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Abstract
Consider the problem of joint parameter estimation and prediction in a Markov random field: that
is, the model parameters are estimated on the basis of an initial set of data, and then the fitted model
is used to perform prediction (e.g., smoothing, denoising, interpolation) on a new noisy observa-
tion. Working under the restriction of limited computation, we analyze a joint method in which the
same convex variational relaxation is used to construct an M-estimator for fitting parameters, and
to perform approximate marginalization for the prediction step. The key result of this paper is that
in the computation-limited setting, using an inconsistent parameter estimator (i.e., an estimator that
returns the “wrong” model even in the infinite data limit) is provably beneficial, since the resulting
errors can partially compensate for errors made by using an approximate prediction technique. En
route to this result, we analyze the asymptotic properties of M-estimators based on convex varia-
tional relaxations, and establish a Lipschitz stability property that holds for a broad class of convex
variational methods. This stability result provides additional incentive, apart from the obvious
benefit of unique global optima, for using message-passing methods based on convex variational
relaxations. We show that joint estimation/prediction based on the reweighted sum-product algo-
rithm substantially outperforms a commonly used heuristic based on ordinary sum-product.

Keywords: graphical model, Markov random field, belief propagation, variational method, pa-
rameter estimation, prediction error, algorithmic stability

1. Introduction

Graphical models such as Markov random fields (MRFs) are widely used in many application do-
mains, including machine learning, natural language processing, statistical signal processing, and
communication theory. A fundamental limitation to their practical use is the difficulty associated
with computing various statistical quantities (e.g., marginals, data likelihoods etc.); such quantities
are of interest both Bayesian and frequentist settings. Sampling-based methods, especially those
of the Markov chain Monte Carlo (MCMC) variety (Liu, 2001; Robert and Casella, 1999), repre-
sent one approach to obtaining stochastic approximations to marginals and likelihoods. A possible
disadvantage of sampling methods is their relatively high computational cost. It is thus of consider-
able interest for various application domains to consider less computationally intensive methods for
generating approximations to marginals, log likelihoods, and other relevant statistical quantities.

Variational methods are one class of techniques that can be used to At the foundation of these
methods is the fact that for a broad class of MRFs, the computation of the log likelihood and
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marginal probabilities can be reformulated as a convex optimization problem; see Yedidia (2001)
or Wainwright and Jordan (2003) for overviews. Although this optimization problem is intractable
to solve exactly for general MRFs, it suggests a principled route to obtaining approximations—
namely, by relaxing the original optimization problem, and taking the optimal solutions to the re-
laxed problem as approximations to the exact values. In many cases, optimization of the relaxed
problem can be carried out by “message-passing” algorithms, in which neighboring nodes in the
Markov random field convey statistical information (e.g., likelihoods) by passing functions or vec-
tors (referred to as messages). Well-known examples of such variational methods include mean field
algorithms, the belief propagation or sum-product algorithm, as well as various extensions including
generalized belief propagation and expectation propagation.

Estimating the parameters of a Markov random field from data poses another significant chal-
lenge. A direct approach—for instance, via (regularized) maximum likelihood estimation—entails
evaluating the cumulant generating (or log partition) function, which is computationally intractable
for general Markov random fields. One viable option is the pseudolikelihood method (Besag, 1975,
1977), which can be shown to produce consistent parameter estimates under suitable assumptions,
though with an associated loss of statistical efficiency. Other researchers have studied algorithms for
ML estimation based on stochastic approximation (Younes, 1988; Benveniste et al., 1990), which
again are consistent under appropriate assumptions, but can be slow to converge.

1.1 Overview

As illustrated in Figure 1, the problem domain of interest in this paper is that of joint estimation and
prediction in a Markov random field. More precisely, given samples {X 1, . . . ,Xn} from some un-
known underlying model p( · ;θ∗), the first step is to form an estimate of the model parameters. Now
suppose that we are given a noisy observation of a new sample path Z ∼ p( · ;θ∗), and that we wish
to form a (near)-optimal estimate of Z using the fitted model, and the noisy observation (denoted Y ).
Examples of such prediction problems include signal denoising, interpolation of missing data, and
sentence parsing. Disregarding any issues of computational cost and speed, one could proceed via
Route A in Figure 1—that is, one could envisage first using a standard technique (e.g., regularized
maximum likelihood) for parameter estimation, and then carrying out the prediction step (which
might, for instance, involve computing certain marginal probabilities) by Monte Carlo methods.

This paper, in contrast, is concerned with the computation-limited setting, in which both sam-
pling or brute force methods are overly intensive. With this motivation, a number of researchers
have studied the use of approximate message-passing techniques, both for problems of predic-
tion (Heskes et al., 2003; Ihler et al., 2005; Minka, 2001; Mooij and Kappen, 2005b; Tatikonda,
2003; Wainwright et al., 2003a; Wiegerinck, 2005; Yedidia et al., 2005) as well as for parameter
estimation (Leisink and Kappen, 2000; Sutton and McCallum, 2005; Teh and Welling, 2003; Wain-
wright et al., 2003b). However, despite their wide-spread use, the theoretical understanding of such
message-passing techniques remains limited1, especially for parameter estimation. Consequently,
it is of considerable interest to characterize and quantify the loss in performance incurred by using
computationally tractable methods versus exact methods (i.e., Route B versus A in Figure 1). More

1. The behavior of sum-product is relatively well understood in certain settings, including graphs with single cy-
cles (Weiss, 2000), Gaussian models (Freeman and Weiss, 2001; Rusmevichientong and Roy, 2000) and Ising mod-
els (Tatikonda and Jordan, 2002; Ihler et al., 2005; Mooij and Kappen, 2005a). Similarly, there has been substantial
progress for graphs with high girth (Richardson and Urbanke, 2001), but much of this analysis breaks down in appli-
cation to graphs with short cycles.
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specifically, our analysis applies to variational methods that are based on convex relaxations. This
class includes a number of existing methods—among them the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2005), reweighted forms of generalized belief propagation (Wiegerinck,
2005), and semidefinite relaxations (Wainwright and Jordan, 2005). Moreover, it is possible to
modify other variational methods—for instance, expectation propagation (Minka, 2001)—so as to
“convexify” them.

APPROXIMATE  PARAMETER
          ESTIMATION

        ESTIMATION
OPTIMAL PARAMETER

APPROXIMATE
PREDICTION

OPTIMAL
PREDICTION

DATA SOURCE

PREDICTION  

PREDICTION  
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NEW OBSERVATIONS

PSfrag replacements

{X i}

θ̂

θ∗ ẑopt(Y ;θ∗)

ẑapp(Y ; θ̂)

Y Error: ‖ẑopt(Y ;θ∗)− ẑapp(Y ; θ̂)‖

Figure 1: Route A: computationally intractable combination of parameter estimation and predic-
tion. Route B: computationally efficient combination of approximate parameter estima-
tion and prediction.

1.2 Our Contributions

At a high level, the key idea of this paper is the following: given that approximate methods can lead
to errors at both the estimation and prediction phases, it is natural to speculate that these sources
of error might be arranged to partially cancel one another. The theoretical analysis of this paper
confirms this intuition: we show that with respect to end-to-end performance, it is in fact beneficial,
even in the infinite data limit, to learn the “wrong” the model by using inconsistent methods for
parameter estimation. En route to this result, we analyze the asymptotic properties of M-estimators
based on convex variational relaxations, and establish a Lipschitz stability property that holds for
a broad class of variational methods. Such global algorithmic stability is a fundamental concern
given statistical models imperfectly estimated from limited data, or for applications in which “er-
rors” may be introduced into message-passing (e.g., due to quantization or other forms of communi-
cation constraints in sensor networks). Thus, our global stability result provides further theoretical
justification—apart from the obvious benefit of unique global optima—for using message-passing
methods based on convex variational relaxations. Finally, we provide some empirical results to
show that joint estimation/prediction based on the reweighted sum-product algorithm substantially
outperforms a commonly used heuristic based on ordinary sum-product.

The remainder of this paper is organized as follows. Section 2 provides background on Markov
random fields. In Section 3, we introduce background on variational representations, including the
notion of a convex surrogate to the cumulant generating function, and then illustrate this notion via
the tree-reweighted Bethe approximation (Wainwright et al., 2005). In Section 4, we describe how
any convex surrogate defines a particular joint scheme for parameter estimation and prediction. Sec-
tion 5 provides results on the asymptotic behavior of the estimation step, as well as the stability of
the prediction step. Section 6 is devoted to the derivation of performance bounds for joint estimation
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and prediction methods, with particular emphasis on the mixture-of-Gaussians observation model.
In Section 7, we provide experimental results on the performance of a joint estimation/prediction
method based on the tree-reweighted Bethe surrogate, and compare it to a heuristic method based on
the ordinary belief propagation algorithm. We conclude in Section 8 with a summary and discussion
of directions for future work.

2. Background

We begin with background on Markov random fields. Consider an undirected graph G = (V,E),
consisting of a set of vertices V = {1, . . . ,N} and an edge set E. We associate to each vertex s ∈V
a multinomial random variable Xs taking values in the set Xs = {0,1, . . . ,m−1}. We use the lower
case letter xs to denote particular realizations of the random variable Xs in the set Xs. This paper
makes use of the following exponential representation of a pairwise Markov random field over the
multinomial random vector X := {Xs, s ∈V}. We begin by defining, for each j = 1, . . . ,m−1, the
{0,1}-valued indicator function

I j[xs] :=

{
1 if xs = j

0 otherwise
(1)

These indicator functions can be used to define a potential function θs(·) : Xs→ R via

θs(xs) :=
m−1

∑
j=1

θs; jI j[xs] (2)

where θs = {θs; j, j = 1, . . . ,m− 1} is the vector of exponential parameters associated with the po-
tential. Our exclusion of the index j = 0 is deliberate, so as to ensure that the collection of indicator
functions φs(xs) := {I j[xs], j = 1, . . . ,m−1} remain affinely independent. In a similar fashion, we
define for any pair (s, t) ∈ E the pairwise potential function

θst(xs,xt) :=
m−1

∑
j=1

m−1

∑
k=1

θst; jkI j[xs] I k[xt ],

where we use θst := {θst; jk, j,k = 1,2, . . . ,m−1} to denote the associated collection of exponential
parameters, and φst(xs,xt) := {I j[xs]I k[xs], j,k = 1,2, . . . ,m−1} for the associated set of sufficient
statistics.

Overall, the probability mass function of the multinomial Markov random field in exponential
form can be written as

p(x ; θ) = exp
{

∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)−A(θ)
}
. (3)

Here the function

A(θ) := log
[

∑
x∈X N

exp
{

∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)
}]

(4)

is the logarithm of the normalizing constant associated with p(· ; θ).
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The collection of distributions thus defined can be viewed as a regular and minimal exponential
family (Brown, 1986). In particular, the exponential parameter θ and the vector of sufficient statis-
tics φ are formed by concatenating the exponential parameters (respectively indicator functions)
associated with each vertex and edge—viz.

θ = {θs,s ∈V}∪{θst , (s, t) ∈ E}
φ(x) = {φs(xs),s ∈V}∪{φst(xs,xt), (s, t) ∈ E}

This notation allows us to write Equation (3) more compactly as p(x ; θ) = exp{〈θ, φ(x)〉−A(θ)}.
A quick calculation shows that θ ∈ R

d , where d = N(m−1)+ |E|(m−1)2 is the dimension of this
exponential family.

The following properties of A are well-known:

Lemma 1 (a) The function A is convex, and strictly so when the sufficient statistics are affinely
independent.
(b) It is an infinitely differentiable function, with derivatives corresponding to cumulants. In partic-
ular, for any indices α,β ∈ {1, . . . ,d}, we have

∂A
∂θα

= Eθ[φα(X)],
∂2A

∂θα ∂θβ
= covθ{φα(X), φβ(X)},

where Eθ and covθ denote the expectation and covariance respectively.

We use µ ∈ R
d to denote the vector of mean parameters defined element-wise by µα = Eθ[φα(X)]

for any α ∈ {1, . . . ,d}. A convenient property of the sufficient statistics φ defined in Equations (1)
and (2) is that these mean parameters correspond to marginal probabilities. For instance, when
α = (s; j) or α = (st; jk), we have respectively

µs; j = Eθ[I j[xs]] = p(Xs = j ; θ), and (5a)

µst; jk = Eθ
{
I j[xs]I k[xt ]

}
= p(Xs = j,Xt = k ; θ). (5b)

3. Construction of Convex Surrogates

This section is devoted to a systematic procedure for constructing convex functions that represent
approximations to the cumulant generating function. We begin with a quick development of an
exact variational principle, one which is intractable to solve in general cases; see the papers (Pietra
et al., 1997; Wainwright and Jordan, 2005) for further details. Nonetheless, this exact variational
principle is useful, in that various natural relaxations of the optimization problem can be used to
define convex surrogates to the cumulant generating function. After a high-level description of
such constructions in general, we then illustrate it more concretely with the particular case of the
“convexified” Bethe entropy (Wainwright et al., 2005).

3.1 Exact Variational Representation

Since A is a convex and continuous function (see Lemma 1), the theory of convex duality (Rock-
afellar, 1970) guarantees that it has a variational representation, given in terms of its conjugate dual
function A∗ : R

d → R∪{+∞}, of the following form

A(θ) = sup
µ∈Rd

{
θT µ−A∗(µ)

}
.
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In order to make effective use of this variational representation, it remains determine the form of
the dual function. A useful fact is that the exponential family (3) arises naturally as the solution of
an entropy maximization problem. In particular, consider the set of linear constraints

Ep[φ(X)] := ∑
x∈X N

p(x)φα(x) = µα for α = 1, . . . ,d, (6)

where µ ∈ R
d is a set of target mean parameters. Letting P denote the set of all probability distri-

butions with support on X N , consider the constrained entropy maximization problem: maximize the
entropy H(p) :=−∑x∈X N p(x) log p(x) subject to the constraints (6).

A first question is when there any distributions p that satisfy the constraints (6). Accordingly,
we define the set

MARGφ(G) :=
{

µ ∈ R
d
∣∣µ = Ep[φ(X)] for some p ∈ P

}
,

corresponding to the set of µ for which the constraint set (6) is non-empty. For any µ /∈MARGφ(G),
the optimal value of the constrained maximization problem is −∞ (by definition, since the problem
is infeasible). Otherwise, it can be shown that the optimum is attained at a unique distribution in
the exponential family, which we denote by p(· ; θ(µ)). Overall, these facts allow us to specify the
conjugate dual function as follows:

A∗(µ) =

{
−H(p(· ; θ(µ))) if µ ∈MARGφ(G)

+∞ otherwise.
(7)

See the technical report (Wainwright and Jordan, 2003) for more details of this dual calculation.
With this form of the dual function, we are guaranteed that the cumulant generating function A has
the following variational representation:

A(θ) = max
µ∈MARGφ(G)

{
θT µ−A∗(µ)

}
. (8)

However, in general, solving the variational problem (8) is intractable. This intractability should
not be a surprise, since the cumulant generating function is intractable to compute for a general
graphical model. The difficulty arises from two sources. First, the constraint set MARGφ(G) is
extremely difficult to characterize exactly for a general graph with cycles. For the case of a multino-
mial Markov random field (3), it can be seen (using the Minkowski-Weyl theorem) that MARGφ(G)
is a polytope, meaning that it can be characterized by a finite number of linear constraints. The
question, of course, is how rapidly this number of constraints grows with the number of nodes N
in the graph. Unless certain fundamental conjectures in computational complexity turn out to be
false, this growth must be non-polynomial; see Deza and Laurent (1997) for an in-depth discus-
sion of the binary case. Tree-structured graphs are a notable exception, for which the junction tree
theory (Lauritzen, 1996) guarantees that the growth is only linear in N.

Second, the dual function A∗ lacks a closed-form representation for a general graph. Note in
particular that the representation (7) is not explicit, since it requires solving a constrained entropy
maximization problem in order to compute the value H(p(· ; θ(µ))). Again, important exceptions
to this rule are tree-structured graphs. Here a special case of the junction tree theory guarantees
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that any Markov random field on a tree T = (V,E(T )) can be factorized in terms of its marginals as
follows

p(x ; θ(µ)) = ∏
s∈V

µs(xs) ∏
(s,t)∈E(T )

µst(xs,xt)

µs(xs)µt(xt)
. (9)

Consequently, in this case, the negative entropy (and hence the dual function) can be computed
explicitly as

−A∗(µ;T ) = ∑
s∈V

Hs(µs)− ∑
(s,t)∈E(T )

Ist(µst) (10)

where Hs(µs) := −∑xs
µs(xs) logµs(xs) and Ist(µst) := ∑xs,xt

µst(xs,xt) log µst(xs,xt)
µs(xs)µt(xt)

are the singleton
entropy and mutual information, respectively, associated with the node s∈V and edge (s, t)∈ E(T ).
For a general graph with cycles, in contrast, the dual function lacks such an explicit form, and is not
easy to compute.

Given these challenges, it is natural to consider approximations to A∗ and MARGφ(G). As
we discuss in the following section, the resulting relaxed optimization problem defines a convex
surrogate to the cumulant generating function.

3.2 Convex Surrogates to the Cumulant Generating Function

We now describe a general procedure for constructing convex surrogates to the cumulant generating
function, consisting of two main ingredients. Given the intractability of characterizing the marginal
polytope MARGφ(G), it is natural to consider a relaxation. More specifically, let RELφ(G) be a
convex and compact set that acts as an outer bound to MARGφ(G). We use τ to denote elements
of RELφ(G), and refer to them as pseudomarginals since they represent relaxed versions of local
marginals. The second ingredient is designed to sidestep the intractability of the dual function: in
particular, let B∗ be a strictly convex and twice continuously differentiable approximation to A∗.
We require that the domain of B∗ (i.e., dom(B∗) := {τ ∈R

d |B∗(τ) < +∞}) be contained within the
relaxed constraint set RELφ(G).

By combining these two approximations, we obtain a convex surrogate B to the cumulant gen-
erating function, specified via the solution of the following relaxed optimization problem

B(θ) := max
τ∈RELφ(G)

{
θT τ−B∗(τ)

}
. (11)

Note the parallel between this definition (11) and the variational representation of A in Equation (8).
The function B so defined has several desirable properties, as summarized in the following

proposition:

Proposition 2 Any convex surrogate B defined via (11) has the following properties:

(i) For each θ ∈ R
d , the optimum defining B is attained at a unique point τ(θ).

(ii) The function B is convex on R
d .

(iii) It is differentiable on R
d , and more specifically:

∇B(θ) = τ(θ).
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Proof (i) By construction, the constraint set RELφ(G) is compact and convex, and the function B∗

is strictly convex, so that the optimum is attained at a unique point τ(θ).
(ii) Observe that B is defined by the maximum of a collection of functions linear in θ, which ensures
that it is convex (Bertsekas, 1995).
(iii) Finally, the function θT τ− B∗(τ) satisfies the hypotheses of Danskin’s theorem (Bertsekas,
1995), from which we conclude that B is differentiable with ∇B(θ) = τ(θ) as claimed.

Given the interpretation of τ(θ) as a pseudomarginal, this last property of B is analogous to the
well-known cumulant generating property of A—namely, ∇A(θ) = µ(θ)—as specified in Lemma 1.

3.3 Convexified Bethe Surrogate

The following example provides a more concrete illustration of this constructive procedure, using
a tree-based approximation to the marginal polytope, and a convexifed Bethe entropy approxima-
tion (Wainwright et al., 2005). As with the ordinary Bethe approximation (Yedidia et al., 2005),
the cost function and constraint set underlying this approximation are exact for any tree-structured
Markov random field.

Relaxed polytope: We begin by describing a relaxed version RELφ(G) of the marginal polytope
MARGφ(φ). Let τs and τst represent a collection of singleton and pairwise pseudomarginals, respec-
tively, associated with vertices and edges of a graph G. These quantities, as locally valid marginal
distributions, must satisfy the following set of local consistency conditions:

LOCALφ(G) :=
{

τ ∈ R
d
+

∣∣ ∑
xs

τs(xs) = 1, ∑
xt

τst(xs,xt) = τs(xs)
}
.

By construction, we are guaranteed the inclusion MARGφ(G)⊂ LOCALφ(G). Moreover, a special
case of the junction tree theory (Lauritzen, 1996) guarantees that equality holds when the underlying
graph is a tree (in particular, any τ ∈ LOCALφ(G) can be realized as the marginals of the tree-
structured distribution of the form (9)). However, the inclusion is strict for any graph with cycles;
see Appendix A for further discussion of this issue.

Entropy approximation: We now define an entropy approximation B∗ρ that is finite for any pseu-
domarginal τ in the relaxed set LOCALφ(G). We begin by considering a collection {T ∈ T} of
spanning trees associated with the original graph. Given τ ∈ LOCALφ(G), there is—for each span-
ning tree T —a unique tree-structured distribution that has marginals τs and τst on the vertex set V
and edge set E(T ) of the tree. Using Equations (9) and (10), the entropy of this tree-structured
distribution can be computed explicitly. The convexified Bethe entropy approximation is based on
taking a convex combination of these tree entropies, where each tree is weighted by a probability
ρ(T ) ∈ [0,1]. Doing so and expanding the sum yields

B∗ρ(τ) := ∑
T∈T

ρ(T )
{

∑
s∈V

Hs(τs)− ∑
(s,t)∈E(T )

Ist(τst)
}

= ∑
s∈V

Hs(τs)− ∑
(s,t)∈E

ρstIst(τst), (12)

where ρst = ∑T ρ(T )I [(s, t) ∈ T ] are the edge appearance probabilities defined by the distribution
ρ over the tree collection. By construction, the function B∗ρ is differentiable; moreover, it can be
shown (Wainwright et al., 2005) that it is strictly convex for any vector {ρst} of strictly positive
edge appearance probabilities.
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Bethe surrogate and reweighted sum-product: We use these two ingredients—the relaxation
LOCALφ(G) of the marginal polytope, and the convexified Bethe entropy approximation (12)—to
define the following convex surrogate

Bρ(θ) := max
τ∈LOCALφ(G)

{
θT τ−B∗ρ(τ)

}
. (13)

Since the conditions of Proposition 2 are satisfied, we are guaranteed that Bρ is convex and dif-
ferentiable on R

d , and moreover that ∇Bρ(θ) = τ(θ), where (for each θ ∈ R
d) the quantity τ(θ)

denotes the unique optimum of problem (13). Perhaps most importantly, the optimizing pseudo-
marginals τ(θ) can be computed efficiently using a tree-reweighted variant of the sum-product
message-passing algorithm (Wainwright et al., 2005). This method operates by passing “messages”,
which in the multinomial case are simply m-vectors of non-negative numbers, along edges of the
graph. We use Mts = {Mts(i), i = 0, . . . ,m−1} to represent the message passed from node t to node
s. In the tree-reweighted variant, these messages are updated according to the following recursion

Mts(xs) ← ∑
xt

exp
{

θt(xt)
θst(xs,xt)

ρst

}∏u∈Γ(t)\s
[
Mut(xt)

]ρut

[
Mst(xt)

]1−ρst
. (14)

Here Γ(t) denotes the set of all neighbors of node t in the graph. Upon convergence of the updates,
the fixed point messages M∗ yield the unique global optimum of the optimization problem (13) via
the following equations

τs(xs;θ) ∝ exp
{

θs(xs)
}

∏
u∈Γ(s)

[
Mus(xs)

]ρus , and (15a)

τst(xs,xt ;θ) ∝ exp
{

θs(xs)+θt(xt)+
θst(xs,xt)

ρst

} ∏
u∈Γ(s)

[
Mus(xs)

]ρus ∏
v∈Γ(s)

[
Mvs(xs)

]ρvs

Mst(xt) Mts(xs)
(15b)

Further details on these updates and their properties can be found in Wainwright et al. (2005).

4. Joint Estimation and Prediction Using Surrogates

We now turn to consideration of how convex surrogates, as constructed by the procedure described
in the previous section, are useful for both approximate parameter estimation as well as prediction.

4.1 Approximate Parameter Estimation

Suppose that we are given i.i.d. samples {X 1, . . . ,Xn} from an MRF of the form (3), where the
underlying true parameter θ∗ is unknown. One standard way in which to estimate θ∗ is via maximum
likelihood (possibly with an additional regularization term); in this particular exponential family
setting, it is straightforward to show that the (normalized) log likelihood takes the form

`(θ) = 〈µ̂n, θ〉−A(θ)−λnR(θ)

where function R is a regularization term with an associated (possibly data-dependent) weight λn.
The quantities µ̂n := 1

n ∑n
i=1 φ(X i) are the empirical moments defined by the data. For the indicator-

based exponential representation (5), these empirical moments correspond to a set of singleton and
pairwise marginal distributions, denoted µ̂n

s and µ̂n
st respectively.
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It is intractable to maximize the regularized likelihood directly, due to the presence of the cu-
mulant generating function A. Thus, a natural thought is to use the convex surrogate B to define an
alternative estimator obtained by maximizing the regularized surrogate likelihood:

`B(θ) := 〈µ̂n, θ〉−B(θ)−λnR(θ). (16)

By design, the surrogate B and hence the surrogate likelihood `B, as well as their derivatives, can
be computed in a straightforward manner (typically by some sort of message-passing algorithm).
It is thus straightforward to compute the parameter θ̂n achieving the maximum of the regularized
surrogate likelihood (for instance, gradient descent would a simple though naive method).

For the tree-reweighted Bethe surrogate (13), we have shown in previous work (Wainwright
et al., 2003b) that in the absence of regularization, the optimal parameter estimates θ̂n have a very
simple closed-form solution, specified in terms of the weights ρst and the empirical marginals µ̂.
(We make use of this closed form in our experimental comparison in Section 7; see Equation (32).)
If a regularizing term is added, these estimates no longer have a closed-form solution, but the op-
timization problem (16) can still be solved efficiently using the tree-reweighted sum-product algo-
rithm (Wainwright et al., 2003b, 2005).

4.2 Joint Estimation and Prediction

Using such an estimator, we now consider a joint approach to estimation and prediction. Recalling
the basic set-up, we are given an initial set of i.i.d. samples {x1, . . . ,xn} from p(· ; θ∗), where the
true model parameter θ∗ is unknown. These samples are used to form an estimate of the Markov
random field. We are then given a noisy observation y of a new sample z∼ p(· ; θ∗), and the goal is
to use this observation in conjunction with the fitted model to form a near-optimal estimate of z. The
key point is that the same convex surrogate B is used both in forming the surrogate likelihood (16)
for approximate parameter estimation, and in the variational method (11) for performing prediction.

For a given fitted model parameter θ∈R
d , the central object in performing prediction is the pos-

terior distribution p(z | y ; θ) ∝ p(z ; θ) p(y |z). In the exponential family setting, for a fixed noisy
observation y, this posterior can always be written as a new exponential family member, described
by parameter θ+γ(y). (Here the term γ(y) serves to incorporate the effect of the noisy observation.)
With this set-up, the procedure consists of the following steps:

Joint estimation and prediction:

1. Form an approximate parameter estimate θ̂n from an initial set of i.i.d. data {x1, . . . ,xn} by
maximizing the (regularized) surrogate likelihood `B.

2. Given a new noisy observation y (i.e., a contaminated version of z ∼ p(· ; θ∗)) specified by a
factorized conditional distribution of the form p(y |z) = ∏N

s=1 p(ys |zs), incorporate it into the
model by forming the new exponential parameter

θ̂n
s ( ·)+ γs(y)

where γs(y) merges the new data with the fitted model θ̂n. (The specific form of γ depends on
the observation model.)
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3. Using the message-passing algorithm associated with the convex surrogate B, compute ap-
proximate marginals τ(θ̂+ γ) for the distribution that combines the fitted model with the new
observation. Use these approximate marginals to construct a prediction ẑ(y;τ) of z based on
the observation y and pseudomarginals τ.

Examples of the prediction task in the final step include smoothing (e.g., denoising of a noisy
image) and interpolation (e.g., in the presence of missing data). We provide a concrete illustration of
such a prediction problem in Section 6 using a mixture-of-Gaussians observation model. The most
important property of this joint scheme is that the convex surrogate B underlies both the parameter
estimation phase (used to form the surrogate likelihood), and the prediction phase (used in the
variational method for computing approximate marginals). It is this matching property that will be
shown to be beneficial in terms of overall performance.

5. Analysis

In this section, we turn to the analysis of the surrogate-based method for estimation and prediction.
We begin by exploring the asymptotic behavior of the parameter estimator. We then prove a Lips-
chitz stability result applicable to any variational method that is based on a strongly concave entropy
approximation. This stability result plays a central role in our subsequent development of bounds
on the performance loss in Section 6.

5.1 Estimator Asymptotics

We begin by considering the asymptotic behavior of the parameter estimator θ̂n defined by the sur-
rogate likelihood (16). Since this parameter estimator is a particular type of M-estimator (Serfling,
1980), its asymptotic behavior can be investigated using standard methods, as summarized in the
following:

Proposition 3 Recall the cumulant generating function A defined in Equation (4). Let B be a strictly
convex surrogate for A, defined via Equation (11) with a strictly concave entropy approximation
−B∗. Consider the sequence of parameter estimates {θ̂n} given by

θ̂n := argmax
θ∈Rd
{〈µ̂n, θ〉−B(θ)−λnR(θ)} (17)

where R is a non-negative and convex regularizer, and the regularization parameter satisfies λn =
o( 1√

n).
Then for a general graph with cycles, the following results hold:

(a) we have θ̂n p−→ θ̂, where θ̂ is (in general) distinct from the true parameter θ∗.

(b) the estimator is asymptotically normal:

√
n
[
θ̂n− θ̂

] d−→ N

(
0,

(
∇2B(θ̂)

)−1∇2A(θ∗)
(
∇2B(θ̂)

)−1
)

Proof By construction, the convex surrogate B and the (negative) entropy approximation B∗ are
a Fenchel-Legendre conjugate dual pair. From Proposition 2, the surrogate B is differentiable.
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Moreover, the strict convexity of B and B∗ ensure that the gradient mapping ∇B is one-to-one and
onto the relative interior of the constraint set RELφ(G) (see Section 26 of Rockafellar (1970)).
Moreover, the inverse mapping (∇B)−1 exists, and is given by the dual gradient ∇B∗.

Let µ∗ be the moment parameters associated with the true distribution θ∗—that is, µ∗ = Eθ∗ [φ(X)].
In the limit of infinite data, the asymptotic value of the parameter estimate is defined by

∇B(θ̂) = µ∗. (18)

Note that µ∗ belongs to the relative interior of MARGφ(G), and hence to the relative interior of
RELφ(G). Therefore, Equation (18) has a unique solution θ̂ = ∇−1B(µ∗).

By strict convexity, the regularized surrogate likelihood (17) has a unique global maximum.
Let us consider the optimality conditions defining this unique maximum θ̂n; they are given by
∇B(θ̂n) = µ̂n−λn∂R(θ̂n), where ∂R(θ̂n) denotes an arbitrary element of the subdifferential of the
convex function R at the point θ̂n. We can now write

∇B(θ̂n)−∇B(θ̂) = [µ̂n−µ∗]−λn∂R(θ̂n). (19)

Taking inner products with the difference θ̂n− θ̂ yields

0
(a)

≤
[
∇B(θ̂n)−∇B(θ̂)

]T [
θ̂n− θ̂

]
≤ [µ̂n−µ∗]T

[
θ̂n− θ̂

]
+λn∂R(θ̂n)T

[
θ̂− θ̂n

]
, (20)

where inequality (a) follows from the convexity of B. From the convexity and non-negativity of R,
we have

λn∂R(θ̂n)T
[
θ̂− θ̂n

]
≤ λn

[
R(θ̂)−R(θ̂n)

]
≤ λnR(θ̂).

Applying this inequality and Cauchy-Schwartz to Equation (20) yields

0 ≤
[
∇B(θ̂n)−∇B(θ̂)

]T
[

θ̂n− θ̂
‖θ̂n− θ̂‖

]
≤ ‖µ̂n−µ∗‖+λnR(θ̂)

Since λn = o(1) by assumption and ‖µ̂n − µ∗‖ = op(1) by the weak law of large numbers, the

quantity
[
∇B(θ̂n)−∇B(θ̂)

]T [
θ̂n−θ̂
‖θ̂n−θ̂‖

]
converges in probability to zero. By the strict convexity of

B, this fact implies that θ̂n converges in probability to θ̂, thereby completing the proof of part (a).

To establish part (b), we observe that
√

n [µ̂n−µ∗]
d−→ N(0,∇2A(θ∗)) by the central limit theo-

rem. Using this fact and applying the delta method to Equation (19) yields that

√
n∇2B(θ̂)

[
θ̂n− θ̂

]
d−→ N

(
0,∇2A(θ∗)

)
,

where we have used the fact that
√

nλn = o(1). The strict convexity of B guarantees that ∇2B(θ̂) is
invertible, so that claim (b) follows.

A key property of the estimator is its inconsistency—that is, the estimated model differs from
the true model θ∗ even in the limit of large data. Despite this inconsistency, we will see that the
approximate parameter estimates θ̂n are nonetheless useful for performing prediction.
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5.2 Global Algorithmic Stability

A desirable property of any algorithm—particularly one applied to statistical data—is that it exhibit
an appropriate form of stability with respect to its inputs. Not all message-passing algorithms have
such stability properties. For instance, the standard sum-product message-passing algorithm, al-
though stable for weakly coupled MRFs (Ihler et al., 2005; Mooij and Kappen, 2005b,a; Tatikonda
and Jordan, 2002; Tatikonda, 2003), can be highly unstable in other regimes due to the appearance
of multiple local optima in the non-convex Bethe problem. However, previous experimental work
has shown that methods based on convex relaxations, including the reweighted sum-product (or
belief propagation) algorithm (Wainwright et al., 2003b), reweighted generalized BP (Wiegerinck,
2005), and log-determinant relaxations (Wainwright and Jordan, 2005) appear to be globally sta-
ble—that is, even for very strongly coupled problems. For instance, Figure 2 provides a simple
illustration of the instability of the ordinary sum-product algorithm, contrasted with the stability of
the tree-reweighted updates. Wiegerinck (2005) provides similar results for reweighted forms of the
generalized belief propagation. Here we provide theoretical support for these empirical observa-
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Figure 2: Contrast of the instability of the ordinary sum-product algorithm with the stability of
the tree-reweighted version (Wainwright et al., 2005). Results shown with a grid with
N = 100 nodes over a range of attractive coupling strengths. The ordinary sum-product
undergoes a phase transition, after which the quality of marginal approximations degrades
substantially. The tree-reweighted algorithm, shown for two different settings of the edge
weights ρst , remains stable over the full range of coupling strengths. See Wainwright
et al. (2005) for full details.

tions: in particular, we prove that, in sharp contrast to non-convex methods, any variational method
based on a strongly convex entropy approximation is globally stable. This stability property plays a
fundamental role in providing a performance guarantee on joint estimation/prediction methods.
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We begin by noting that for a multinomial Markov random field (3), the computation of the
exact marginal probabilities is a globally Lipschitz operation:

Lemma 4 For any discrete Markov random field (3), there is a constant L < +∞ such that

‖µ(θ+δ)−µ(θ)‖ ≤ L‖δ‖ for all θ,δ ∈ R
d .

This lemma, which is proved in Appendix B, guarantees that small changes in the problem pa-
rameters—that is, “perturbations” δ—lead to correspondingly small changes in the computed mar-
ginals.

Our goal is to establish analogous Lipschitz properties for variational methods. In particular, it
turns out that any variational method based on a suitably concave entropy approximation satisfies
such a stability condition. More precisely, a function f : R

n→ R is strongly convex if there exists
a constant c > 0 such that f (y) ≥ f (x)+ ∇ f (x)T

(
y− x)+ c

2‖y− x‖2 for all x,y ∈ R
n. For a twice

continuously differentiable function, this condition is equivalent to having the eigenspectrum of the
Hessian ∇2 f (x) be uniformly bounded below by c. With this definition, we have:

Proposition 5 Consider any strictly convex surrogate B based on a strongly concave entropy ap-
proximation −B∗. Then there exists a constant R < +∞ such that

‖τ(θ+δ)− τ(θ)‖ ≤ R‖δ‖ for all θ,δ ∈ R
d .

Proof From Proposition 2, we have τ(θ) = ∇B(θ), so that the statement is equivalent to the assertion
that the gradient ∇B is a Lipschitz function. Applying the mean value theorem to ∇B, we can write
∇B(θ+δ)−∇B(θ)= ∇2B(θ+tδ)δ where t ∈ [0,1]. Consequently, in order to establish the Lipschitz
condition, it suffices to show that the spectral norm of ∇2B(γ) is uniformly bounded above over all
γ ∈ R

d . Since B and B∗ are a strictly convex Legendre pair, we have ∇2B(θ) = [∇2B∗(τ(θ))]−1.
By the strong convexity of B∗, we are guaranteed that the spectral norm of ∇2B∗(τ) is uniformly
bounded away from zero, which yields the claim.

A number of existing entropy approximations can be shown to be strongly concave. In Appendix C,
we provide a detailed proof of this fact for the convexified Bethe entropy (12).

Lemma 6 For any set {ρst} of strictly positive edge appearance probabilities, the convexified Bethe
entropy (12) is strongly concave.

We note that the same argument can be used to establish strong concavity for the reweighted Kikuchi
approximations studied by Wiegerinck (2005). Moreover, it can be shown that the Gaussian-based
log-determinant relaxation proposed by Wainwright and Jordan (2006) is also strongly concave. For
all of these variational methods, then, Proposition 5 guarantees that the pseudomarginal computation
is globally Lipschitz stable, thereby providing theoretical confirmation of previous experimental
results (Wiegerinck, 2005; Wainwright et al., 2005; Wainwright and Jordan, 2006). The entropy
approximations that underlie other variational methods (e.g., expectation-propagation Minka, 2001)
can also be modified so as to be strongly concave; Proposition 5 provides further justification—in
addition to the obvious benefit of unique global optima—for such “convexification” of entropy
approximations.
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6. Performance Bounds

In this section, we develop theoretical bounds on the performance loss of our approximate approach
to joint estimation and prediction, relative to the unattainable Bayes optimum. So as not to unnec-
essarily complicate the result, we focus on the performance loss in the infinite data limit2 (i.e., for
which the number of samples n = +∞).

In the infinite data setting, the Bayes optimum is unattainable for two reasons:

1. it is based on knowledge of the exact parameter θ∗, which is not easy to obtain.

2. it assumes (in the prediction phase) that computing exact marginal probabilities µ of the
Markov random field is feasible.

Of these two difficulties, it is the latter assumption—regarding the computation of marginal prob-
abilities—that is the most serious. As discussed earlier, there do exist computationally tractable
estimators of θ∗ that are consistent though not statistically efficient under appropriate conditions;
one example is the pseudolikelihood method (Besag, 1975, 1977) mentioned previously. On the
other hand, MCMC methods may be used to generate stochastic approximations to marginal prob-
abilities, but may require greater than polynomial complexity.

Recall from Proposition 3 that the parameter estimator based on the surrogate likelihood `B

is inconsistent, in the sense that the parameter vector θ̂ returned in the limit of infinite data is
generally not equal to the true parameter θ∗. Our analysis in this section will demonstrate that this
inconsistency is beneficial.

6.1 Problem Set-up

Although the ideas and techniques described here are more generally applicable, we focus here on
a special observation model so as to obtain a concrete result.

Observation model: In particular, we assume that the multinomial random vector X = {Xs, s ∈
V} defined by the Markov random field (3) is a label vector for the components in a finite mixture of
Gaussians. For each node s∈V , we specify a new random variable Zs by the conditional distribution

p(Zs = zs |Xs = j)∼ N(ν j,σ2
j) for j ∈ {0,1, . . . ,m−1},

so that Zs is a mixture of m Gaussians. Such Gaussian mixture models are widely used in spa-
tial statistics as well as statistical signal and image processing (Crouse et al., 1998; Ripley, 1981;
Titterington et al., 1986).

Now suppose that we observe a noise-corrupted version of zs—namely, a vector Y of observa-
tions with components of the form

Ys = αZs +
√

1−α2Ws, (21)

where Ws ∼ N(0,1) is additive Gaussian noise, and the parameter α ∈ [0,1] specifies the signal-to-
noise ratio (SNR) of the observation model. Note that α = 0 corresponds to pure noise, whereas
α = 1 corresponds to completely uncorrupted observations.

2. Note, however, that modified forms of the results given here, modulo the usual O(1/n) corrections, hold for the finite
data setting.
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Optimal prediction: Our goal is to compute an optimal estimate ẑ(y) of z as a function of the
observation Y = y, using the mean-squared error as the risk function. The essential object in this
computation is the posterior distribution p(x | y ; θ∗) ∝ p(x ; θ∗) p(y | x), where the conditional
distribution p(y | x) is defined by the observation model (21). As shown in the sequel, the posterior
distribution (with y fixed) can be expressed as an exponential family member of the form θ∗+ γ(y)
(see Equation (26a)). Disregarding computational cost, it is straightforward to show that the optimal
Bayes least squares estimator (BLSE) takes the form

ẑopt
s (Y ;θ∗) :=

m−1

∑
j=0

µs; j(θ∗+ γ(Y ))

[
ω j(α)

(
Ys−αν j

)
+ν j

]
, (22)

where µs; j(θ∗ + γ) denotes the marginal probability associated with the posterior distribution
p(x ; θ∗+ γ), and

ω j(α) :=
ασ2

j

α2σ2
j +(1−α2)

(23)

is the usual BLSE weighting for a Gaussian with variance σ2
j .

Approximate prediction: Since the marginal distributions µs; j(θ∗+ γ) are intractable to compute
exactly, it is natural to consider an approximate predictor, based on a set τ of pseudomarginals
computed from a variational relaxation. More explicitly, we run the variational algorithm on the
parameter vector θ̂+ γ that is obtained by combining the new observation y with the fitted model θ̂,
and use the outputted pseudomarginals τs(·; θ̂+ γ) as weights in the approximate predictor

ẑapp
s (Y ; θ̂) :=

m−1

∑
j=0

τs; j(θ̂+ γ(Y ))

[
ω j(α)

(
Ys−αν j

)
+ν j

]
, (24)

where the weights ω are defined in Equation (23).
We now turn to a comparison of the Bayes least-squares estimator (BLSE) defined in Equa-

tion (22) to the surrogate-based predictor (24). Since (by definition) the BLSE is optimal for the
mean-squared error (MSE), using the surrogate-based predictor will necessarily lead to a larger
MSE. Our goal is to prove an upper bound on the maximal possible increase in this MSE, where the
bound is specified in terms of the underlying model θ∗ and the SNR parameter α. More specifically,
for a given problem, we define the mean-squared errors

Ropt(α,θ∗) :=
1
N

E‖ẑopt(Y ;θ∗)−Z‖2, and Rapp(α, θ̂) :=
1
N

E‖ẑapp(Y ; θ̂)−Z‖2,

of the Bayes-optimal and surrogate-based predictors respectively, where the expectation is taken
over the joint distribution of (Y,Z). We seek upper bounds on the increase ∆R(α,θ∗, θ̂) := Rapp(α, θ̂)
−Ropt(α,θ∗) of the approximate predictor relative to Bayes optimum.

6.2 Role of Stability

Before providing a technical statement and proof, we begin with some intuition underlying the
bounds, and the role of Lipschitz stability. First, consider the low SNR regime (α ≈ 0) in which
the observation Y is heavily corrupted by noise. In the limit α = 0, the new observations are pure
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noise, so that the prediction of Z should be based simply on the estimated model—namely, the
true model p(· ; θ∗) in the Bayes optimal case, and the “incorrect” model p(· ; θ̂) for the method
based on surrogate likelihood. The key point here is the following: by properties of the MLE and
surrogate-based estimator, the following equalities hold:

∇A(θ∗)
(a)
= µ(θ∗)

(b)
= µ∗

(c)
= τ(θ̂)

(d)
= ∇B(θ̂).

Here equality (a) follows from Lemma 1, whereas equality (b) follows from the moment-matching
property of the MLE in exponential families. Equalities (c) and (d) hold from the Proposition 2
and the pseudomoment-matching property of the surrogate-based parameter estimator (see proof of
Proposition 3). As a key consequence, it follows that the combination of surrogate-based estima-
tion and prediction is functionally indistinguishable from the Bayes-optimal behavior in the limit
of α = 0. More specifically, in the limiting case, the errors systematically introduced by the in-
consistent learning procedure are cancelled out exactly by the approximate variational method for
computing marginal distributions. Of course, exactness for α = 0 is of limited interest; however,
when combined with the Lipschitz stability ensured by Proposition 5, it allows us to gain good con-
trol of the low SNR regime. At the other extreme of high SNR (α≈ 1), the observations are nearly
perfect, and hence dominate the behavior of the optimal estimator. More precisely, for α close to 1,
we have ω j(α)≈ 1 for all j = 0,1, . . . ,m−1, so that ẑopt(Y ;θ∗)≈ Y ≈ ẑapp(Y ; θ̂). Consequently, in
the high SNR regime, accuracy of the marginal computation has little effect on the accuracy of the
predictor.

6.3 Bound on Performance Loss

Although bounds of this nature can be developed in more generality, for simplicity in notation we
focus here on the case of m = 2 mixture components. We begin by introducing the factors that play
a role in our bound on the performance loss ∆R(α,θ∗, θ̂). First, the Lipschitz stability enters in the
form of the quantity:

L(θ∗; θ̂) := sup
δ∈Rd

σmax
(
∇2A(θ∗+δ)−∇2B(θ̂+δ)

)
, (25)

where σmax denotes the maximal singular value. Following the argument in the proof of Proposi-
tion 5, it can be seen that L(θ∗; θ̂) is finite.

Second, in order to apply the Lipschitz stability result, it is convenient to express the effect
of introducing a new observation vector y, drawn from the additive noise observation model (21),
as a perturbation of the exponential parameterization. In particular, for any parameter θ ∈ R

d and
observation y from the model (21), the conditional distribution p(x |y;θ) can be expressed as p(x;θ+
γ(y,α)), where the exponential parameter γ(y,α) has components3

γs =
1
2

{
log

α2σ2
0 +(1−α2)

α2σ2
1 +(1−α2)

+
(ys−αν0)

2

α2σ2
0 +(1−α2)

− (ys−αν1)
2

α2σ2
1 +(1−α2)

}
∀ s ∈V.(26a)

γst = 0 ∀ (s, t) ∈ E. (26b)

See Appendix D for a derivation of these relations.

3. For consistency in notation with the general m > 2 case, these components should be labeled as γs;1 and γst;11, but we
drop the additional indices for simplicity.
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Third, it is convenient to have short notation for the Gaussian estimators of each mixture com-
ponent:

g j(Ys;α) := ω j(α)(Ys−αν j)+ν j for j = 0,1,

With this notation, we have the following

Theorem 7 The MSE increase ∆R(α,θ∗, θ̂) := R(α, θ̂)−R(α,θ∗) is upper bounded by

∆R(α,θ∗, θ̂) ≤ E



min

(
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

) √
∑N

s=1 |g1(Ys)−g0(Ys)|4
N



 . (27)

Before proving the bound (27), we illustrate it by considering its behavior in some special cases.

6.3.1 SUPERIORITY TO TRUE MODEL

Theorem 7 can be used to establish that applying an approximate message-passing algorithm to
the “incorrect” model yields prediction results superior to those obtained by applying the same
message-passing algorithm to the true underlying model. To see one regime in which this claim is
true, consider the low SNR limit in which α→ 0+. In this limit, it can be seen that ‖γ(Y ;α)‖→ 0, so
that the the overall bound ∆R(α) tends to zero. That is, the combination of approximate estimation
and approximate prediction is asymptotically optimal in the low SNR limit. In sharp contrast, this
claim need not be true when approximate prediction is applied to the true underlying model. As
a particular example, consider a Gaussian mixture with m = 2 components, with equal variances
but distinct means (say ν0 =−1 and ν1 = 1). Moreover, suppose that the mixture indicator vectors
X ∈ {0,1}N are sampled from an underlying distribution p(x;θ∗), and let µs = [µs;0 µs;1] denote the
marginal distributions associated with this underlying model. In the limit of zero SNR (i.e., α = 0),
it is straightforward to see that the BLSE of Z is simply its mean, given (for component s ∈V ) by

E[Zs | Y ] = E[Zs] = µs;0ν0 +µs;1ν1 = µs;1−µs;0,

for the two-component mixture specified above. Now suppose that when applied to this true model,
the approximate message-passing algorithm yields an incorrect set of singleton pseudomarginals—
say τs 6= µs. Since standard message-passing algorithms are rarely (if ever) exactly correct on non-
trivial models with cycles, this assumption is more than reasonable. Consequently applying the
approximate predictor to the true model will yield an estimate of Z which is incorrect, even in the
zero SNR limit; in particular, the approximate estimate is given by

Ẑ(Y ;θ∗) = τs;0ν0 + τs;1ν1 = τs;1− τs;0 6= E[Z].

Thus, in contrast to the combination of approximate estimation with approximate estimation, apply-
ing the approximate message-passing algorithm to the true model fails to be exact even in the limit
of zero SNR. In fact, our later experimental results show that the superiority of using the “wrong”
model holds for a broader range of SNRs as well (see Figure 4).

We conclude by turning to the high SNR limit as α→ 1−, in which we see that ω j(α)→ 1 for
j = 0,1, which drives the differences |g1(Ys)−g0(Ys)|, and in turn the overall bound ∆R(α) to zero.
Thus, the surrogate-based method is optimal in both the low and high SNR regimes; its behavior in
the intermediate regime is governed by the balance between these two terms.
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6.3.2 EFFECT OF EQUAL VARIANCES

Now consider the special case of equal variances σ2 ≡ σ2
0 = σ2

1, in which case ω(α) ≡ ω0(α) =
ω1(α). Thus, the difference g1(Ys,α)− g0(Ys,α) simplifies to (1−αω(α))(ν1− ν0), so that the
bound (27) reduces to

∆R(α,θ∗, θ̂) ≤ (1−αω(α))2 (ν1−ν0)
2

E

{
min

(
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

)}
. (28)

As shown by the simpler expression (28), for ν1 ≈ ν0, the MSE increase is very small, since such a
two-component mixture is close to a pure Gaussian.

6.3.3 EFFECT OF MEAN DIFFERENCES

Finally consider the case of equal means ν≡ ν0 = ν1 in the two Gaussian mixture components. In
this case, we have g1(Ys,α)−g0(Ys,α) = [ω1(α)−ω0(α)] [Ys−αν], so that the bound (27) reduces
to

∆R(α,θ∗, θ̂) ≤ [ω1(α)−ω0(α)]2 E

{
min

(
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

)√
∑s(Ys−αν)4

N

}
.

Here the MSE increase depends on the SNR α and the difference

ω1(α)−ω0(α) =
ασ2

1

α2σ2
1 +(1−α2)

− ασ2
0

α2σ2
0 +(1−α2)

=
(1−α2) (σ2

1−σ2
0)[

α2σ2
0 +(1−α2)

] [
α2σ2

1 +(1−α2)
] .

Observe, in particular, that the MSE increases tends to zero as the difference σ2
1−σ2

0 decreases, as
should be expected intuitively.

6.4 Proof of Theorem 7

We now turn to the proof of the main bound (27). By the Pythagorean relation that characterizes the
Bayes least squares estimator ẑopt(Y ;θ∗) = E(Z |Y,θ∗)[Z], we have

∆R(α;θ∗, θ̂) :=
1
N

E‖ẑapp(Y ; θ̂)−Z‖2
2−

1
N

E‖ẑopt(Y ;θ∗)−Z‖2
2

=
1
N

E‖ẑapp(Y ; θ̂)− ẑopt(Y ;θ∗)‖2
2.

Using the definitions of ẑapp(Y ; θ̂) and ẑopt(Y ;θ∗), some algebraic manipulation yields
[
ẑapp

s (Y ; θ̂)− ẑopt
s (Y ;θ∗)

]2
=

[
τs(θ̂+ γ)−µs(θ∗+ γ)

]2
[g1(Ys)−g0(Ys)]

2

≤
∣∣∣τs(θ̂+ γ)−µs(θ∗+ γ)

∣∣∣ [g1(Ys)−g0(Ys)]
2 ,

where the second inequality uses the fact that |τs−µs| ≤ 1 since τs and µs are marginal probabilities.
Next we write

1
N
‖ẑapp(Y ; θ̂)− ẑopt(Y ;θ∗)‖2

2 ≤ 1
N

N

∑
s=1

∣∣∣τs(θ̂+ γ)−µs(θ∗+ γ)
∣∣∣ [g1(Ys)−g0(Ys)]

2 (29)

≤ 1√
N
‖τ(θ̂+ γ)−µ(θ∗+ γ)‖2

√
∑N

s=1 |g1(Ys)−g0(Ys)|4
N
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where the last line uses the Cauchy-Schwarz inequality.
It remains to bound the 2-norm ‖τ(θ̂+γ)−µ(θ∗+γ)‖2. An initial naive bound follows from the

fact τs,µs ∈ [0,1] implies that |τs−µs| ≤ 1, whence

1√
N
‖τ−µ‖2 ≤ 1. (30)

An alternative bound, which will be better for small perturbations γ, can be obtained as follows.
Using the relation τ(θ̂) = µ(θ∗) guaranteed by the definition of the ML estimator and surrogate
estimator, we have

‖τ(θ̂+ γ)−µ(θ∗+ γ)‖2 =
∥∥∥
[
τ(θ̂+ γ)− τ(θ̂)

]
+[µ(θ∗)−µ(θ∗+ γ)]

∥∥∥
2

=
∥∥∥
[
∇2B(θ̂+ sγ)−∇2A(θ∗+ tγ)

]
γ
∥∥∥

2
,

for some s, t ∈ [0,1], where we have used the mean value theorem. Thus, using the definition (25)
of L, we have

1√
N
‖τ(θ̂+ γ)−µ(θ∗+ γ)‖2 ≤ L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

. (31)

Combining the bounds (30) and (31) and applying them to Equation (29), we obtain

1
N
‖ẑapp(Y ; θ̂)− ẑopt(Y ;θ∗)‖2

2 ≤ min

{
1, L(θ∗; θ̂)

‖γ(Y ;α)‖2√
N

} √
∑N

s=1 |g1(Ys)−g0(Ys)|4
N

.

Taking expectations of both sides yields the result.

7. Experimental Results

In order to test our joint estimation/prediction procedure, we have applied it to coupled Gaussian
mixture models on different graphs, coupling strengths, observation SNRs, and mixture distribu-
tions. Here we describe both experimental results to quantify the performance loss of the tree-
reweighted sum-product algorithm (Wainwright et al., 2005), and compare it to both a baseline in-
dependence model, as well as a closely related heuristic method that uses the ordinary sum-product
(or belief propagation) algorithm.

7.1 Methods

In Section 4.2, we described a generic procedure for joint estimation and prediction. Here we
begin by describing the special case of this procedure when the underlying variational method is
the tree-reweighted sum-product algorithm (Wainwright et al., 2005). Any instantiation of the tree-
reweighted sum-product algorithm is specified by a collection of edge weights ρst , one for each
edge (s, t) of the graph. The vector of edge weights must belong to the spanning tree polytope;
see Wainwright et al. (2005) for further background on these weights and the reweighted algorithm.
Given a fixed set of edge weights ρ, the joint procedure based on the tree-reweighted sum-product
algorithm consists of the following steps:
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1. Given an initial set of i.i.d. data {X 1, . . . ,Xn}, we first compute the empirical marginal distri-
butions

µ̂s; j :=
1
n

n

∑
i=1

I [X i
s = j], µ̂st; jk :=

1
n

n

∑
i=1

I [X i
s = j] I [X i

t = k],

and use them to compute the approximate parameter estimate

θ̂n
s; j := log µ̂s; j, θ̂n

s; j := ρst log
µ̂st; jk

µ̂s; jµ̂t;k
. (32)

As shown in our previous work (Wainwright et al., 2003b), the estimates (32) are the global
maxima of the surrogate likelihood (16) based on the convexified Bethe approximation (12)
without any regularization term (i.e., R = 0).

2. Given the new noisy observation Y of the form (21), we incorporate it by by forming the new
exponential parameter

θ̂n
s + γs(Y ),

where Equation (26a) defines γs for the Gaussian mixture model under consideration.

3. We then compute approximate marginals τ(θ̂ + γ) by running the TRW sum-product algo-
rithm with edge appearance weights ρst , using the message updates (14), on the graphical
model distribution with exponential parameter θ̂+ γ. We use the approximate marginals (see
Equation (15)) to construct the prediction ẑapp in Equation (24).

We evaluated the tree-reweighted sum-product based on its increase in mean-squared error
(MSE) over the Bayes optimal predictor (22). Moreover, we compared the performance of the
tree-reweighted approach to the following alternatives:

(a) As a baseline, we used the independence model in which the mixture distributions at each
node are all assumed to be independent. In this case, ML estimates of the parameters are
given by θ̂s; j = log µ̂s; j, with all of the coupling terms θ̂st; jk equal to zero. The prediction step
reduces to computing the Bayes least squares estimate at each node independently, based only
on the local data ys.

(b) The standard sum-product or belief propagation (BP) approach is closely related to the tree-
reweighted sum-product method, but based on the edge weights ρst = 1 for all edges. In
particular, we first form the approximate parameter estimate θ̂ using Equation (32) with ρst =
1. As shown in our previous work (Wainwright et al., 2003b), this approximate parameter
estimate uniquely defines the Markov random field for which the empirical marginals µ̂s and
µ̂st are fixed points of the ordinary belief propagation algorithm. We note that a parameter
estimator of this type has been used previously by other researchers (Freeman et al., 2000;
Ross and Kaebling, 2005). In the prediction step, we then use the ordinary belief propagation
algorithm (i.e., again with ρst = 1) to compute approximate marginals of the graphical model
with parameter θ̂ + γ. Finally, based on these approximate BP marginals, we compute the
approximate predictor using Equation (24).

Although our methods are more generally applicable, here we show representative results for
m = 2 components, and two different types of Gaussian mixtures.
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(a) Mixture ensemble A is bimodal, with components (ν0,σ2
0) = (−1,0.5) and (ν1,σ2

1) = (1,0.5).

(b) Mixture ensemble B was constructed with mean and variance components (ν0,σ2
0) = (0,1)

and (ν1,σ2
1) = (0,9); these choices serve to mimic heavy-tailed behavior.

In both cases, each mixture component is equally weighted; see Figure 3 for histograms of the
resulting mixture ensembles.
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Figure 3: Histograms of different Gaussian mixture ensembles. (a) Ensemble A: a bimodal ensem-
ble with (ν0,σ2

0) = (−1,0.5) and (ν1,σ2
1) = (1,0.5). (b) Ensemble B: mimics a heavy-

tailed distribution, with (ν0,σ2
0) = (0,1) and (ν1,σ2

1) = (0,9).

Here we show results for a 2-D grid with N = 64 nodes. Since the mixture variables have m = 2
states, the coupling distribution can be written as

p(x ; θ∗) ∝ exp
{

∑
s∈V

θ∗s xs + ∑
(s,t)∈E

θ∗stxsxt
}
,

where x ∈ {−1,+1}N are “spin” variables indexing the mixture components. In all trials (except
those in Section 7.2), we chose θ∗s = 0 for all nodes s ∈ V , which ensures uniform marginal dis-
tributions p(xs ; θ∗) = [0.5 0.5]T at each node. We tested two types of coupling in the underlying
Markov random field:

(a) In the case of attractive coupling, for each coupling strength β ∈ [0,1], we chose edge param-
eters as θ∗st ∼U[0,β].

(b) In the case of mixed coupling, for each coupling strength β∈ [0,1], we chose edge parameters
as θ∗st ∼U[−β,β].

Here U[a,b] denotes a uniform distribution on the interval [a,b]. In all cases, we varied the SNR
parameter α, as specified in the observation model (21), in the interval [0,1].

7.2 Comparison between “Incorrect” and True Model

We begin with an experimental comparison to substantiate our earlier claim that applying an ap-
proximate message-passing algorithm to the “incorrect” model yields prediction results superior to
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those obtained by applying the same message-passing algorithm to the true underlying model. As
discussed earlier in Section 6.3.1, for any underlying model p(x;θ∗) in which approximate message-
passing yields the incorrect marginals (without any additional observations), there exists a range of
SNR around α≈ 0 for which this superior performance will hold.
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Figure 4: Line plots of percentage increase in MSE relative to Bayes optimum for the TRW method
applied to the true model (black circles) versus the approximate model (red diamonds) as
a function of observation SNR for grids with N = 64 nodes, and attractive coupling β =
0.70. As predicted by theory, using the “incorrect” model leads to superior performance,
when prediction is performed using the approximate TRW method, for a range of SNR.

Figure 4 provides an empirical demonstration of this claim, when the TRW algorithm for pre-
diction is applied to a grid with N = 64 nodes and attractive coupling strength β = 0.70, and the
node observations chosen randomly as θ∗s ∼ N(0,0.5). Plotted versus the SNR parameter α is the
percentage increase in MSE performance relative to the Bayes optimal baseline. Note that for all
SNR parameters up to α ≈ 0.40, applying the TRW algorithm to the true model yields worse per-
formance than applying it to the “incorrect model”. Beyond this point, the pattern reverses, but any
differences between the two methods are rather small for α > 0.40.

7.3 Comparison between Tree-reweighted and Ordinary Sum-product

We now compare the performance of the prediction method based on tree-reweighted sum-product
(TRW) message-passing to that based on ordinary sum-product or belief propagation (BP) message-
passing. Shown in Figure 5 are 2-D surface plots of the average percentage increase in MSE,
taken over 100 trials, as a function of the coupling strength β ∈ [0,1] and the observation SNR
parameter α ∈ [0,1] for the independence model (left column), BP approach (middle column) and
TRW method (right column). The top two rows show performance for attractive coupling, for
mixture ensemble A ((a) through (c)) and ensemble B ((d) through (f)), whereas the bottom two row
show performance for mixed coupling, for mixture ensemble A ((g) through (i)) and ensemble B
((j) through (l)).

First, observe that for weakly coupled problems (β ≈ 0), whether attractive or mixed coupling,
all three methods—including the independence model—perform quite well, as should be expected
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Figure 5: Surface plots of the percentage increase in MSE relative to Bayes optimum for differ-
ent methods as a function of observation SNR for grids with N = 64 nodes. Left col-
umn: independence model (IND). Center column: ordinary belief propagation (BP).
Right column: tree-reweighted algorithm (TRW). First row: Attractive coupling and a
Gaussian mixture with components (ν0,σ2

0) = (−1,0.5) and (ν1,σ2
1) = (1,0.5). Second

row: Attractive coupling and a Gaussian mixture with components (ν0,σ2
0) = (0,1) and

(ν0,σ2
1) = (0,9). Third row: Mixed coupling and a Gaussian mixture with components

(ν0,σ2
0) = (−1,0.5) and (ν1,σ2

1) = (1,0.5). Fourth row: Mixed coupling and a Gaussian
mixture with components (ν0,σ2

0) = (0,1) and (ν0,σ2
1) = (0,9).
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given the weak dependency between different nodes in the Markov random field. Although not clear
in these plots, the standard BP method outperforms the TRW-based method for weak coupling; how-
ever, both methods lose less than 1% in this regime. As the coupling is increased, the BP method
eventually deteriorates quite seriously; indeed, for large enough coupling and low/intermediate
SNR, its performance can be worse than the independence (IND) model. This deterioration is
particularly severe for the case of mixture ensemble A with attractive coupling, where the percent-
age loss in BP can be as high as 50%. Note that the degradation is not caused by failure of the
BP algorithm to converge. Rather, by looking at alternative models (in which phase transitions are
known), we have found that this type of rapid degradation coincides with the appearance of multiple
fixed points for the BP algorithm. In contrast, the behavior of the TRW method is extremely stable,
which is consistent with our theoretical results.

7.4 Comparison between Theory and Practice

We now compare the practical behavior of the tree-reweighted sum-product algorithm to the the-
oretical predictions from Theorem 7. In general, we have found that in quantitative terms, the
bounds (27) are rather conservative—in particular, the TRW sum-product method performs much
better than the bounds would predict. However, here we show how the bounds can capture qualita-
tive aspects of the MSE increase in different regimes.

Figure 6 provides plots of the actual MSE increase for the TRW algorithm (solid red lines),
compared to the theoretical bound (27) (dotted blue lines), for the grid with N = 64 nodes, and
attractive coupling of strength β = 0.70. For all comparisons in both panels, we used L = 0.10,
which numerical calculations showed to be a reasonable choice for this coupling strength. (Overall,
changes in the constant L primarily cause the bounds to shift up and down on the log scale, and
so do not overly affect the qualitative comparisons given here.) Panel (a) provides the comparison
ensembles of type A, with fixed variances σ2

0 = σ2
1 = 0.5 and mean vectors (ν0,ν1) ranging from

(−0.5,0.5) to (−2.5,2.5). Note how the bounds capture the qualitative behavior for low SNR, for
which the difficulty of the problem increases as the mean separation is increased. In contrast, in the
high SNR regime, the bounds are extremely conservative, and fail to predict that the sharp drop-off
in error as the SNR parameter α approaches one. This drop-off is particularly pronounced for the
ensemble with largest mean separation (marked with +). Panel (b) provides a similar comparison
for ensembles of type B, with fixed mean vectors ν0 = ν1 = 0, and variances (σ1

0,σ2
1) ranging from

(1,1.25) to (1,25). In this case, although the bounds are still very conservative in quantitative terms,
they reasonably capture the qualitative behavior of the error over the full range of SNR.

8. Discussion

Key challenges in the application of Markov random fields include the estimation (learning) of
model parameters, and performing prediction using noisy samples (e.g., smoothing, interpolation,
denoising). Both of these problems present substantial computational challenges for general Markov
random fields. In this paper, we have described and analyzed methods for joint estimation and pre-
diction that are based on convex variational methods. Our central result is that using inconsistent pa-
rameter estimators can be beneficial in the computation-limited setting. Indeed, our results provide
rigorous confirmation of the fact that using parameter estimates that are “systematically incorrect” is
helpful in offsetting the error introduced by using an approximate method during the prediction step.
Moreover, our analysis establishes an additional benefit—aside from the obvious one of ensuring
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Figure 6: Comparison of actual MSE increase and upper bounds for grid with N = 64 nodes with
attractive coupling. (a) Equal variances σ2

0 = σ2
1 = 0.5, and mean vectors (ν0,ν1) ranging

from (−0.5,0.5) to (−2.5,2.5). (b) Equal mean vectors ν0 = ν1 = 0, and variances
(σ2

0,σ2
1) ranging from (1,1.25) to (1,25).

unique global optima—to using variational methods based on convex approximations. In particular,
we established a global Lipschitz stability property that applies to any message-passing algorithm
that is based on a strongly concave entropy approximation. This type of global stability is a key con-
sideration for algorithms that are applied to models estimated from data, or in which errors might
be introduced during message-passing (e.g., due to quantization or other forms of communication
constraints). Our empirical results showed that a joint prediction/estimation method using the tree-
reweighted sum-product algorithm yields good performance across a wide range of experimental
conditions. Although our work has focused on a particular scenario, we suspect that similar ideas
and techniques will be useful in related applications of approximate methods for learning combined
with prediction and/or classification.
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Appendix A. Tree-Based Relaxation

As an illustration on the single cycle on 3 vertices, the pseudomarginal vector with elements

τs(xs) =

[
0.5
0.5

]
for s = 1,2,3 and τst(xs,xt) =

[
αst 0.5−αst

0.5−αst αst

]
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belongs to LOCALφ(G) for all choices αst ∈ [0,0.5], but fails to belong to MARGφ(G), for instance,
when α12 = α23 = α13 = 0.

Appendix B. Proof of Lemma 4

Using Lemma 1 and the mean value theorem, we write

µ(θ+δ)−µ(θ) = ∇A(θ+δ)−∇A(θ)

= ∇2A(θ+ tδ)δ

for some t ∈ (0,1). Hence, it suffices to show that the eigenspectrum of the Hessian ∇2A(θ) =
covθ{φ(X)} is uniformly bounded above by L < +∞. The functions φ are all 0-1 valued indi-
cator functions, so that the diagonal elements of covθ

{
φ(X)

}
are bounded above—in particular,

var(φα(X))≤ 1
4 for any index α ∈ {1, . . . ,d}. Consequently, we have

λmax(covθ{φ(X)}) ≤
d

∑
α=1

λα(covθ{φ(X)} = trace(covθ{φ(X)} =
d
4

as required.

Appendix C. Proof of Lemma 6

Consider a spanning tree T of G with edge set E(T ). Given a vector τ ∈ LOCALφ(G), we associate
with T a subvector τ(T ) formed by those components of τ associated with vertices V and edges
E(T ). Note that by construction τ(T ) ∈ LOCALφ(T ) = MARGφ(T ). The mapping τ 7→ τ(T ) can
be represented by a projection matrix ΠT ∈ R

d(T )×d with the block structure

ΠT :=
[
Id(T )×d(T ) 0d(T )×(d−d(T ))

]
.

In this definition, we are assuming for convenience that τ is ordered such that the d(T ) components
corresponding to the tree T are placed first. With this notation, we have ΠT τ =

[
τ(T ) 0

]′
.

By our construction of the function Bρ, there exists a probability distribution ρ := {ρ(T ) | T ∈ T}
such that Bρ(τ) = ∑T∈T ρ(T )A∗(τ(T )), where A∗(τ(T )) denotes the negative entropy of the tree-
structured distribution defined by the vector of marginals τ(T ). Hence, the Hessian of Bρ has the
decomposition

∇2Bρ(τ) = ∑
T∈T

ρ(T )(ΠT )′∇2A∗(τ(T ))(ΠT ). (33)

To check dimensions of the various quantities, note that ∇2A∗(τ(T )) is a d(T )× d(T ) matrix, and
recall that each matrix ΠT ∈ R

d(T )×d .
Now by Lemma 4, the eigenvalues of the ∇2A are uniformly bounded above; hence, the eigen-

values of ∇2A∗ are uniformly bounded away from zero. Hence, for each tree T , there exists a
constant CT such that for all z ∈ R

d

z′(ΠT )′∇2A∗(τ(T ))(ΠT )z ≥ CT‖ΠT z‖2 = CT‖zT‖2,
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where we use zT = ΠT z as a shorthand for the projection of z onto the indices associated with T .
Substituting this relation into our decomposition (33) and expanding the sum over T yields

z′∇2Bρ(τ)z ≥ ∑
T∈T

ρ(T )CT‖zT‖2

=
[

∑
T∈T

ρ(T )CT
]
∑
s∈V

‖zs‖2 + ∑
(s,t)∈E

[
∑

T∈T
ρ(T )CT I [(s, t) ∈ E(T )]

]
‖zst‖2. (34)

Defining C∗ := minT∈TCT , we have the lower bounds

[
∑

T∈T
ρ(T )CT

]
≥ C∗ ∑

T∈T
ρ(T ) = C∗ > 0

∑
T∈T

ρ(T )CT I [(s, t) ∈ E(T )] ≥ C∗ ∑
T∈T

ρ(T )I [(s, t) ∈ E(T )] = C∗ρst ≥ C∗ρ∗ > 0,

where ρ∗ := min
(s,t)∈E

ρst > 0. Applying these bounds to Equation (34) yields the final inequality

z′∇2Bρ(τ)z ≥ C∗ρ∗‖z‖2 ∀z ∈ R
d

with C∗ρ∗ > 0, which establishes that the eigenvalues of ∇2Bρ(τ) are bounded away from zero.

Appendix D. Form of Exponential Parameter

Consider the observation model ys = αzs +
√

1−α2vs, where vs ∼ N(0,1) and zs is a mixture of
two Gaussians (ν0,σ2

0) and (ν1,σ2
1). Conditioned on the value of the mixing indicator Xs = j, the

distribution of ys is Gaussian with mean αν j and variance α2σ2
j +(1−α2).

Let us focus on one component p(ys |xs) in the factorized conditional distribution p(y |x) =

∏n
s=1 p(ys |xs). For j = 0,1, it has the form

p(ys |Xs = j) =
1√

2π
[
α2σ2

j +(1−α2)
] exp

{
− 1

2
[
α2σ2

j +(1−α2)
](ys−αν j)

2
}
.

We wish to represent the influence of this term on xs in the form exp(γsxs) for some exponential
parameter γs. We see that γs should have the form

γs = log p(ys |Xs = 1)− log p(ys |Xs = 0)

=
1
2

log

[
α2σ2

0 +(1−α2)
]

[
α2σ2

1 +(1−α2)
] +

(ys−αν0)
2

2
[
α2σ2

0 +(1−α2)
] − (ys−αν1)

2

2
[
α2σ2

1 +(1−α2)
] .

References

A. Benveniste, M. Metivier, and P. Priouret. Adaptive Algorithms and Stochastic Approximations.
Springer-Verlag, New York, NY, 1990.

D.P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, 1995.

J. Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–195, 1975.

1856



ESTIMATING THE “WRONG” GRAPHICAL MODEL

J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika, 64(3):
616–618, 1977.

L.D. Brown. Fundamentals of statistical exponential families. Institute of Mathematical Statistics,
Hayward, CA, 1986.

M.S. Crouse, R.D. Nowak, and R.G. Baraniuk. Wavelet-based statistical signal processing using
hidden Markov models. IEEE Trans. Signal Processing, 46:886–902, April 1998.

M. Deza and M. Laurent. Geometry of Cuts and Metric Embeddings. Springer-Verlag, New York,
1997.

W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. Intl. J. Computer
Vision, 40(1):25–47, 2000.

W. T. Freeman and Y. Weiss. On the optimality of solutions of the max-product belief propagation
algorithm in arbitrary graphs. IEEE Trans. Info. Theory, 47:736–744, 2001.

T. Heskes, K. Albers, and B. Kappen. Approximate inference and constrained optimization. In
Uncertainty in Artificial Intelligence, volume 13, pages 313–320, July 2003.

A. Ihler, J. Fisher, and A. S. Willsky. Loopy belief propagation: Convergence and effects of message
errors. Journal of Machine Learning Research, 6:905–936, May 2005.

S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.

M. A. R. Leisink and H. J. Kappen. Learning in higher order Boltzmann machines using linear
response. Neural Networks, 13:329–335, 2000.

J. S. Liu. Monte Carlo strategies in Scientific Computing. Springer-Verlag, New York, NY, 2001.

T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD thesis, MIT, January
2001.

J. M. Mooij and H. J. Kappen. On the properties of the Bethe approximation and loopy belief prop-
agation on binary networks. Journal of Statistical Mechanics: Theory and Experiment, P11012:
407–432, 2005a.

J. M. Mooij and H. J. Kappen. Sufficient conditions for convergence of loopy belief propagation.
Technical Report arxiv:cs.IT:0504030, University of Nijmegen, April 2005b. Submitted to IEEE
Trans. Info. Theory.

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 19(4):380–393, 1997.

T. Richardson and R. Urbanke. The capacity of low-density parity check codes under message-
passing decoding. IEEE Trans. Info. Theory, 47:599–618, February 2001.

B. D. Ripley. Spatial statistics. Wiley, New York, 1981.

C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer-Verlag, New York, NY,
1999.

1857



WAINWRIGHT

G. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

M. Ross and L. P. Kaebling. Learning static object segmentation from motion segmentation. In 20th
National Conference on Artificial Intelligence, 2005.

P. Rusmevichientong and B. Van Roy. An analysis of turbo decoding with Gaussian densities. In
NIPS 12, pages 575–581. MIT Press, 2000.

R. J. Serfling. Approximation Theorems of Mathematical Statistics. Wiley Series in Probability and
Statistics. Wiley, 1980.

C. Sutton and A. McCallum. Piecewise training of undirected models. In Uncertainty in Artificial
Intelligence, July 2005.

S. Tatikonda. Convergence of the sum-product algorithm. In Information Theory Workshop, April
2003.

S. Tatikonda and M. I. Jordan. Loopy belief propagation and Gibbs measures. In Proc. Uncertainty
in Artificial Intelligence, volume 18, pages 493–500, August 2002.

Y. W. Teh and M. Welling. On improving the efficiency of the iterative proportional fitting proce-
dure. In Workshop on Artificial Intelligence and Statistics, 2003.

D. M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical analysis of finite mixture distribu-
tions. Wiley, New York, 1986.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-based reparameterization framework for
analysis of sum-product and related algorithms. IEEE Trans. Info. Theory, 49(5):1120–1146,
May 2003a.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-reweighted belief propagation algorithms
and approximate ML estimation by pseudomoment matching. In Workshop on Artificial Intelli-
gence and Statistics, January 2003b.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new class of upper bounds on the log
partition function. IEEE Trans. Info. Theory, 51(7):2313–2335, July 2005.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational infer-
ence. Technical report, UC Berkeley, Department of Statistics, No. 649, September 2003.

M. J. Wainwright and M. I. Jordan. A variational principle for graphical models. In New Directions
in Statistical Signal Processing. MIT Press, Cambridge, MA, 2005.

M. J. Wainwright and M. I. Jordan. Log-determinant relaxation for approximate inference in discrete
Markov random fields. IEEE Trans. Signal Processing, 54(6):2099–2109, June 2006.

Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Computation, 12:1–41, 2000.

W. Wiegerinck. Approximations with reweighted generalized belief propagation. In Workshop on
Artificial Intelligence and Statistics, January 2005.

1858



ESTIMATING THE “WRONG” GRAPHICAL MODEL

J. Yedidia. An idiosyncratic journey beyond mean field theory. In M. Opper and D. Saad, editors,
Advanced mean field methods: Theory and practice, pages 21–36. MIT Press, 2001.

J.S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations and generalized
belief propagation algorithms. IEEE Trans. Info. Theory, 51(7):2282–2312, July 2005.

L. Younes. Estimation and annealing for Gibbsian fields. Ann. Inst. Henri Poincare, 24(2):269–294,
1988.

1859


