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Abstract

In many applications, one has to actively select among a set of expensive observations before mak-
ing an informed decision. For example, in environmental monitoring, we want to select locations
to measure in order to most effectively predict spatial phenomena. Often, we want to select ob-
servations which are robust against a number of possible objective functions. Examples include
minimizing the maximum posterior variance in Gaussian Process regression, robust experimental
design, and sensor placement for outbreak detection. In this paper, we present the Submodular Satu-
ration algorithm, a simple and efficient algorithm with strong theoretical approximation guarantees
for cases where the possible objective functions exhibit submodularity, an intuitive diminishing
returns property. Moreover, we prove that better approximation algorithms do not exist unless
NP-complete problems admit efficient algorithms. We show how our algorithm can be extended to
handle complex cost functions (incorporating non-unit observation cost or communication and path
costs). We also show how the algorithm can be used to near-optimally trade off expected-case (e.g.,
the Mean Square Prediction Error in Gaussian Process regression) and worst-case (e.g., maximum
predictive variance) performance. We show that many important machine learning problems fit our
robust submodular observation selection formalism, and provide extensive empirical evaluation on
several real-world problems. For Gaussian Process regression, our algorithm compares favorably
with state-of-the-art heuristics described in the geostatistics literature, while being simpler, faster
and providing theoretical guarantees. For robust experimental design, our algorithm performs fa-
vorably compared to SDP-based algorithms.
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1. Introduction

In tasks such as sensor placement for environmental monitoring or experimental design, one has
to select among a large set of possible, but expensive, observations. In environmental monitoring,
we can choose locations where measurements of a spatial phenomenon (such acidicity in rivers and
lakes, cf., Figure 1(a)) should be obtained. In experimental design, we frequently have a menu of
possible experiments which can be performed. Often, there are several different objective functions
which we want to simultaneously optimize. For example, in the environmental monitoring prob-
lem, we want to minimize the marginal posterior variance of our acidicity estimate at all locations
simultaneously. In experimental design, we often have uncertainty about the model parameters, and
we want our experiments to be informative no matter what the true parameters of the model are. In
sensor placement for contamination detection in water distribution networks (cf., Figure 1(b)), we
want to place sensors in order to quickly detect any possible contamination event.

Our goal in all these problems is to select observations (sensor locations, experiments) which
are robust against a worst-case objective function (location to evaluate predictive variance, model
parameters, contamination event, etc.). Often, the individual objective functions, for example, the
marginal variance at one location, or the information gain for a fixed set of parameters (Das and
Kempe, 2008; Krause et al., 2007b; Krause and Guestrin, 2005; Guestrin et al., 2005), satisfy sub-
modularity, an intuitive diminishing returns property: Adding a new observation helps less if we
have already made many observations, and more if we have made few observation thus far. While
NP-hard, the problem of selecting an optimal set of k observations maximizing a single submodular
objective can be approximately solved using a simple greedy forward-selection algorithm, which
is guaranteed to perform near-optimally (Nemhauser et al., 1978). However, as we show, this sim-
ple myopic algorithm performs arbitrarily badly in the case of a worst-case objective function. In
this paper, we address the fundamental problem of nonmyopically selecting observations which are
robust against such an adversarially chosen submodular objective function. In particular:

• We present SATURATE, an efficient algorithm for the robust submodular observation selection
problem. Our algorithm guarantees solutions which are at least as informative as the optimal
solution, at only a slightly higher cost.

• We prove that our approximation guarantee is the best possible, that is, the guarantee cannot
be improved unless NP-complete problems admit efficient algorithms.

• We discuss several extensions of our approach, handling complex cost functions and trading
off worst-case and average-case performance.

• We extensively evaluate our algorithm on several real-world tasks, including minimizing
the maximum posterior variance in Gaussian Process regression, finding experiment designs
which are robust with respect to parameter uncertainty, and sensor placement for outbreak
detection.

This manuscript is organized as follows. In Section 2, we formulate the robust submodular
observation selection problem, and in Section 3, we analyze its hardness. We subsequently present
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SATURATE, an efficient approximation algorithm for this problem (Section 4), and show that our ap-
proximation guarantees are best possible, unless NP-complete problems admit efficient algorithms
(Section 5). In Section 6, we discuss how many important machine learning problems are instances
of our robust submodular observation selection formalism. We then discuss extensions (Section 7)
and evaluate the performance of SATURATE on several real-world observation selection problems
(Section 8). Section 9 presents heuristics to improve the computational performance of our algo-
rithm, Section 10 reviews related work, and Section 11 presents our conclusions.

(a) NIMS deployed at UC Merced (b) Water distribution network

Figure 1: (a) Deployment of the Networked Infomechanical System (NIMS, Harmon et al., 2006)
to monitor a lake near UC Merced. (b) Illustration of the municipal water distribution
network considered in the Battle of the Water Sensor Networks challenge (cf., Ostfeld
et al., 2008).

2. Robust Submodular Observation Selection

In this section, we first review the concept of submodularity (Section 2.1), and then introduce the
robust submodular observation selection (RSOS) problem (Section 2.2).

2.1 Submodular Observation Selection

Let us consider a spatial prediction problem, where we want to estimate the pH values across a
horizontal transect of a river, for example, using the NIMS robot shown in Figure 1(a). We can
discretize the space into a finite number of locations V , where we can obtain measurements, and
model a joint distribution P(XV ) over variables XV associated with these locations. One example
of such models, which have found common use in geostatistics (cf., Cressie, 1991), are Gaussian
Processes (cf., Rasmussen and Williams, 2006). Based on such a model, a typical goal in spatial
monitoring is to select a subset of locations A ⊆ V to observe, such that the average predictive
variance,

V (A) =
1
n ∑

i

σ2
i|A ,
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is minimized (cf., Section 6.1 for more details). Hereby, σ2
i|A denotes the predictive variance at

location i after observing locations A , that is,

σ2
i|A =

Z
P(xA)E

[
(Xi−E [Xi | xA ])2 | xA

]
dxA .

Unfortunately, the problem
A∗ = argmin

|A |≤k
V (A)

is NP-hard in general (Das and Kempe, 2008), and the number of candidate solutions is very large,
so generally we cannot expect to efficiently find the optimal solution. Fortunately, as Das and
Kempe (2008) show, in many cases, the variance reduction

Fs(A) = σ2
s −σ2

s|A

at any particular location s, satisfies the following diminishing returns behavior: Adding a new
observation reduces the variance at s more, if we have made few observations so far, and less, if we
have already made many observations. This formalism can be formalized using the combinatorial
concept of submodularity (cf., Nemhauser et al., 1978):

Definition 1 A set function F : 2V → R is called submodular, if for all subsets A ,B ⊆ V it holds
that F(A ∪B)+F(A ∩B)≤ F(A)+F(B).

Nemhauser et al. (1978) prove a convenient characterization of submodular functions: F is
submodular if and only if for all A ⊆B ⊆V and s∈V \B it holds that F(A∪{s})−F(A)≥F(B∪
{s})− F(B). This characterization exactly matches our diminishing returns intuition about the
variance reduction Fs at location s. Since each of the variance reduction functions Fs is submodular,
the average variance reduction

F(A) = V ( /0)−V (A) =
1
n ∑

s
Fs(A)

is also submodular. The average variance reduction is also monotonic, that is, for all A ⊆ B ⊆ V it
holds that F(A)≤ F(B), and normalized (F( /0) = 0).

Hence, the problem of minimizing the average variance is an instance of the problem

max
A⊆V

F(A), subject to |A | ≤ k, (1)

where F is normalized, monotonic and submodular, and k is a bound on the number of observations
we can make. As Krause and Guestrin (2007a) show, many other observation selection problems
are instances of Problem (1).

Since solving Problem (1) is NP-hard in most interesting instances (Feige, 1998; Krause et al.,
2006, 2007b; Das and Kempe, 2008), in practice, heuristics are often used. One such heuristic is
the greedy algorithm. This algorithm starts with the empty set, and iteratively adds the element
s∗ = argmaxs∈V \A F(A ∪{s}), until k elements have been selected. Perhaps surprisingly, a funda-
mental result by Nemhauser et al. (1978) states that for submodular functions, the greedy algorithm
achieves a constant factor approximation:
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Theorem 2 (Nemhauser et al. 1978) In the case of any normalized, monotonic submodular func-
tion F, the set AG obtained by the greedy algorithm achieves at least a constant fraction (1−1/e)
of the objective value obtained by the optimal solution, that is,

F(AG)≥ (1−1/e) max
|A |≤k

F(A).

Moreover, no polynomial time algorithm can provide a better approximation guarantee unless P =
NP (Feige, 1998).

2.2 The Robust Submodular Observation Selection (RSOS) Problem

For phenomena, such as the one indicated in Figure 2(a), which are spatially homogeneous (isotropic),
maximizing this average variance reduction leads to effective variance reduction everywhere in the
space. However, many spatial phenomena are nonstationary, being smooth in certain areas and
highly variable in others, such as the example indicated in Figure 2(b). In such a case, maximizing
the average variance reduction will typically put only few examples in the areas highly variable
areas. However, those regions are typically the most interesting, since they are most difficult to
predict. In such cases, we might want to simultaneously minimize the variance everywhere in the
space.
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(b) High maximum variance

Figure 2: Spatial predictions using Gaussian Processes with a small number of observations. The
blue solid line indicates the unobserved latent function, and blue squares indicate observa-
tions. The plots also show confidence bands (green). Dashed line indicates the prediction.
(b) shows an example with high maximum predictive variance, but low average variance,
whereas (a) shows an example with high average variance, but lower maximum variance.
Note, that in (b) we are most uncertain about the most variable (and interesting, since
it is hard to predict) part of the curve, suggesting that the maximum variance should be
optimized.

More generally, in many applications (such as the spatial monitoring problem discussed above,
and several other examples which we present in Section 6), we want to perform equally well with
respect to multiple objectives. We will hence consider settings where we are given a collection of
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A F1(A) F2(A) mini Fi(A)
/0 0 0 0
{s1} n 0 0
{s2} 0 n 0
{t1} 1 1 1
{t2} 1 1 1
{s1,s2} n n n
{s1, t1} n+1 1 1
{s1, t2} n+1 1 1
{s2, t1} 1 n+1 1
{s2, t2} 1 n+1 1
{t1, t2} 2 2 2

Table 1: Functions F1 and F2 used in the counterexample.

normalized monotonic submodular functions F1, . . . ,Fm, and we want to solve

max
A⊆V

min
i

Fi(A), subject to |A | ≤ k. (2)

The goal of Problem (2) is to find a set A of observations, which is robust against the worst possible
objective, mini Fi, from our set of possible objectives. Consider the spatial monitoring setting for
example, and assume that the prior variance σ2

i is constant (we will relax this assumption in Sec-
tion 7.2) over all locations i. Then, the problem of minimizing the maximum variance, as motivated
by the example in Figure 2, is equivalent to maximizing the minimum variance reduction, that is,
solving Problem (2) where Fi is the variance reduction at location i.

We call Problem (2) the Robust Submodular Observation Selection (RSOS) problem. Note,
that even if the Fi are all submodular, Fwc(A) = mini Fi(A) is generally not submodular. In fact,
we show below that, in this setting, the simple greedy algorithm (which performs near-optimally in
the single-criterion setting) can perform arbitrarily badly. While the example in Table 1 might seem
artificial, as we show in Section 8 (especially Section 8.3), the greedy algorithm exhibits very poor
performance when applied to practical problems.

3. Hardness of the Robust Submodular Observation Selection Problem

Given the near-optimal performance of the greedy algorithm for the single-objective problem, a nat-
ural question is if the performance guarantee generalizes to the more complex robust optimization
setting. Unfortunately, this hope is far from true, even in the simpler case of modular (additive)
functions Fi. Consider a case with two submodular functions, F1 and F2, where the set of observa-
tions is V = {s1,s2, t1, t2}. The functions take values as indicated in Table 1. Optimizing for a set
of 2 elements, the greedy algorithm maximizing Fwc(A) = min{F1(A),F2(A)} would first choose
t1 (or t2), as this choice increases the objective min{F1,F2} by 1, as opposed to 0 for s1 and s2. The
greedy solution for k = 2 would then be the set {t1, t2}, obtaining a score of 2. However, the optimal
solution with k = 2 is {s1,s2}, with a score of n. Hence, as n→ ∞, the greedy algorithm performs
arbitrarily worse than the optimal solution.
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Given that the greedy algorithm performs arbitrarily badly, our next hope would be to obtain a
different good approximation algorithm. However, we can show that most likely this is not possible:

Theorem 3 Unless P = NP, there cannot exist any polynomial time approximation algorithm for
Problem (2). More precisely: If there exists a positive function γ(·) > 0 and an algorithm that, for
all n and k, in time polynomial in the size of the problem instance n, is guaranteed to find a set A ′
of size k such that mini Fi(A ′)≥ γ(n)max|A |≤k mini Fi(A), then P = NP.

Thus, unless P = NP, there cannot exist any algorithm which is guaranteed to provide, for example,
even an exponentially small fraction (γ(n) = 2−n) of the optimal solution. All proofs can be found
in the Appendix.

4. The Submodular Saturation Algorithm

We now present an algorithm that finds a set of observations which perform at least as well as the
optimal set, but at slightly increased cost; moreover, we show that no efficient algorithm can provide
better guarantees (under reasonable complexity-theoretic assumptions).

4.1 Algorithm Overview

For now we assume that all Fi take only integral values; this assumption is relaxed in Section 7.1.
The key idea is to consider the following alternative problem formulation:

max
c,A

c, subject to Fi(A)≥ c for 1≤ i≤ m and |A | ≤ k. (3)

We want a set A of size at most k, such that Fi(A) ≥ c for all i, and c is as large as possible. Note
that Problem (3) is equivalent to the original Problem (2): Maximizing c subject to the existence of
a set A , |A | ≤ k such that Fi(A)≥ c for all i is equivalent to maximizing mini Fi(A).

Now suppose we had an algorithm that, for any given value c, solves the following optimization
problem:

Ac = argmin
A
|A | subject to Fi(A)≥ c for 1≤ i≤ m (4)

that is, finds the smallest set A with Fi(A)≥ c for all i. If this set has at most k elements, then c (and
the set A) is feasible for the RSOS Problem (3). If we cannot find a set A satisfying Fi(A)≥ c for
all i and containing at most k elements, then c is infeasible. A binary search on c would then allow
us to find the optimal solution with the maximum feasible c. We call Problem (4) the MINCOVERc

problem, as it requires to find the smallest set guaranteeing an equal amount of coverage, c, for all
objective functions Fi.

Since Theorem 3 rules out any approximation algorithm which respects the constraint k on the
size of the set A , our only hope for non-trivial guarantees requires us to relax this constraint. Our
algorithm is based on the following approach:

• We define a relaxed version of the RSOS problem with a superset of feasible solutions that
we call RELRSOS.

• We will maintain a lower bound (a feasible solution) for RELRSOS, and an upper bound for
RSOS.
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0 mini Fi(V)

c

cmaxcmin

feasible c for RSOS

feasible c for RelRSOS search interval

c* c’

Figure 3: Illustration of feasible regions for the RSOS and RELRSOS problems. [cmin,cmax] is
the search interval during some iteration of SATURATE. c∗ is the optimal solution to the
RSOS problem, and c′ is the solution that will eventually be returned by SATURATE.

• We will then successively improve the upper and lower bounds using a binary search pro-
cedure. Upon convergence, we are thus guaranteed a feasible solution to RELRSOS, that
performs at least as well as the optimal solution to the RSOS problem.

We now define the RELRSOS problem, the relaxed version of the RSOS Problem (3).

max
c,A

c, subject to Fi(A)≥ c for 1≤ i≤ m and |A | ≤ αk. (5)

Hereby, α ≥ 1 is a parameter relaxing the constraint on |A |. If α = 1, we recover the RSOS
Problem (3).

As described above, our goal will be to approximately solve the RELRSOS Problem (5) for a
fixed constant α. More formally, we will develop an efficient algorithm, SATURATE, which returns
a solution (c′,A ′) that is feasible for the RELRSOS Problem (5), and achieves a score that is at
least as good as an optimal solution (c∗,A∗) to the RSOS Problem (3), that is, c′ ≥ c∗ and |A ′| ≤
α|A∗| ≤ αk.

The basic idea of SATURATE is to use the binary search procedure (maintaining a search interval
[cmin,cmax]) as described above, but using an approximate algorithm, GPC (for Greedy Partial Cov-
erage) that we will develop below, for the MINCOVERc Problem (4). When invoked with a fixed
value c, the GPC algorithm will return a feasible solution |A ′c| to the MINCOVERc Problem (4). We
will furthermore guarantee that

• |A ′c| > αk implies that c > c∗, that is, c is an upper bound to the RSOS Problem (3), and
hence it is safe to set cmax = c, and

• |A ′c| ≤ αk implies that A ′c is a feasible solution (lower bound) to the RELRSOS Problem (5).
A ′c is then kept as best current solution and we can set cmin = c.

The binary search procedure will hence always maintain an upper bound cmax to the RSOS Prob-
lem (3), and a lower bound cmin to the RELRSOS Problem (5). Upon termination, it is thus guaran-
teed to find a solution AS for which it holds that mini Fi(AS)≥ c∗ (since AS is an upper bound to the
RSOS Problem (3)) and |AS| ≤ αk (since AS is feasible for the RELRSOS Problem (5)). Hence,
the approximate solution AS obtains minimum value at least as high as the best possible score ob-
tainable using k elements, but using slightly more (at most αk) elements than k elements. Figure 3
illustrates the feasible regions of the RSOS and RELRSOS problems, as well as the binary search
procedure.
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4.2 Algorithm Details

We will now provide formal details for the algorithm sketched in Section 4.1. As trivial lower
and upper bounds for the RSOS problem we can initially set cmin = 0 ≤ mini Fi( /0), and cmax =
mini Fi(V ), due to monotonicity of the Fi.

First, we will develop the efficient algorithm GPC which approximately solves the MINCOVERc

Problem (4). For any value c that could possibly be feasible (i.e., 0 ≤ c ≤ mini Fi(V )), define
F̂i,c(A) = min{Fi(A),c}, the original function Fi truncated at score level c. The key insight is that
these truncated functions F̂i,c remain monotonic and submodular (Fujito, 2000). Figure 4 illustrates
this truncation concept. Let Fc(A) = 1

m ∑i F̂i,c(A) be their average value. Since monotonic sub-
modular functions are closed under convex combinations, Fc is also submodular and monotonic.
Furthermore, Fi(A) ≥ c for all 1 ≤ i ≤ m if and only if Fc(A) = c. Hence, in order to determine
whether some c is feasible for Problem (5), we need to determine whether there exists a set of size
at most αk such that Fc(A) = c. Note, that due to monotonicity of Fc and the choice of c it holds
that that c = Fc(V ). We hence need to solve the following optimization problem:

A∗c = argmin
A⊆V

|A |, such that Fc(A) = Fc(V ). (6)

Problems of the form minA |A | such that F(A) = F(V ), where F is a monotonic submodular
function, are called submodular covering problems. Since Fc satisfies these requirements, the
MINCOVERc Problem (6) is an instance of such a submodular covering problem. While such prob-
lems are NP-hard in general (Feige, 1998), Wolsey (1982) shows that the greedy algorithm, that
starts with the empty set (A = /0) and iteratively adds the element s increasing the score the most
until F(A) = F(V ), achieves near-optimal performance on this problem. We can hence use the
greedy algorithm applied to the truncated functions Fc as our approximate algorithm GPC, which
is formalized in Algorithm 1. Using Wolsey’s result and the observation that α can be chosen
independently of the truncation threshold c, we find:

Lemma 4 Given integral valued1 monotonic submodular functions F1, . . . ,Fm and a (feasible) con-
stant c, Algorithm 1 (with input Fc) finds a set AG such that Fi(AG)≥ c for all i, and |AG| ≤ α|A∗c |,
where A∗c is an optimal solution to Problem (6), and

α = 1+ log

(
max
s∈V

∑
i

Fi({s})
)

.

We can compute this approximation guarantee α for any given instance of the RSOS problem.
Hence, if for a given value of c the greedy algorithm returns a set of size greater than αk, there cannot
exist a solution A ′ with |A ′| ≤ k with Fi(A ′) ≥ c for all i. Thus, c is an upper bound to the RSOS
Problem (3). We can use this argument to conduct the binary search discussed in Section 4.1 to find
the optimal value of c. The binary search procedure maintains an interval [cmin,cmax], initialized
[0,mini Fi(V )]. At every iteration, we test the current center of the interval, c = (cmin + cmax)/2,
and check feasibility of c using the greedy algorithm. If c is feasible, we retain the current best
feasible solution and set cmin = c. If c is infeasible (which we detect by comparing the number of
elements picked by the greedy algorithm with αk), we set cmax = c.

1. This bound is only meaningful for integral Fi, otherwise it could be arbitrarily improved by scaling the Fi. We relax
the constraint on integrality of the Fi in Section 7.1.
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Figure 4: Truncating an objective function F preserves submodularity and monotonicity.

GPC (Fc, c)
A ← /0;
while Fc(A) < c do

foreach s ∈ V \A do δs← Fc(A ∪{s})−Fc(A);
A ← A ∪{argmaxs δs};

end

Algorithm 1: The greedy submodular partial cover (GPC) algorithm.

We call Algorithm 2, which formalizes this procedure, the submodular saturation algorithm
(SATURATE), as the algorithm considers the truncated objectives F̂i,c, and chooses sets which satu-
rate all these objectives. In the pseudo-code of Algorithm 2 we pass α as a parameter. Theorem 5
(given below) states that SATURATE, when applied with α chosen as in Lemma 4, is guaranteed
to find a set which achieves worst-case score mini Fi at least as high as the optimal solution, if we
allow the set to be logarithmically (a factor α) larger than the optimal solution.

Theorem 5 For any integer k, SATURATE finds a solution AS such that

min
i

Fi(AS)≥ max
|A |≤k

min
i

Fi(A) and |AS| ≤ αk,

for α = 1+ log(maxs∈V ∑i Fi({s})). The total number of submodular function evaluations is

O
(
|V |2m log

(
mmin

i
Fi(V )

))
.

Note, that the algorithm still makes sense for any value of α. However, if α < 1+log(maxs∈V ∑i Fi({s})),
the guarantee of Theorem 5 does not hold. As argued in Section 4.1, if we had an exact algorithm for
submodular coverage, then we would set α = 1, and SATURATE would return the optimal solution
to the RSOS problem. Since, in our experience, the greedy algorithm for optimizing submodular
functions works very effectively (cf., Krause et al. 2007b), in our experiments, we call SATURATE

with α = 1. This choice empirically performs very well, as demonstrated in Section 8.
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SATURATE (F1, . . . ,Fm,k,α)
cmin← 0; cmax←mini Fi(V ); Abest ← /0;
while (cmax− cmin)≥ 1

m do
c← (cmin + cmax)/2;
Define Fc(A)← 1

m ∑i min{Fi(A),c};
Â ← GPC(Fc,c);
if |Â|> αk then

cmax← c;
else

cmin← c; Abest = Â
end

end

Algorithm 2: The Submodular Saturation algorithm.

If we apply SATURATE to the example problem described in Section 3, we would start with
cmax = n. Running the coverage algorithm (GPC) with c = n/2 would first pick element s1 (or s2),
since Fc({s1}) = n/2, and, next, pick s2 (or s1 resp.), hence finding the optimal solution.

The worst-case running time guarantee is quite pessimistic, and in practice the algorithm is
much faster: Using a priority queue and lazy evaluations, Algorithm 1 can be sped up drastically.
Lazy evaluations exploit the fact that, due to submodularity, the differences δs(A) = Fc(XA∪s)−
Fc(XA) that are computed by GPC are monotonically decreasing in A , which allows to avoid a
large number of function evaluations (cf., Robertazzi and Schwartz 1989 for details). In addition,
for many submodular functions Fi, such as the variance reduction, it is often cheaper to compute
Fc(XA∪s)−Fc(XA) instead of Fc(XA∪s). This observation can be exploited to drastically speed up
GPC. Furthermore, in practical implementations, one would stop GPC once αk +1 elements have
been selected, which already proves that the optimal solution with k elements cannot achieve score
c. Also, Algorithm 2 can be terminated once cmax− cmin is sufficiently small; in our experiments,
10-15 iterations usually sufficed.

5. Hardness of Bicriterion Approximation

Guarantees of the form presented in Theorem 5 are often called bicriterion guarantees. Instead
of requiring that the obtained objective score is close to the optimal score and all constraints are
exactly met, a bicriterion guarantee requires a bound on the suboptimality of the objective, as well
as bounds on how much the constraints are violated. Theorem 3 showed that—unless P = NP—no
approximation guarantees can be obtained which do not violate the constraint on the cost k, thereby
necessitating the bricriterion analysis.

One might ask, whether the guarantee on the size of the set, α, can be improved. Unfortunately,
this is not likely, as the following result shows:

Theorem 6 If there were a polynomial time algorithm which, for any integer k, is guaranteed to
find a solution AS such that mini Fi(AS)≥max|A |≤k mini Fi(A) and |AS| ≤ βk, where β≤ (1−ε)(1+
logmaxs∈V ∑i Fi({s})) for some fixed ε > 0, then NP⊆ DTIME(nlog logn).
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Hereby, DTIME(nlog logn) is a class of deterministic, slightly superpolynomial (but sub-exponential)
algorithms (Feige, 1998); the inclusion NP⊆DTIME(nlog logn) is considered unlikely (Feige, 1998).
Taken together, Theorem 3 and Theorem 6, provide strong theoretical evidence that SATURATE

achieves best possible theoretical guarantees for the problem of maximizing the minimum over a
set of submodular functions.

6. Examples of Robust Submodular Observation Selection problems

We now demonstrate that many important machine learning problems can be phrased as RSOS
problems. Section 8 provides more details and experimental results for these domains.

6.1 Minimizing the Maximum Kriging Variance

Consider a Gaussian Process (GP) (cf., Rasmussen and Williams, 2006) XV defined over a finite
set of locations (indices) V . Hereby, XV is a set of random variables, one variable Xs for each
location s ∈ V . Given a set of locations A ⊆ V which we observe, we can compute the predictive
distribution P(XV \A | XA = xA), that is, the distribution of the variables XV \A at the unobserved
locations V \A , conditioned on the measurements at the selected locations, XA = xA . Let σ2

s|A
be the residual variance after making observations at A . Let ΣAA be the covariance matrix of
the measurements at the chosen locations A , and ΣsA be the vector of cross-covariances between
the measurements at s and A . Then, the predictive variance (often called Kriging variance in the
geostatistics literature), given by

σ2
s|A = σ2

s −ΣsAΣ−1
AAΣAs,

depends only on the set A , and not on the observed values xA .2 As argued in Section 2, an often
(especially in the case of nonstationary phenomena) appropriate criterion is to select locations A
such that the maximum marginal variance is as small as possible, that is, we want to select a subset
A∗ ⊆ V of locations to observe such that

A∗ = argmin
|A |≤k

max
s∈V

σ2
s|A . (7)

Let us assume for now that the a priori variance σ2
s is constant for all locations s (in Section 7, we

show how our approach generalizes to non-constant marginal variances). Furthermore, let us define
the variance reduction Fs(A) = σ2

s −σ2
s|A . Solving Problem (7) is then equivalent to maximizing

the minimum variance reduction over all locations s. For a particular location s, Das and Kempe
(2008) show that the variance reduction Fs (often) is a monotonic submodular function. Hence the
problem

A∗ = argmax
|A |≤k

min
s∈V

Fs(A) = argmax
|A |≤k

min
s∈V

σ2
s −σ2

s|A

is an instance of the RSOS problem.

2. This independence is a particular property of the Gaussian distribution. When such independence is present, there is
no benefit of sequentially selecting observations (cf., Krause and Guestrin, 2007b).
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6.2 Variable Selection under Parameter Uncertainty

Consider an application, where we want to diagnose a failure of a complex system, by perform-
ing a number of tests. We can model this problem by using a set of discrete random variables
XV = {X1, . . . ,Xn} indexed by V = {1, . . . ,n}, which model both the hidden state of the system
and the outcomes of the diagnostic tests. The interaction between these variables is modeled by
a joint distribution P(XV | θ) with parameters θ. Krause et al. (2007b) and Krause and Guestrin
(2005) show that many variable selection problems can be formulated as the problem of optimizing
a submodular utility function (measuring, for example, the information gain I(XU ,XA) with respect
to some variables of interest U, or the mutual information I(XA ;XV \A) between the observed and
unobserved variables, etc.). However, the informativeness of a chosen set A typically depends on
the particular parameters θ, and these parameters might be uncertain. In some applications, it might
not be reasonable to impose a prior distribution over θ, and we may want to perform well even
under the worst-case parameters. In these cases, we can associate, with each parameter setting θ, a
different submodular objective function Fθ, for example,

Fθ(A) = I(XA ;XU | θ),

and we might want to select a set A which simultaneously performs well for all possible parameter
values. In practice, we can discretize the set of possible parameter values θ (for example around
a 95% confidence interval estimated from initial data) and optimize the worst case Fθ over the
resulting discrete set of parameters.

6.3 Robust Experimental Designs

Another application is experimental design under nonlinear dynamics (Flaherty et al., 2006). The
goal is to estimate a set of parameters θ of a nonlinear function y = f (x,θ) + w, by providing a
set of experimental stimuli x, and measuring the (noisy) response y. In many cases, experimental
design for linear models (where y = A(x)T θ + w with Gaussian noise w) can be efficiently solved
by semidefinite programming (Boyd and Vandenberghe, 2004). In the nonlinear case, a common
approach (cf., Chaloner and Verdinelli, 1995) is to linearize f around an initial parameter estimate
θ0, that is,

y = f (x,θ0)+V (x)(θ−θ0)+w, (8)

where V (x) is the Jacobian of f with respect to the parameters θ, evaluated at θ0. Subsequently, a
locally-optimal design is sought, which is optimal for the linear design Problem (8) for initial pa-
rameter estimates θ0. Flaherty et al. (2006) show that the efficiency of such a locally optimal design
can be very sensitive with respect to the initial parameter estimates θ0. Consequently, they develop
an efficient semi-definite program (SDP) for E-optimal design (i.e., the goal is to minimize the max-
imum eigenvalue of the error covariance) which is robust against perturbations of the Jacobian V .
However, it might be more natural to directly consider robustness with respect to perturbation of the
initial parameter estimates θ0, around which the linearization is performed. We show how to find
(Bayesian A-optimal) designs which are robust against uncertainty in these parameter estimates. In
this setting, the objectives Fθ0(A) are the reductions of the trace of the parameter covariance,

Fθ0(A) = tr
(

Σ(θ0)
θ

)
− tr

(
Σ(θ0)

θ|A
)

,
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Figure 5: Securing a municipal water distribution network against contaminations performed under
knowledge of the sensor placement is another instance of the RSOS problem.

where Σ(θ0) is the joint covariance of observations and parameters after linearization around θ0; thus,
Fθ0 is the sum of marginal parameter variance reductions, which are (often) individually monotonic
and submodular (Das and Kempe, 2008), and so Fθ0 is monotonic and submodular as well. Hence,
in order to find a robust design, we maximize the minimum variance reduction, where the minimum
is taken over (a discretization into a finite subset of) all initial parameter values θ0.

6.4 Sensor Placement for Outbreak Detection

Another class of examples are outbreak detection problems on graphs, such as contamination detec-
tion in water distribution networks (Leskovec et al., 2007). Here, we are given a graph G = (V ,E),
and a phenomenon spreading dynamically over the graph. We define a set of intrusion scenarios
I ; each scenario i ∈ I models an outbreak (e.g., spreading of contamination) starting from a given
node s ∈ V in the network. By placing sensors at a set of locations A ⊆ V , we can detect such an
outbreak, and thereby minimize the adverse effects on the network.

More formally, for each possible outbreak scenario i ∈ I and for each node v ∈ V we define
the detection time Ti(v) as the time when the outbreak affects node v (and Ti(v) = ∞ if node v is
never affected). We furthermore define a penalty function πi(t) which models the penalty incurred
for detecting outbreak i at time t. We require πi(t) to be monotonically non-decreasing in t (i.e., we
never prefer late over early detection), and bounded above by πi(∞) ∈ R. Our goal is to minimize
the worst-case penalty: We extend πi to observation sets A as πi(A) = πi (mins∈A Ti(s)). Then, our
goal is to solve

A∗ = argmin
|A |≤k

max
i∈I

πi(A).

Equivalently, we can define the penalty reduction Fi(A) = πi(∞)−πi(A). Clearly, Fi( /0) = 0, Fi

is monotonic. In Leskovec et al. (2007), it was shown that Fi is also guaranteed to be submodular.
For now, let us assume that πi(∞) is constant for all i (we will relax this assumption in Section 7.2).
Our goal in sensor placement is then to select a set of sensors A such that the minimum penalty
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reduction is as large as possible, that is, we want to select

A∗ = argmax
|A |≤k

min
i∈I

Fi(A).

In other words, an adversary observes our sensor placement A , and then decides on an intrusion i
for which our utility Fi(A) is as small as possible. Hence, our goal is to find a placement A which
performs well against such an adversarial opponent.

6.5 Robustness Against Sensor Failures and Feature Deletion

Another interesting instance of the RSOS problem arises in the context of robust sensor placements.
For example, in the outbreak detection problem, sensors might fail, due to hardware problems or
manipulation by an adversary. We can model this problem in the following way: Consider the
case where all sensors at a subset B ⊆ V of locations fail. Given a submodular function F (e.g.,
the utility for placing a set of sensors), and the set B ⊆ V of failing sensors, we can define a
new function FB(A) = F(A \B), corresponding to the (reduced) utility of placement A after the
sensor failures. It is easy to show that if F is nondecreasing and submodular, so is FB . Hence, the
problem of optimizing sensor placements which are robust to sensor failures results in a problem of
simultaneously maximizing a collection of submodular functions, for example, for the worst-case
failure of k′ < k sensors we solve

A∗ = argmax
|A |≤k

min
|B|≤k′

FB(A).

We can also combine the optimization against adversarial contamination scenarios as discussed in
Section 6.3 with adversarial sensor failures, and optimize3

A∗ = argmax
|A |≤k

min
i∈I

min
|B|≤k′

Fi(A \B).

Another important problem in machine learning is feature selection. In feature selection, the goal
is to select a subset of features which are informative with respect to, for example, a given clas-
sification task. One objective frequently considered is the problem of selecting a set of features
which maximize the information gained about the class variable XY after observing the features XA ,
F(A) = H(XY )−H(XY | XA), where H denotes the Shannon entropy. Krause and Guestrin (2005)
show, that in a large class of graphical models, the information gain F(A) is in fact a submodular
function. Now we can consider a setting, where an adversary can delete features which we selected
(as considered, for example, by Globerson and Roweis 2006). The problem of selecting features ro-
bustly against such arbitrary deletion of, for example, m features, is hence equivalent to the problem
of maximizing min|B|≤m FB(A), where B are the deleted features.

3. Note that for larger values of k′, computing the average truncated utility can be computationally complex. See
Section 9 for possible approaches to reduce this complexity. Also note that in practice, one can expect that sensor
failures have structure (e.g., sensors that are spatially collocated, or share other common features, are more likely to
simultaneously fail). Such structured failures can potentially be modeled by appropriately choosing the collection of
sets B of failing nodes.
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6.5.1 IMPROVED GUARANTEES FOR SENSOR FAILURES

As discussed above, in principle, we could find a placement robust to single sensor failures by using
SATURATE to (approximately) solve

A∗ = argmax
|A |≤k

min
s

Fs(A).

However, since |V | can be very large, and the approximation guarantee α depends logarithmi-
cally on |V |, such a direct approach might not be desirable. We can improve the guarantee from
O(log |V |) to O(log(k log |V |)), which typically is much tighter, if k |V |/ log |V | (i.e., we place
far fewer sensors than we have possible sensor locations). We can improve the approximation guar-
antee drastically by noticing that Fs(A) = F(A) if s /∈ A . Hence,

Fc(A) =
|V |− |A |
|V | min{F(A),c}+ 1

|V | ∑s∈A
F̂s,c(A).

We can replace this objective by a new objective function,

F
′
c(A) =

k′ − |A |
k′

min{F(A),c}+ 1
k′ ∑s∈A

F̂s,c(A)

for some constant k̂ to be specified below. This modified objective is still monotonic and submodular
when restricted to sets of size at most k̂. It still holds that, for all subsets |A | ≤ k̂, that

F
′
c(A)≥ c⇔ Fs(A)≥ c for all s ∈ V .

How large should we choose k̂? We have to choose k̂ large enough such that SATURATE will never
choose sets larger than k̂. A sufficient choice for k̂ is hence �αk�, where α = 1+log(|V |maxs∈V F({s})).
For this choice of k̂, our new approximation guarantee will be

α′ = 1+ log

(
αkmax

s∈V
F({s})

)
= 1+ log

((
1+ log

(
|V |max

s∈V
F({s})

))
kmax

s∈V
F({s})

)
≤ 1+2log

(
k log(|V |)max

s∈V
F({s})

)

Hence, for the new objective F
′
c, we get a tighter approximation guarantee, α′ = 1+

2log(k log(|V |)maxs∈V F({s})), which now depends logarithmically on k log |V |, instead of the
number of available locations |V |. Note that this same approach can also provide tighter approxi-
mation guarantees in the case of multiple sensor failures.

7. Extensions

We now show how some of the assumptions made in our presentation above can be relaxed. We
also discuss several extensions, allowing more complex cost functions, and the tradeoff between
worst-case and average-case scores.
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7.1 Non-integral Objectives

In our analysis of SATURATE (Section 4), we have assumed, that each of the objective functions Fi

only take values in the positive integers. However, most objective functions of interest in observation
selection (such as those discussed in Section 6) typically do not meet this assumption. If the Fi take
on rational numbers, we can scale the objectives by multiplying by their common denominator.

If we allow small additive approximation error (i.e., are indifferent if the approximate solution
differs from the optimal solution in low order bits), we can also approximate the values assumed
by the functions Fi by their highest order bits. In this case, we replace the functions Fi(A) by the
approximations

F ′i (A) =
�2 jFi(A)�

2 j .

By construction, F ′i (A)≤ Fi(A)≤ F ′i (A)(1+2− j), that is, F ′i is within a factor of (1+2− j) of Fi.
Also, 2 jF ′i (A) is integral. However, F ′i (A) is not guaranteed to be submodular. Nevertheless, an
analysis similar to the one presented by Krause et al. (2007b) can be used to bound the effect of
this approximation on the theoretical guarantees α obtained by the algorithm, which will now scale
linearly with the number j of high order bits considered. In practice, as we show in Section 8, SAT-
URATE provides state-of-the-art performance, even without rounding the objectives to the highest
order bits.

7.2 Non-constant Thresholds

Consider the example of minimizing the maximum variance in Gaussian Process regression. Here,
the Fi(A) = σ2

i −σ2
i|A denote the variance reductions at location i. However, rather than guaranteeing

that Fi(A) ≥ c for all i (which, in this example, means that the minimum variance reduction is
c), we want to guarantee that σ2

i|A ≤ c for all i, which requires a different amount of variance
reduction for each location. We can easily adapt our approach to handle this case: Instead of defining
F̂i,c(A) = min{Fi(A),c}, we define F̂i,c(A) = min{Fi(A),σ2

i − c}, and then again perform binary
search over c, but searching for the smallest c instead. The algorithm, using objectives modified in
this way, will bear the same approximation guarantees.

7.3 Non-uniform Observation Costs

We can extend SATURATE to the setting where different observations have different costs. In
the spatial monitoring setting for example, certain locations might be more expensive to acquire
a measurement from. Suppose a cost function g : V → R

+ assigns each element s ∈ V a posi-
tive cost g(s); the cost of a set of observations is then g(A) = ∑s∈A g(s). The problem is to find
A∗ = argmaxA⊂V mini Fi(A) subject to g(A)≤ B, where B > 0 is a budget we can spend on making
observations. In this case, we use the rule

δs← Fc(A ∪{s})−Fc(A)
g(s)

in Algorithm 1. For this modified algorithm, Theorem 5 still holds, with |A | replaced by g(A)
and k replaced by B. This more general result holds, since the analysis of the greedy algorithm
for submodular covering of Wolsey (1982), which we used to prove Lemma 4, applies to the more
general setting of non-uniform cost functions.
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7.4 Handling More Complex Cost Functions

So far, we considered problems where we are given an additive cost function g(A) over the possible
sets A of observations. In some applications, more complex cost functions arise. For example,
when placing wireless sensor networks, the placements A should not only be informative (i.e., Fi(A)
should be high for all utility functions Fi), but the placement should also have low communication
cost. Krause et al. (2006) describe such an approach, where the cost g(A) measures the expected
number of retransmissions required for sending messages across an optimal routing tree connecting
the sensors A . Formally, the observations s are considered to be nodes in a graph G = (V ,E), with
edge weights w(e) for each edge e ∈ E . The cost g(A) is the cost of a minimum Steiner Tree (cf.,
Vazirani 2003) connecting the observations A in the graph G .

More generally, we want to solve problems of the form

argmax
A

min
i

Fi(A) subject to g(A)≤ B,

where g(A) is a complex cost function. The key insight of the SATURATE algorithm is that the non-
submodular robust optimization problem can be approximately solved by solving a submodular
covering problem. In the case where g(A) = |A | this problem requires solving (6). More generally,
we can apply SATURATE to any problem where we can (approximately) solve

Ac = argmin
A⊆V

g(A), such that Fc(A) = c. (9)

Problem (9) can be (approximately) solved for a variety of cost functions, such as those arising from
communication constraints (Krause et al., 2006) and path constraints (Singh et al., 2007; Meliou
et al., 2007).

Let us summarize our analysis as follows:

Proposition 7 Assume we have an algorithm which, given a monotonic submodular function F and
a cost function g, returns a solution A ′ such that F(A ′) = F(V ) and

g(A ′)≤ αF min
A :F(A)=F(V )

g(A),

where αF depends on the function F. SATURATE, using this covering algorithm, can obtain a
solution AS to the RSOS problem such that

min
i

Fi(AS)≥ max
g(A)≤B

min
i

Fi(A),

and
g(AS)≤ αFB,

where αF is the approximation factor of the covering algorithm, when applied to F = 1
m ∑i Fi.

Note that the formalism developed in this section also allows to handle robust versions of com-
binatorial optimization problems such as the Knapsack (cf., Martello and Toth, 1990), Orienteering
(cf., Laporte and Martello, 1990; Blum et al., 2003) and Budgeted Steiner Tree (cf., Johnson et al.,
2000) problems. In these problems, instead of a general submodular objective function, the special
case of a modular (additive) function F is optimized:

A∗ = argmax
g(A)≤B

F(A).
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Figure 6: Tradeoff curve for simultaneously optimizing the average- and worst-case score in the
water distribution network monitoring application. Notice the knee in the tradeoff curve,
indicating that by performing multi-criterion optimization, solutions performing well for
both average- and worst-case scores can be obtained.

The problems differ only in the choice of the complex cost function. In Knapsack for example, g
is additive, in the Budgeted Steiner Tree problem, g(A) is the cost of a minimum Steiner tree con-
necting the nodes A in a graph, and in Orienteering, g(A) is the cost of a shortest path connecting
the nodes A in a graph. In practice, often the utility function F(A) is not exactly known, and a
solution is desired which is robust against worst-case choice of the utility function. Since modular
functions are a special case of submodular functions, such problems can be approximately solved
using Proposition 7.

7.5 Trading Off Average-case and Worst-case Scores

In some applications, optimizing the worst-case score Fwc(A) = mini Fi(A) might be a too pes-
simistic approach. On the other hand, ignoring the worst-case and only optimizing the average-case
(the expected score under a distribution over the objectives) Fac(A) = 1

m ∑i Fi(A) might be too op-
timistic. In fact, in Section 8 we show that optimizing the average-case score Fac can often lead to
drastically poor worst-case scores. In general, we might be interested in solutions, which perform
well both in the average- and worst-case scores.

Formally, we can define a multicriterion optimization problem, where we intend to optimize
the vector [Fac(A),Fwc(A)]. In this setting, we can only hope for Pareto-optimal solutions (cf.,
Boyd and Vandenberghe, 2004, in the context of convex functions). A set A∗, |A∗| ≤ k is called
Pareto-optimal, if it is not dominated, that is, there does not exist another set B , |B| ≤ k with
Fac(B) > Fac(A∗) and Fwc(B)≥ Fwc(A∗) (or Fac(B)≥ Fac(A∗) and Fwc(B) > Fwc(A∗)).

One possible approach to find such Pareto-optimal solutions is constrained optimization:4 for a
specified value of cac, we desire a solution to

A∗ = argmax
|A |≤k

Fwc(A) such that Fac(A)≥ cac. (10)

4. Another approach is scalarization, where we optimize Fλ(A) = λFwc(A)+ (1−λ)Fac(A) for some λ, 0 < λ < 1.
SATURATE can be modified to handle such scalarized objectives as well.
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By specifying different values of cac in (10), we would obtain different Pareto-optimal solutions.5

Figure 6 presents an example of several Pareto-optimal solutions, based on data from the outbreak
detection problem (Details will be discussed in Section 8.3). This curve shows that, using the
techniques described below, multicriterion solutions can be found which combine the advantages of
worst-case and average-case solutions.

We can modify SATURATE to solve Problem (10) in the following way. Let us again assume
we know the optimal value cwc achievable for Problem (10). Then, Problem (10) is equivalent to
solving

A∗ = argmin
A
|A | subject to Fwc(A)≥ cwc and Fac(A)≥ cac.

Now, using our notation from Section 4, this problem is again equivalent to

A∗ = argmin
A
|A | subject to Fcwc,cac = cwc + cac, (11)

where
Fcwc,cac(A) = Fcwc(A)+min{Fac(A),cac}.

Note that Fcwc,cac is a submodular function, and hence (11) is a submodular covering problem, which
can be approximately solved using the greedy algorithm.

For any choice of cac, we can find the optimal value of cwc by performing binary search on cwc.
We summarize our analysis in the following Theorem:

Theorem 8 For any integer k and constraint cac, SATURATE finds a solution AS (if it exists) such
that

Fwc(AS)≥ max
|A |≤k,Fac(A)≥cac

Fwc(A),

Fac(AS) ≥ cac, and |AS| ≤ αk, for α = 1 + log(2maxs∈V ∑i Fi({s})). Each such solution AS is
approximately Pareto-optimal, that is, there does not exist a set B , |B| ≤ k such that B dominates
AS. The total number of submodular function evaluations is O

(|V |2m log(∑i Fi(V ))
)
.

8. Experimental Results

In this section, we present experimental results on several robust observation selection problems.

8.1 Minimizing the Maximum Kriging Variance

First, we use SATURATE to select observations in a GP to minimize the maximum posterior variance
(cf., Section 6.1). We consider three data sets: [T] temperature data from a deployment of 52 sensors
at Intel Research Berkeley, [P] Precipitation data from the Pacific Northwest of the United States
(Widmann and Bretherton, 1999) and [L] temperature data from the NIMS sensor node (Harmon
et al., 2006) deployed at a lake near the University of California, Merced. For the three monitoring
problems, [T], [P], and [L], we discretize the space into 46, 167 and 86 locations each, respectively.
For [T], we consider the empirical covariance matrix of temperature sensor measurements obtained
over a period of 5 days. For [P], we consider the empirical covariance of 50 years of data, which
we preprocessed as described by Krause et al. (2007b). For [L], we train a nonstationary Gaussian
Process using data from a single scan of the lake by the NIMS sensor node, using a method described
by Krause and Guestrin (2007b).
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Figure 7: (a,c,e) SATURATE, greedy and SA on the (a) precipitation, (b) building temperature and
(c) lake temperature data. SATURATE performs comparably with the fine-tuned SA al-
gorithm, and outperforms it for larger placements. (b,d,f) Optimizing for the maximum
variance (using SATURATE) leads to low average variance, but optimizing for average
variance (using greedy) does not lead to low maximum variance.

2781



KRAUSE, MCMAHAN, GUESTRIN AND GUPTA

0 10 20 30 40 50 60
0

100

200

300

400

500

Number of observations

R
un

ni
ng

 ti
m

e 
(s

) Simulated
Annealing (SA)

Saturate+SA

Saturate

Greedy

Figure 8: Running time for algorithms on the precipitation data set [P].

In the geostatistics literature, the predominant choice of optimization algorithms for selecting
locations in a GP to minimize the (maximum and average) predictive variance are carefully tuned lo-
cal search procedures, prominently simulated annealing (cf., Sacks and Schiller 1988; Wiens 2005;
van Groenigen and Stein 1998). We compare our SATURATE algorithm against a state-of-the-art
implementation of such a simulated annealing (SA) algorithm, first proposed by Sacks and Schiller
(1988). We use an optimized implementation described recently by Wiens (2005). This algorithm
has 7 parameters which need to be tuned, describing the annealing schedule, distribution of itera-
tions among several inner loops, etc. We use the parameter settings as reported by Wiens (2005),
and present the best result of the algorithm among 10 random trials. In order to compare observation
sets of the same size, we called SATURATE with α = 1.

Figures 7(a), 7(c) and 7(e) compare simulated annealing, SATURATE, and the greedy algorithm
which greedily selects elements which decrease the maximum variance the most on the three data
sets. We also used SATURATE to initialize the simulated annealing algorithm (using only a single
run of simulated annealing, as opposed to 10 random trials). In all three data sets, SATURATE ob-
tains placements which are drastically better than the placements obtained by the greedy algorithm.
Furthermore, the performance is very close to the performance of the simulated annealing algo-
rithm. In our largest monitoring data set [P], SATURATE even strictly outperforms the simulated
annealing algorithm when selecting 30 and more sensors. Furthermore, as Figure 8 shows, SATU-
RATE is significantly faster than simulated annealing, by factors of 5-10 for larger problems. When
using SATURATE in order to initialize the simulated annealing algorithm, the resulting performance
almost always resulted in the best solutions we were able to find with any method, while still exe-
cuting faster than simulated annealing with 10 random restarts as proposed by Wiens (2005). These
results indicate that SATURATE compares favorably to state-of-the-art local search heuristics, while
being faster, requiring no parameters to tune, and providing theoretical approximation guarantees.

Optimizing for the maximum variance could potentially be considered too pessimistic. Hence
we compared placements obtained by SATURATE, minimizing the maximum marginal posterior
variance, with placements obtained by the greedy algorithm, where we minimize the average marginal
variance. Note, that, whereas the maximum variance reduction is non-submodular, the average vari-
ance reduction is (often) submodular (Das and Kempe, 2008), and hence the greedy algorithm can

5. In fact, all Pareto-optimal solutions can be found in this way (Papadimitriou and Yannakakis, 2000).
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be expected to provide near-optimal placements. Figures 7(b), 7(d) and 7(f) present the maximum
and average marginal variances for both algorithms. On all three data sets, our results show that
if we optimize for the maximum variance we still achieve comparable average variance. If we
optimize for average variance however, the maximum posterior variance remains much higher.

8.2 Robust Experimental Design

We consider the robust design of experiments (cf., Section 6.3) for the Michaelis-Menten mass-
action kinetics model, as discussed by Flaherty et al. (2006). The goal is least-square parameter
estimation for a function y = f (x,θ), where x is the chosen experimental stimulus (the initial sub-
strate concentration S0), and θ = (θ1,θ2) are two parameters as described by Flaherty et al. (2006).
The stimulus x is chosen from a menu of six options, x ∈ {1/8,1,2,4,8,16}, each of which can be
repeatedly chosen. The goal is to produce a fractional design w = (w1, . . . ,w6), where each com-
ponent wi measures the relative frequency according to which the stimulus xi is chosen. Since f is
nonlinear, f is linearized around an initial parameter estimate θ0 = (θ01,θ02), and approximated by
its Jacobian Vθ0 . Classical experimental design considers the error covariance of the least squares
estimate θ̂, Cov(θ̂ | θ0,w) = σ2(V T

θ0
WVθ0)

−1, where W = diag(w), and aims to find designs w which
minimize this error covariance. E-optimality, the criterion adopted by Flaherty et al. (2006), mea-
sures smallness in terms of the maximum eigenvalue of the error covariance matrix. The optimal w
can be found using Semidefinite Programming (SDP) (Boyd and Vandenberghe, 2004).

The estimate Cov(θ̂ | θ0,w) depends on the initial parameter estimate θ0, where linearization
is performed. However, since the goal is parameter estimation, a “certain circularity is involved”
(Flaherty et al., 2006). To avoid this problem, Flaherty et al. (2006) find a design wρ(θ0) by solving
a robust SDP which minimizes the error size, subject to a worst-case perturbation Δ on the Jacobian
Vθ0 ; the robustness parameter ρ bounds the spectral norm of Δ. As evaluation criterion, Flaherty
et al. (2006) define a notion of efficiency, which is the error size of the optimal design with correct
initial parameter estimate, divided by the error when using a robust design obtained at the wrong
initial parameter estimates, that is,

efficiency≡ λmax[Cov(θ̂ | θtrue,wopt(θtrue)))]
λmax[Cov(θ̂ | θtrue,wρ(θ0))]

,

where wopt(θ) is the E-optimal design for parameter θ. They show that for appropriately chosen
values of ρ, the robust design is more efficient than the optimal design, if the initial parameter θ0

does not equal the true parameter.
While their results are very promising, an arguably more natural approach than perturbing the

Jacobian would be to perturb the initial parameter estimate, around which linearization is performed.
For example, if the function f describes a process which behaves characteristically differently in
different “phases”, and the parameter θ controls which of the phases the process is in, then a robust
design should intuitively “hedge” the design against the behavior in each possible phase. In such
a case, the uniform distribution (which the robust SDP chooses for large ρ) would not be the most
robust design.

If we discretize the space of possible parameter perturbations (within a reasonably chosen inter-
val), we can use SATURATE to find robust experimental designs. While the classical E-optimality
is not submodular (Krause et al., 2007b), Bayesian A-optimality is (usually) submodular (Das and
Kempe, 2008; Krause et al., 2007b). Here, the goal is to minimize the trace instead of maximum
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Figure 9: Efficiency of robust SDP of Flaherty et al. (2006) and SATURATE on a biological experi-
mental design problem. (a) Low assumed uncertainty in initial parameter estimates: SDP
performs better in region C, SATURATE performs better in region A. (b) High assumed
uncertainty in initial parameter estimates: SATURATE outperforms the SDP solutions.

eigenvalue size of the covariance matrix. Furthermore, we equip the parameters θ with an uninfor-
mative normal prior (which we chose as diag([202,202])) as typically done in Bayesian experimental
design. We then minimize the expected trace of the posterior error covariance, tr(Σθ|A). Hereby, A
is a discrete design of 20 experiments, where each option xi can be chosen repeatedly. In order to
apply SATURATE, for each θ0, we define Fθ0(A) as the normalized variance reduction

Fθ0(A) =
1

Zθ0

(
tr
(

Σ(θ0)
θ

)
− tr

(
Σ(θ0)

θ|A
))

.

The normalization Zθ0 is chosen such that Fθ0(A) = 1 if

A = argmax
|A ′|=20

Fθ0(A
′),

that is, if A is chosen to maximize only Fθ0 . SATURATE is then used to maximize the worst-case
normalized variance reduction.

We reproduced the experiment of Flaherty et al. (2006), where the initial estimate of the second
component θ02 of θ0 was varied between 0 and 16, the “true” value being θ2 = 2. For each initial
estimate of θ02, we computed a robust design, using the SDP approach and using SATURATE, and
compared them using the efficiency metric of Flaherty et al. (2006). Note that this efficiency metric
is defined with respect to E-optimality, even though we optimize Bayesian A-optimality, hence po-
tentially putting SATURATE at a disadvantage. We first optimized designs which are robust against
a small perturbation of the initial parameter estimate. For the SDP, we chose a robustness parameter
ρ = 10−3, as reported in Flaherty et al. (2006). For SATURATE, we considered an interval around
[θ 1

1+ε ,θ(1+ ε)], discretized in a 5×5 grid, with ε = .1.
Figure 9(a) shows three characteristically different regions, A, B, C, separated by vertical lines.

In region B which contains the true parameter setting, the E-optimal design (which is optimal if
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the true parameter is known, that is, θ02 = θ2) performs similar to both robust methods. Hence, in
region B (i.e., small deviation from the true parameter), robustness is not really necessary. Outside
of region B however, where the standard E-optimal design performs badly, both robust designs do
not perform well either. This is an intuitive result, as they were optimized to be robust only to small
parameter perturbations.

Consequently, we compared designs which are robust against a large parameter range. For SDP,
we chose ρ = 16.3, which is the maximum spectral variation of the Jacobian when we consider
all initial estimates from θ02 varying between 0 and 16. For SATURATE, we optimized a single
design which achieves the maximum normalized variance reduction over all values of θ02 between
0 and 16. Figure 9(b) shows, that in this case, the design obtained by SATURATE achieves an
efficiency of 69%, whereas the efficiency of the SDP design is only 52%. In the regions A and
C, the SATURATE design strictly outperforms the other robust designs. This experiment indicates
that designs which are robust against a large range of initial parameter estimates, as provided by
SATURATE, can be more efficient than designs which are robust against perturbations of the Jacobian
(the SDP approach).

8.3 Outbreak Detection

Consider a city water distribution network, delivering water to households via a system of pipes,
pumps, and junctions. Accidental or malicious intrusions can cause contaminants to spread over the
network, and we want to select a few locations (pipe junctions) to install sensors, in order to detect
these contaminations as quickly as possible (cf., Section 6.3). In August 2006, the Battle of Water
Sensor Networks (BWSN) (Ostfeld et al., 2006) was organized as an international challenge to find
the best sensor placements for a real (but anonymized) metropolitan water distribution network,
consisting of 12,527 nodes. In this challenge, a set of intrusion scenarios is specified, and for each
scenario a realistic simulator provided by the EPA (Rossman, 1999) is used to simulate the spread
of the contaminant for a 48 hour period. An intrusion is considered detected when one selected
node shows positive contaminant concentration. BWSN considered a variety of impact measures,
including the time to detection (called Z1), and the size of the affected population calculated using
a realistic disease model (Z2). The goal of BWSN was to minimize the expectation of the impact
measures Z1 and Z2 given a uniform distribution over intrusion scenarios.

In this paper, we consider the adversarial setting, where an opponent chooses the contamination
scenario with knowledge of the sensor locations. The objective functions Z1 and Z2 are in fact
submodular for a fixed intrusion scenario (Leskovec et al., 2007), and so the robust optimization
problem of minimizing the impact of the worst possible intrusion fits into our formalism. For these
experiments, we consider scenarios which affect at least 10% of the network, resulting in a total
of 3424 scenarios. Figures 10(a) and 10(b) compare the greedy algorithm, SATURATE and the
simulated annealing (SA) algorithm for the problem of maximizing the worst-case detection time
(Z1) and worst-case affected population (Z2).

Interestingly, the behavior is very different for the two objectives. For the affected population
(Z2), greedy performs reasonably, and SA sometimes even outperforms SATURATE. For the detec-
tion time (Z1), however, the greedy algorithm did not improve the objective at all, and SA performs
poorly. The reason is that for Z2, the maximum achievable scores, Fi(V ), vary drastically, since
some scenarios have much higher impact than others. Hence, there is a strong “gradient”, as the
worst-case objective changes quickly when the high impact scenarios are covered. This gradient
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Figure 10: (a,b) compare SATURATE, greedy and SA in the water network setting, when optimiz-
ing worst-case detection time (Z1, (a)) and affected population (Z2, (b)). SATURATE

performs comparably to SA for Z2 and strictly outperforms SA for Z1. (c,d) compare
optimizing for the worst-case vs. average-case objectives. Optimizing for the worst-case
leads to good average case performs, but not vice versa.

allows greedy and SA to work well. On other hand, for Z1, the maximum achievable scores, Fi(V ),
are constant, since all scenarios have the same simulation duration. Unless all scenarios are de-
tected, the worst-case detection time stays constant at the simulation length. Hence, many node
exchange proposals considered by SA, as well as the addition of a new sensor location by greedy,
do not change the worst-case objective, and the algorithms have no useful performance metric.

Figures 10(c) and 10(d) compare the placements of SATURATE (when optimizing the worst-case
penalty), and greedy (when optimizing the average-case penalty, which is submodular). Similarly
to the results in the GP setting, optimizing the worst-case score leads to reasonable performance
in the average case score, but not necessarily vice versa (especially when considering the detection
time).
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Figure 11: Experiments on trading off worst-case and average-case penalties on the water network
[W] data, minimizing detection time (a) and affected population (b).

We also performed experiments trading off the worst-case and average-case penalty reductions,
using the approach discussed in Section 7.5. We first ran the greedy algorithm to optimize the
average-case score, and then ran SATURATE to optimize the worst-case score. We considered the
average-case scores cgreedy

ac and cSaturate
ac obtained by both algorithms, and uniformly discretized the

interval bounded by these average-case scores. For each score level cac in the discretization, we use
the modified SATURATE algorithm as described in Section 7.5, maximizing the worst-case score,
subject to a constraint on the average-case score. Each possible value of the constraint on cac can
lead to a different solution, trading off average- and worst-case scores. Figure 11(a) presents the
tradeoff curve obtained in this fashion for the detection time (Z1) metric, for different numbers
k of placed sensors. We generally observe that there is more variability in the worst-case score
than in the average-case score. We can also see that when placing 5 sensors, there is a prominent
knee in the tradeoff curve, effectively achieving the minimum worst-case penalty but drastically
reducing the average-case penalty incurred when compared to only optimizing for the worst-case
score. The other tradeoff curves do not exhibit quite such prominent knees, but nevertheless allow
flexibility in trading off worst- and average-case scores. Figure 11(b) presents the same experiment
for the population affected (Z2) metric. Here, we notice prominent knees when placing k = 15 and
20 sensors. We can generally conclude that trading off average- and worst-case scores allows to
effectively achieve a compromise between too pessimistic (only optimizing for the worst case) and
optimistic (only optimizing for the average case) objectives.

8.4 Sensor Failures

We also performed experiments on analyzing worst-case sensor failures (cf., Section 6.5). We con-
sider the outbreak detection application, and optimize the average score, that is, F(A) = 1

m ∑i Fi(A)
(modeling, for example, accidental contaminations). We use SATURATE in order to optimize the
modified objective function F

′
c described in Section 6.5.1, for increasing numbers of sensors k. We

also use the greedy algorithm to optimize sensor placements, ignoring possible sensor failures. For
both algorithms, we compute the expected scores (penalty reductions Z1 and Z2) in the case of no
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Figure 12: (a,b) compare Greedy (ignoring sensor failures) and SATURATE (optimizing for the
worst-case sensor failure) on water network data with detection time (a) and popula-
tion affected (b) scores.

sensor failure, and in the case of a single, worst-case sensor failure. Figure 12(a) presents the results
for the time to detection objective (Z1). We can see, that initially, with small numbers of sensors,
failures can strongly diminish the Z1 score. However, as the number of sensors increases, the place-
ment scores optimized using SATURATE for sensor failures quickly approach those of Greedy in the
case of no sensor failures. Hence, even if only a small number of sensors are placed, SATURATE can
quickly exploit redundancy and find sensor placements, which perform well both with and without
sensor failures. On the other hand, when not taking sensor failures into account, such failures can
drastically diminish the utility of a placed set of sensors. Figure 12(b) presents analogous results
when minimizing the affected population (Z2).

8.5 Parameter Uncertainty

We also conducted experiments on selecting variables under parameter uncertainty (cf., Section 6.2).
More specifically, we consider a sensor placement problem for monitoring temperature in a building.
In such a problem, we would like to place sensors in order to get accurate predictions at various
times of the day. However, since phenomena such as temperature in buildings change over time, at
different times of the day, different placements would be most informative.

In our experiment, we consider the temperature data set [T], and learn four models, described by
parameters θ1, . . . ,θ4, during four six-hour time periods over the day: 12am-6am, 6am-12pm, 12pm-
6pm and 6pm-12am. As models, we use the empirical covariances Σ(θi) from the corresponding
time periods of the 5 day historical training data. We also use the single model Σ for the entire
day, as described in Section 8.1. We then use the greedy algorithm to optimize sensor placement
of increasing sizes for the single model Σ, optimizing the average variance reduction objective
function. Similarly, we use SATURATE to optimize the minimum variance reduction over the four
models Σ(i), normalized by the average variance over the entire space.

Subsequently, we used both placements to compute the average Root Mean Squared (RMS)
prediction error over the entire day on 2 days of held out test data. We also computed the maximum
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els obtained during different parts of the day.

RMS error over the four six-hour time periods. Figure 13 presents the results of this experiment.
While the average RMS error is roughly equal for both placements, the maximum RMS error is
larger for the greedy sensor placement, as compared to the robust placement of SATURATE, espe-
cially for small numbers of sensors (six and less sensors).

9. Reducing the Number of Objective Functions

In many of the examples considered in Section 6, the number m of objective functions Fi can be quite
large (e.g., one Fi per parameter setting, or outbreak scenario), which impacts both the running time
(which depends linearly on m) and the approximation guarantees (which depend logarithmically
on m) of SATURATE. Hence, showing that we can work with a smaller set of objectives has both
computational and theoretical advantages.

9.1 Removal of Dominated Strategies

One direct approach to eliminate objective functions (and hence speed up computation and improve
the approximation guarantee) is to remove dominated objectives. An objective function Fi is dom-
inated by another objective Fj, if Fi(A) ≥ Fj(A) for all sets A ⊆ V . Hence, an Fi is dominated by
Fj if an adversary can always reduce our score by choosing Fj instead of Fi. For example, when
considering sensor failures or feature deletion (as discussed in Section 6.5), for two sets B ⊆B ′, the
objective FB is dominated by the objective FB ′ , that is, the score decreases more if more sensors fail.
Similarly, in the case of outbreak detection, some outbreak scenarios have much more impact on the
network than others. Even though objective functions measuring the impact reductions Fi for sce-
narios i ∈ I might not be exactly dominated, they might be ε-dominated, that is, Fi(A)≥ Fj(A)− ε
for some ε > 0 and all A ⊆ V . In such cases, these approximately dominated scenarios can be
removed, incurring at most an error of ε in the quality of the approximate solution.
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9.2 Constraint Generation

Another possible approach to reduce the number m of objective functions is constraint generation
(cf., Benders 1962). In this approach, one starts with an arbitrary single objective function, F1.
In iteration j + 1, ( j ≥ 1), after functions F1, . . . ,Fj have been considered, one searches for set A j

maximizing maxA min1≤i≤ j Fj(A). Subsequently, one selects Fj+1 minimizing mini Fi(A j). The
iteration terminates once Fj+1 is contained in the already selected objectives F1, . . . ,Fj. Another
option is to terminate once the new objective Fj+1 is ε-dominated by some objective Fi, 1≤ i≤ j. In
this case, the approximate solution is guaranteed to incur at most an absolute error of ε as compared
to the optimal solution.

In order to implement this constraint generation scheme, one must be able to efficiently solve
problem mini Fi(A j). In some settings, this problem might admit an efficient (perhaps approximate)
solution. In many problems, such as the experimental design setting, one actually wants to per-
form well against an (uncountably) infinite set of possible objective functions, corresponding to
parameters θ ∈ D in some (typically compact and convex set D). In such a setting, minθ Fθ(A j)
could potentially be (at least heuristically) solved using a numerical optimization approach such as
a conjugate gradient method.

10. Related Work

In this section, we review related work in submodular function optimization, robust discrete opti-
mization, robust methods in statistics, sensor placement, game theory and machine learning.

10.1 Submodular Function Optimization

In their seminal work, Nemhauser et al. (1978) and Wolsey (1982) analyze the greedy algorithm
for optimizing monotonic submodular functions. Lovász (1983) discusses the relationship between
submodular functions and convexity. He also shows that under certain conditions, the minimum of
two submodular functions remains submodular (and hence can be efficiently optimized using the
greedy algorithm). The objective functions resulting from observation selection problems typically
do not satisfy these properties, and, as we have shown, the greedy algorithm can perform arbitrarily
badly. Fujito (2000) uses submodularity of truncated functions to find sets with partial submodu-
lar coverage; however, they do not consider the case of multiple objectives, which we address in
this paper. Bar-Ilan et al. (2001) consider covering problems for a generalization of submodular
functions; they use a similar binary search technique combined with multiple applications of the
greedy algorithm. Their approach does not apply to maximizing the minimum over a set of sub-
modular functions. Golovin and Streeter (2008) present an algorithm for online maximization of
a single submodular set function. An interesting question for future work would be to investigate
whether our approach for maximizing the minimum over a collection of submodular functions can
be generalized to an online setting as well.

A large part of the theory of optimizing submodular functions is concerned with minimizing
instead of maximizing a single submodular function. Queyranne (1995) present the first algorithm
for minimizing symmetric submodular functions; Iwata et al. (2001) and Schrijver (2000) present
combinatorial algorithms for minimizing arbitrary (not necessarily symmetric) submodular func-
tions.
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10.2 Robust Discrete Optimization

Robust optimization of submodular functions is an instance of a robust discrete optimization prob-
lem. In such problems, the goal generally is to perform well with respect to a worst-case choice
of evaluation scenario. Other instances of robust discrete problems have been studied by a number
of authors. Kouvelis and Yu (1997) introduce several notions of robust discrete problems, presents
hardness results and a class of robust problems that can be optimally solved. Averbakh (2001) shows
that a class of robust optimization problems (selecting a k-element subset of elements of minimum
cost) is solvable in polynomial time if the uncertain cost coefficients are contained in an interval, but
NP-hard under an arbitrary (finite) set of adversarially chosen scenarios. Bertsimas and Sim (2003)
proposes a class of robust mixed integer programs, accommodating uncertainty both in cost and
data coefficients. They show that in certain cases (robust matching, spanning tree, etc.), the robust
formulations are solvable in polynomial time if the non-robust problem instances are solvable in
polynomial time. In the case of NP-hard but α-approximable non-robust problems, they show that
the corresponding robust formulations also remain α-approximable. However, their results do not
transfer to our setting of robust submodular optimization, since in this case, even though non-robust
solutions are (1−1/e) approximable, the non-robust formulation does not admit any approximation
guarantees (cf., Section 3).

10.3 Robust Methods in Statistics

In this section, we review related work in robust experimental design and robust spatial prediction.

10.3.1 ROBUST EXPERIMENTAL DESIGN

Experimental design under parameter uncertainty has been studied in statistics; most of the earlier
work is reviewed in the excellent survey of Chaloner and Verdinelli (1995). In the survey, the authors
discuss Bayesian approaches to handling parameter uncertainty, as well as robust Bayesian (cf.,
Berger 1984) approaches, which perform worst-case analyses over prior and likelihood functions.
In experimental design, most approaches have focused on locally optimal designs, that is, those
selecting an optimal design based on a linearization around an initial parameter estimate, for reasons
of computational tractability. In order to cope with uncertainty in the initial parameter estimates
around which linearization is performed, heuristic techniques have been developed, such as the SDP
based approach of Flaherty et al. (2006), or a clustering heuristic described by Dror and Steinberg
(2006). We are not aware of approaches which allow to find designs in the context of such parameter
uncertainty that bear theoretical guarantees similar to the approach described in this paper.

10.3.2 MINIMAX KRIGING

Minimizing the maximum predictive variance in Gaussian Process regression has been proposed as
a design criterion by Burgess et al. (1981) and since then extensively used. (cf., Sacks and Schiller,
1988; van Groenigen and Stein, 1998). To our knowledge, prior to this work, no algorithms with
approximation guarantees are known for this criterion.

Several authors consider the problem of spatial prediction under unknown covariance parame-
ters. Pilz et al. (1996) describes an approach for selecting—for a fixed set of observed sites—the
Kriging estimate minimizing the maximum prediction error, where the worst-case over a fixed class
of covariance functions is assumed. Wiens (2005) consider a similar setting but also addresses
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the design problem of choosing locations in order to minimize the mean squared prediction error
against the worst-case covariance function. Algorithmically, Wiens (2005) use the simulated anneal-
ing algorithm described in Section 8.1 with 7 tuned parameter settings. Note that the SATURATE

algorithm can be used in this context as well.

10.4 Sensor Placement and Facility Location

Carr et al. (2006) consider the problem of robust sensor placements in water distribution networks.
They formulate Mixed Integer Programs for selecting sensor placements robust against uncertainty
in adversarial strategies and in water demands. Due to computational complexity of Mixed Integer
Programming, in their experiments, they used only small networks of at most 470 nodes. SATURATE

can potentially be applied to handle uncertainty in demands as well, which is an interesting direction
for future work. Watson et al. (2006) consider different notions of robustness in the context of
water distribution networks, intended to remove some of the pessimistic assumptions of purely
robust sensor placements. They develop integer programs, as well as heuristics, and apply them to
networks of similar size as the one considered in this paper. Their local search heuristic performs a
sequence of local moves similar to those performed by the simulated annealing algorithm considered
in Section 8.3, and does not provide any theoretical guarantees.

Closely related to the adversarial outbreak detection problem is the k-center problem. In this
problem, one is given a graph G = (V ,E) along with a distance function defined over pairs of
nodes in V . The goal is to select a subset A ⊆V of size at most k, such that the maximum distance
between any unselected node s∈V \A and its nearest center s′ ∈A is minimized. For this problem,
Minieka (1970) discuss a technique reducing the solution of this problem to a sequence of set cover
problems combined in a binary search, similar in spirit to SATURATE. However, they do not dis-
cuss any implications regarding approximation guarantees, and do not consider the case of arbitrary
submodular functions. Mladenovic et al. (2003) presents a Tabu search heuristic for k-center, also
without theoretical guarantees. Gonzalez (1985) and Hochbaum and Shmoys (1985) present a 2
approximation for the k-center problem in the case of symmetric distance functions satisfying the
triangle inequality. Panigrahy and Vishwanathan (1998) present a log∗(n) approximation in the case
of distance functions satisfying the asymmetric triangle inequality, which is shown to be best possi-
ble by Chuzhoy et al. (2005). Chuzhoy et al. (2005) also show that even for bicriterion algorithms
(such as SATURATE), k-center is log∗(n) hard to approximate, even if O(k) additional centers can
be selected. Note that SATURATE can be used to solve k-center problems (without any requirements
on symmetry or on the triangle inequality), hence the bicriterion hardness result of Chuzhoy et al.
(2005) gives further evidence on the tightness of the guarantees described in Section 5.

Anthony et al. (2008) consider robust and stochastic notions of facility location problems (such
as k-center and k-median, where, instead of the maximum distance the average distance is opti-
mized). In contrast to the robust problems in this paper which want to select k elements to maximize
the minimum value achieved by these k elements over the m scenarios, the problems in Anthony
et al. (2008) try to select k “centers” in a metric space to minimize the maximum cost incurred over
the m scenarios—where the cost is some function of the distances between non-selected vertices
to the selected centers. For several such robust cost-minimization problems in cases where dis-
tances satisfy the symmetric triangle inequality, they present an algorithm that opens k “centers”
and achieves an approximation ratio of O(logn + logm) (where n is the number of nodes in the
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graph, and m is the number of scenarios): this should be compared to the impossibility results for
approximating robust value-maximization problems presented in this paper.

10.5 Relationship to Game Theory and Allocation Problems

The RSOS problem can be viewed as the problem of finding an optimal pure strategy for a zero-sum
matrix game with player ordering. In this matrix game, the rows would correspond to the possible
sensor placements, and the columns would correspond to the objective functions Fi. The entry for
cell (A ,Fi) is our payoff Fi(A). In the RSOS problem, we want to select a row of the matrix, our
adversary selects a column Fi (knowing our choice A , hence the player ordering) minimizing our
score Fi(A). A very related class of game theoretic problems are allocation problems. In these
problems, one is typically given a set V of objects, and the goal is to allocate the objects to m
agents (bidders), each of whom has a (potentially different) valuation function Fi(Ai) defined over
subsets of received items Ai. The problem of finding the best such allocation (partition) is NP-hard,
but recently, several approximation algorithms have been proposed. The allocation problem most
similar to the RSOS problem is

π∗ = argmax
partition π=(A1,...,Am)

min
i

Fi(Ai).

The main difference is that in the allocation problem, the full set V is partitioned into subsets
A1, . . . ,Am, and the functions Fi are evaluated on the respective subset Ai each. In the case of
additive objective functions Fi, Asadpour and Saberi (2007) provide an O(

√
k log3 k) approximation

algorithm. In the case of the function being subadditive (which is implied by, and is more general
than, submodularity), Ponnuswami and Khot (2007) present an O(2k−1) approximation algorithm.
For settings where the sum of the valuations is optimized, that is,

π∗ = argmax
partition π=(A1,...,Am)

∑
i

Fi(Ai),

Feige (2006) develop a randomized 2-approximation for subadditive and 1−1/e approximation for
submodular valuation functions.

The problem of trading off safety (i.e., improvements in worst-case scores) and average case
performance has been studied by several authors. Johanson et al. (2007) consider the problem of
opponent modeling in games, and develop an algorithm which can exploit opponents which it can
accurately model, and falls back to a safe (Nash) strategy in case the models do not capture the oppo-
nents behavior. Their algorithm has a tradeoff parameter which controls the eagerness of exploiting,
and they present Pareto-curves similar to those presented in Section 7.5. However, their approach
does not apply to our robust submodular observation selection setting. Watson et al. (2006) con-
sider different optimization problem formulations allowing to control risk in the water distribution
network monitoring application, but they only present heuristic algorithms without guarantees for
coping with large networks.

10.6 Relationship to Machine Learning

Submodular function optimization has found increasing use in machine learning. The algorithm
of Queyranne (1995) for minimizing symmetric submodular functions has been used for learning
graphical models by Narasimhan and Bilmes (2004) and for clustering by Narasimhan et al. (2005).
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We are not aware of any work on optimizing the minimum over a collection of submodular func-
tions.

Observation selection approaches have been used in the context of active learning (cf., Sollich,
1996; Freund et al., 1997; Axelrod et al., 2001; MacKay, 1992; Cohn, 1994). Test point selection
has been used to minimize average predictive variance in Gaussian Processes regression by Seo
et al. (2000), and to speed up Gaussian Process inference in the Informative Vector Machine (IVM)
by Seeger et al. (2003); Lawrence et al. (2003). In these approaches, the sequential setting is consid-
ered, where previous measurements are taken into account when deciding on the next observation
to make. A note by Seeger (2004) proves that the greedy algorithm in the IVM optimizes a sub-
modular function. The extension of the robust techniques discussed in this paper, which address the
a priori selection problem (i.e., observations are selected before measurements are obtained), to the
sequential setting is an important direction for future research.

Balcan et al. (2006) consider the problem of active learning in the presence of adversarial noise.
While their method is very different, our results potentially generalize to active learning settings,
since, as Hoi et al. (2006) show, certain active learning objectives are (approximately) submodular.

Price and Messinger (2005) consider the problem of constructing recommendation sets, and
show that this problem is an instance of a k-median problem (cf., Section 10.4). The analogue of
the k-center problem in the preference set construction would be to construct a preference set which
maximizes the utility of displayed items under worst-case instantiation of the parameters. This
analogue seems natural, and an interesting direction for future work would be to explore the use of
SATURATE in the recommendation set context.

10.7 Relationship to Previous Work of the Authors

A previous version of this paper appeared in (Krause et al., 2007a). The present version is signifi-
cantly extended, providing new theoretical analyses (described in Section 7, Section 9), new exam-
ples demonstrating the generality of the observation selection problem (Section 6) and additional
empirical results (Section 8). In previous work, the authors demonstrated that several important ob-
servation selection objectives are submodular (Krause et al., 2007b; Leskovec et al., 2007; Krause
and Guestrin, 2005, 2007a). Krause et al. (2006) consider the problem of optimizing the placement
of a network of wireless sensors. In this context, the chosen locations must be both informative and
communicate well, constraining the chosen locations not to be too far apart. Singh et al. (2007) and
Meliou et al. (2007) consider the problem of planning informative paths for multiple robots, where
the informativeness is modeled using a submodular objective function, and a constraint on path
lengths connecting the locations is specified. In the context of such more complex (communica-
tion and path) constraints—similarly to the robust setting—the greedy algorithm can fail arbitrarily
badly, and more complex algorithms have to be developed. Using the techniques described in Sec-
tion 7.4, both approaches can be made robust with respect to a worst-case submodular function.

11. Conclusions

In this paper, we considered the RSOS problem of robustly selecting observations which are infor-
mative with respect to a worst-case submodular objective function. We demonstrated the generality
of this problem, and showed how it encompasses the problem of sensor placements which minimize
the maximum posterior variance in Gaussian Process regression, variable selection under parameter
uncertainty, robust experimental design, and detecting events spreading over graphs, even in the
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case of adversarial sensor failures. In each of these settings, the individual objectives are submod-
ular and can be approximated well using, for example, the greedy algorithm; the robust objective,
however, is not submodular.

We proved that there cannot exist any approximation algorithm for the robust optimization prob-
lem if the constraint on the observation set size must be exactly met, unless P = NP. Consequently,
we presented an efficient approximation algorithm, SATURATE, which finds observation sets which
are guaranteed to be least as informative as the optimal solution, and only logarithmically more ex-
pensive. In a strong sense, this guarantee is the best possible under reasonable complexity theoretic
assumptions.

We provided several extensions to our methodology, accommodating more complex cost func-
tions (non-uniform observation costs, communication and path costs). Additionally, we described
how a compromise between worst-case and average-case performance can be achieved. We also dis-
cussed several approaches for reducing the number of objective functions, improving both running
times and theoretical guarantees.

We extensively evaluated our algorithm on several real-world problems. For Gaussian Process
regression, for example, we showed that SATURATE compares favorably to state-of-the-art heuris-
tics, while being simpler, faster, and providing theoretical guarantees. For robust experimental
design, SATURATE performs favorably compared to SDP based approaches. We believe that the
ideas developed in this paper will help the development of robust monitoring systems and provide
new insights for adapting machine learning algorithms to cope with adversarial environments.
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Appendix A. Proofs

Proof [Theorem 3] Consider a hitting set instance with m subsets Si ⊆ V on a ground set V . Our
task is to select a set A ⊆V with which intersects all sets Si, and such that |A |= k is as small as pos-
sible. For each set Si, define a function Fi such that Fi(A) = 1 if A intersects Si, and 0 otherwise. It
can be seen that Fi is clearly monotonic. Fi is also submodular, since for A ⊆B ⊆V and x ∈V \B ,
if Fi(B) = 0 and Fi(B ∪{x}) = 1, then it x ∈ Si, hence Fi(A ∪{x}) = 1 and Fi(A) = 0. Now as-
sume the optimal hitting set A∗ is of size k. Hence mini Fi(A∗) = 1. If there were an algorithm for
solving Problem (2) with approximation guarantee γ(n) it would select a set A ′ of size |A ′| ≤ k with
mini Fi(A ′) ≥ γ(n)mini Fi(A∗) = γ(n) > 0. But mini Fi(A ′) > 0 implies mini Fi(A ′) = 1, hence A ′
would be a hitting set. Hence, this approximation algorithm would be able to decide, whether there
exists a hitting set of size k, contradicting the NP-hardness of the hitting set problem (Feige, 1998).
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Proof [Lemma 4] Wolsey (1982) proves that, given a monotonic submodular function F on a ground
set V , it holds that that greedy algorithm (GPC), applied to the optimization problem

min
A
|A | such that F(A) = F(V )

returns a solution A ′ such that |A ′| ≤ |A∗|(1+ logmaxs∈V F({s})), where A∗ is an optimal solution.
We apply Wolsey’s result to the monotonic submodular function Fc. In order to use GPC in the
inner loop of the binary search over c, we need to make sure that the approximation guarantee for
the greedy algorithm is independent of c. This can be achieved by choosing

α = 1+ log

(
max
s∈V

∑
i

Fi({s})
)
≥ 1+ log

(
mmax

s∈V
Fc({s})

)
,

that is, the choice of α stated in Lemma 4 is independent of the truncation threshold c.

Proof [Theorem 5] Lemma 4 proves that during each of the iterations of the saturation algorithm
it holds that mini Fi(A∗) ≤ cmax, where A∗ is an optimal solution. Furthermore, it holds that
mini Fi(Abest) ≥ cmin, and |Abest | ≤ αk. Since the Fi are integral, if cmax− cmin < 1

m then it must
hold that mini Fi(Abest)≥mini Fi(A∗) as claimed by Theorem 5.

For the running time, since at the first iteration, cmax− cmin ≤ mini Fi(V ), and cmax− cmin is
halved during each iteration, it follows that after 1+�log2 mmini Fi(V )� iterations, cmax−cmin < 1

m ,
at which point the algorithm terminates. During each iteration, Algorithm 1 is invoked once, which
requires O(|V |2m) function evaluations.

Proof [Theorem 6] We use the same hitting set construction as in Theorem 3. If there were an algo-
rithm for selecting a set A ′ of size |A ′| ≤ βk with mini Fi(A ′) = 1, and β≤ (1−ε)α, for some fixed
ε > 0, then we would have an approximation algorithm for hitting set with guarantee (1− ε) logm
which would imply NP⊆ DTIME(nlog logn) (Feige, 1998).

Proof [Theorem 8] The proof is analogous to the proof of Theorem 5. The approximation guarantee
α is established by noticing that the greedy algorithm is applied to the modified (integral) objective

Fcwc,cac(A) = ∑
i

min{Fi(A),cwc}+min

{
∑

i

Fi(A),mcac

}
.

The guarantee α is obtained from the analysis of the greedy submodular coverage algorithm of
Wolsey (1982), similar to Lemma 4. Approximate Pareto-optimality follows directly from Pareto-
optimality of any solution to (10).
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