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Abstract

We consider the problem of Tikhonov regularization with a general convex loss function: this for-
malism includes support vector machines and regularized least squares. For a family of kernels that
includes the Gaussian, parameterized by a “bandwidth” parameterσ, we characterize the limiting
solution asσ → ∞. In particular, we show that if we set the regularization parameterλ = λ̃σ−2p,
the regularization term of the Tikhonov problem tends to an indicator function on polynomials of
degree⌊p⌋ (with residual regularization in the case wherep∈Z). The proof rests on two key ideas:
epi-convergence, a notion of functional convergence under which limits of minimizers converge to
minimizers of limits, and avalue-based formulation of learning, where we work with regularization
on the function output values (y) as opposed to the function expansion coefficients in the RKHS.
Our result generalizes and unifies previous results in this area.

Keywords: Tikhonov regularization, Gaussian kernel, theory, kernelmachines

1. Introduction

Given a data set(x1, ŷ1), . . . ,(xn, ŷn)∈R
d×R, the supervised learning task is to construct a function

f (x) that, given a new point,x, will predict the associatedy value. A number of methods for
this problem have been studied. One popular family of techniques is Tikhonov regularization in a
Reproducing Kernel Hilbert Space (RKHS) (Evgeniou et al., 2000):

inf
f∈H

{

nλ|| f ||2κ +
n

∑
i=1

v( f (xi), ŷi)

}

.

Here,v : R×R → R is a loss functionindicating the price we pay when we seexi , predict f (xi),
and the true value is ˆyi . The squared norm,|| f ||2κ, in the RKHSH involves the kernel function
κ (Aronszajn, 1950). The regularization constant,λ > 0, controls the trade-off between fitting the
training set accurately (minimizing the penalties) and forcingf to be smooth inH . The Representer
Theorem (Wahba, 1990; Girosi et al., 1995; Schölkopf et al., 2001) guarantees that the solution to
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the Tikhonov regularization can be written in the form

f (x) =
n

∑
i=1

ciκ(xi ,x).

In practice, solving a Tikhonov regularization problem is equivalent to finding the expansion coef-
ficientsci .

One popular choice forκ is theGaussiankernelκσ(x,x′) = e−
||x−x′||2

2σ2 , whereσ is the bandwidth
of the Gaussian. Common choices forv include thesquareloss,v(y, ŷ) = (y− ŷ)2, and thehinge
loss,v(y, ŷ) = max{0,1−yŷ}, which lead to regularized least squares and support vector machines,
respectively.

Our work was originally motivated by the empirical observation that on a range of tasks, reg-
ularized least squares achieved very good performance with very large σ. (For example, we could
often chooseσ so large that every kernel product between pairs of training points wasbetween
.99999 and 1.) To get good results with largeσ, it was necessary to makeλ small. We decided to
study this relationship.

Regularized least squares (RLS) is an especially simple Tikhonov regularization algorithm:
“training” RLS simply involves solving a system of linear equations. In particular, defining the
matrix K via Ki j = κ(xi ,x j), the RLS expansion coefficientsc are given by(K + nλI)c = ŷ, or
c= (K +nλI)−1ŷ. Given a test pointx0, we define then-vectork via ki = κ(x0,xi), and we have, for
RLS with a fixed bandwidth,

f (x0) = kt(K +nλI)−1ŷ.

In Lippert and Rifkin (2006), we studied the limit of this expression asσ → ∞, showing that
if we set λ = λ̃σ−2p−1 for p a positive integer, the infinite-σ limit converges (pointwise) to the
degreep polynomial with minimal empirical risk on the training set. The asymptotic predictions
are equivalent to those we would get if we simply fit an (unregularized) degreep polynomial to our
training data.

In Keerthi and Lin (2003), a similar phenomenon was also noticed for support vector machines
(SVM) with Gaussian kernels, where it was observed that the SVM function could be made to
converge (in the infinite-σ limit) to a linear function which minimized the hinge loss plus a residual
regularization (discussed further below). In that work, only a linear result was obtained; no results
were given for general polynomial approximation limits.

In the current work, we unify and generalize these results, showing that the occurrence of these
polynomial approximation limits is a general phenomenon, which holds across all convex loss func-
tions and a wide variety of kernels taking the formκσ(x,x′) = κ(x/σ,x′/σ). Our main result is that
for a convex loss function and a valid kernel, if we takeσ → ∞ andλ = λ̃σ−2p, the regularization
term of the Tikhonov problem tends to an indicator function on polynomials of degree⌊p⌋. In
the case wherep ∈ Z, there is residual regularization on the degree-p coefficients of the limiting
polynomial.

Our proof relies on two key ideas. The first is the notion ofepi-convergence, a functional
convergence under which limits of minimizers converge to minimizers of limits. This notion allows
us to characterize the limiting Tikhonov regularization problem in a mathematically precise way.
The second notion is avalue-based formulation of learning. The idea is that instead of working
with the expansion coefficients in the RKHS (ci), we can write the regularization problem directly
in terms of the predicted values (yi). This allows us to avoid combining and canceling terms whose
limits are individually undefined.
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2. Notation

In this section, we describe the notation we use throughout the paper. Someof our choices are
non-standard, and we try to indicate these.

2.1 Data Sets and Regularization

We refer to a generald dimensional vector with the symbolx (plus superscripts or subscripts). We
assume a fixed set ofn training pointsxi ∈ R

d (1 ≤ i ≤ n) and refer to the totality of these data
points byX, such that for anyf : R

d → R, f (X) = ( f (x1) · · · f (xn))
t is the vector of values

over the points and for anyg : R
d×R

d → R, g(X,X) is the matrix of values over pairs of points, i.e.
[g(X,X)]i j = g(xi ,x j). We letx0 represent an arbitrary “test point” not in the training set. We assume
we are given “true” ˆy values at the training points: ˆyi ∈ R,1≤ i ≤ n. While it is more common to
useŷ to refer to the “predicted” output values andy to refer to the “true” output values, we find
this choice much more notationally convenient, because our value-based formulation of learning (3)
requires us to work with the predicted values very frequently.

Tikhonov regularization is given by

inf
f∈H

{

nλ|| f ||2κ +
n

∑
i=1

v( f (xi), ŷi)

}

. (1)

Tikhonov regularization can be used for both classification and regression tasks, but we refer to the
function f as theregularized solutionin all cases. We call the left-hand portion theregularization
term, and the right-hand portion theloss term. We assume a loss functionv(y, ŷ) that is convex in
its first argument and minimized aty= ŷ (thereby ruling out, for example, the 0/1 “misclassification
rate”). We call such a loss functionvalid. Aside from convexity, we will be unconcerned with the
form of the loss function and often take the loss term in the optimization in (1) to besome convex
functionV : R

n → R which is minimized by the vector ˆy of ŷi ’s.
To avoid confusion, when subscripting overd dimensional indices, we use letters from the

beginning of the alphabet (a,b,c, . . .), while using letters from the middle (i, j, . . .) for n dimensional
indices.

When referring to optimization problems, we use an over-dot (e.g. ˙y) to denote optimizing
quantities. We are not time-differentiating anything in this work, so this should not cause confusion.

2.2 Polynomials

By a multi-indexwe refer toI ∈ Z
d such thatIa ≥ 0. Givenx ∈ R

d we write xI = ∏d
a=1xIa

a . We
also writeXI to denote(xI

1 · · · xI
n)t . Thedegreeof a multi-index is|I | = ∑d

a=1 Ia. We use the
“choose” notation

(

|I |
I

)

=
|I |!

∏d
a=1 Ia!

.

Let {Ii}∞
i=0 be an ordering of multi-indices which is non-decreasing by degree (in particular,

I0 = (0 · · · 0)). We consider this fixed for the remainder of the work. Definedc = |{I : |I | ≤ c}|
and note thatdc =

(

d+c+1
c

)

. Put differently,{I : |I | = c} = {Ii : dc−1 ≤ i < dc}.

Given a data set, while the monomialsxIi are linearly independent as functions, no more than
n of theXIi can be linearly independent. We say that a data set isgenericif the XIi , for i < n, are
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linearly independent. This is equivalent to requiring that the data not reside on the zero-set of a low
degree system polynomials. This is not an unreasonable assumption for data which is presumed to
have been generated by distributions supported onR

n or some sphere inRn. Throughout this paper,
we assume that our data is generic. It is possible to carry out the subsequent derivations without it,
but the modifications which result are tedious. In particular, parts of Theorem 12, which treat the
first n monomialsXIi as linearly independent (e.g. assumingvα(X) is non-singular in the proof),
would need to be replaced with analogous statements about the firstn monomialsXIi j which are
linearly independent, and various power-series expansion coefficients would have to be adjusted
accordingly. Additionally, our main result requires not only genericity of the data, but also that
n > dp wherep is the degree of the asymptotic regularized solution.

2.3 Kernels

It is convenient to use infinite matrices and vectors to express certain infiniteseries. Where used, the
convergence of the underlying series implies the convergence of any infinite sums that arise from
the matrix products we form, and we will not attempt to define any inverses of non-diagonal infinite
matrices. This is merely a notational device to avoid excessive explicit indexing and summing in
the formulas ahead. Additionally, since many of our vectors come from power series expansions,
we adopt the convention of indexing such vectors and matrices starting from 0.

A Reproducing Kernel Hilbert Space (RKHS) is characterized by a kernel functionκ. If κ has a
power series expansion, we may write

κ(x,x′) = ∑
i, j≥0

Mi j x
Ii x′I j

= v(x)Mv(x′)t

whereM ∈ R
∞×∞ is an infinite matrix andv(x) = (1 xI1 xI2 · · ·) ∈ R

1×∞ is an infinite row-
vector valued function ofx. We emphasize thatM is an infinite matrix induced by the kernel function
κ and the ordering of multi-indices; it has nothing to do with our data set.

We say that a kernel isvalid if every finite upper-left submatrix ofM is symmetric and positive
definite; in this case, we also say that the infinite matrixM is symmetric positive definite. This con-
dition is the one we use in our main proof; however, it can be difficult to check. It is independent of
the Mercer property (which states that the kernel matrixκ(X,X) for a setX is positive semidefinite),
sinceκ(x,x′) = 1

1−xx′ is valid but not Mercer, and exp(−(x3− x′3)2) is Mercer but not valid. This
notion is, basically, that the feature space ofκ can approximate any polynomial function near the
origin to arbitrary accuracy. We are not aware of any mention of this property in the literature. The
following lemma gives a stronger condition that implies validity.

Lemma 1 If κ(x,x′) = ∑c≥0(x·x′)cgc(x)gc(x′) for some analytic functions gc(x) such that gc(0) 6= 0,
thenκ is a valid kernel.

Proof By the multinomial theorem,

(x ·x′)c =

(

d

∑
i=1

xix
′
i

)c

= ∑
|I |=c

(

|I |
I

)

xI x′I .
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Let gc(x) = ∑I GcIxI , and notegc(0) = Gc0, thus

κ(x,x′) = ∑
I ,J,c≥0

∑
|E|=c

(

|E|
E

)

xI+EGcIGcJx
′J+E

= ∑
I ,J,E

(

|Ik|
Ik

)

xI+EG|E|I G|E|Jx′J+E

= ∑
I ,J≥E

xI G|E|(I−E)

(

|E|
E

)

G|E|(J−E)x
′J

= v(x)LLtv(x′)

whereLi j =

(

|I j |
I j

) 1
2

G|I j |(Ii−I j ) whenIi ≥ I j and 0 otherwise. In other words,L is an infinite lower

triangular matrix with non-vanishing diagonal elements (sinceGc0 6= 0 for all c).
SinceM = LLt , the upper-left submatrices ofL are the Cholesky factors of the corresponding

upper-left submatrix ofM, and thusM is positive definite.
We note thatκ(x,x′) = exp(−1

2||x−x′||2) can be written in the form of Lemma 1:

κ(x,x′) = exp

(

−1
2
||x||2

)

exp(x ·x′)exp

(

−1
2
||x′||2

)

=
∞

∑
c=0

(x ·x′)c

c!
exp

(

−1
2
||x||2

)

exp

(

−1
2
||x′||2

)

=
∞

∑
c=0

(x ·x′)cgc(x)gc(x
′),

wheregc(x) = 1√
c!

exp(−1
2||x||2).

We will consider kernel functionsκσ which are parametrized by a bandwidth parameterσ (or
s= 1

σ ). We will occasionally useKσ to refer to the matrix whosei, jth entryκσ(xi ,x j), for 1≤ i ≤
n,1≤ j ≤ n. We will also usekσ to denote then-vector whoseith entry isκσ(xi ,x0) — the kernel
product between theith training pointxi and the test pointx0.

3. Value-Based Learning Formulation

In this section, we discuss our value-based learning formulation. Using therepresenter theorem and
basic facts about RKHS, the standard Tikhonov regularization problem (1) can be written in terms
of the expansion coefficientsc and the kernel matrixK:

inf
c∈Rn

{

nλctKc+
n

∑
i=1

v([Kc]i , ŷi)

}

. (2)

The predicted values on the training set arey = f (X) = Kc. If the kernel matrixK is invertible
(which is the case for a Gaussian kernel and a generic data set), thenc = K−1y, and we can rewrite
the minimization as

inf
y∈Rn

{

nλytK−1y+V(y)
}

. (3)
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whereV is convex (V(y) = ∑n
i=1vi(yi , ŷi)).

While problem 2 is explicit in the coefficients of the expansion of the regularized solution,
problem 3 is explicit in the predicted valuesyi . The purpose behind our choice of formulation is to
avoid the unnecessary complexities which result from replacingκ with κσ and taking limits as both
ci andκσ(x,xi) change separately withσ: note that in problem 3,only the regularization term is
varying withσ.

In this section, we will show how our formulation achieves this, by allowing us tostate a sin-
gle optimization problem which simultaneously solves the Tikhonov regularizationproblem on the
training data and evaluates the resulting function on the test data.

Theorem 2 Let y=

(

y0

y1

)

∈R
m+n be a block vector with y0 ∈R

m,y1 ∈R
n and K=

(

K00 K01

K10 K11

)

∈

R
(m+n)×(m+n) be a positive definite matrix. For any V: R

n → R, if ẏ minimizes

ytK−1y+V(y1) (4)

thenẏ1 minimizes

yt
1K−1

11 y1 +V(y1) (5)

andẏ0 = K01K
−1
11 ẏ1.

Proof

inf
y0,y1

{ytK−1y+V(y1)} = inf
y1
{inf

y0
{ytK−1y}+V(y1)}. (6)

Let K−1 = K̄ =

(

K̄00 K̄01

K̄10 K̄11

)

. Consider minimizingytK−1y = yt
0K̄00y0 +2yt

0K̄01y1 +yt
1K̄11y1. For

fixedy1, ẏ0 = −K̄−1
00 K̄01y1 = K01K

−1
11 y1 by (17) of Lemma 15. Thus,

inf
y0

{

ytK−1y
}

= yt
1(K̄11− K̄10K̄

−1
00 K̄01)y1 = yt

1K−1
11 y1

by (19) of Lemma 15.
We contextualize this result in terms of the Tikhonov learning problem with the following corol-

lary.

Corollary 3 Let X be a given set of data points x1, . . . ,xn with x0 a test point. Letκ be a valid
kernel function and V: R

n → R be arbitrary. If ẏ = ( ẏ0 ẏ1 · · · ẏn)t is the minimizer of

nλytκ
((

x0

X

)

,

(

x0

X

))−1

y+V(y1, . . . ,yn)

then( ẏ1 · · · ẏn)t minimizes nλytκ(X,X)−1y+V(y) and
ẏ0 = ∑n

i=1ciκ(x0,xi), for c= κ(X,X)−1( ẏ1 · · · ẏn)t .

Thus, when solving fory instead ofc, we can evaluate the function at a test pointx0 by including
the additional point in a larger minimization problem where the test point contributes to the regular-
ization, but not the loss. When taking limits, we are going to work directly with theyi , and we are
going to avoid dealing with the (divergent) limits of theci .
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4. Epi-limits, Convex Functions, and Quadratic Forms

The relationship between the limit of a function and the limit of its minimizer(s) is subtle,and
it is very easy to make incorrect statements. For convex functions there are substantial results
on this subject, which we review; we essentially follow the development of Rockafellar and Wets
(2004, chap. 7). Since the component of our objective which dependson the limiting parameter is a
quadratic form, we will eventually specialize the results to quadratic forms.

Definition 4 (epigraphs) Given a function f: R
n → (−∞,∞], its epigraph, epi f is the subset of

R×R
n given by

epi f = {(z,x) : z≥ f (x)}.

We call f closed, convex, or proper if those statements are true of epi f(proper referring to epi f
being neither/0 nor R

n+1).

The functions we will be interested in are closed, convex, and proper. We will therefore adopt
the abbreviationccp for these conditions. Additionally, since we will be studying parameterized
functions, fs, for 0 < s ass→ 0, we say that such a family of functions iseventuallyconvex (or
closed, or proper) when there exists somes0 > 0 such thatfs is convex (or closed, or proper) for all
0 < s< s0.

We review the definition of liminf and limsup for functions of a single variable.Given h :
(0,∞) → (−∞,∞], it is clear that the functions infs′∈(0,s){h(s′)} and sups′∈(0,s){h(s′)} are non-
increasing and non-decreasing functions of (increasing)s respectively.

Definition 5 For h : (0,∞) → (−∞,∞],

liminf
s→0

h(s) = sup
s>0

{

inf
s′∈(0,s)

{h(s′)}
}

limsup
s→0

h(s) = inf
s>0

{

sup
s′∈(0,s)

{h(s′)}
}

.

As defined, either of the limits may take the value∞. A useful alternate characterization, which is
immediate from the definition, is liminfs→0h(s) = h0 iff ∀ε > 0,∃s0,∀s∈ (0,s0) : h(s)≥ h0−ε, and
limsups→0h(s) = h0 iff ∀ε > 0,∃s0,∀s∈ (0,s0) : h(s) ≤ h0 +ε, where either inequality can be strict
if h0 < ∞.

Definition 6 (epi-limits) We saylims→0 fs = f if for all x0 ∈R
n, both the following properties hold:

Property 1:∀x : [0,∞) → R
n continuous at x(0) = x0 satisfies

liminf
s→0

fs(x(s)) ≥ f (x0) (7)

Property 2:∃x : [0,∞) → R
n continuous at x(0) = x0 satisfying

limsup
s→0

fs(x(s)) ≤ f (x0). (8)
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doesn’t exist
exists

Figure 1: (property 1) of Definition 6 says that paths of points within epifs cannot end up below
epi f , while (property 2) says that at least one such path hits every point of epi f .

This notion of functional limit is called an epigraphical limit (or epi-limit). Less formally, (property
1) is the condition that paths of the form(x(s), fs(x(s))) are, asymptotically, inside epif , while
(property 2) asserts the existence of a path which hits the boundary of epi f , as depicted in figure
1. Considering (property 1) with the functionx(s) = x0, it is clear that the epigraphical limit mi-
norizes the pointwise limit (assuming both exist), but the two need not coincide.An example of this
distinction is given by the family of functions

fs(x) =
2
s
x(x−s)+1,

illustrated by Figure 2. The pointwise limit isf0(0) = 1, f0(x) = ∞ for x 6= 0. The epi-limit is 0 at 0.
We say that a quadratic form isfinite if f (x) < ∞ for all x. (We note in passing that if a quadratic

form is not finite, f (x) = ∞ almost everywhere.) The pointwise and epi-limits of quadratic forms
agree when the limiting quadratic form is finite, but the example in the figure is not of that sort. This
behavior is typical of the applications we consider. In what follows, we take all functional limits to
be epi-limits.

It is the epi-limit of functions which is appropriate for optimization theory, as thefollowing
theorem (a variation of one one from Rockafellar and Wets (2004)) shows.

Theorem 7 Let fs : R
n → (−∞,∞] be eventually ccp, withlims→0 fs = f . If fs, f have unique

minimizersẋ(s), ẋ then

lim
s→0

ẋ(s) = ẋ and lim
s→0

fs(ẋ(s)) = inf
x

f (x).

Proof Givenδ > 0, letBδ = {x∈ R
n : f (x) < f (ẋ)+2δ}. Since ˙x is the unique minimizer off and

f is ccp,Bδ is bounded and open, and for any open neighborhoodU of ẋ, ∃δ > 0 : Bδ ⊂ U . Note
thatx∈ ∂Bδ iff f (x) = f (ẋ)+2δ.

Let x̂ : [0,∞) → R satisfy property 2 of definition 6 with ˆx(0) = ẋ. Let s0 > 0 be such that
∀s∈ (0,s0) : fs(x̂(s)) < f (ẋ)+δ andx̂(s) ∈ Bδ. Thus,∀s∈ (0,s0) : infx∈Bδ fs(x) < f (ẋ)+δ.
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 0.5

 1

 0

 0.125

 1

 0

 0

 1

 0.015625

Figure 2: The function above,fs(x) = 2
sx(x−s)+1, has different pointwise and epi-limits, having

values 1 and 0, respectively, atx = 0 and∞ for all otherx.
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By property 1 of definition 6,∀x ∈ R
n, liminf s→0 fs(x) ≥ f (x), in particular,∀x ∈ ∂Bδ, ∃s1 ∈

(0,s0),∀s ∈ (0,s1) : fs(x) ≥ f (x)− δ = f (ẋ) + δ. Since∂Bδ is compact, we can chooses1 ∈
(0,s0),∀x∈ ∂Bδ,s∈ (0,s1) : fs(x) ≥ f (ẋ)+δ.

Thus∀x∈ ∂Bδ,s< s1 : fs(x)≥ f (ẋ)+δ > infx∈Bδ fs(x), and therefore ˙x(s)∈Bδ by the convexity
of fs.

Summarizing,∀δ > 0,∃s1 > 0,∀s∈ (0,s1) : ẋ(s) ∈ Bδ. Hence ˙x(s) → ẋ and we have the first
limit.

The second limit is a consequence of the first (lims→0 ẋ(s) = ẋ) and definition 6. In particular,
limsups→0 fs(x̂(s)) ≤ f (ẋ) and f (ẋ) ≤ liminf s→0 fs(ẋ(s)). Since∀s : fs(ẋ(s)) ≤ fs(x̂(s)), we have
limsups→0 fs(ẋ(s)) ≤ f (ẋ) and hencef (ẋ) ≤ liminf s→0 fs(ẋ(s)) ≤ limsups→0 fs(ẋ(s)) ≤ f (ẋ).

We now apply this theorem to characterize limits of quadratic forms (which are becoming infi-
nite in the limit). The following lemma is elementary.

Lemma 8 Let A(s) be a continuous matrix-valued function. If A(0) is non-singular, then A(s)−1

exists for a neighborhood of s= 0.

Lemma 9 Let Z(s) ∈ R
n×n be a continuous matrix valued function defined for s≥ 0 such that

Z(0) = 0 and Z(s) is non-singular for s> 0.

Let M(s) =

(

A(s) B(s)t

B(s) C(s)

)

∈ R
(m+n)×(m+n) be a continuous symmetric matrix valued function

of s such that M(s) is positive semi-definite and C(s) is positive definite for s≥ 0. If

fs(x,y) =

(

x
Z(s)−1y

)t(A(s) B(s)t

B(s) C(s)

)(

x
Z(s)−1y

)

thenlims→0 fs = f , where

f (x,y) =

{

∞ y 6= 0
xt(A(0)−B(0)tC(0)−1B(0))x y= 0

.

Proof Completing the square,

fs(x,y) = ||x||2Ã(s) + ||Z(s)−1y+C(s)−1B(s)x||2C(s)

where||v||2W = vtWv andÃ(s) = A(s)−B(s)tC(s)−1B(s). Note thatÃ(s) is positive semi-definite
and continuous ats= 0.

Let b,c,s0 > 0 be chosen such that∀s< s0

b|| · || > ||B(s) · ||, || · ||C(s) > c|| · ||

(Such quantities arise from the the singular values of the matrices involved, which are continuous
in s). Let z(s) = ||Z(s)|| (matrix 2-norm). Note:z is continuous withz(0) = 0.

Let x(s),y(s) be continuous ats= 0. If y(0) 6= 0, then fors< s0

√

fs(x(s),y(s)) ≥ ||Z(s)−1y(s)+C(s)−1B(s)x(s)||C(s)

≥ ||Z(s)−1y(s)||C(s)−||C(s)−1B(s)x(s)||C(s),
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by the triangle inequality
√

fs(x(s),y(s)) ≥ ||Z(s)−1y(s)||C(s)−||B(s)x(s)||C(s)−1

> c
||y(s)||

z(s)
− b

c
||x(s)||

= c

( ||y(s)||
z(s)

− b
c2 ||x(s)||

)

.

By continuity,∃s1 ∈ (0,s0) such that∀s∈ (0,s1),

||x(s)|| < 3
2
||x(0)||, ||y(s)|| > 1

2
||y(0)||, b

c2 ||x(0)|| < ||y(0)||
6z(s)

.

Thus, for alls< s1 :
√

fs(x(s),y(s)) > c||y(0)||
4z(s) , and hence liminfs→0 fs(x(s),y(s)) = ∞, which im-

plies property 1 of definition 6 (and property 2, since liminf≤ limsup). Otherwise (y(0) = 0),
fs(x(s),y(s)) ≥ ||x(s)||2

Ã(s)
and thus

lim
s→0

||x(s)||2Ã(s) ≤ liminf
s→0

f (x(s),y(s))

||x(0)||2Ã(0)
≤ liminf

s→0
f (x(s),y(s))

(property 1). fs(x(s),y(s)) = ||x(s)||2
Ã(s)

wheny(s) = −Z(s)C(s)−1B(s)x(s) (which is continuous
and vanishing ats= 0), and thus

limsup
s→0

f (x(s),y(s)) = lim
s→0

||x(s)||2Ã(s) = ||x(0)||2Ã(0)

(property 2).
The following application of the lemma allows us to deal with matrices which will be of specific

interest to us.

Corollary 10 Let Z1(s) ∈ R
l×l and Z2(s) ∈ R

n×n be continuous matrix valued functions defined for
s≥ 0 such that Zi(0) = 0 and Zi(s) is non-singular for s> 0.

Let M(s) =





A(s) B(s)t C(s)t

B(s) D(s) E(s)t

C(s) E(s) F(s)



∈R
(l+m+n)×(l+m+n) be a continuous symmetric matrix val-

ued function of s such that M(s) is positive semi-definite and F(s) is positive definite for s≥ 0. If

fs(qa,qb,qc) =





Z1(s)qa

qb

Z2(s)−1qc





t



A(s) B(s)t C(s)t

B(s) D(s) E(s)t

C(s) E(s) F(s)









Z1(s)qa

qb

Z2(s)−1qc





thenlims→0 fs = f , where

f (qa,qb,qc) =

{

∞ qc 6= 0
qt

b(D(0)−E(0)tF(0)−1E(0))qb z= 0
.
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Proof We apply Lemma 9 to the quadratic form given by




(

qa

qb

)

Z−1
2 qc





t



(

Zt
1AZ1 Zt

1Bt

BZ1 D

) (

Zt
1C

t

Et

)

(CZ1 E ) F









(

qa

qb

)

Z−1
2 qc





(sdependence suppressed).
We will have occasion to apply Corollary 10 when some ofqa, qb andqc are empty. In all cases,

the appropriate result can be re-derived under the convention that a quadratic form over a 0 variables
is identically 0.1

5. Kernel Expansions and Regularization Limits

In this section, we present our key result, characterizing the asymptotic behavior of the regulariza-
tion term of Tikhonov regularization. We define a family of quadratic forms onthe polynomials in
x; these forms will turn out to be the limits of the quadratic Tikhonov regularizer.

Definition 11 Let κ(x,x′) = ∑i, j≥0Mi j xIi x′I j , with M symmetric, positive definite. For any p> 0,
define RKp : f → [0,∞] by

Rκ
p( f ) =

{

0 f (x) = ∑0≤i≤d⌊p⌋ qixIi

∞ else
, if p /∈ Z

Rκ
p( f ) =





















qdp−1+1
...

qdp







t

C







qdp−1+1
...

qdp






f (x) = ∑0≤i≤dp

qixIi

∞ else

, if p ∈ Z

where, for p∈ Z, C = (Mbb−MbaM−1
aa Mab)

−1 where Maa and

(

Maa Mab

Mba Mbb

)

are the dp−1×dp−1

and dp×dp upper-left submatrices of K.

The qi in the conditions forf above are arbitary, and hence the conditions are both equivalent to
f ∈ span{xI : |I | ≤ p}. We have written theqi explicitly merely to define the valueRκ

p whenp∈ Z.
Definev(X) = (1 XI1 XI2 · · ·) ∈ R

n×∞. Let v(X) = (vα(X) vβ(X)) be a block decompo-
sition into ann×n block (aVandermondematrix on the data) and ann×∞ block. Because our data
set is generic,vα(X) is non-singular, and the interpolating polynomial through the points(xi ,yi)
over the monomials{xIi : i < n} is given by f (x) = vα(x)vα(X)−1y.

We now state and prove our key result, showing the convergence of the regularization term of
Tikhonov regularization toRκ

p.

Theorem 12 Let X be generic andκ(x,x′) = ∑i, j≥0Mi j xIi x′I j be a valid kernel. Let p∈ [0, |In−1|).
Let fs(y) = s2pytκ(sX,sX)−1y. Then

lim
s→0

fs = f ,

where f(y) = Rκ
p(q), and q(x) = vα(x)q̃ = ∑0≤i<n q̃ixIi andq̃ = vα(X)−1y.

1. This is not a definition. We are merely stating (without proof) thatif we were to go through the proofs omitting some
of qa, qb, andqc, we would obtain the same result.
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Proof Recalling thatvα(X) is non-singular by genericity, defineχ = vα(X)−1vβ(X). Let Σ(s) be the
infinite diagonal matrix valued function ofs whoseith diagonal element iss|Ii |. We define a block

decompositionΣ(s) =

(

Σα(s) 0
0 Σβ(s)

)

whereΣα(s) is n×n. We likewise partitionM into blocks

M =

(

Mαα Mαβ
Mβα Mββ

)

whereMαα is n×n.

Thus,

κ(sX,sX)

= v(X)Σ(s)MΣ(s)v(X)t

= vα(X)( I χ)Σ(s)MΣ(s)

(

I
χt

)

vα(X)t

= vα(X)Σα(s)( I Σα(s)−1χΣβ(s))M

(

I
(Σα(s)−1χΣβ(s))

t

)

Σα(s)vα(X)t

= vα(X)Σα(s)( I χ̃(s))M

(

I
χ̃(s)t

)

Σα(s)vα(X)t

= vα(X)Σα(s)M̃(s)Σα(s)vα(X)t ,

where we have implicitly defined

χ̃(s) ≡ Σα(s)−1χΣβ(s)

M̃(s) ≡ ( I χ̃(s))M

(

I
χ̃(s)t

)

.

For 0≤ i < n, 0≤ j < ∞, the i, jth entry of χ̃(s) is s|I j+n|−|Ii |χi j , and |I j+n| − |Ii | ≥ 0. Thus,
lims→0 χ̃(s) exists and we denote itχ̃(0). We note that̃χi j (0) is non-zero if and only if|Ii | = |I j+n|.
In particular,

χ̃i j (0) =

{

χi j d|In|−1 ≤ i < n and 0≤ j < d|In|−n
0 otherwise

Therefore, lims→0M̃(s)= ( I χ̃(0))M

(

I
χ̃(0)t

)

exists and is positive definite (since( I χ̃(0))t

is full rank); we denote it byM̃(0). Additionally, since the firstd|In|−1 rows of χ̃(0) (and therefore
the firstd|In|−1 columns ofχ̃(0)t) are identically zero, thed|In|−1×d|In|−1 upper-left submatrices of
M̃(0) andM are equal.

Summarizing,

fs(y) = s2pytκ(sX,sX)−1y

= (vα(X)−1y)t(spΣα(1/s))M̃(s)−1(spΣα(1/s))(vα(X)−1y)

= q̃t(spΣα(1/s))M̃(s)−1(spΣα(1/s))q̃,

whereq̃≡ vα(X)−1y. We will take the limit by applying Corollary 10.
Consider first the situation wherep ∈ Z. The firstdp−1 diagonal entries are of the formsk for

k > 0, the “middle”dp−1−dp entries are exactly 1, and the lastn−dp diagonal entries are of the
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form s−k for k > 0, We define three subsets of{0, . . . ,n− 1} (with subvectors and submatrices
defined accordingly):lo = {0, . . . ,dp−1 − 1}, mi = {dp−1, . . . ,dp − 1}, andhi = {dp, . . . ,n− 1}.
(Note it is possible for one oflo or hi to be empty, in (respectively) the cases wherep = 0 or
dp = n.) By Corollary 10, withq1 = q̃lo, q2 = q̃mi, andq3 = q̃hi, Z1(s) = (spΣα(1/s))lo,lo, and
Z−1

2 (S) = (spΣα(1/s))hi,hi, and





A(s) B(s) C(s)
B(s)t D(s) E(s)
C(s)t E(s)t F(s)



=





M̃(s)−1
lo,lo M̃(s)−1

lo,mi M̃(s)−1
lo,hi

M̃(s)−1
mi,lo M̃(s)−1

mi,mi M̃(s)−1
mi,hi

M̃(s)−1
hi,lo M̃(s)−1

hi,mi M̃(s)−1
hi,hi



 .

By Lemma 16

D(0)−E(0)tF(0)−1E(0) = M̃(0)−1
mi,mi− (M̃(0)−1

hi,mi)
t(M̃(0)−1

hi,hi)
−1M̃(0)−1

hi,mi

= (M̃(0)mi,mi− M̃(0)mi,loM̃(0)−1
lo,loM̃(0)lo,mi)

−1

= (Mmi,mi−Mmi,loM−1
lo,loMlo,mi)

−1,

where the final equality is the result of thed|In|−1×d|In|−1 upper-left submatrices of̃M(0) andM are
equal, shown above.

By Corollary 10, we have that lims→0 q̃t(spΣα(1/s))M̃(s)−1(spΣα(1/s))q̃ is ∞ if (hi 6= /0 and)
q̃hi 6= 0. If (hi = /0 or) q̃hi = 0, the limit is:

q̃t
mi(Mmi,mi−Mmi,loM−1

lo,loMlo,mi)
−1q̃mi,

hencefs(y) → Rκ
p(q) for p∈ Z.

When p /∈ Z, the proof proceeds along very similar lines; we merely point out that in this
case, we will takelo = {0, . . . ,d⌊p⌋−1},mi = /0, andhi = {d⌊p⌋, . . . ,n−1}. Sincemi is empty, the
application of Corollary 10 yields 0 when ˜qhi = 0, and∞ otherwise.

The proof assumesp ∈ [0, |In−1|). In other words, we can get polynomial behavior of degree
⌊p⌋ for any p, but we must have at leastd⌊p⌋ = O(d⌊p⌋) generic data points in order to do so.

We have shown that ifλ(s) = s2p for a p in a suitable range, that the regularization term ap-
proaches the indicator function for polynomials of degreep in the data with (whenp∈Z) a residual
regularization on the degreep monomial coefficients which is a quadratic form given by some com-
bination of the coefficients of the power series expansion ofκ(x,x′). Obtaining these coefficients in
general may be awkward. However, for kernels which satisfy Lemma 1, this can be done easily.

Lemma 13 If κ satisfies the conditions of Lemma 1, then for p∈ Z and q(x) = ∑|I |≤p q̃I xI

Rκ
p(q) = (gp(0))−2 ∑

|I |=p

(

|I |
I

)−1

q2
I . (9)

Proof Let L be defined according to the proof of Lemma 1. Lemma 17 applies withG andJ being
the consecutivedp−1×dp−1 and(dp−dp−1)× (dp−dp−1) diagonal blocks ofL. Finally, we note
thatJ is itself a diagonal matrix and hence,(JJt)−1 is diagonal with elements equal to the inverse

squares ofJ’s, i.e. of the form

(

|I |
I

)−1

(g|I |(0))−2 where|I | = p.

Note, the Gaussian kernel is of this sort with(gp(0))2 = 1
p! .
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It is also worth noting that for kernels admitting such a decompositionRκ
p(q) is invariant under

“rotations” of the formq→ q′ whereq(x) = q′(Ux) with U a rotation matrix. Since anyRκ
p(q) = 0

for q of degree< p it is clearly translation invariant. We speculate that any quadratic function ofthe
coefficients of a polynomial which is both translation and rotation invariant in this way must have
of the form (9).

6. The Asymptotic Regularized Solution

By Theorem 12, the regularization term (under certain conditions) becomes a penalty on degree
> p behavior of the regularized solution. Since the loss function is fixed asσ, 1

λ → ∞, the objective
function in (1) approaches a limiting constrained optimization problem.

Theorem 14 Let v: R×R → R be a valid loss function andκ(x,x′) be a valid kernel function. Let
κσ(x,x′) = κ(σ−1x,σ−1x′). Let p∈ [0, |In−1|) with λ(σ) = λ̃σ−2p for some fixed̃λ > 0.

Let ḟσ, ḟ∞ ∈ H be the unique minimizers of

nλ(σ)|| f ||2κσ +
n

∑
i=1

v( f (xi), ŷi) (10)

and

nλ̃Rκ
p( f )+

n

∑
i=1

v( f (xi), ŷi) (11)

respectively.

Then∀x0 ∈ R
d such that X0 =

(

x0

X

)

is generic,

lim
σ→∞

ḟσ(x0) = ḟ∞(x0).

Proof In the value-based learning formulation, problem 10 becomes

nλ(σ)ytK−1
σ y+

n

∑
i=1

v(yi , ŷi) (12)

wherey∈ R
n.

By Corollary 3, if we consider the expanded problem which includes the test point in the regu-
larization but not in the loss,

nλ(σ)zt
(

κ(x0,x0) kt
σ

kσ Kσ

)−1

z+
n

∑
i=1

v(zi , ŷi), (13)

then the minimizers of problems 12 and 13 are related via ˙zσi = ẏσi = ḟσ(xi),1≤ i ≤ n andżσ0 =
kσK−1

σ ẏσ = ḟσ(x0). BecauseX0 is generic, we can make the change of variableszi = q(xi) =

∑n
j=0 β jx

I j
i in (13), yielding

gσ(q) = nλ(σ)||q||2κσ
+

n

∑
i=1

v(q(xi), ŷi) (14)
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with minimizerq̇σ satisfyingq̇σ(xi) = żσi (in particularq̇σ(x0) = żσ0 = ḟσ(x0)).
Let g∞(q) = nλ̃Rκ

p(q)+∑n
i=1v(q(xi), ŷi) with minimizerq̇∞. By Theorem 12,gσ → g∞, thus, by

Theorem 7, ˙qσ(x0) → q̇∞(x0) = ḟ∞(x0).
We note that in Theorem 14, we have assumed that problems 10 and 11 haveunique minimizers.

For any fixedσ, || f ||2κσ is strictly convex, so problem 10 will always have a unique minimizer. For
strictly convex loss functions, such as the square loss used in regularized least squares, problem 11
will have a unique minimizer as well. If we consider a non-strictly convex loss function, such as the
hinge loss used in SVMs, problem 11 may not have a unique minimizer; for example, it is easy to see
that in a classification task where the data isseparableby a degreep polynomial, any (appropriately
scaled) degreep polynomial that separates the data will yield an optimal solution to problem 11 with
cost 0. In these cases, Theorem 12 still determines thevalueof the limiting solution, but Theorem
14 does not completely determine the limiting minimizer. Theorem 7.33 of Rockafellarand Wets
(2004) provides a generalization of Theorem 14 which applies when the minimizers are non-unique
(and even when the objective functions are non-convex, as long as certain local convexityconditions
hold). It can be shown that the minimizer of problem 10 will converge to one of the minimizers of
problem 11, though not knowing which one, we cannot predict the limiting regularized solution. In
practice, we expect that when the data is not separable by a low-degreepolynomial (most real-world
data sets are not), problem 11 will have a unique minimizer.

Additionally, we note that our work has focused on “standard” Tikhonov regularization prob-
lems, in which the functionf is “completely” regularized. In practice, the SVM (for reasons that we
view as largely historical, although that is beyond the scope of this paper) isusually implemented
with an unregularized bias termb. We point out that our main result still applies. In this case,

inf
b∈R, f∈H

{

nλ|| f ||κσ +
n

∑
i=1

(1− ( f (xi)+b)ŷi)+

}

= inf
b

{

inf
f

{

nλ|| f ||κσ +
n

∑
i=1

(1− ( f (xi)+b)ŷi)+

}}

→ inf
b

{

inf
f

{

nλ̃Rκ
p( f )+

n

∑
i=1

(1− ( f (xi)+b)ŷi)+

}}

,

with our results applying to the inner optimization problem (whereb is fixed). When an unregu-
larized bias term is used, problem 10 may not have a unique minimizer either. The conditions for
non-uniqueness of 10 for the case of support vector machines are explored in Burges and Crisp
(1999); the conditions are fairly pathological, and SVMs nearly always have unique solutions in
practice. Finally, we note that the limiting problem is one where all polynomials of degree< p are
free, and hence, the bias term is “absorbed” into what is already free inthe limiting problem.

7. Prior Work

We are now in a position to discuss in some detail the previous work on this topic.
In Keerthi and Lin (2003), it was observed that SVMs with Gaussian kernels produce classifiers

which approach those of linear SVMs asσ → ∞ (and 1
2λ = C = C̃σ2 → ∞). The proof is based on

an expansion of the kernel function (Equation 2.8 from Keerthi and Lin (2003)):

κσ(x,x′) = exp(−||x−x′||2/σ2)
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= 1− ||x||2
2σ2 − ||x′||2

2σ2 +
x ·x′
σ2 +o(||x−x′||/σ2)

whereκσ is approximated by the four leading terms in this expansion. This approximation (κσ(x,x′)∼
1−σ−2(||x||2−||x′||2 + 2x · x′)/2) does not satisfy the Mercer condition, so the resulting dual ob-
jective function is not positive definite (remark 3 of Keerthi and Lin (2003)). However, by showing
that the domain of the dual optimization problem is bounded (because of the dual box constraints),
one avoids the unpleasant effects of the Mercer violation. The Keerthi and Lin (2003) result is a
special case of our result, where we choose the Gaussian loss functionandp = 1.

In Lippert and Rifkin (2006), a similar observation was made in the case of Gaussian regularized
least squares. In this case, for any degreep, an asymptotic regime was identified in which the
regularized solution approached the least squares degree-p polynomial. The result hinges upon the
simultaneous cancellation effects between the coefficientsc(σ,λ) and the kernel functionκσ in the
kernel expansion off (x), with f (x) andc(σ,λ) given by

f (x) = ∑
i

ci(σ,λ)κσ(x,xi)

c(σ,λ) = (κσ(X,X)+nλI)−1y

whenκσ(x,x′) = exp(−||x− x′||2/σ2). In that work, we considered onlynon-integer p, so there
was no residual regularization. The present work generalizes the result to arbitraryp and arbitrary
convex loss-functions. Note that in our previous work, we did not workwith the value-based for-
mulation of learning, and we were forced to take the limit of an expression combining training and
testing kernel products, exploiting the explicit nature of the regularized least squares equations. In
the present work, the value-based learning formulation allows us to avoid such issues, obtaining
much more general results.

8. Experimental Evidence

In this section, we present a simple experiment that illustrates our results. This example was first
presented in our earlier work (Lippert and Rifkin, 2006).

We consider the fifth-degree polynomial function

f (x) = .5(1−x)+150x(x− .25)(x− .3)(x− .75)(x− .95),

over the rangex∈ [0,1]. Figure 3 plotsf , along with a 150 point data set drawn by choosingxi

uniformly in [0,1], and choosingy = f (x)+εi , whereεi is a Gaussian random variable with mean 0
and standard deviation .05. Figure 3 also shows (in red) the best polynomial approximations to the
data (not to the idealf ) of various orders. (We omit third order because it is nearly indistinguishable
from second order.)

According to Theorem 14, if we parametrize our system by a variables, and solve a Gaussian
regularized least-squares problem withσ2 = s2 andλ = λ̃s−(2p+1) for some integerp, then, ass→∞,
we expect the solution to the system to tend to thepth-order data-based polynomial approximation
to f . Asymptotically, the value of the constantλ̃ does not matter, so we (arbitrarily) set it to be 1.
Figure 4 demonstrates this result.

We note that these experiments frequently require settingλ much smaller than machine-ε. As
a consequence, we need more precision than IEEE double-precision floating-point, and our results
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Figure 3: f (x) = .5(1−x)+150x(x− .25)(x− .3)(x− .75)(x− .95), a random data set drawn from
f (x) with added Gaussian noise, and data-based polynomial approximations tof .

cannot be obtained via many standard tools (e.g. MATLAB(TM)). We performed our experiments
using CLISP, an implementation of Common Lisp that includes arithmetic operations on arbitrary-
precision floating point numbers.

9. Discussion

We have shown, under mild technical conditions, that the minimizer of a Tikhonov regularization
problem with a Gaussian kernel with bandwidthσ behaves, asσ → ∞ and λ = λ̃σ−p, like the
degree-p polynomial that minimizes empirical risk (with some additional regularization on the de-
greep coefficients whenp is an integer). Our approach rested on two key ideas, epi-convergence,
which allowed us to make precise statements about when the limits of minimizers converges to the
minimizer of a limit, and value-based learning, which allowed us to work in terms of the predicted
functional values,yi , as opposed to the more common technique of working with the coefficients
ci in a functional expansion of the formf (x) = ∑i ciK(x,xi). This in turn allowed us to avoid dis-
cussing the limits of theci , which we do not know how to characterize.

We arenot suggesting that practicioners wishing to do polynomial approximation use Gaus-
sian kernels with extremeσ,λ values; there is no difficulty in using standard polynomial kernels
directly, and using extremeσ andλ values invites numerical difficulties. However, we think this
result highlights a phenomenon which may mislead automated parameter tuning methods (such as
selectingσ or λ to minimize some hold-out error). In fact, our earlier work (Lippert and Rifkin,
2006), was motivated by experiments in globally optimizing the LOO error in(λ,σ), where, for
some data sets we observed large ranges of decreasingλ and increasingσ which had similar, nearly
optimal performance. Wahba et al. (2001) observed the same phenomenon for the SVM, optimizing
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Figure 4: Ass→ ∞, σ2 = s2 andλ = s−(2k+1), the solution to Gaussian RLS approaches thekth
order polynomial solution.

performance of a Bayesian weighted misclassification score. One can getsome intuition about this
tradeoff between smallerλ and largerσ by considering example 4 of Zhou (2002) where a tradeoff
betweenσ andR is seen for the covering numbers of balls in an RKHS induced by a Gaussian kernel
(Rcan be thought of as roughly1√

λ
).

We think it is interesting that some low-rank approximations to Gaussian kernelmatrix-vector
products (see Yang et al. (2005)) tend to work much better for large values ofσ. Our results raise
the possibility that these low-rank approximations are merely recovering low-order polynomial be-
havior; this will be a topic of future study.

We believe the value-based formulation is of quite general utility, and expectto work with it in
the future. Because of our choice of kernels, we were able to assume that the kernel matrixK was
invertible, and we worked directly withK−1 in the value-based formulation. This is not a strong
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requirement; it is possible to work with the pseudoinverse ofK for finite-dimensional kernels (such
as the dot-product kernel).
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Appendix A

In this appendix, we state and prove several matrix identities that we use in themain body of the
paper.

Lemma 15 Let X,U ∈ R
m×m, Z,W ∈ R

n×n, and Y,V ∈ R
n×m with

(

X Yt

Y Z

)

symmetric, positive

definite. If
(

U Vt

V W

)(

X Yt

Y Z

)

=

(

Im 0
0 In

)

(15)

then

U = (X−YtZ−1Y)−1 (16)

W−1V = −YX−1 (17)

VU−1 = −Z−1Y (18)

W = (Z−YX−1Yt)−1 (19)

Proof Since

(

X Yt

Y Z

)

, is symmetric, positive definite,

(

U Vt

V W

)

is symmetric, positive definite,

as areX,Z,U,W.
Multiplying out (15) in block form,

UX +VtY = Im (20)

VX+WY = 0 (21)

UYt +VtZ = 0 (22)

VYt +WZ = In (23)

SinceU,W,X,Z are non-singular, (21) implies (17) and (22) implies (18). SubstitutingV =−Z−1YU
into (20) yieldsUX −UYtZ−1Y = U(X −YtZ−1Y) = Im and thus (16). Similarly,V = −WYX−1

and (23) give (19).

Lemma 16 Let

M =





A Bt Ct

B D Et

C E F
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be symmetric positive definite. Let

M−1 =





Ā B̄t C̄t

B̄ D̄ Ēt

C̄ Ē F̄



 .

ThenD̄− Ēt F̄−1Ē = (D−BA−1Bt)−1.

Proof By (16) of Lemma 15, onM with U =

(

A Bt

B D

)

,

(

A Bt

B D

)−1

=

(

Ā B̄t

B̄ D̄

)

−
(

C̄t

Ēt

)

F̄−1(C̄ Ē ) .

By (19) of Lemma 15, on

(

A Bt

B D

)

,

(

A Bt

B D

)−1

=

(

· · · · · ·
· · · (D−BA−1Bt)−1

)

.

Combining the lower-right blocks of the above two expansions yields the result.

Lemma 17 If

M =





A Bt Ct

B D Et

C E F



=





G 0 0
H J 0
K N P









G 0 0
H J 0
K N P





t

.

is symmetric positive definite, then JJt = D−BA−1Bt .

Proof Clearly

(

A Bt

B D

)

=

(

G 0
H J

)(

G 0
H J

)t

and thus

A = GGt , B = HGt , D = JJt +HHt

and henceJJt = D−HHt = D−BG−tG−1Bt = D−B(GGt)−1Bt = D−BA−1Bt .
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