2)sdω < ∞}. (7)

We refer to Triebel (1992) or Adams (1975) for a large study of this well-known functional space.
With such a norm, W 2

s is a Hilbert space endowed with the inner product defined as:

< f ,g >s=
Z

Rd
f̂ (ω)ĝ(ω)(1+‖ω‖2)sdω,

where z is the complex conjugate of z in C. Moreover it is a Hilbert space of continuous functions
for any s > d

2 (due to the embedding between W 2
s and C(Rd) for any s > d

2 ). It can be seen as a
RKHS.

In this framework, a kernel is a symmetric and positive definite function K : R
d ×R

d 7→ C. For
r ∈ R

+, a kernel Kr will be called Sobolev smooth kernel with exponent r > d if the associated
RKHS HKr is such that

HKr = W 2
r
2
,

where W 2
r
2

is defined in (7). The restriction r > d ensures that the RKHS consists of continuous

functions from R
d to C. Corollary 2 provides a way of constructing such a kernel.

We say that a kernel K is a translation invariant kernel (or RBF kernel), if for all x,y ∈ R
d ,

K(x,y) = Φ(x− y) (8)

for a given Φ : R
d 7→C. Function Φ is often called RB function for Radial Basis function. The most

popular example of translation invariant kernel is the Gaussian kernel Kσ(x,y) = exp(−σ2‖x−y‖2).
This kernel is not a Sobolev smooth kernel (see below).

Under suitable assumptions on Φ, the following theorem gives a Fourier representation of a
RKHS associated to a translation invariant kernel. The proof is given in Section 6.

Theorem 1 Let K : R
d ×R

d 7→ C be a translation invariant kernel where in (8) Φ belongs to
L1(Rd)∩L2(Rd) and such that Φ̂ is integrable. Then the RKHS associated to K can be written

HK = { f ∈ L2(Rd) : ‖ f‖2
K =

1

(2π)d/2

Z

S

| f̂ (ω)|2

Φ̂(ω)
dω < ∞ and f̂ = 0 on R

d\S}

with the inner product

< f ,g >K=
1

(2π)d/2

Z

S

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω,

where S := {ω ∈ R
d : Φ̂(ω) 6= 0} is the support of Φ̂.

Sufficient conditions to have a Sobolev smooth kernel are:
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Corollary 2 Let K satisfying assumptions of Theorem 1. Suppose moreover that there exist con-
stants C,c > 0 and a real number s > d

2 such that

Φ̂(ω) =
C

(c+‖ω‖2)s ,∀ω ∈ R
d . (9)

Then K is a Sobolev smooth kernel with exponent r = 2s > d.

In Section 5 we propose an example of Sobolev smooth kernel and use it into the SVM procedure.

Remark 3 (Gaussian kernels are not Sobolev smooth) Theorem 1 can be used to define Gaus-
sian kernels in terms of Fourier transform. Indeed, the Gaussian kernel defined above is a transla-
tion invariant kernel with RB function Φ(x) = exp(−σ2‖x‖2). Its Fourier transform is given by

Φ̂(ω) =
1

(
√

2σ)d
exp(−‖ω‖2

4σ2 ).

Then Φ satisfies assumptions of Theorem 1. The Fourier representation of Hσ is given by:

Hσ = { f ∈ L2(Rd) :
Z

Rd
| f̂ (ω)|2σd exp(

‖ω‖2

4σ2 )dω < ∞}.

From definition (7), it is clear that Hσ is not a Sobolev space. This integral representation of a
Gaussian RKHS illustrates the smoothness of functions f ∈ Hσ. Indeed we can see trivially that
Hσ ⊂ HKr for any fixed σ,r > 0 (because the Fourier transform of Φ is rapidly decreasing in this
case). Moreover the parameter σ can be seen as a regularization parameter : the fewer is σ, the
smoother are the functions in Hσ. More precisely, σ < σ′ entails Hσ ⊂ Hσ′ .

2.2 Approximation Efficiency of Sobolev Smooth Kernels

Here we are interested in approximation properties of HKr . We aim at bounding the approximation
function a(αn) defined in (6) for the procedure (4). The best case appears when f ∗ ∈ HK . Then we
get coarsely a(αn) ≤ Cαn where C is an absolute constant. This case is not realizable considering
a continuous RKHS since the Bayes classifier is not. In this paper, we get a control of the approx-
imation function when f ∗ does not belong to the RKHS. Theorem 4 provides such a result using a
Sobolev smooth kernel.

Theorem 4 Consider the approximation function a(αn) defined in (6), with Sobolev smooth kernel
Kr such that r > 2s > 0. Suppose PX satisfies dPX

dx ≤C0.
Then if f ∗ ∈ B2

s,∞(Rd), we have:

a(αn) ≤C
r−2s
r−s

0 ‖ f ∗‖
r

r−s
s2∞α

s
r−s
n ,

where ‖.‖s2∞ defines the norm in the Besov space B2
s,∞(Rd).

The proof is detailed in Section 6 where we define explicitly Besov spaces B 2
s,∞(Rd).
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Remark 5 (BAYES REGULARITY) Here we get a control of the approximation function under an
assumption on the smoothness of the Bayes classifier. Of course large values of s are not possible
because f ∗(x) = sign(2η(x)−1) is not even continuous (except for the trivial case η(x) < 1

2 a.s. or
η(x) > 1

2 ). More precisely, the Besov space B p
s,q(Rd) is included in the space of continuous functions

for s > d
p and q > 1. Here p = 2 then parameter s must satisfy s < d

2 to have f ∗ ∈ B2
s,∞(Rd). In

Remark 10 we give an example of Bayes rule verifying this smoothness assumption.

Remark 6 (COMPARISON WITH STEINWART AND SCOVEL, 2007) Steinwart and Scovel (2007)
propose a same type of result using Gaussian kernels. Under a geometric assumption over the
distribution, they get

a(αn) ≤Cα
γ

γ+1
n ,

where γ is the geometric noise exponent. Here we propose a same type of result under a regularity
assumption over the possible f ∗. Theorem 17 in Section 6 shows that this result can be generalized
to any other kernel, using interpolation spaces.

2.3 Learning Rates

In this work, we restrict the class of considered distributions P. We add a control on the local slope
of the conditional probability function η at the level 1

2 . This margin assumption (we often call
|η− 1

2 | the margin) is originally due to Mammen and Tsybakov (1999) for discriminant analysis.
We will use throughout this paper the following formulation: we say that P has margin parameter
q > 0 if there exists a constant c0 > 0 such that

P(|2η(X)−1| ≤ t) ≤ c0tq, (10)

for all sufficiently small t.
According to Boucheron et al. (2005), this hypothesis is equivalent to the low noise or margin

assumption in Tsybakov (2004). Best situation for learning appears when the conditional probability
makes a jump at the level 1

2 . Hence (10) holds true for any positive q. It corresponds to a margin
parameter q = +∞, that is, κ = 1 in the sense of Tsybakov (2004).

Finally, last step of modelling consists in clipping the solution of minimization (4). For any
classifier f̂ , we hence define the clipped version f̂ C with values in [−1,1] by

f̂ C(x) =





−1 for x : f̂ (x) < −1,

f (x) for x : f̂ (x) ∈ [−1,1],

1 for x : f̂ (x) > 1.

This operation does not modify the classification property of f̂ since sign( f̂ ) = sign( f̂ C). It produces
classifiers with bounded norm ‖.‖∞. It appears in several works (Bartlett, 1998; Steinwart et al.,
2007). We stress that the clip does not modify the algorithm. It is done after the training as a part of
the theoretical study of the algorithm. We are now on time to state the main result of this section.
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Theorem 7 Let P be a distribution over R
d ×{−1,1} such that PX satisfies dPX

dx ≤ C0 and (10)
holds for q ∈ [0,+∞]. Let s > 0 and suppose f ∗ ∈ B2

s,∞(Rd).
Consider the SVM minimization (4) with Sobolev smooth kernel Kr, with r > 2s∨d, built on the

i.i.d. sequence (Xi,Yi), i = 1 . . .n according to P.
If we choose αn such that

αn ∼ n−
r(r−s)(q+1)

s(r(q+2)−d)+d(r−s)(q+1) , (11)

then there exists a constant C which depends on r,s,d,c0,q and C0 such that

ER( f̂ C
n , f ∗) ≤Cn−γ(q,s),

where

γ(q,s) =
rs(q+1)

s(r(q+2)−d)+d(r− s)(q+1)
. (12)

The proof of this theorem is given in Section 6.

Remark 8 (FAST RATES) Rate (12) is a fast rate (i.e., faster than n− 1
2 ) if rs(q+1)

s(r(q+2)−d)+d(r−s)(q+1) > 1
2 .

In particular, for q = +∞, it corresponds to s > rd
r+d . The presence of fast rates depends on the

regularity of the Bayes classifier. Unfortunately the behaviour of f ∗ (see Remark 4) entails s < d
2 .

As a result, sr
sr+d(r−s) < 1

2 and fast rates can not be reached.

Remark 9 (COMPARISON WITH STEINWART AND SCOVEL, 2007) This theorem gives perfor-
mances of SVM using a fixed kernel. On the contrary, according to Steinwart and Scovel (2007), the
bandwidth of the kernel has to be chosen as a function of n. Nevertheless, rates of convergences are
fast for sufficiently large geometric noise parameter. Here we cannot get fast rates for reasonable
assumption over f ∗.

Remark 10 (OPTIMAL SMOOTHING PARAMETER) Theorem 7 provides a particular choice of αn

to reach rates (12). Other definitions for the sequence αn give other rates of convergence. We
only mention the best possible rates. It holds for a regularization parameter optimizing the sta-
tistical performances. Indeed, αn in (11) makes the balance between the estimation error and the
approximation error.

Remark 11 (EXAMPLE) Consider the one-dimensional case where X = R. Suppose f ∗ is such
that:

card{x ∈ R : f ∗ jumps at x} = N < ∞. (13)

It means that the Bayes rule changes only a finite number of times over the real line. Using standard
analysis, we get

‖ f ∗‖TV =
Z

R

|D f ∗(x)|dx = 2N

where D f ∗ is the generalized derivative of f ∗. Moreover, for any f , | f̂ (ω)| ≤ ‖ f‖V T /|ω|. Then f ∗

belongs to Ws,2 only for s < 1/2. Finally, with basic properties of Besov spaces (Triebel, 1992), we
have Ws,2 = B2

s,2 ⊂ B2
s,∞.
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Consequently, f ∗ verifying (13) belongs to B2
s,∞ for any s < 1

2 . If we consider a margin parameter
q = +∞, we hence cannot reach the rate of convergence

n−
r

3r−1

which corresponds to a regularity s = 1
2 in the Besov space. Then the SVM using Sobolev smooth

kernel HKr with r > 1 cannot learn with fast rate in this simple case.

3. Aggregation

Theorem 7 provides the optimal value of αn to reach rates of convergence (12) in the context of
Sobolev spaces. It holds under two ad-hoc assumptions: a margin assumption over the distribution
and a regularity assumption over the Bayes rule. Hence the choice of the smoothing parameter
depends on two unknown parameters: the margin parameter q and the exponent s in the Besov
space. Consequently the classifier f̂n of Theorem 7 cannot be constructed from the data. It is called
non-adaptive.

The goal of this section is to overcome this difficulty. We propose a classifier that adapts auto-
matically both to the margin and to regularity. In other words, we will build a decision rule from Dn

which does not depend on the unknown parameters s and q. Moreover, Theorem 12 shows that this
procedure of adaptation will not damage the learning rates of Theorem 7.

We use a technique called aggregation (Nemirovski, 1998; Yang, 2000). We apply the method
presented in Lecué (2007a) to our framework of Sobolev smooth kernel. It consists of splitting the
data into two parts : the first part in used to construct a family of classifiers. The second part is
used to make a convex combination of these classifiers. We obtain an adaptive decision rule which
mimics the best one over the family. Let us first describe the method.

Denote D1
n1

(resp. D2
n2

) the first subsample of size n1 (resp. second subsample of size n2) with
n1 + n2 = n. The choice of n1 and n2 will be discussed later. We construct a set of classifiers
( f̂ α

n1
)α∈G(n2) defined by f̂ α

n1
= sign

(
F̂α

n1

)
where

F̂α
n1

:= arg min
f∈HKr

(
1
n1

n1

∑
i=1

l(Yi, f (Xi))+α‖ f‖2
K

)
.

The grid G(n2) is defined by

G(n2) :=

{
αk = n−φk

2 : φk =
1
2

+ k∆−1,k = 0, . . . ,b(2r−d)∆
2d

c
}

,

with ∆ = nb
2 for some b > 0. We hence have

⌊
(2r−d)∆

2d

⌋
+1 classifiers to aggregate.

The procedure of aggregation uses the second subsample D2
n2

to construct a convex combination
with exponential weights. Namely, the aggregate f̃n is defined by

f̃n = ∑
α∈G(n2)

ω(n)
α f̂ α

n1
, (14)

where

ω(n)
α =

exp
(
∑n

i=n1+1Yi f̂ α
n1

(Xi)
)

∑α′∈G(n2) exp
(
∑n

i=n1+1Yi f̂ α′
n1

(Xi)
) .

We hence have the following result.
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Theorem 12 Consider the classifier f̃n defined in (14) where n2 = da n
logne for a > 0. Let K a

compact of (0,∞)2. Then there exists a constant C which depends on r,d,c0,K,a,b,L and C0 such
that for all (q,s) ∈ K

sup
P∈Qq,s

ER( f̃n, f ∗) ≤Cn−γ(q,s),

where

γ(q,s) =
rs(q+1)

s(r(q+2)−d)+d(r− s)(q+1)

and Qq,s is the set of distributions P satisfying dPX
dx < C0, (10) with parameter q and such that

f ∗ ∈ B2
s,∞(Rd ,L) = { f ∈ B2

s,∞(Rd) : ‖ f‖ ≤ L}.

Remark 13 Same rates as in Theorem 7 are attained. Here we deal with an implementable classi-
fier. In Section 5 we sum up practical performances of this aggregate.

Remark 14 Instead of aggregating a power of n classifiers, only logn classifiers are enough to
obtain this result. Lecué (2007b) states an oracle inequality such as (22) without any restriction on
the number of estimators to aggregate.

Remark 15 (AVERAGE OF AGGREGATES) This method supposes, for a given n1 and n2, an arbi-
trary choice for the subsample D1

n1
and D2

n2
. However we can use different splits of the training set.

We get an average of aggregates, namely

f n =
1
M

M

∑
k=1

f̃ k
n .

It does not depend on a particular split. Each f̃ k
n is defined in (14) for the split number k. With

(Lecué, 2007a, Theorem 2.4), this average satisfies the oracle inequality (22). Then Theorem 12
holds for f n for any family of M splits, for M ≤ C n1

n .

4. Practical Experiments

We now propose experiments illustrating performances of the aggregate of Section 3. We study
SVM classifiers using both Sobolev spaces and Gaussian kernels. The aggregates were implemented
in R using the free library kernlab. It contains implementations of support vector machines. For a
description of this package for kernel-based learning methods in R, we refer to Karatzoglou et al.
(2007). We use real world data sets from benchmark repository1 used by Rätsch et al. (1998). We
consider 9 data sets called ”Banana”, ”Titanic”, ”Thyroid”, ”Diabetes”, ”Breast-Cancer”, ”Flare-
solar”, ”Heart”, ”Image” and ”Waveform”. These data sets are explained in Table 1. For each data
set, we have several realizations of training and test set. The dimension of the input space is denoted
by d whereas the number of observations for the training set is n. It follows the notations used in
the previous sections. On each realization, we train and test our classifiers. The results presented in
Table 2,3,4 show the average test errors over these realizations and the standard deviations.

1. Data sets are available online at this address http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm.
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Data Set d n test sample realizations
Banana 2 400 4900 100
Titanic 3 150 2051 100
Thyroid 5 140 75 100
Diabetis 8 468 300 100

Breast-cancer 9 200 77 100
Flare-solar 9 666 400 100

Heart 13 170 100 100
Image 18 1300 1010 20

Waveform 21 400 4600 100

Table 1: Description of the data sets

4.1 SVM Using Sobolev Smooth Kernel

The first step is to pick up a Sobolev smooth kernel. Consider the following class of RBF kernels,
with Radial Basis function Φ:

K(x,y) = Φ(x− y) = exp(−σ‖x− y‖) ,∀σ ∈ R. (15)

For a given σ, this kernel is called a Laplacian kernel. It is clear that Φ ∈ L1(Rd)∩L2(Rd). Recall
the Fourier transform of Φ : R

d 7→ R (see Williamson et al., 2001):

Φ̂(ω) = 2
d
2 π− 1

2 Γ(
d
2

+1)
σ

(σ2 +‖ω‖2)
d+1

2

, ∀ω ∈ R
d ,

where Γ(x) =
R

R+ e−ttx−1dt is the Gamma function.
With Corollary 2, for any fixed σ, the Laplacian kernel defined in (15) is a Sobolev smooth

kernel with exponent r = d + 1. It satisfies assumptions of Theorem 7 and can be used in the
implementation of the algorithm.

It is worth noticing that the parameter σ is constant. If we take a significantly small value for σ,
as σ = n−u, u > 0, (9) holds for C and c depending on n. Thus Corollary 2 does not hold. To avoid
this problem, we choose in our aggregation step using this class of kernels a constant σ = 5. In the
sequel the Laplacian kernel used is precisely K(x,y) = exp(−5‖x− y‖).

Table 2 shows the first experiments. For each realization of training set, we use previous section
to build

• the set of classifiers ( f̂ α
n1

) for α belonging to G(n2);

• exponential weights ω(n)
α to deduce aggregate f̃n.

Recall the definition of G(n2) in this case:

G(n2) :=

{
αk = n−φk

2 : φk =
1
2

+ k∆−1,k = 0, . . . ,b(2r−d)∆
2d

c
}

,

where ∆ = nb
2. We take b = 1 in the construction. Instead of a step ∆ = nb

2, it is possible to take
only ∆ = logn2 (see Remark 14) . The value of b governs the size of the grid. The cardinal is
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given in Table 2 for each data set. Note that growing b does not improve significantly the perfor-
mances whereas it adds computing time. Indeed, whatever b, G(n2) is contained in this case into

[n
− d+1

d
2 ,n

− 1
2

2 ]. This location is motivated by Theorem 7, namely equation (11).The value of b only
deals with the distance between each point of G(n2). It does not change the location of the grid.

Table 2 relates the average test errors and the standard deviations. We first collect the perfor-
mances of the family of weak estimators ( f̂ α

n1
),α ∈ G(n2). We mention in order the performances

of the worst estimator, the mean over the family and the best over the family. It gives an idea of
the estimators to aggregate. Then the performances of the aggregate using exponential weights are
given in the last column.

Data Set cardG(n2) max mean min Laplace Aggregate
Banana 102 11.41±0.58 11.33± 0.57 11.12±0.59 11.31± 0.57
Titanic 38 22.80±1.16 22.80±1.14 22.77±1.13 22.77±1.13
Thyroid 31 5.97±2.61 5.45±2.56 4.77±2.63 5.45±2.68
Diabetis 72 29.56±2.03 28.40±2.00 27.33±1.96 28.34±2.27

Breast-cancer 35 35.10±5.34 33.26±5.06 31.49±5.05 32.74±5.16
Flare-solar 95 35.97±1.94 35.68±1.90 35.52±1.90 35.69±1.93

Heart 29 22.38±3.97 22.11±3.98 21.76±3.99 22.12±3.98
Image 152 4.35±0.87 4.06±0.74 3.79±0.74 3.95±0.74

Waveform 56 14.51±0.70 14.16±0.67 13.78±0.65 14.12±0.72

Table 2: Performances using Laplacian kernel

Note that the amplitude in the family is not very important. It may be explain by its construction.
Indeed, G(n2) is motivated by Theorem 7, which gives the location of the grid (see above). This
family has a mathematical justification. The test errors of the aggregate are located between the
average over the family and the oracle of the family.

A temperature parameter usually appears in aggregation methods. It governs the variations of
values ω(n)

α , for α ∈ G(n2). In Table 2 the weak classifiers have almost the same performances. This
could explain why no temperature parameter is needed here.

4.2 SVM Using Gaussian Kernels

Here we focus on the parametric class of Gaussian kernels Kσ(x,y) = exp
(
−σ2‖x− y‖2

)
, for σ∈R.

We build an aggregate made of a convex combination of Gaussian SVM classifiers. In this case,
the construction is not exactly the same. It comes from Steinwart and Scovel (2007). In this paper,
they introduce a geometric noise assumption. This hypothesis deals with the concentration of the
measure |2η− 1|PX near the decision boundary. It allows to control the approximation function
(6). According to Steinwart and Scovel (2007), suppose that the probability distribution P has a
geometric noise γ > 0 and assumption (10) holds with margin parameter q > 0. Then if we choose

αn =





n−
γ+1
2γ+1 if γ ≤ q+2

2q ,

n−
2(γ+1)(q+1)

2γ(q+2)+3q+4 , otherwise
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the solution of (4) using a Gaussian kernel Kσ with σ = α
− 1

(γ+1)d
n learns with rates

{
n−

γ
2γ+1 +ε if γ ≤ q+2

2q ,

n−
2γ(q+1)

2γ(q+2)+3q+4 +ε otherwise,

for all ε > 0.
We can see that the variance of the Gaussian kernels is not fixed. It has to be chosen as a function

of the geometric noise exponent. As a result, parameter σ must be considered in the aggregation
procedure, as the smoothing parameter α. It gives a two-dimensional grid of Gaussian SVM of the
following form (Lecué, 2007a):

N (n2) =
{
(σn2,φ,αn2,ψ) = (nφ/d

2 ,n−ψ
2 ) : (φ,ψ) ∈ M (n2)

}

where

M (n2) =

{
(φn2,p1 ,ψn2,p2) =

(
p1

2∆
,

p2

∆
+

1
2

)
: p1 = 1, . . . ,2b∆c; p2 = 1, . . . ,b∆/2c

}
,

for ∆ = nb
2. Thus we have more classifiers to aggregate and needs more time to run. As a conse-

quence, we choose constant b = 0.5 in our experiments. Such as the Sobolev case, the number of
classifiers to aggregate is mentioned in Table 3 for each data set.

Table 3 relates the generalization performances of the classifiers over the test samples. We first
give the performances of the family of Gaussian SVM (namely the worst, the mean and the oracle
over the family). The performances of the aggregate using exponential weights are given in the last
column.

Data Set cardN (n2) max mean min gaussian aggregate
Banana 100 17.29± 3.08 12.27±0.89 10.85±0.63 11.43±0.84
Titanic 36 23.15±1.30 22.81±1.00 22.49±0.78 22.57±0.79
Thyroid 36 8.19±2.63 6.76±2.72 5.59±2.94 6.31±2.97
Diabetis 100 29.82±1.98 28.19±1.84 26.39±1.85 27.80±2.06

Breast-cancer 42 34.83±5.12 32.76±4.82 30.48±4.61 32.13±4.77
Flare-solar 144 39.06±1.92 36.01±1.54 34.09±1.69 34.87±1.82

Heart 42 23.1±3.80 22.60±3.71 21.99±3.59 22.62±3.77
Image 256 7.79±1.00 6.33±0.83 5.30±0.73 5.66±0.74

Waveform 100 15.41±0.80 15.08±0.78 14.72±0.77 15.04±0.79

Table 3: Performances using Gaussian kernels

In this case the generalization errors in the family are more disparate. It comes from a two-
dimensional grid of parameters. The performances of the Gaussian aggregate, as above, are located
between the average of weak estimators and the best among the family.

4.3 Comparison With Rätsch et al. (1998)

Table 4 combines the performances of the aggregates using Laplacian kernel and Gaussian kernels.
The errors are comparable. Gaussian kernels and Laplacian kernel lead to similar performances.
Then we mention the generalization errors of Rätsch et al. (1998).
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Rätsch et al. (1998) proposes generalizations of the original Adaboost algorithm. However, ex-
tensive simulations are presented like experimental results for SVM using Gaussian kernels. The
choice of the parameters (αn,σ) are done by 5-fold-cross validation thanks to several training data
sets. This approach has not any mathematical justification. Moreover their mathematical program-
ming problems are distributed over 30 computers. We only use last column to have an idea of
reasonable average test errors for these data sets.

Data Set Laplace Aggregate Gaussian Aggregate Rätsch et al. (1998)
Banana 11.31± 0.57 11.43±0.84 11.53±0.66
Titanic 22.77±1.13 22.57±0.79 22.42±1.02
Thyroid 5.45±2.68 6.31±2.97 4.80±2.19
Diabetis 28.34±2.27 27.80±2.06 23.53±1.76

Breast-cancer 32.74±5.16 32.13±4.77 26.04±4.74
Flare-solar 35.69±1.93 34.87±1.82 32.43±1.82

Heart 22.12±3.98 22.62±3.77 15.95±3.26
Image 3.95±0.74 5.66±0.74 2.96±0.6

Waveform 14.12±0.72 15.04±0.79 9.88±0.83

Table 4: Comparison with Rätsch et al. (1998).

Table 4 illustrates good resistance of our aggregates when the dimension is not too large. Nev-
ertheless, in the last columns, our estimators fail. This may have a theoretical explanation. In
Theorem 7 and 12, a constant C appears in the upper bounds. This constant in front of the rates of
convergence depends on the dimension of the input space. Increasing d grows this constant C and
may affect the performances. Moreover, the choice of the parameters in Rätsch et al. (1998) are
done with several training sets. In our approach, for each realization of a training set, we construct
an adaptive classifier using n observations. The amount of information used is not the same. It may
also explain this difference.

5. Conclusion

This paper gives some insights into SVM algorithm, from both theoretical and practical point of
view. We have tackled several important questions such as its statistical performances, the role of
the kernel and the choice of the tuning parameters.

The first part of the paper focuses on the statistical performances of the method. In this study, we
consider Sobolev smooth kernels as an alternative to the Gaussian kernels. It allows us to bring out a
functional class of Bayes rule (namely Besov spaces B 2

s,∞) ensuring good approximation properties
for our hypothesis space. Explicit rates of convergence have been given depending on the margin
and the regularity (Theorem 7). Nevertheless, this result was non-adaptive.

Then it has been necessary to consider the problem of adaptation. The aggregation method
appeared suitable in this context to construct directly from the data a competitive decision rule: it
has the same statistical performances as the non-adaptive classifier (Theorem 12). In this procedure,
we use explicitly the theoretical part to choose the scale of tuning parameters. For completeness,
we have finally implemented the method and gave practical performances over real benchmark data
sets. These practical experiments are to be considered as preliminary. However it shows similar
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performances for SVM using Gaussian or non-Gaussian kernel. Moreover it illustrates rather well
the importance of constructing a classifier with some mathematical background.

6. Proofs

This section contains proofs of the results presented in this paper.

6.1 Proof of Theorem 1 and Corollary 2

We consider a translation invariant kernel K : R
d ×R

d 7→ C with RB function Φ satisfying assump-
tions of Theorem 1. The following lemma will be useful.

Lemma 16 For any y ∈ R
d , consider the function ky : x 7→ K(x,y) defined in R

d . Then we have the
following statements:

1. ky(x) = ĝy(x) where gy(ω) = eiω.yΦ̂(ω).

2. k̂y(ω) = e−iω.yΦ̂(ω).

Proof

1. Φ ∈ L2(Rd) hence the inverse Fourier formula allows us to write :

ky(x) = Φ(x− y) =
1

(2π)d/2

Z

Rd
eiω.(x−y)Φ̂(ω)dω

=
1

(2π)d/2

Z

Rd
e−iω.xeiω.yΦ̂(ω)dω

=
1

(2π)d/2

Z

Rd
e−iω.xgy(ω)dω.

2. Now using 1. one gets

k̂y(ω) =
1

(2π)d/2

Z

Rd
e−iω.xky(x)dx =

1

(2π)d/2

Z

Rd
eiω.xĝy(x)dx.

Gathering with the inverse Fourier transform of gy ∈ L2(Rd), we have

k̂y(ω) = gy(ω) = e−iω.yΦ̂(ω).

Proof (of Theorem 1)
We write

H0 = { f ∈ L2(Rd) :
Z

S

| f̂ (ω)|2

Φ̂(ω)
dω < ∞ and f̂ = 0 on S},
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with the corresponding norm

‖ f‖H0
:=

√
1

(2π)d/2

Z

S

| f̂ (ω)|2
Φ̂(ω)

dω.

We will show that H0 coincides with HK .
For a given y ∈ R

d , from Lemma 16 it is clear that k̂y(ω) = 0 for ω ∈ R
d\S. Moreover using

again Lemma 16:

Z

S

|k̂y(ω)|2

Φ̂(ω)
dω =

Z

S
Φ̂(ω)dω < ∞

since Φ̂ is integrable. Then ky ∈ H0 for any y ∈ R
d . Now we have to establish that H0 is a Hilbert

space. Following Matache and Matache (2002), we can show that, for any f ∈ H0 :

‖ f̂‖1 ≤
√

(2π)d/2‖Φ̂‖1‖ f‖H0
and ‖ f̂‖2 ≤

√
(2π)d/2‖Φ‖1‖ f‖H0

,

where ‖ · ‖1 and ‖ · ‖2 denote the norms in L1(Rd) and L2(Rd).
Indeed, by Cauchy-Schwarz,

Z

Rd
| f̂ (ω)|dω ≤

√
1

(2π)d/2

Z

S

| f̂ (ω)|2
Φ̂(ω)

dω
√

(2π)d/2
Z

S
Φ̂(ω)dω.

Moreover, since ‖Φ̂‖∞ ≤ ‖Φ‖1,

Z

Rd
| f̂ (ω)|2dω ≤ ‖Φ‖1

Z

S

| f̂ (ω|2

Φ̂(ω)
dω.

Then considering a Cauchy sequence ( fn)n∈N in H0 endowed with ‖ ·‖H0
, ( f̂n)n∈N will be a Cauchy

sequence in both L1(Rd) and L2(Rd). We conclude with Matache and Matache (2002) that ( fn)n is
convergent in H0. Then H0 is complete and becomes a Hilbert space endowed with the following
inner product:

< f ,g >H0
=

1

(2π)d/2

Z

S

f̂ (ω)ĝ(ω)

Φ̂(ω)
dω.

Finally reproducing property holds. Indeed let f ∈ H0. Using again Lemma 16 :

f (x) =
1

(2π)d/2

Z

Rd
eiω.x f̂ (ω)dω =

1

(2π)d/2

Z

S

f̂ (ω)

Φ̂(ω)
k̂x(ω)dω =< f ,kx >H0

.

We have already shown that ∀x ∈ R
d , kx ∈ H0. As a result, the unicity of the RKHS for a given

kernel concludes the proof.

Proof (of Corollary 2)
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First we have trivially that Φ̂ is integrable since s > 1
2 . We can hence apply Theorem 1 to have

HK = { f ∈ L2(Rd) :
Z

Rd
| f̂ (ω)|2(c+‖ω‖2)sdω < ∞},

since the support of Φ̂ is R
d . This expression of the RKHS associated to K corresponds, up to a

constant, to the Sobolev space W 2
s defined in (7). Then K is a Sobolev smooth kernel with exponent

r = 2s.

6.2 Proof of Theorem 4

First introduce the notion of interpolation space (Bennett and Sharpley, 1988). We restrict ourselves
to a description of the real interpolation method. Let (B,‖.‖B) be a Banach space and H a Hilbert
space dense in B. The Peetre’s functional for the couple (B,H ) is defined by, for t > 0,

P( f , t,B,H ) := inf
{
‖ f0‖B + t‖ f1‖H , f = f0 + f1 such that f0 ∈ B, f1 ∈ H

}
.

For fixed t > 0, the functional P defines a norm in the Banach space B. It is therefore a simple
way to define the interpolation space between B and H entirely in terms of this functional. Given
θ ∈]0,1[ and q ∈ [0,∞], the space (B,H )θ,q called interpolation space between B and H consists of
all f ∈ B such that

‖ f‖θ,q :=





(
R +∞

0 t−θqP( f , t,B,H )q dt
t

) 1
q if q < ∞,

sup
t>0

{
t−θP( f , t,B,H )

}
if q = ∞

is finite.
Here we are interested in the case q = ∞ and the following geometric explanation of interpolation

space (Smale and Zhou, 2003, Theorem 3.1):

f ∈ (B,H )θ,∞ =⇒ inf
g∈BH (R)

‖ f −g‖B ≤ ‖ f‖
1

1−θ
θ,∞
( 1

R

) θ
1−θ , (16)

where BH (R) :=
{

f ∈ H : ‖ f‖H ≤ R
}

. Hence the interpolation space between B and H satisfies
H ⊂ (B,H )θ,∞ ⊂ B . To be more precise it consists of functions located at a polynomial decreasing
distance in B from a ball in H of radius R as a function of R. It would be useful to control the
approximation error function in our framework.

Theorem 17 Consider a(αn) defined in (6). Suppose the marginal of X is such that dPX
dx ≤C0. Then

if f ∗ ∈ (L2(Rd),HK)θ,∞ we have:

a(αn) ≤ ‖ f ∗‖
2

2−θ
θ,∞ α

θ
2−θ
n .

Proof By the lipschitz property of the hinge loss, we have clearly since dPX
dx ≤C0 :

a(αn) ≤ inf
f∈HK

(
‖ f − f ∗‖L1(PX ) +αn‖ f‖2

K

)

≤ inf
R>0

(
C0 inf

f∈BHK
(R)

‖ f − f ∗‖L2(Rd) +αnR2

)
.
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Now from (16), it follows that if f ∗ ∈ (L2(Rd),HK)θ,∞,

a(αn) ≤ inf
R>0

(
‖ f ∗‖

1
1−θ
θ,∞
( 1

R

) θ
1−θ +αnR2

)
.

Optimizing with respect to R leads to the conclusion.

Let introduce Besov spaces B p
s,q(Rd). A Besov space is a collection of functions with common

smoothness, in terms of modulus of continuity. This is a large class of functional spaces, including
in particular the Sobolev spaces defined in (7) (W 2

s = B2
s,2(R

d) for any s > 0) and the Hölder spaces
(Hs = B s

∞,∞(Rd) for any s > 0). For a large study, we refer to Triebel (1992).
Here we restrict ourselves to the spaces B2

s,∞(Rd). For any h ∈ R
d , we write I for the identity

operator, Th for the translation operator (Th( f ,x) = f (x + h)) and ∆r
h := (Th − I)r for the difference

operator. The modulus of continuity of order r of a function f ∈ L2(Rd) is then

ωr( f , t)2 = sup
|h|≤t

‖∆r
h( f )‖L2(Rd).

Then the Besov space B2
s,∞(Rd) consists of all functions f such that the semi-norm

‖ f‖s,∞ = sup
t>0

t−sωr( f , t)2

is finite.
If we add ‖ f‖L2(Rd) to this semi-norm, we obtain the usual norm of B 2

s,∞(Rd).

Lemma 18 Let s > 0 and 0 < θ < 1. Then,

(L2(Rd),W 2
s )θ,∞ = B2

θs,∞(Rd).

A proof is presented by Triebel (1978) in a more general framework.
Proof (of Theorem 4)

From the definition of Sobolev smooth kernels, we have HKr = W 2
r
2
. Hence we obtain with

Lemma 18:

(L2(Rd),HKr)θ,∞ = B2
θr
2 ,∞(Rd).

Applying Theorem 17 with θ = 2s
r , this ends up the proof since PX satisfies dPX

dx < C0.

6.3 Proof of Theorem 7

In order to control the generalization error, we have to state an inequality such as (5). We propose
to use a stochastic oracle inequality from Steinwart et al. (2007). This result takes place under a
margin assumption of the type (10) and a complexity assumption over the used RKHS.

We define the covering numbers of a subset A of a Banach space (E,d) as :

N (A,ε,E) = min{n ≥ 1 : ∃x1, . . .xn ∈ E such that A ⊂ ∪n
i=1Bd(xi,ε)}.
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Furthermore, given a realization T = {(x1,y1), . . .(xn,yn)} of the training set, we denote by L2(TX)
the space of all equivalence classes of functions f : X 7→ R such that the norm

‖ f‖L2(TX ) :=

(
1
n

n

∑
i=1

f (xi)
2

)1/2

(17)

is finite. Then we can consider the behaviour of logN (BHK
,ε,L2(TX)) as a complexity measure for

the used RKHS.

Proposition 19 (Steinwart and Scovel, 2007) Let P be a distribution on X ×{−1,1} and HK a
RKHS of continuous functions on X . Suppose

1. There exists q ∈ [0,+∞] and c0 > 0 such that

P(|2η(X)−1| ≤ t) ≤ c0tq, ,∀t > 0.

2. There exist a ≥ 1,0 < p < 1 such that

sup
T∈(X×Y )n

logN
(
BHK

,ε,L2(TX)
)
≤ aε−2p,∀ε > 0. (18)

Then there exist constants c ≥ 1, κ,κ′,κ′′ > 0 such that for all x ≥ 1, the clipped version f̂ C
n of SVM

classifier f̂n satisfies, with probability larger than 1− e−x,

Rl( f̂ C
n , f ∗) ≤ c inf

f∈HK

(
EP (l( f )− l( f ∗))+αn‖ f‖2

K

)
+

κ
nαp

n

+

(
κ

nαp
n

) q+1
q+2−p

+
κ′

n
q+1
q+2

+
κ′′x
n

.

Proof (of Theorem 7)
The hinge loss l(y, f (x)) = (1− y f (x))+ satisfies, for all classifier f̂ (Zhang, 2004):

R( f̂ , f ∗) ≤ Rl( f̂ , f ∗). (19)

Therefore, to control the excess risk of a classifier, it is sufficient to control the RHS of (19).
We apply Proposition 19 for the stochastic part and Theorem 4 for the approximation part of the

analysis.
Recall a standard result for covering numbers of Sobolev spaces (Chen et al., 2004):

logN (BW 2
r
,ε,C(Rd)) ≤ aε−

d
r , (20)

where constant a := a(d). From (17) we have ‖ f‖L2(TX ) ≤ ‖ f‖∞ for any f ∈C(Rd), T ∈ (X ×Y )n.
Then (20) holds true for logN (BW 2

r
,ε,L2(TX)) uniformly over T ∈ (X × Y )n. Gathering with

HKr = W 2
r/2, the RKHS HKr satisfies (18) of Proposition 19 with p = d

r . Applying Proposition 19,

there exist c ≥ 1, κ,κ′,κ′′ > 0 such that, for all x ≥ 1, with probability larger than 1− e−x,

Rl( f̂ C
n , f ∗) ≤ c inf

f∈HK

(
Rl( f , f ∗)+αn‖ f‖2

K

)
+

κ

nα
d
r
n

+

(
κ

nα
d
r
n

) q+1
q+2−d/r

+
κ′

n
q+1
q+2

+
κ′′x
n

.
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Since f ∗ ∈ B2
s,∞(Rd), we get from Theorem 4 that with probability larger than 1− e−x,

Rl( f̂ C
n , f ∗) ≤ cC

r
r−s
0 ‖ f ∗‖

r
r−s
s,∞ α

s
r−s
n +

κ

nα
d
r
n

+

(
κ

nα
d
r
n

) q+1
q+2−d/r

+
κ′

nα
d
r
n

+
κ′′x
n

.

The choice of αn in (11) optimizes the RHS. Integrating with respect to the training set, one leads
to the conclusion.

6.4 Proof of Theorem 12

To prove Theorem 12, we use a general oracle inequality for aggregation. Let us first recall the
general context of aggregation.

Suppose we have M ≥ 2 differents classifiers f1, . . . , fM with values in {−1,1}. The method of
aggregation consists in building a new classifier f̃n from Dn called aggregate which mimics the best
among f1, . . . fM . Our procedure is using exponential weights of the following form:

ω(n)
j =

exp(∑n
i=1Yi f j(Xi))

∑k∈{1...M} exp(∑n
i=1Yi fk(Xi))

.

Then we define the following aggregate:

f̃n =
M

∑
j=1

ω(n)
j f j. (21)

Under the margin assumption (10), we have this oracle inequality:

Theorem 20 (Lecué, 2005) Suppose (10) holds for some q ∈ (0,+∞). Assume we have at least a
polynomial number of classifiers to aggregate (i.e., there exist a ≥ 1, b > 0 such that M ≥ anb).
Then the aggregate defined in (21) satisfies, for all integer n ≥ 1,

ER( f̃n, f ∗) ≤ (1+2log−1/4 M)

(
2 min

k∈{1,...M}
R( fk, f ∗)+Cn−

q+1
q+2 log7/4 M

)
, (22)

where C depends on a,b and the constant c0 appearing in (10).

Proof (of Theorem 12)
Let (q0,s0) ∈ K and consider 0 < qmin < qmax < +∞ and 0 < smin < smax < +∞ such that K ⊂

[qmin,qmax]× [smin,smax]. We consider the function

Φ(q,s) =
r(r− s)(q+1)

s(r(q+2)−d)+(r− s)(q+1)d

defined on [0,+∞[×[0,+∞[ with value on [ 1
2 , r

d ]. We denote by

k0 ∈
{

0, . . . ,

⌊
(2r−d)∆

2d

⌋
−1

}
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the integer such that

1
2

+ k0∆−1 ≤ Φ(q0,s0) ≤
1
2

+(k0 +1)∆−1.

Since q 7→ Φ(q,s) continuously increases on R
+, for n greater than a constant depending on b, r, d

and K, there exists q0 ∈
[qmin

2 ,qmax
]

such that q0 ≤ q0 and

Φ(q0,s0) =
1
2

+ k0∆−1. (23)

Now we can apply Theorem 20 for q0. Since ∆ = nb
2, putting M =

⌊
(2r−d)∆

2d

⌋
we have the following

oracle inequality:

EP⊗n2

(
R( f̃n, f ∗)|D1

n1

)
≤ (1+2log−

1
4 M)

(
2 min

α∈G(n2)

(
R( f̂ α

n1
, f ∗)

)
+C1n

− q0+1
q0+2

2 log7/4 M

)
,

where C1 depends on c0, K and b. Hence we have, integrating with respect to D1
n1

,

E
(
R( f̃n, f ∗)

)
≤C2

(
ER( f̂

αk0
n1 , f ∗)+n

− q0+1
q0+2

2 log7/4 n2

)
,

where αk0 = m−φk0 = n−Φ(q0,s0)
2 with (23) and C2 depends on K,b,r,d and c0. Therefore we can

apply Theorem 7 to the classifier f̂ αk
n1

:

EP⊗n1 R( f̂
αk0
n1 , f ∗) ≤Cn

− s0
r−s0

Φ(q0,s0)

1 ,

where C depends on r,d and K. Remark that C does not depend on q0 and s0 since (q0,s0) ∈
[ qmin

2 ,qmax]× [smin,smax]. Moreover C is uniformly bounded over (q,s) belonging to a compact in
Theorem 7.

Finally suppose P satisfies (10) for q0. Hence we obtain:

E
(
R( f̃n, f ∗)

)
≤ C3

(
n
− s0

r−s0
Φ(q0,s0)

1 +n
− q0+1

q0+2

2 log
7
4 n2

)

for C3 := C3(K,b,c0,r,C0,d). We have n ≥ n2 ≥ an
logn and n1 ≥ n( 2

3 − a
log3). Then for n greater than

a constant depending on βmin, a, and b, there exists C′
3 := C′

3(K,b,c0,r,C0,d) such that

E
(
R( f̃n, f ∗)

)
≤ C3

(
n−

s0
r−s0

Φ(q0,s0) +n−
q0+1
q0+2 log

11
4 n

)

≤ C′
3n−

s0
r−s0

Φ(q0,s0).

The construction of q0 and restrictions on r entail s0
r−s0

|Φ(q0,s0)−Φ(q0,s0)| ≤ ∆−1 = n−b
2 . We lead

to the conclusion since the sequence (nn−b
2 )n∈N is convergent.
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