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Abstract

A notable challenge of leveraging Electronic Health Records (EHR) for treatment effect
assessment is the lack of precise information on important clinical variables, including the
treatment received and the response. Both treatment information and response cannot be
accurately captured by readily available EHR features in many studies and require labor-
intensive manual chart review to precisely annotate, which limits the number of available
gold standard labels on these key variables. We considered average treatment effect (ATE)
estimation when 1) exact treatment and outcome variables are only observed together in
a small labeled subset and 2) noisy surrogates of treatment and outcome, such as relevant
prescription and diagnosis codes, along with potential confounders are observed for all
subjects. We derived the efficient influence function for ATE and used it to construct a semi-
supervised multiple machine learning (SMMAL) estimator. We justified that our SMMAL
ATE estimator is semi-parametric efficient with B-spline regression under low-dimensional
smooth models. We developed the adaptive sparsity/model doubly robust estimation under
high-dimensional logistic propensity score and outcome regression models. Results from
simulation studies demonstrated the validity of our SMMAL method and its superiority
over supervised and unsupervised benchmarks. We applied SMMAL to the assessment of
targeted therapies for metastatic colorectal cancer in comparison to chemotherapy.
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1 Introduction

The 21st Century Cures Act and the Prescription Drug User Fee Act VII have shone a
spotlight on the use of real-world evidence, generated from real-world data, to support
regulatory-decision making on drug effectiveness. Large scale electronic health records
(EHRs) data are being increasingly used for creating the real-world evidence on treatment
effectiveness or efficacy (Franklin et al., 2021). In addition to the observational nature, an-
other notable challenge in leveraging EHR for treatment effect assessment lies in the lack of
readily available data for key clinical variables, including the treatment being investigated
and the outcome of interest. Response variables such as disease progression may not be
well represented by readily available EHR features (Bartlett et al., 2019). Treatment infor-
mation can be partially captured but not always accurately reflected by procedure codes or
medication prescription codes. New therapies may not be well coded in the introduction
stage immediately after regulatory approval, and treatment initiation may be later than
prescription date due to external factors such as insurance approval delay. For example in
a real-world evidence study comparing chemotherapies and targeted therapies as first-line
treatment for metastatic colorectal cancer, we discovered based on chart-review of 100 pa-
tients by a medical expert that 1) the progression-free-survival (PFS) outcomes were poorly
structured in EHRs without clear indicators for progression or complete mortality data, and
2) the medication codes or natural language processing (NLP) identified mentions in notes
could not accurately capture the use of targeted therapies (see Table 2).

Although it is possible to improve treatment or response definition by combining mul-
tiple EHR features through rule based or machine learning algorithms, these EHR derived
features are at best good “surrogates” for approximating the true treatment or response
information at patient level. Compared to the classic definition of surrogate, the notion of
surrogate in retrospective EHR studies shares the availability trait but differs in the tem-
poral order and causal pathway. In the advanced stage cancer trials or prospective studies,
the progress-free-survival is often used as surrogate for overall survival because progression
sometimes can be captured at an earlier time. In EHR studies, however, researchers do not
have readily available progression data Y unless they perform the labor intensive manual
chart review (Griffith et al., 2019), so it is natural to borrow information from the documen-
tations about progression S like occurrence of diagnosis codes about secondary malignant
neoplasm or NLP identified mention of metastasis at distant parts of body. These documen-
tations S are considered as “surrogates” because 1) they can partially indicate progression,
and 2) they are accessible earlier during the research process. Since the documentations S
were recorded according to the true progression status Y , it is more reasonable to consider
the true progression status temporally preceded and casually affected the documentation,
Y → S in a causal diagram. Directly using these surrogates as true treatment and outcome
which would potentially induce bias in the subsequent analysis (Beaulieu-Jones et al., 2020).
On the other hand, annotating exact treatment and response variables via manual chart re-
view by domain expert is resource intensive, leading to limited sample size for gold standard
labels on these key data. It is thus of great practical significance to leverage both the small
number of gold standard labels and the vast unlabeled data to derive unbiased and efficient
inference about the average treatment effect (ATE), fundamentally a nested problem with
both missing data and causal inference components. When the labeling proportion is too
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small for standard (missing data) positivity assumption, the setting is often referred to as
the semi-supervised learning (SSL).

Additional challenges arise from the high dimensionality of potential confounders. Un-
like traditional cohort studies with a pre-specified number of clinical variables, EHRs provide
rich data on a broader range and larger number of confounding factors (Hou et al., 2021c).
Furthermore, multiple EHR features may be necessary to represent one specific clinical
variable, further amplifying the dimensionality of features necessary to capture the under-
lying confounding factors. The complexity of the models from the high-dimensionality also
increases the risk of model mis-specification for the propensity score (PS) and the outcome
regression (OR). To the best of our knowledge, no method currently exists to estimate ATE
under the SSL setting when both the treatment group, denoted by A, and the response,
denoted by Y , are only observed in a small subset of the full data. We focus on the missing
data patterns resulting from the lack of readily available data on the exact clinical infor-
mation like treatment A and outcomes Y . For small subset, manual annotations can be
created to recover the exact Y and A, but researchers have to rely on scalable yet imper-
fect computational tools to extract treatment outcome information over the majority of the
vast EHR cohort, producing the surrogates S for Y and A. For conciseness, we refer to
this specific SSL setting as double missing SSL. In this paper, we address the methodology
gap by proposing Semi-supervised Multiple MAchine Learning (SMMAL) estimators for
ATE that leverage both the fully observed surrogates for Y and A, denoted by S, and the
partially observed gold standard labels on Y and A.

Under the supervised setting where both A and Y are observed, much progress has been
made in recent years on estimation of ATE with confounding adjustment from machine-
learning and/or high-dimensional regression. In the low-dimensional setting, the estimation
of ATE is a well studied problem including procedures that achieve semi-parametric ef-
ficiency and double robustness (Robins et al., 1994; Bang and Robins, 2005). Extension
to the high-dimensional setting, however, is not straightforward due to the slower conver-
gence rates in the estimated model parameters and the difficulty posed not only by the bias
and variance trade-off in the process of regularization but also by the inherent information
theoretic barriers to obtaining fast enough estimation rates in high dimensional problems.
Similar challenges arise when incorporating more flexible machine-learning models to over-
come model mis-specifications. Following intuitions parallel to the low-dimensional setting,
flexible approaches for confounder adjustments have been proposed via modeling of PS and
OR, including L1 regularized regression (Farrell, 2015), neural network (Farrell et al., 2021),
and a general machine learning framework (Chernozhukov et al., 2018). Several methods
accommodated the high dimensional confounder and achieved statistical inference on ATE
based on consistent estimation for PS and OR, which translated to proper model specifica-
tion and sparsity for high-dimensional regressions (Belloni et al., 2013; Liu et al., 2021; Hou
et al., 2021a; Belloni et al., 2017, e.g.). Tan (2020) proposed a calibrated estimation that
leads to valid inference for the average treatment effect even if one of the high-dimensional
logistic PS or linear OR model is mis-specified. Smucler et al. (2019) formalized the concept
of double robustness in high-dimensional setting by defining the sparsity double robustness
and model double robustness properties; and also generalized the idea of Tan (2020) to a
wide range of PS and OR models. For data with sample size n and dimension of covariate
p, Smucler et al. (2019) defined the sparsity double robustness as producing

√
n-asymptotic
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normal estimator for ATE from consistently estimated PS and OR models as long as the
product of sparsities for PS and OR models grow slower than n log(p). The model double
robustness further allows the estimation of either PS or OR model to be inconsistent while
still achieving

√
n-asymptotic normal estimation of ATE. Bradic et al. (2019) established a

sharper sparsity double robustness property of the calibrated estimation. Unlike the two-
model approaches (PS and OR) listed above, Wang and Shah (2020) considered a single
model approach in which they debiased the regularized PS model in the inverse probability
of treatment weighting estimator to achieve

√
n-inference.

Semi-supervised estimation for ATE is less studied. Existing literatures focused almost
entirely on the setting where Y is observed for patients in the small labeled set of size n
while A and surrogates/proxies of Y along with confounders X are observed for all subjects
of size N . The semi-supervised learning (SSL) setting refers to the missing data proportion
(N − n)/N for Y tending to 1 along an asymptotic sequence where both number of labels
and total sample size tend to infinity, n,N → ∞. The SSL setting is distinguished from
classical missing data problems as the standard (missing data) positivity assumption on
observation rate is violated. SSL estimators for the ATE have been proposed by Cheng
et al. (2021) when Y is missing-completely-at-random (MCAR) and by Zhang et al. (2023)
and Kallus and Mao (2024) when Y is missing-at-random (MAR). However, these methods
cannot be easily adapted to the setting where both Y and A are missing. The missingness
in A is fundamentally different from the missingness in Y since treatment is an internal
node in the causal pathway “confounder(X)→treatment(A)→outcome(Y )→surrogates(S)”
(Figure 1), introducing technical challenges on the projection by conditional expectation in
the semi-parametric analysis.

In this paper, we propose an efficient and robust SSL estimator for ATE when both Y and
A are only observed for a small labeled subset but the confounders X and surrogates S for Y
and A are observed for all N patients. We derived the SMMAL estimator by first deriving
the efficient influence function for the ATE under this double missing SSL setting and then
constructing a cross-fitted multiple machine learning estimator. We subsequently provided
a formal characterization of semi-parametric efficiency under the double missing SSL setting
with the SMMAL estimator coupled to B-spline regressions over low-dimensional space. We
also designed a doubly robust estimator with a two-layer cross-fitted calibrated estimation
for high-dimensional logistic PS and OR models. Via cross-fitting and a truncation in
initial OR/PS predictions, we relaxed the sparsity assumptions in the initial estimation for
PS and OR, previously required for

√
n-inference of ATE (Tan, 2020; Smucler et al., 2019).

We further showed that our doubly robust SMMAL estimator attains 1) the rate double
robustness when both PS and OR models are correct and 2) model double robustness when
one of them is correct, as defined by Smucler et al. (2019). The SMMAL estimator also does
not require correct specifications of the imputation models for A or Y for proper inference
under MCAR assumption. We summarize our key contributions herein:

1. We formalized the efficient estimation under a general SSL setting (including specif-
ically the double missing SSL setting) with a decaying observation rate that violates
the classical (missing data) positivity assumption. Our theory justified the efficiency
claims of existing works and can provide benchmark for future work in this direction.
A discussion regarding the subtleties and challenges involved in this formalization and
subsequent analyses can be found in Remark 6.
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2. We laid out a general approach for efficient SSL with a complex missing data structure.
Our general approach is particularly convenient when the missing data and depen-
dence patterns render typical projection approach difficult for the semi-parametric
theory. A explanation of the challenge from missing treatment under double missing
SSL setting can be found in Remark 4, and the general framework is given in Section
7.

3. We made progress in statistical inference on ATE based on the doubly robust estima-
tion with high-dimensional confounders achieving the sparsity/model double robust-
ness. We generalized to the SSL setting the techniques in the existing literatures on
calibrated estimation of PS and OR models so that the final ATE estimator has weak
dependence on estimation of these models, characterized by small derivatives, also
known as the Neyman Orthogonality (Chernozhukov et al., 2018). Using a truncation
of initial model prediction, we removed the sparsity requirement in initial estimation.
In addition, we demonstrated that the SSL estimation derived from our modified
semi-parametric theory contributed to robustness toward estimation of the imputa-
tion models. The comparison with related work can be found in Remark 9.

The paper is organized as follows. In Section 2, we introduce our causal inference
structure under the double missing SSL setting along with the notations. In Section 3,
we first present the efficient influence function, followed by the multiple machine learning
estimator and the model multiply robust estimator derived from the efficient influence
function. In Section 4, we state the theoretical guarantees of the

√
n-inference on the

ATE from our methods, whose proofs are provided in the Supplementary Materials. We
also provide the semi-parametric efficiency lower bound for average treatment effect under
double missing SSL setting in low-dimensional space. In Section 5, we assess the finite
sample performance of our SSL methods and compare them to supervised benchmarks. In
Section 6, we apply SMMAL to the real-world evidence study on targeted therapies for
metastatic colorectal cancer in comparison with chemotherapy. In Section 7, we offer the
efficiency lower bound for general low-dimensional parameters under broader SSL settings
with flexible missing data components. In Section 8, we conclude with a brief discussion.

2 Setting and notation

For the i-th observation in a study of N subjects, Yi ∈ R denotes the outcome variable,
Ai ∈ {0, 1} denotes the treatment group indicator, Ri ∈ {0, 1} indicates whether (Yi, Ai) is
annotated, Si ∈ Rq denotes the surrogates for Yi and Ai, and Xi ∈ Rp+1 denotes the vector
of potential confounders including 1 as the first element. We use the notations without the
subscript indices Y,A,R,S,X to denote the generic versions of these random variables. In
EHR studies, routine documentations on treatments and outcomes in the form of digital
codes and mentions in narrative notes are often prone to errors (Zhang et al., 2019) and
hence can only serve as surrogates S. To ascertain Y and A, researchers may design the
sampling scheme for a representative labeled subset, {i ∈ [N ] : Ri = 1}, over which the
exact data (Yi, Ai) are annotated by medical experts, where [N ] = {1, ..., N}. For those with
Ri = 0, exact values of the pair (Yi, Ai) are not ascertained, creating the joint missingness
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A-Treatment Y -Outcome

X-Confounders
at Baseline

Sa Imperfect
EHRs of A

Sy Imperfect
EHRs of Y

S Surrogates for (A, Y )
during follow-up

Figure 1: Causal diagrams of double missing SSL setting with missing treatment and out-
come. The surrogates S represent the imprecise documentation of A and Y , which
should be predictive for A and Y but not affecting the causal identification based
on perfect data (Y,A,X).

of (Yi, Ai). The observed data consist of N independent and identically distributed (i.i.d.)
random vectors, D = {Di = (Ri, RiYi, RiAi,W

T
i )

T, i = 1, ..., N}, where Wi = (XT
i ,S

T
i )

T.

We assume the MCAR mechanism for the sampling process with

R ⊥⊥ (Y,A,X,S), (1)

and the number of labelled sample is n =
∑N

i=1Ri with the proportion of labeled observation
being ρN = E(R) ∈ (0, 1) with ρN → 0 as N →∞ while the expected number of labels also
grow asymptotically to infinity ρNN → ∞. Under MCAR formulation, the size of labeled
subset n is a random variable asymptotically equivalent to ρNN , as n/(ρNN) = 1+op(1). We
use a simplified notation “VN ≍ UN”, e.g. n ≍ ρNN , to describe the equivalence in stochastic
order, VN/UN = Op(1) and UN/VN = Op(1). To better reflect the dependence on labeled set
and compare with supervised benchmarks, we use n instead of ρNN when describing the
asymptotic orders. As the exception, we use ρNN in the derivation of efficiency lower bound.
Extension to MAR is plausible through modeling and estimating the missing data pattern
P(R = 1 | W) under classical semi-parametric theory, but a few technical and practical
challenges exist as we listed in the Section 8. Thorough investigation of the MCAR setting
would already provide methodological guidance to the rapidly growing real-world evidence
studies in which random subsets are selected for gold-standard validation of intervention
and outcome data (Hou et al., 2023). Our MCAR formulation, as opposed to the two sample
formulations in existing statistical semi-supervised learning literatures (Chakrabortty et al.,
2019; Zhang et al., 2023; Hou et al., 2021b), connects better with existing literature on semi-
parametric estimation and missing data. The results under MCAR, with minor modification
in theoretical derivations, are largely applicable to the other similar formulation like first n
samples Ri = I(i ≤ n) or sampling without replacement for a deterministic sequence n.
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To properly define the causally interpretable ATE, we adopt the typical counterfactual
outcome framework and its standard assumptions (Imbens and Rubin, 2015; Hernan and
Robins, 2023). Let Y (a) be the counterfactual outcome with treatment set as a, for a ∈
{0, 1}. The ATE is defined as

∆∗ = E
(
Y (1) − Y (0)

)
. (2)

We make the following standard assumptions regarding the triplet (Y,A,X),

Assumption 1 (a) Consistency: Y = Y (A);

(b) (Causal inference) Positivity of treatment assignment: 1/M ≤ P(A = 1 | X) ≤
1− 1/M almost surely for an absolute constant M <∞;

(c) Ignorability:
(
Y (1), Y (0)

)
⊥⊥ A | X.

The (causal inference) positivity in Assumption 1 is imposed on the treatment assignment A,
which should be distinguished from the (missing data) positivity regarding the observation
indicator R. Under the Assumption 1, the ATE can be alternatively expressed as

∆∗ = E {E(Y | X, A = 1)− E(Y | X, A = 0)} . (3)

In the motivating EHR studies, Si represents the documentations and retrospective data
curation of (Yi, Ai), such as the presence of diagnosis code in follow-up for outcomes and
medication codes at baseline for treatments, that are conceivably determined by the un-
derlying truth (Yi, Ai). In Figure 1, we present a setting such that the surrogates can be
classified into those for Ai and those for Yi, Si = (ST

i,a,S
T
i,y)

T. The causal identification (3)
still holds with the introduction of additional variable Si. Sometimes Si may contain col-
liders that are affected by both treatment Ai and outcome Yi, Ai → Si ← Yi, e.g. increased
code counts from frequent healthcare visits as part of intense treatment or caused by poor
outcome. Adjustment of colliders would distort causal relationship Ai → Yi and should be
excluded from causal identification (Hernan and Robins, 2023, Chapter 6.4). Throughout
the paper, we assume MCAR (1) and Assumption 1.

Remark 1 We herein summarize the setting of our study.

• Over a small randomly sampled labeled subset, we can causally identify ATE with
outcome Yi, binary treatment Ai and confounders Xi under standard consistency,
(causal inference) positivity and ignorability assumptions.

• We seek to robustly enhance the efficiency of estimating ATE by incorporating the
large unlabeled data containing confounders Xi and surrogates Si without stringent
model assumptions on Si. The method should adaptively achieve

– better efficiency if Si | Xi can effectively inform (Yi, Ai) | Xi;

– the same property as the ATE estimated from labeled subset if Si | Xi cannot
inform (Yi, Ai) | Xi.
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3 SMMAL Estimation

We start by presenting in Section 3.1 the efficient influence function under the double
missing SSL setting without assuming known model for unlabeled data. Deviating from
the classical missing data setting, the derived efficient influence functions under double
missing SSL setting have diverging variances, which requires a formal justification of its
connection with efficiency lower bound in Sections 4.2. Our approach is hence distinguished
from existing SSL literatures (Cheng et al., 2021; Kallus and Mao, 2024) that considered a
simplified theoretical formulation to define the efficient influence function assuming known
model for large unlabeled data. Then, we discuss the estimation of ATE with different ways
of estimating the nuisance models involved in the efficient influence function in Section 3.2
for low-dimensional X and in Section 3.3 for high-dimensional X. As the standard tool to
control over-fitting from using estimated models in subsequent estimation procedures (Lin
and Ying, 1994; Chernozhukov et al., 2018; Newey and Robins, 2018; Hou et al., 2021b),
cross-fitting is adopted for both settings, where we split the data into K (e.g. K = 5) folds
of approximately equal size. For k = 1, ...,K, we let Ik denote the index set for the kth
fold of the data with size Nk = |Ik| and let Ick = {1, . . . , N} \ Ik, where |I| denotes the
cardinality of I. Here, we do not split the folds separately for labeled and the unlabeled
data because the label indicator Ri is random under the MCAR formulation (1).

3.1 The efficient influence function

We define the following nuisance models:

PS: P(A = a | X) = π(a,X), OR: E(Y | A = a,X) = µ(a,X),

Imputations: P(A = a |W) = Π(a,W), E(Y | A = a,W) = m(a,W).

We use the subscript star to indicate the true models, π∗, µ∗, Π∗, m∗. Starting from
the efficient influence function with complete (cmp) observation of treatment and outcome
(Robins et al., 1994; Kallus and Mao, 2024),

ϕcmp(Y,A,X) =µ∗(1,X)− µ∗(0,X) +
I(A = 1)

π∗(1,X)
{Y − µ∗(1,X)}

− I(A = 0)

π∗(0,X)
{Y − µ∗(0,X)} −∆∗,
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we produced the efficient influence function through the following mapping

ϕSSL(RY,RA,W, R)

=E{ϕcmp(Y,A,X) |W}+ R

ρN

[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}] (4)

=µ∗(1,X) +
Π∗(1,W)

π∗(1,X)
{m∗(1,W)− µ∗(1,X)}

− µ∗(0,X)− Π∗(0,W)

π∗(0,X)
{m∗(0,W)− µ∗(0,X)} −∆∗

+
R{I(A = 1)Y − I(A = 1)µ∗(1,X)−Π∗(1,W)m∗(1,W) + Π∗(1,W)µ∗(1,X)}

ρNπ∗(1,X)

− R{I(A = 0)Y − I(A = 0)µ∗(0,X)−Π∗(0,W)m∗(0,W) + Π∗(0,W)µ∗(0,X)}
ρNπ∗(0,X)

. (5)

In the formula (4) that produces ϕSSL from ϕcmp , E{ϕcmp(Y,A,X) | W} is the maximal
information on ATE from the unlabeled data with a known imputation model, and the
second term is the price for training the best imputation model over the labeled data. We
provide the rigorous justification of this procedure in Section 4.

The efficient influence function in the missing data context is usually derived by pro-
jecting an arbitrary initial influence function to the nuisance tangent space (Tsiatis, 2007).
The approach has been applied to the SSL setting with missing outcome by first deriving
the efficient influence function under missing data setting and then setting n/N ≍ ρN = 0
for the SSL setting with very large unlabeled data (Kallus and Mao, 2024). No formal
justification of efficiency has been given in exiting literatures under the semi-supervised
setting with ρN → 0 yet ρN > 0. Moreover, such standard procedure for deriving efficient
influence function under missing data or causal inference settings is usually specific for the
assumed dependence structure among variables, reflected by the correspondent chain-rule
decomposition of nuisance model tangent space (Robins et al., 1994; Tsiatis, 2007; Kallus
and Mao, 2024; Cheng et al., 2021). For estimating of ATE under SSL setting, existing
formulation focused on the surrogates S that are defined as short-term markers for long-
term outcomes Y , represented by the S→ Y dependence pattern in causal diagram (Kallus
and Mao, 2024; Cheng et al., 2021). The generalization to other types of surrogates S is
currently absent. For example, surrogates S in our motivating EHR studies were imperfect
documentations for treatment and outcome variables (A, Y ), represented by the (A, Y )→ S
dependence pattern (Figure 1). The shift from S→ Y to (A, Y )→ S also creates the tech-
nical challenges in deriving projections to nuisance model tangent space defined according
to the dependence pattern (see Section E2 of the Supplementary Materials).

While our derivation of efficient ϕSSL also involved projecting an inefficient (R/ρN)ϕcmp, a
common approach among existing literatures (Robins et al., 1994; Kallus and Mao, 2024),
our approach did not impose stringent assumptions on surrogates S. To provide a general
theoretical basis consistent across various surrogate mechanism, we established the connec-
tion between efficiency lower bound of complete data setting and that of double missing
SSL setting through asymptotic local minimax result similar to Begun et al. (1983) in Sec-
tion 4.2. Our efficiency lower bound justified projecting complete data efficient influence
function ϕcmp to derive the SSL efficient influence function ϕSSL. We further generalized the

9
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efficiency theory to other parameters with missing data under SSL setting in Section 7.
Our alternative justification only requires 1) the target ATE parameter ∆ can be identified
by (Y,A,X) through ϕcmp and 2) S can provide information on (Y,A) when they are not
observed over the unlabeled set. Hence, our framework covered a broad range of surrogate
mechanism including both the setting considered by Kallus and Mao (2024) and the causal
diagram in Figure 1.

3.2 SMMAL Procedure

Inspired by the double machine learning estimation (Chernozhukov et al., 2018) based on
ϕcmp, we propose the following SMMAL estimator for ATE:

1. For each labelled fold k, we estimate the nuisance models by the out-of-fold data Ick,
obtaining π̂(k), µ̂(k), Π̂(k), m̂(k);

2. Construct the estimated influence functions

V̂ik =µ̂(k)(1,Xi) +
Π̂(k)(1,Wi)

π̂(k)(1,Xi)
{m̂(k)(1,Wi)− µ̂(k)(1,Xi)}

− µ̂(k)(0,Xi)−
Π̂(k)(0,Wi)

π̂(k)(0,Xi)
{m̂(k)(0,Wi)− µ̂(k)(0,Xi)}

+
Ri{AiYi −Aiµ̂(k)(1,Xi)}

ρNπ̂(k)(1,Xi)
− Ri{(1−Ai)Yi − (1−Ai)µ̂(k)(0,Xi)}

ρNπ̂(k)(0,Xi)

− Ri{Π̂(k)(1,Wi)m̂
(k)(1,Wi)− Π̂(k)(1,Wi)µ̂

(k)(1,Xi)}
ρNπ̂(k)(1,Xi)

+
Ri{Π̂(k)(0,Wi)m̂

(k)(0,Wi)− Π̂(k)(0,Wi)µ̂
(k)(0,Xi)}

ρNπ̂(k)(0,Xi)
.

and estimate the ATE by

∆̂SMMAL =
1

N

K∑
k=1

∑
i∈Ik

V̂ik. (6)

3. Estimate the asymptotic variance of
√
n(∆̂SMMAL −∆∗) by

V̂SMMAL =
ρN

N

K∑
k=1

∑
i∈Ik

(V̂ik − ∆̂SMMAL)
2. (7)

Here we considered the
√
n standardized estimation error

√
n(∆̂SMMAL −∆∗) instead of the√

N standardized estimation error
√
N(∆̂SMMAL − ∆∗) because the latter is diverging at√

N/n ≍ ρ−1/2
N rate due to the unbounded variance of Ri/ρN as ρN → 0. The (1−α)×100%

confidence interval for ATE can be constructed with ∆̂SMMAL and V̂SMMAL,[
∆̂SMMAL −Zα/2

√
V̂SMMAL/n, ∆̂SMMAL + Zα/2

√
V̂SMMAL/n

]
10
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where Zα/2 is the 1− α/2 quantile of standard normal distribution.

Similar to existing results in double machine learning literature, any estimators for the
nuisance models with suitable rates of consistency can be used in our proposal as well. For
low-dimensional W and smooth nuisance models, we can choose B-spline regression with
proper order and degrees. Precise discussions on these rates, related conditions for general
estimators and relevant smoothness classes for B-spline regression are listed in Section 4.2.

3.3 Doubly Robust SMMAL Construction in high-dimensions

We next discuss a specific construction of the SMMAL estimator when the dimensions p
and q grow with n and p may be larger than n. In real-world evidence studies using EHRs,
confounding adjustment often involves selection of the few determinants of treatment and
risk factors for outcomes from a large number of candidate variables (Hou et al., 2021c,
2022). We focus on the binary Y and put the high-dimensional logistic regression models
with link function g(x) = 1/(1 + e−x) on the nuisance models

π(1,X) = g(αTX); µ(a,X) = g(βT
aX), a = 0, 1;

Π(1,W) = g(ξTW); m(a,W) = g(ζT
aW), a = 0, 1. (8)

We denote the derivatives of the link g as ġ(x) = ex/(1 + ex)2 and the corresponding loss
function as ℓ(y, x) = log(1 + ex) − yx. Other types of generalized linear models for OR
model µ(a,X) may also be considered and derived similarly. To enhance the robustness
against model mis-specification in π and µ, we propose a bias-reducing calibration after
an initial estimation (Smucler et al., 2019). We added another layer of cross-fitting to
reduce the overfitting bias when using initial estimators in the bias-reducing calibration.
Compare with the general SMMAL algorithm in Section 3.2, the generic estimation process
for nuisance models (Step 1 in Section 3.2) is expanded into the Step 1-4 of the following
SMMAL algorithm for high-dimensional logistic regression. To ensure that estimated PS
and OR are bounded away from zero and one, we propose to truncate linear predictors
according to a predetermined constant M corresponding to a reasonable range for PS and
OR probabilities, e.g. M = 2.2 for range [0.1, 0.9]. Our algorithm for doubly robust SMMAL
estimator ∆̂DR has the following steps:

1. For each labelled fold k, we estimate the imputation models by the Lasso over out-of-
fold data Ick,

ξ̂
(k)

= argmin
ξ∈Rp+q+1

∑
i∈Ic

k
Riℓ(Ai, ξ

TWi)∑
i∈Ic

k
Ri

+ λη∥ξ∥1, λη ≍
√
log(p+ q)/n,

ζ̂
(k)

a = argmin
ζ∈Rp+q+1

∑
i∈Ic

k
I(Ai = a)Riℓ(Yi, ζ

TWi)∑
i∈Ic

k
I(Ai = a)Ri

+ λζ∥ζ∥1, λζ ≍
√
log(p+ q)/n; (9)

Choice of the imputation method is flexible (See Remark 10).

11
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2. For each labelled fold pair (k1, k2), we estimate the initial PS and OR models by the
Lasso over out-of-two-folds data Ick1,k2 = (Ik1 ∪ Ik2)c,

α̂
(k1,k2)

init = argmin
α∈Rp+1

∑
i∈Ic

k1,k2

Riℓ(Ai,α
TXi)∑

i∈Ic
k1,k2

Ri
+ λα,init∥α∥1,

β̂
(k1,k2)

a,init = argmin
β∈Rp+1

∑
i∈Ic

k1,k2

I(Ai = a)Riℓ(Yi,β
TXi)∑

i∈Ic
k1,k2

I(Ai = a)Ri
+ λβ,a,init∥β∥1, (10)

with λα,init, λβ,a,init ≍
√
log(p)/n;

3. Define the truncation at 2M , τ(x)= sign(x)min{|x|, 2M}, and its composition with
functions ġτ(x) = ġ(τ(x)) and expτ(x) = exp(τ(x)). For each labelled fold k1, we
construct the calibrated losses,

ℓα,a(A,α
TX;β) = ġτ (X

Tβ) {(a−A)αTX+ I(A = a)e(−1)aαTX},
ℓβ,a(Y,β

TX;α) = expτ {(−1)aαTX} ℓ(Yi,βTXi), (11)

and estimate the PS and OR models by cross-fitting within out-of-fold data Ick1 ,

α̂(k1)

a = argmin
α∈Rp+1

∑
k2 ̸=k1

∑
i∈Ik2

Ri
n
ℓα,a(A,α

TXi; β̂
(k1,k2)

a,init ) + λα,a∥α∥1,

β̂
(k1)

a = argmin
β∈Rp+1

∑
k2 ̸=k1

∑
i∈Ik2

I(Ai = a)Riℓβ,a(Yi,β
TXi; α̂

(k1,k2)

init )∑
i∈Ic

k1

I(Ai = a)Ri
+ λβ,a∥β∥1, (12)

with λα,a, λβ,a ≍
√
log(p)/n.

4. Construct the nuisance model estimators:

π̂(k)(1,Xi) = gτ(X
T
i α̂

(k)

1 ), π̂(k)(0,Xi) = gτ(−XT
i α̂

(k)

0 ), µ̂(k)(a,Xi) = g(XT
i β̂

(k)

a ),

Π̂(k)(a,Wi) = g(WT
i ξ̂

(k)

), m̂(k)(a,Wi) = g(WT
i ζ̂

(k)

a ); (13)

5. Estimate the ATE by sending (13) to (6), producing ∆̂DR.

6. Estimate the variance by sending (13) and ∆̂DR to (7), producing V̂DR.

The (1− α)× 100% confidence interval for ATE can be constructed with ∆̂DR and V̂DR,[
∆̂DR −Zα/2

√
V̂DR/n, ∆̂DR + Zα/2

√
V̂DR/n

]
where Zα/2 is the 1− α/2 quantile of standard normal distribution.

The calibrated losses (11) aim to estimate OR and PS models by approximately solving
the equations of the partial derivatives of ∆̂DR with respect to PS and OR models being zero
(Tan, 2020; Smucler et al., 2019). The correctly specified model will be recovered as it can

12



Sample JMLR Paper

be identified by the same equation. Even with mis-specified model, ∆ will be insensitive to
estimation errors in OR and PS models, guaranteed by the small partial derivatives. The
property is referred to as the Neyman orthogonality (Chernozhukov et al., 2018), which
produces

√
n asymptotic normal estimator with sub

√
n rate nuisance model estimations.

We didn’t use imputations to improve estimation of OR and PS models because there is no
asymptotic efficiency gain due to Neyman orthogonality but potential risk of introducing
bias.

To control the overfitting bias from the sequential estimation process with 3 steps
(α̂init, β̂a,init) → (α̂a, β̂a) → ∆̂DR, we propose the two-level cross-fitting for learning ATE
in (10) and (12), previously considered for semi-supervised learning of high-dimensional
regression in (Hou et al., 2021b). The two-level cross-fitting has the advantage of having
larger training set for each Lasso (using k − 2 folds) compared to the averaging after data
splitting (using (k − 1)/2 folds) in Smucler et al. (2019). If we choose K = 10, we are able
to use at least 80% data while the data splitting in Smucler et al. (2019) may only use
45% data. Larger training sample typically allows the choice of smaller penalty factor thus
reducing the bias. Taking averaging after data splitting, however, cannot reduce bias.

The truncation τ at M in (12) secured the (causal inference) positivity property of the
initially estimated models with no compromise in estimation accuracy. Truncation of PS has
been commonly invoked in practice when (causal inference) positivity holds in principle but
is violated practically by estimated PS (Petersen et al., 2012; Ju et al., 2019). Our method
generalized the truncation to OR prediction for binary outcome and identified a novel theo-
retical property of relaxing sparsity requirement for initial Lasso with the truncation. When
the initial estimated model XT

i α̂init is consistent for true models satisfying the (causal in-
ference) positivity conditions, i. e. XT

iα∗ such that 0 < g(−M) ≤ g(XT
iα∗) ≤ g(M) < ∞,

truncation at M brings the XT
i α̂init closer to XT

iα∗ (See Lemma A20 in Supplementary Ma-
terials). Otherwise, the truncation always ensure exp(−2M) ≤ expτ (−XT

i α̂init) ≤ exp(2M).

Then, estimating calibrated OR coefficients β̂
(k1)

a is a weighted L1 penalized regression with
bound weights independent of the responses, which we have shown to be consistent under
mild assumptions (see Section D1 in Supplementary Materials). Same argument applies to
truncation of XT

i β̂a,init. Besides numerical stability, we can remove the sparsity condition
associated with the initial estimator of the mis-specified model.

4 Theoretical Properties of the SMMAL

We established the
√
n-consistency of ∆̂SMMAL and the honest asymptotic coverage of the

confidence intervals with consistent estimation of PS and OR models in Section 4.1. In
Section 4.2, we derived the asymptotic distribution of the SMMAL estimator ∆̂SMMAL and
the subsequent matching lower bound to show its semi-parametric efficiency in the low-
dimensional W case while using B-spline series estimators for nuisance regression models.
For high-dimensional sub-Gaussian X and W and sparse nuisance models, we demonstrated
in Section 4.3 that ∆̂DR is adaptively sparsity/model doubly robust with sparse nuisance
models (Rotnitzky et al., 2020; Smucler et al., 2019): sparsity doubly robust when both
OR and PS are correctly specified; model doubly robust when one of OR or PS is correctly
specified.

13
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4.1
√
n-inference

We require the following assumptions for nuisance models and the machine-learning esti-
mators. We denote the true propensity score as π∗(X) = E(A | X) and outcome regression
as µ∗(a,X) = E(Y | X, A = a). As we do not require consistency of imputation models, we
denote Π̄ and m̄ as the potentially biased asymptotic limits of the estimated imputation
models.

Assumption 2 For a fixed constant M , we assume

(a) (Bounded response) almost surely supi=1,...,N |Yi| ≤M ;

(b) (Causal Inference Positivity) almost surely supi=1,...,N supa=0,1 1/π∗(a,Xi) ≤M ;

(c) (Bounded estimators) almost surely

sup
k=1,...,K

sup
i∈Ik

sup
a=0,1

max
{
|1/π̂(k)(a,Xi)|, |µ̂(k)(a,Xi)|, |Π̂(k)(a,Wi)|, |m̂(k)(a,Wi)|

}
≤M ;

(d) (Rate of estimation)

sup
k=1,...,K

∥π̂(k) − π∗∥2 + ∥µ̂(k) − µ∗∥2 + ∥Π̂(k) − Π̄∥2 + ∥m̂(k) − m̄∥2

+
√
n∥π̂(k) − π∗∥2∥µ̂(k) − µ∗∥2 = op(1)

for some Π̄ and m̄ satisfying supi=1,...,N supa=0,1max
{
Π̄(a,Wi), |m̄(a,Wi)|

}
≤ M ,

where for two models h1(a,W) and h2(a,W), we define

∥h1 − h2∥2 = max
a∈{0,1}

√
E[{h1(a,W)− h2(a,W)}2]. (14)

Here we use the ℓ2-norm notation because the mean squared error (MSE) thus defined
correspond to the ℓ2-estimation error for model coefficients under parametric models.

(e) (Stable variance)

V∗ = Var

[
AY −Aµ∗(1,X)

π∗(1,X)
− (1−A)Y − (1−A)µ∗(0,X)

π∗(0,X)

− {Π̄(1,W)m̄(1,W)− Π̄(1,W)µ∗(1,X)}
π∗(1,X)

+
{Π̄(0,W)m̄(0,W)− Π̄(0,W)µ∗(0,W)}

π∗(0,X)

]
∈ [1/M,M ].

We established the validity and asymptotic distribution of ∆̂SMMAL in the following theorem.

Theorem 2 Under Assumption 2,√
n/V̂SMMAL(∆̂SMMAL −∆∗)⇝ N(0, 1),

where “⇝” denotes convergence in distribution.
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Assumption 2a guarantees the boundedness of all nuisance models. When Y is binary, the
models π∗, µ∗, Π∗ and m∗ are all bounded by one. Assumption 2b is equivalent to the
standard (causal inference) positivity condition π∗(1,Xi) ∈ [1/M, 1 − 1/M ] as in Assump-
tion 1b. Assumption 2c can be guaranteed by truncation of nuisance model estimators at
M , which would not compromise the estimation accuracy under Assumptions 2a and 2b.
Assumption 2e ensures the proper scaling of the asymptotic variance of ∆̂SMMAL. As noted
following (7), the term with the R/ρN factor from labeled data in ϕSSL dominates its variance
if ρN → 0. The rate condition for the PS and OR models in Assumption 2d matches those
for the double machine-learning estimator proposed in Chernozhukov et al. (2018) if applied
to the complete data subset of size n. Under MCAR by design, the missing data mechanism
is known a priori, which we utilized to accommodate the mis-specified imputation models
estimated at an arbitrarily slow rate.

Remark 3 Compared to existing work on semi-supervised estimation of ATE (Cheng et al.,
2021; Kallus and Mao, 2024) approximating the ρN → 0 setting by the ρN = 0 setting,
our SMMAL incorporates additionally the uncertainty from large yet finite unlabeled data
through (5)-(7). As the result, the inference from SMMAL has two methodological advan-
tages. First, by harmonizing the n ≪ N and n ≍ N settings, users may use the same
SMMAL procedure without choosing from two setting-specific approaches (Kallus and Mao,
2024). Especially, it seems implausible to decide the asymptotic limit of ρN by a single re-
alization of the data. Second, the uncertainty of ∆̂SMMAL consists of the uncertainty from
labeled data and the uncertainty from large but finite unlabeled data,

VSMMAL = Var[ϕcmp(Y,A,X)− {ϕcmp(Y,A,X) |W}]︸ ︷︷ ︸
VL from labeled set

+ ρN Var{ϕcmp(Y,A,X) |W}︸ ︷︷ ︸
VU from unlabeled set

.

Unlike existing work (Cheng et al., 2021; Kallus and Mao, 2024) that only considered VL
from labeled set, our SMMAL variance estimation captures both VL and VU by involving
estimated influence functions V̂ik for all observations so that SMMAL is expected to have less
issues in underestimation of uncertainty particularly from unlabeled data with a moderately
small ρN in practice.

4.2 Semi-parametric efficiency with low-dimensional confounder

We next formally establish the semi-parametric efficiency lower bound under the double
missing SSL setting. Consider the non-parametric model for (W, RA,RY,R)

SSSL =
{
dPf (w, a, y, r) = {ρNf(w, a, y)}r{(1− ρN)fW(w)}(1−r)dνSSL(w, a, y, r) :

f is density over W ⊗ {0, 1} ⊗ Y, and fW(w) =
∑

a∈{0,1}

∫
y∈Y

f(w, a, y)dνy(y)


for some measures νy over Y, νw over W and

νSSL(w, a, y, r) = (νw × δ{0,1} × νy)(w, a, y)× δ1(r) + νw(w)× δ0(r)

where δA is the counting/Dirac measure over the set A. Elements in SSSL can be indexed
by the density f , and we denote the true density as f∗ and the true model Pf∗ .
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Remark 4 In existing work on ATE (Robins et al., 1994; Kallus and Mao, 2024), the
model A | X provides no information on the Y | A,X, and thus would not be included in
the nuisance tangent space. In our setting, however, the surrogates S induced a correlation
between subspaces corresponding to A | X and Y | A,X in the nuisance tangent space, which
indicates that A | X provides information on the Y | A,X through the unlabelled data. As
the result, the geometry of the model tangent space is more complex, and the projection
can no longer be obtained through simple conditional expectation. See Section E2 of the
Supplementary Materials for details.

We denote the total variation norm as ∥ · ∥TV. In the following theorem, we establish
the semi-parametric efficiency lower bound for ∆ under SSSL in the form of a local minimax
theorem obtained in the spirit of Begun et al. (1983).

Theorem 5 Under Assumptions 2a, 2c and 2e, we have

lim inf
c→∞

lim inf
N→∞

inf
∆̂

sup
∥f−f∗∥TV≤c/

√
ρNN

∫
N(∆̂−∆∗)

2d
∏N
i=1 Pf (wi, ai, yi, ri)

Var{ϕSSL(RY,RA,W, R)}
≥ 1.

Remark 6 Theorem 5 offers one example that the semi-parametric efficiency bound (SEB)
derived under the classical missing data setting can be generalized to the double missing SSL
setting with ρN → 0 while ρNN → ∞. Later in Section 7, we present Theorem 13 for gen-
eral SSL setting (including specifically the double missing SSL setting). Previous attempts
to formalize semi-parametric efficiency in a the SSL settings have assumed that the entire
distribution of W is known, i.e. N = ∞ and ρN = 0. Under the simplified SSL setting
with N =∞, the SEB can be derived by straightforward applications of standard results in
classical semiparametric literature – see e.g. van der Vaart (1998). Indeed, another possible
consideration for choosing this simplified formulation version is the ambiguity of defining
regular estimators without (missing data) positivity assumption and thereby formalizing ef-
ficiency through the calibration of the best regular estimator. We bypassed this conceptual
difficulty by providing the alternative characterization based on local asymptotic minimax
theory – which may operate on all possible estimators instead of restricting to the class of
regular procedures.

Utilizing the correlation structure induced by the projection

Cov(E{ϕcmp(Y,A,X) |W}, R/ρN[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}]) = 0,

Cov[ϕcmp(Y,A,X),E{ϕcmp(Y,A,X) |W}] = Var[E{ϕcmp(Y,A,X) |W}],
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we obtain the limiting lower bound in Theorem 5 when ρN → 0 that matches the asymptotic
variance of the labeled data component in ϕSSL ,

lim
ρN→0

ρN Var{ϕSSL(RY,RA,W, R)}

= lim
ρN→0

ρN Var(E{ϕcmp(Y,A,X) |W}+R/ρN[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}])

= lim
ρN→0

ρN Var[E{ϕcmp(Y,A,X) |W}]︸ ︷︷ ︸
→0

+ρN Var(R/ρN[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}])

+ 2ρN Cov(E{ϕcmp(Y,A,X) |W}, R/ρN[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}])︸ ︷︷ ︸
=0

=Var[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}]
=Var{ϕcmp(Y,A,X)}+Var[E{ϕcmp(Y,A,X) |W}]
− 2Cov[ϕcmp(Y,A,X),E{ϕcmp(Y,A,X) |W}]︸ ︷︷ ︸

=Var[E{ϕcmp(Y,A,X)|W}]

=Var{ϕcmp(Y,A,X)} −Var[E{ϕcmp(Y,A,X) |W}].

From the representation above, we showed that the efficiency gain from the unlabeled data
with surrogates is given by the variance of the ϕcmp explained by the surrogates and con-
founders. The efficiency gain based on semi-parametric efficiency theory typically requires
consistent estimation of nuisance models. Under mis-specified imputation models, there is
no general guarantee on efficiency gain. In Discussion (Section 8), we offered efficient linear
combination as the backup plan when quality of estimated nuisance models is in doubt.

The key idea of the proof is to construct the two-dimensional least favorable perturbation
in an asymmetric neighborhood with different size in two directions. The first direction is
proportional to ϕcmp(Y,A,X)−E{ϕcmp(Y,A,X) |W} and of size ≍ 1/

√
NρN ≍ 1/

√
n, which

reflects the level of the information on ∆∗ from the labels and should naturally scale with the
number of expected labels. The second direction is proportional to E{ϕcmp(Y,A,X) | W}
and of size ≍ 1/

√
N , which reflects the level of the information on ∆∗ from the unlabelled

data and should scale with the total sample size. The design of the different scales ensured
the tightness of log-likelihood ratio between the perturbed and the true models, which would
otherwise be degenerating or diverging.

We next show that the lower bound is attained under low-dimensional smoothness class
models for the nuisance functions and can be operationalized by feeding B-spline regres-
sions to ∆̂SMMAL. Suppose the confounders and surrogates are bounded continuous variables
of fixed dimension, W ∈ [−M,M ]p+q, p+ q < d ≍ 1. We measure the smoothness of the
models by H(f(·)) the Hölder class defined in Definition A22, Section E of the Supplemen-
tary Materials.

Assumption 3 For a fixed constant M , we assume

(a) (Bounded density) the density functions for X and W, fX(x) and fW(w), are bounded
and bounded from zero,

fX(x) ∈ [1/M,M ], ∀x ∈ [−M,M ]p, fW(w) ∈ [1/M,M ], ∀w ∈ [−M,M ]p+q;
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(b) (Smooth models) the smoothness of the nuisance models observe

1

1 +H(π∗(a, ·))/p
+

1

1 +H(µ∗(a, ·))/p
< 1, H(Π∗(a, ·)) > 0, H(m∗(a, ·)) > 0,

for a = 0, 1.

Corollary 7 Under Assumptions 2a, 2b, 2e and 3, we may choose B-spline regressions
with order

κ ≥ max{H(π∗(a, ·)),H(µ∗(a, ·)),H(Π∗(a, ·)),H(m∗(a, ·)) : a = 0, 1} − 1,

degrees

1/π(a, ·) : n
1

1+H(π∗(a,·))/p , µ(a, ·) : n
1

1+H(µ∗(a,·))/p ,

Π(a, ·) : n
1

1+H(Π∗(a,·))/(p+q) , m(a, ·) : n
1

1+H(m∗(a,·))/(p+q)

and truncation at M for ∆̂SMMAL to achieve

√
n(∆̂SMMAL −∆∗)/

√
ρN Var{ϕSSL(RY,RA,W, R)}⇝ N (0, 1) .

Corollary 7 is special case of Theorem 2 under smooth models estimated by standard non-
parametric estimation. By Corollary 7, the asymptotic MSE of ∆̂SMMAL is ρN Var{ϕSSL}/n ≍
Var{ϕSSL}/N , matching the lower bound established in Theorem 5. Therefore, we have
justified the semi-parametric efficiency of ∆̂SMMAL. At the same time, the lower bound in
Theorem 5 is the sharp semi-parametric efficiency bound for ∆∗ under double missing SSL
setting SSSL.

4.3 Doubly robustness with high-dimensional confounder

To describe the sparsity/model double robustness of ∆̂DR, we define the asymptotic limits
for Lasso estimators in (9)-(12) under potentially mis-specified models.

ξ̄ = argmin
ξ∈Rp+q+1

E{ℓ(Ai, ξTWi)}, ζ̄a = argmin
ζ∈Rp+q+1

E{I(Ai = a)ℓ(Yi, ζ
TWi)},

ᾱinit = argmin
α∈Rp+1

E{ℓ(Ai,αTXi)}, β̄a,init = argmin
β∈Rp+1

E{I(Ai = a)ℓ(Yi,β
TXi)},

ᾱa = argmin
α∈Rp+1

E
[
ġ
(
XT
i β̄a,init

)
{(a−Ai)αTXi + I(Ai = a)e(−1)aαTXi}

]
,

β̄a = argmin
β∈Rp+1

E [exp {(−1)aXT
i ᾱinit} I(Ai = a)ℓ(Yi,β

TXi)] , (15)

We use ∥ · ∥0 to denote the sparsity of a vector and ∥ · ∥ψ2 denote the sub-Gaussian norm
for random variables or vectors. The sparsities of coefficients for OR ∥βa∥0 and PS ∥α∥0
models reflect the numbers of true determinants for the treatment and outcomes, including
the true confounders that must be adjusted for. The detailed definition is given in Definition
A23, Section E of the Supplementary Materials.

Assumption 4 For constant M independent of dimensions n, N , p, q,
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(a) (Sub-Gaussian and bounded covariates) the vector of confounders and surrogates is
sub-Gaussian, sup∥v∥2=1 ∥vTW∥ψ2 ≤ M , and coordinate-wisely bounded ∥W∥∞ ≤ M
almost surely;

(b) (Identifiability) the variance of W is invertible inf∥v∥2=1 v
T Var(W)v ≥ 1/M ;

(c) (Causal Inference positivity) the true propensity scores and the asymptotic predictions
of all models are bounded away from zero and one, almost surely,

π∗(a,X) ∈ [1/M, 1− 1/M ], max
{
|ξ̄T

W|, |ζ̄T

aW|, |ᾱT
aX|, |β̄

T

aX| : a = 0, 1
}
≤M ;

(d) and one of the following:

(i) (PS correct) the propensity model is correct, E(A | X) = g(αT
∗X) and the dimen-

sions satisfy(
∥β̄1∥0 + ∥β̄0∥0

)
log(p) +

(
∥ξ̄∥0 + ∥ζ̄1∥0 + ∥ζ̄0∥0

)
log(p+ q)

n
+ ∥α∗∥0

(
∥α∗∥0 + ∥β̄1∥0 + ∥β̄0∥0

)
log(p)2/n = op(1); (16)

(ii) (OR correct) the OR model is correct, E(Y | A = a,X) = g(βT
∗,aX) and the

dimensions satisfy

(∥ᾱ1∥0 + ∥ᾱ0∥0) log(p) +
(
∥ξ̄∥0 + ∥ζ̄1∥0 + ∥ζ̄0∥0

)
log(p+ q)

n

+
∑
a=0,1

∥β∗,a∥0
(
∥β∗,a∥0 + ∥ᾱa∥0

)
log(p)2/n = op(1); (17)

(iii) (both correct) both models are correct, E(A | X) = g(αT
∗X) and E(Y | A =

a,X) = g(βT
∗,aX) and the dimensions satisfy(

∥α∗∥0 + ∥β∗,1∥0 + ∥β∗,0∥0
)
log(p) +

(
∥ξ̄∥0 + ∥ζ̄1∥0 + ∥ζ̄0∥0

)
log(p+ q)

n
+ ∥α∗∥0

(
∥β∗,1∥0 + ∥β∗,0∥0

)
log(p)2/n = op(1); (18)

Theorem 8 Under Assumption 4, ∆̂DR converges in distribution to a normal random vari-
able at

√
n-rate, √

n/V̂DR(∆̂DR −∆∗)⇝ N(0, 1),

where “⇝” denotes convergence in the distribution.

Besides the double robustness toward PS and OR, ∆̂DR is additionally robust to the
imputation models. Similar to the general Theorem 2, we utilized the known missing data
mechanism under MCAR by design to allow model mis-specifications on the imputation.
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Remark 9 Regarding the PS model and OR model estimated over the labeled data of size n,
our ∆̂DR is both rate doubly robust Rotnitzky et al. (2020) and model doubly robust (Smucler
et al., 2019). When both models are correct, the dimension condition (18) for the PS
model and OR model in Assumption 4d-iii satisfies the condition for rate doubly robust, i.e.
each sparsity obeying ∥α∗∥0 ≪ n/ log(p), ∥β∗,a∥0 ≪ n/ log(p) and their product satisfying

∥α∗∥0∥β∗,a∥0 ≪ n/ log(p)2. In the case of only one model is correct, our ∆̂DR can still
provide

√
n-inference, thus being model doubly robust. By the truncation τ in (12), we are

able to completely remove the sparsity requirement of the mis-specified initial model under
the (causal inference) positivity condition of Assumption 4c. The general framework of
Smucler et al. (2019) would require all models in (15) being sparse.

Remark 10 As the correct model specification is only required for OR or PS in Assumption
4d, the validity of Theorem 8 does not rely on the consistency of imputation models based on
the MCAR missing data mechanism by design. Therefore, the choice on imputation methods
(9) can be flexible. If preliminary evidence suggests that certain element in S contains the
most information such as Sa for A and Sy for Y , we can remove penalty for the associated
coefficients or simply run the low-dimensional regressions A ∼ Sa and Y ∼ Sy.

Remark 11 We presented the theory according to the exact sparsity in Assumption 4d-iii
for two considerations. First, the exact sparsity has a clear interpretation that classifies the
covariates into relevant signals and irrelevant noises, about which domain experts may have
a preliminary evaluation in applications. Second, the exact sparsity facilitates direct com-
parison with many related literatures have used exact sparsity to measure the local efficiency
or robustness of their proposed methods (Farrell, 2015; Tan, 2020; Smucler et al., 2019;
Zhang et al., 2023). The exact sparsity in Assumption 4d-iii can be substituted by other
conditions that produce the appropriate estimation rate in the more general Assumption
2d. For example, estimation rates of L1 penalized high-dimensional generalized linear mod-
els have been established for approximately sparse models (Negahban et al., 2012; Smucler
et al., 2019).

5 Simulation

We conducted extensive simulation studies to evaluate the finite sample performance of the
SMMAL methods. Throughout the simulations, we set the total sample size N = 10000,
the number of labels n = 500, the number of repeats as 1000, q = 2 with one surrogate
SA for A and another SY for Y . We focused on the situation that Y is also binary. Let
Φ be cumulative distribution function for standard normal distribution. The surrogates for
binary A and Y were generated from mixture Beta distribution of the form:

SA = ASA,1 + (1−A)SA,0, SY = Y SY,1 + (1− Y )SY,0,

Low-dimensional model: SA,1 ∼ Beta(αA +X, 1), SA,0 ∼ Beta(1, αA +X),

SY,1 ∼ Beta(αY +X, 1), SY,0 ∼ Beta(1, αY +X);

High-dimensional model: SA,1 ∼ Beta(αA +Φ(X1), 1), SA,0 ∼ Beta(1, αA +Φ(X1)),

SY,1 ∼ Beta(αY +Φ(X1), 1), SY,0 ∼ Beta(1, αY +Φ(X1)).
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Table 1: List of parameters used in the mixture Beta distribution for the surrogates.

Setting OK Reasonable Good Great Perfect

AUC 0.80 0.90 0.95 0.99 0.999

Low-dimensional smooth model

αA 1.39 1.99 2.54 3.86 5.49
αY 1.39 1.96 2.57 3.80 5.70

High-dimensional logistic regression

αA 1.36 1.99 2.54 3.80 5.64
αY 1.33 1.96 2.51 3.89 5.55

High-dimensional regression: mis-specified PS

αA 1.36 1.96 2.54 3.80 5.55
αY 1.39 1.93 2.54 3.74 5.52

High-dimensional regression: mis-specified OR

αA 1.36 1.96 2.54 3.80 5.55
αY 1.39 1.93 2.54 3.74 5.52

The mixture Beta distribution mimicked the outputs from phenotyping algorithms, which
typically take value between zero and one (Liao et al., 2019). We considered a list of values
for αA and αY (Table 1), corresponding to different level of prediction accuracy measured
by area-under-curve (AUC) of the receiver operating characteristic (ROC). Five values were
considered for αA and αY , creating 25 two-way combinations for each simulation setting.

We considered two scenarios for generating the data, the low-dimensional smooth model
and high-dimensional logistic regression.

Low-dimensional smooth model We generated the one dimensional X ∈ R from Uni-
form(0,1) and set the PS and OR to be the following smooth models (Figure 2):

π∗(1, X) = µ∗(1, X) = 1− 1.2/(3−X2), µ∗(0, X) = 1− 1.2/{3− (1−X)2}.

We used tensor product first order B-spline (piece-wise linear splines) regression to estimate
the nuisance models. The splines were constructed from bs function of the splines R package.
The degrees were selected by 10 fold cross-validation among integers less than

√
n ≈ 22

according to the out-of-fold entropy. Using the cross-fitted nuisance models from B-spline
regression with K = 10, we obtained point and interval estimates for the ATE based on
∆̂SMMAL and V̂SMMAL. As the benchmark, we also estimated the ATE using the labeled data
only by the double machine learning method (Chernozhukov et al., 2018).

High-dimensional logistic regression We generated the high-dimensional X ∈ Rp
with p = 500 from the multivariate Gaussian distribution with auto-regressive correlation
structure:

U1, . . . , Up
i.i.d.∼ N(0, 1), X1 = U1, Xj = 0.5Xj−1 +

√
0.75Uj .
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Figure 2: Visualized simulation settings. Left-the models for PS and OR under the low-
dimensional setting. Right-the mixture Beta distribution for surrogates at differ-
ent level of prediction accuracy (AUC 0.8, 0.9, 0.95, 0.99, 0.999) at the median
covariate (X = 0.5 under low-dimensional smooth model and X1 = 0 under
high-dimensional logistic regression).

We generated A and Y from the high-dimensional logistic regression models

PS Linear :π∗(1,X) = g(0.5X1 + 0.25X2 + 0.125X3);

PS Interaction: π∗(1,X) = g{(0.5X1 + 0.25X2 + 0.125X3)(1 + 0.0625X1 + 0.125X2 − 0.5X3)};
OR Linear: µ∗(1,X) = g(0.1 + 0.25X1 + 0.125X2 + 0.0625X3),

µ∗(0,X) = g(−0.1− 0.25X1 − 0.125X2 − 0.0625X3);

OR Interaction: µ∗(1,X) = g{(0.1 + 0.25X1 + 0.125X2 + 0.0625X3)

× (1 + 0.0625X1 + 0.125X2 − 0.5X3)},
µ∗(0,X) = g{(−0.1− 0.25X1 − 0.125X2 − 0.0625X3)

× (1 + 0.0625X1 + 0.125X2 − 0.5X3)}.

As signal strength is known to impact variable selection in theory and practice (Fan and
Peng, 2004; Fan and Lv, 2010), we set up the coefficients in the models to reflect different
level of signal strength: 0.5-strong, 0.25-moderately strong, 0.125-moderately weak, 0.0625-
weak. For PS/OR models with second order interactions, we still fitted high-dimensional
logistic regression without interactions, creating the mis-specification scenarios. We consid-
ered 3 combinations corresponding to the three settings of Assumption 4d: correct models
(PS Linear + OR Linear); mis-specified PS (PS Interaction + OR Linear); mis-specified
OR (PS Linear + OR Interaction). We set the number of the folds as 10 and fitted the
imputations (9) and initial estimators (10) using glmnet from R-package glmnet. We fitted
the calibrated estimators (12) using rcal from from R-package rcal. The penalty parameters
were selected by 10-fold cross validation with out-of-fold entropy. Using the cross-fitted nui-
sance models, we estimated the ATE using ∆̂DR and construct the 95% confidence interval
based on the variance estimator V̂DR. As the benchmark, we also estimated the ATE by the
model doubly robust estimation (Smucler et al., 2019) using (1) the labeled data alone; (2)
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Figure 3: Heat map for relative efficiency of the SMMAL compared to the benchmark su-
pervised learning in all four simulation settings. Deeper red indicates larger
advantage of the semi-supervised estimation. We set relative efficiency one as
white in all plots, but the scale varies between low-dimensional setting and high-
dimensional settings.

the dichotomized surrogates defined by

Ỹi = I

(
SY,i ≥ 1− n−1

N∑
i=1

RiYi

)
, Ãi = I

(
SA,i ≥ 1− n−1

N∑
i=1

RiAi

)
.

We refer to the two benchmarks as supervised learning (SL) and unsupervised learning
(UL).

Results Results generally followed a consistent pattern across low-d and high-d settings.
Comparison between settings, however, is not meaningful due to the completely differ-
ent data generating processes. In Figure 3, we visualized the relative efficiency of our
semi-supervised ∆̂SMMAL, ∆̂DR compared to their supervised benchmarks. In general, our
semi-supervised approaches gained efficiency from the unlabeled data whose magnitude
was increasing with the minimal prediction accuracy of the two surrogates. With good im-
putation (AUC .95) from both surrogates, the relative efficiency was about 1.32-1.64 across

23



One and Two

Figure 4: Heat map for coverage of 95 % confidence intervals by unsupervised learning.
White marks 0.95 coverage rate. Orange marks 0.8 coverage rate. Deeper red
indicates poorer coverage rate by unsupervised learning.
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all settings. With great imputation (AUC .99) from both surrogates, the relative efficiency
was about 2.23-2.89 across all settings. The result quantified the benefit from improving
the quality of surrogates in terms of relative increase in labels. Since the algorithms to
curate surrogates are often portable to other studies sharing the variables, effort put into
high-quality labels is more cost-effective compared to the brutal expansion in labeling. The
detailed simulation results containing the bias, standard deviation, average standard error,
coverage of 95% confidence interval for our semi-supervised ∆̂SMMAL, ∆̂DR along with those for
the supervised benchmarks were presented in Tables A4-A7 in Section A of the Supplemen-
tary Materials. Our semi-supervised ∆̂SMMAL, ∆̂DR achieved reasonably honest inference with
coverage of 95% confidence interval close to the nominal level. In Figure 4, we visualized
the coverage of 95 % confidence intervals by unsupervised learning. Using the dichotomized
surrogates as if they were the true treatment and outcome led to under coverage of the
confidence intervals even for nearly perfect surrogates, and the under coverage exacerbated
with poorer surrogates. The detailed summaries on the bias, standard deviation and cov-
erage of 95% confidence interval for the unsupervised benchmark were presented in Table
A8 in Section A of the Supplementary Materials.

6 Real-world evidence on targeted cancer therapy

We applied the proposed SMMAL method to EHR data from Mass General Brigham
healthcare to generate real-world evidence (RWE) on treatment effect of targeted ther-
apy for metastatic colorectal cancer in comparison with conventional chemotherapy. Over
the past two decades, a total of 9 targeted therapies have been approved for the treatment
of colorectal cancer (Xie et al., 2020), the 4th most prevalent and lethal cancer (U.S. Can-
cer Statistics Working Group, 2022). While the targeted therapies have been reported as
advantageous compared to conventional chemotherapy in clinical trials within specific trial
populations, their effectiveness in real-world patient population has not been fully estab-
lished. With increasing availability of EHR data, it is now plausible to generate RWE on
targeted cancer therapy with respect to their efficacy in improving progression free survival
via causal modeling treating EHR data as an observational cohort. Unfortunately, such
a modeling task is highly challenging with EHR data due to the lack of readily available
precise information on both treatments patient received and progression free survival. To
overcome this challenge, we manually annotated treatment-response information for 100
randomly selected patients. We derived several potential surrogates for both SA and SY
from codified and narrative EHR data, which have varying degree of accuracy as shown in
Table 2. Our goal was to leverage both the labeled observations on Y and S as well as
the larger set of unlabeled EHR data to infer about ATE for targeted therapy based on
SMMAL.

The full study cohort consisted of N = 4147 colorectal cancer patients who have
available cancer stage information extracted via a natural language process tool (Yuan
et al., 2021) and received chemotherapy and/or targeted therapy. We grouped therapies
into chemotherapy alone and targeted therapy which includes those treated with any of
the 9 treatments: Bevacizumab, Cetuximab, Ipilimumab, Regorafenib, Pembrolizumab,
Nivolumab, and Tipiracil. We set the outcome as 1-year progression free survival, a binary
outcome defined as: 1 – exit in terminal condition (death/terminal care) or development
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Table 2: Accuracy of extracted EHR feature counts for targeted therapy and 1-year
progression (defined as new metastasis site) free survival from EHR valided over
100 patients reviewed by abstractor. False positive rates (FPR) and false negative
rates (FNR) were calculated by the dichotomized extractions: Benchmark features
– count > 0; Engineered features – classification by the quantiles matching
prevalence in gold-standard labels. Area under reception operating curve (AUC)
were calculated using count/score as predictor (death encoded as a very large value
1000). Straightforward rule based extraction (indicated by *) failed to capture
treatment and response. Two surrogates in bold font were chosen for SMMAL
for their reasonably good AUC.

Surrogate FPR FNR AUC

Targeted Therapy

Medication Code 0.44 0.17 0.60
Mention in Note 0.35* 0.10* 0.93

1-year Progression Free Survival

Death Registry 0.02 0.43 –
Death & New Site Code 0.34 0.20 0.84
Death & New Site in Note 0.31 0.20 0.85
Terminal-Progression Score 0.31* 0.10* 0.93

of new metastasis site with 1-year from the treatment initiation; 0 – otherwise. As the
standard quality control (Hou et al., 2023), an abstractor randomly sampled n = 100 from
the study cohort and annotated the gold-standard labels for prescription of targeted med-
ication, terminal condition and new metastasis site by manually reviewing those patients’
EHR. The treatment A and Y outcome were defined based on annotations over the la-
beled set, creating the MCAR data. We reported the treatment and outcome labels as well
as their EHR proxies in Table A9 of Supplementary Materials Section B, where we also
described the construction of the reasonably good surrogates shown in Table 2.

We extracted a comprehensive list of potential confounders (Table 3). From EHR near
the colorectal cancer diagnosis date, we used location specific colorectal cancer diagnosis
code to identify the initial tumor location and natural language process tool (Yuan et al.,
2021) to extract the initial stage. We also extracted the code for secondary malignancy at
lymph node and other distant organs. From EHR between cancer diagnosis and subsequent
metastasis, we extracted the codes for common procedures (chemotherapy, radiotherapy,
colon biopsy and colon rescission). From EHR near the metastasis date, we used loca-
tion specific secondary malignancy code to identify the initial metastasis site(s). We also
adjusted for the time gap between diagnosis and metastasis, healthcare utilization before
metastasis or one year before metastasis measured by days with diagnosis codes and the
high-dimensional general health status consisting of diagnosis code counts grouped by the
PheWAS catalog (Hou et al., 2022). The targeted therapy arm was associated with factors
for poor prognosis including higher proportion of stage IV at diagnosis (81 % vs 58 %),
higher proportion of likely liver metastasis (57 % or 67 % vs 34 %). After merging rare lev-
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Table 3: Baseline characteristics of full study cohort and two arms in the labeled subset.
The format is “count (percentage %)” for binary/categorical variables and “mean
(standard deviation)” for numerical variables.

Full data Labeled set
Chemotherapy Targeted Therapy

Size 4147 79 21
Demographics
Age at Metastasis 62.5 (13.8) 65.2 (11.4) 62.7 (15.9)
Female 1926 (46%) 46 (58%) 11 (52%)
White 3470 (84%) 68 (86%) 20 (95%)
Cancer characteristics at diagnosis
Left Colon Tumor 221 (5%) 5 (6%) 0 (0%)
Right Colon Tumor 890 (21%) 23 (29%) 8 (38%)
Transverse Colon Tumor 420 (10%) 9 (11%) 1 (5%)
Sigmoid Colon Tumor 2092 (50%) 44 (56%) 9 (43%)
Rectum Tumor 2002 (48%) 43 (54%) 5 (24%)
Metastasis Code 2674 (64%) 50 (63%) 16 (76%)
Lymph Node Tumor 364 (9%) 10 (13%) 0 (0%)
Stage I 55 (1%) 0 (0%) 0 (0%)
Stage II 159 (4%) 3 (4%) 0 (0%)
Stage II 992 (24%) 22 (28%) 2 (10%)
Stage IV 2546 (61%) 46 (58%) 17 (81%)
Stage Missing 395 (10%) 8 (10%) 2 (10%)
Cancer characteristics at metastasis
Year since Diagnosis 0.7 (2) 0.5 (1) 0.8 (1.7)
Lung Metastasis Code 646 (16%) 10 (13%) 8 (38%)
Liver Metastasis Code 1694 (41%) 27 (34%) 14 (67%)
Liver Metastasis in Note 1422 (34%) 27 (34%) 12 (57%)
Treatments between diagnosis and metastasis
Chemotherapy Code 1.4 (5.3) 1.3 (3.7) 0 (0)
Radiotherapy Code 10.1 (35.1) 10.5 (30.4) 7.2 (29.1)
Colon Biopsy Code 0.6 (1.7) 0.5 (1.5) 0 (0)
Colon Rescission Code 0.4 (0.8) 0.3 (0.7) 0.2 (0.5)
Healthcare utilization
Before Metastasis 29.7 (59.3) 36.2 (74.5) 13 (21.2)
One Year Before Metastasis 9.8 (15.4) 10.2 (14.7) 4.2 (8.1)

els for cancer characteristics at initial diagnosis (tumor location, cancer stage) and deleting
features with fewer than 10 occurrence in labeled subset, we obtained the p = 55 potential
confounders.

We applied the doubly robust SMMAL in high-dimensions described in Section 3.3.
Besides the crude analysis, we ran two benchmark analyses, the double machine learn-
ing (DML) (Chernozhukov et al., 2018) using initial estimators (10) and the calibrated
estimation (Cal) (Tan, 2020; Smucler et al., 2019) using the calibrated estimators (12).
Both supervised learning (SL) using labeled data only and the unsupervised learning (UL)
deriving treatment and outcome from the dichotomized surrogates by matching observed
prevalence in labeled data were considered. The number of fold was set as K = 5, and
the penalties factors were selected by the minimal cross-validated entropy. In Figure 5, we
displayed the point estimation and the 95 % confidence interval. The confounder adjusted
analysis results suggested that on average, targeted therapy had comparable efficacy com-
pared to traditional chemotherapy. Compared to the SL crude analysis which indicated
worse outcomes for targeted therapy, our SMMAL accounted for substantial confounding
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Figure 5: Point estimate and 95% confidence interval of average risk difference from crude,
Double Machine-Learning (DML), calibrated (Cal) and SMMAL analyses. Super-
vised learning (SL) benchmark analysed only uses the labeled data. Unsupervised
learning (UL) benchmark analyses used dichotomized surrogates by matching
prevalence observed in labeled data. The RE value indicated the SMMAL’s rela-
tive efficiency in comparison with the two supervised benchmark methods (ratio
of estimated variances).
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caused by association between target therapy and factors indicating poor prognosis. Ex-
cept for the crude analysis that did not adjust for any confounding, our SMMAL had the
shortest confidence interval, achieving 1.88 relative efficiency with respect to SL DML and
1.35 relative efficiency with respect to the SL cal. The results from UL methods were ques-
tionable as we observed a significant deviation of the UL crude estimation from the SL
crude estimation, indicating substantial bias from imperfect data. Coupled with the short
confidence intervals, researcher should take caution in the risk of misleading conclusions
from the UL methods.

7 General Efficiency Lower Bound

While the paper focused on the method for ATE under double missing SSL setting, we
established the theoretical efficient lower bound for general parameter and broader missing
data pattern in this section. We considered a generic model for data (R,RZ,W) with
always observed W and MCAR Z. Specifically, consider

SSSL =

{
dPf (r, z,w, r) = [ρNf(z,w)]r

[
(1− ρN)

∫
z∈Z

f(z,w)dνz(z)

](1−r)
dνSSL(r, z,w) :

f(z,w)dνcmp(z,w) ∈ Scmp}

for a complete data model class Scmp over Z ⊗W and measures νz over Z, νw over W and

νcmp = νz × νw, νSSL(r, z,w) = δ1(r)× νcmp(z,w) + δ0(r)× νw(w).
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Let H be the nuisance tangent space of SSSL at the true model dPf∗ with f = f∗. Suppose
ψcmp(Z,W) is the efficient influence function for parameter θ under Scmp. Here we use a
different notation ψ for general parameter under missing data components to distinguish
from the ϕ used specifically for ATE under double missing SSL setting. Our theory was
established under the following basic assumptions.

Assumption 5 For absolute constant M ,

(a) (MCAR) R ⊥⊥ (Z,W);

(b) (Informative labels) inf∥v∥2=1 v
T Var

[
ψcmp(Z,W)− E{ψcmp(Z,W) |W}

]
v ≥ 1/M ;

(c) (Model flexibility) E∗{ψcmp(Z,W) |W} ∈H ;

(d) (Bounded influence function) ∥ψcmp(Z,W)∥2 ≤M almost surely.

We derived the SSL efficient influence function by the following proposition.

Proposition 12 Let ψcmp(Z,W) be the efficient influence function for parameter θ under
complete data model Scmp. Under Assumptions 5a and 5c, the efficient influence function
for θ under SSL model SSSL is

ψSSL(R,Z,W) =
R

ρN

[
ψcmp(Z,W)− E{ψcmp(Z,W) |W}

]
+ E{ψcmp(Z,W) |W}. (19)

The influence function ψSSL leads to a semi-parametric efficiency lower bound.

Theorem 13 Under Assumptions 5a-5d, we have the minimax semi-parametric efficiency
for SSL of θ under SSSL,

inf
a:∥a∥2=1

lim inf
c→∞

lim inf
N→∞

inf
θ̂

sup
∥f−f∗∥TV≤c/

√
ρNN

∫
N{aT(θ̂ − θ∗)}2d

∏N
i=1 Pf (zi,wi, ri)

aT Var{ψSSL(R,Z,W)}a
≥ 1.

We offered the proof of Theorem 13 in Section C6 of the Supplementary Materials. Upper
bound would depend on the context. Like Corollary 7, the bound can be attained if non-
parametric estimation of nuisance models admit sufficiently fast rate of consistency, which
has been thoroughly studied under classical low-dimensional settings by Stone (1977, 1982).
While we focus on ρN → 0 and n ≪ N setting, the theory also applies to classical setting
with ρN ∈ [1/M, 1− 1/M ] and n ≍ N setting.

8 Discussion

Motivated by the increasing interest of generating real-world evidence on treatment effect
with big yet noisy EHR data, we proposed a robust and efficient semi-supervised estimator
for ATE under the double missing SSL setting. The SMMAL estimator gained efficiency
by leveraging the large unlabelled data containing noisy yet predictive surrogates for Y
and A with almost no additional requirement than those needed for the supervised analysis
using the labeled set alone. We established semi-parametric efficiency bound for the ATE
estimator under the low dimensional confounder setting and constructed a doubly robust
SMMAL estimator for the high dimensional confounder setting.
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Unlike the MCAR setting, the missing data propensity score P(R = 1 | W) = ρ(W)
must be modeled and estimated. We conjecture that the efficient influence function under
MAR may take the form

ϕMAR(RY,RA,W, R) =E{ϕcmp(Y,A,X) |W}

+
R

ρ(W)
[ϕcmp(Y,A,X)− E{ϕcmp(Y,A,X) |W}].

The estimation of the decaying ρ(W) has been studied in Zhang et al. (2023). When all
nuisance models, (µ, π,Π,m, ρ), are consistently estimated at suitable rates, the efficiency
lower bound should be attained under ideal conditions. However, extension of the SMMAL
with high-dimensional regressions to MAR setting would require a more sophisticated cali-
bration procedure for all 5 models (µ, π,Π,m, ρ), as the potential bias from mis-specified ρ
now may impact the orthogonality of ATE estimator toward all 4 other estimated models.
Moreover, caution must be taken when making MAR assumption for treatment and out-
come data from linked observational data such as a disease registry. Enrollment in registry
led by pioneering clinical experts may systematically impact the treatment pattern and care
quality, which would put the MAR assumption in doubt.

The classical semi-parametric efficiency theory relies on the correct modeling and es-
timation of the nuisance models. When some nuisance models cannot be consistently es-
timated, there is no universal efficiency guarantee for estimation procedures derived from
semi-parametric efficiency theory. To ensure efficiency improvement when both the super-
vised estimator

∆̂SL =
1

N

K∑
k=1

∑
i∈Ik

Ri
ρN

[
µ̂(k)(1,Xi) +

Ai
π̂(k)(1,Xi)

{Yi − µ̂(k)(1,Xi)}
]

− Ri
ρN

[
µ̂(k)(0,Xi) +

1−Ai
π̂(k)(0,Xi)

{Yi − µ̂(k)(0,Xi)}
]

and the SMMAL estimator ∆̂SMMAL are consistent and asymptotically normal, we may con-
sider the linear ensemble

∆̂comb = ∆̂SMMAL + b(∆̂SL − ∆̂SMMAL).

Suppose the influence functions for ∆̂SMMAL and ∆̂SL are ϕSSL and Rϕcmp/ρN, respectively. The
optimal linear ensemble is given by

bopt =
Var(ϕSSL)− Cov(ϕSSL, Rϕcmp/ρN)

Var(ϕSSL) + Var(Rϕcmp/ρN)− 2Cov(ϕSSL, Rϕcmp/ρN)
,

which can be estimated by the empirical variances and covariance of estimated influence
functions constructed with estimated nuisance models (µ̂, π̂, m̂, Π̂).

Our doubly robust estimation can be generalized to other models if the calibrated es-
timation for the model is available. For example, we can directly adopt the estimators
from Tan (2020) for linear outcome model. The calibrated estimation is, however, limited
to M-estimator in high-dimensional regression due to the paucity of works on Z-estimators
in high-dimensional setting. It would be interesting to study if the Z-estimator approach
(Vermeulen and Vansteelandt, 2015) can be generalized to high-dimensional setting.
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Supplementary Materials

We present the detailed summaries of simulation results in Appendix A and additional
information on the treatment and outcome in the data example in Appendix B. The proofs
of Theorems 2-13, Corollary 7 and Proposition 12 are given in Appendix C. The technical
details in these proofs are put in Appendix D. Definitions and additional details are stated
in Appendix E.

Appendix A. Simulation Tables

The detailed simulation results containing the bias, standard deviation, average standard
error, coverage of 95% confidence interval for our semi-supervised ∆̂SMMAL, ∆̂DR along with
those for the supervised benchmarks were presented in Tables A4-A7. Our semi-supervised
∆̂SMMAL, ∆̂DR achieved reasonably honest inference with coverage of 95% confidence interval
close to the nominal level and a better efficiency than the supervised benchmark. The de-
tailed simulation results containing the bias, standard deviation, coverage of 95% confidence
interval for the unsupervised benchmarks were presented in Table A8.
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Table A4: Detailed simulation results on bias, standard deviation (SD), average standard
error (ASE), coverage of 95% confidence interval (Cov) for SMMAL and su-
pervised benchmark (SL) under low-dimensional smooth models. The 25 rows
correspond to 5×5 points in top left plot in Figure 3, indexed by the designed
AUC of surrogates for A (column 1, vertical axis in Figure 3) and Y (column 2,
horizontal axis in Figure 3). Bias, standard deviation (SD) and average standard
error (ASE) were multiplied by 100.

AUC SL SMMAL RE
A Y Bias SD ASE Cov Bias SD ASE Cov

0.80 0.80 -0.81 4.08 4.07 0.94 -0.79 4.04 3.98 0.94 1.02
0.90 0.80 -0.85 4.14 4.08 0.94 -0.79 3.97 3.95 0.94 1.09
0.95 0.80 -0.75 3.87 4.09 0.96 -0.71 3.72 3.84 0.95 1.08
0.99 0.80 -0.90 4.16 4.11 0.94 -0.92 3.69 3.66 0.94 1.25
0.999 0.80 -0.56 4.21 4.11 0.94 -0.61 3.64 3.59 0.94 1.33
0.80 0.90 -1.01 4.10 4.07 0.95 -1.00 4.01 3.92 0.94 1.04
0.90 0.90 -0.69 4.08 4.09 0.95 -0.66 3.83 3.85 0.95 1.14
0.95 0.90 -0.70 4.11 4.09 0.95 -0.72 3.70 3.63 0.94 1.22
0.99 0.90 -0.66 4.21 4.10 0.94 -0.61 3.34 3.29 0.94 1.58
0.999 0.90 -0.35 4.02 4.10 0.95 -0.43 3.14 3.13 0.94 1.62
0.80 0.95 -1.14 4.09 4.06 0.94 -1.07 4.01 3.87 0.94 1.05
0.90 0.95 -0.71 3.98 4.08 0.95 -0.70 3.81 3.76 0.94 1.09
0.95 0.95 -0.69 4.01 4.09 0.96 -0.59 3.49 3.51 0.96 1.32
0.99 0.95 -0.27 4.12 4.09 0.94 -0.23 3.06 3.01 0.94 1.80
0.999 0.95 -0.22 4.08 4.10 0.95 -0.20 2.69 2.78 0.96 2.29
0.80 0.99 -0.92 4.07 4.07 0.94 -0.89 3.94 3.86 0.94 1.07
0.90 0.99 -0.71 3.99 4.09 0.95 -0.52 3.63 3.71 0.95 1.22
0.95 0.99 -0.10 4.12 4.09 0.94 -0.30 3.50 3.32 0.93 1.38
0.99 0.99 -0.37 4.05 4.10 0.95 -0.07 2.73 2.61 0.94 2.23
0.999 0.99 -0.22 4.12 4.10 0.95 -0.05 2.31 2.21 0.94 3.17
0.80 0.999 -0.95 3.87 4.08 0.95 -0.94 3.79 4.00 0.95 1.04
0.90 0.999 -0.60 4.10 4.08 0.94 -0.69 3.89 3.87 0.94 1.10
0.95 0.999 -0.39 4.02 4.08 0.94 -0.37 3.67 3.59 0.94 1.20
0.99 0.999 0.09 4.05 4.09 0.94 0.02 3.13 3.04 0.94 1.67
0.999 0.999 0.03 4.08 4.11 0.95 -0.12 2.64 2.64 0.95 2.38

32



Sample JMLR Paper

Table A5: Detailed simulation results on bias, standard deviation (SD), average standard
error (ASE), coverage of 95% confidence interval (Cov) for SMMAL and super-
vised benchmark (SL) under high-dimensional models with logistic regression PS
and OR. The 25 rows correspond to 5× 5 points in top right plot in Figure
3, indexed by the designed AUC of surrogates for A (column 1, vertical axis in
Figure 3) and Y (column 2, horizontal axis in Figure 3). Bias, standard devia-
tion (SD) and average standard error (ASE) were multiplied by 100.

AUC SL SMMAL RE
A Y Bias SD ASE Cov Bias SD ASE Cov

0.80 0.80 -0.28 4.71 4.49 0.94 -0.22 4.62 4.47 0.95 1.04
0.90 0.80 -0.24 4.70 4.48 0.95 -0.19 4.63 4.36 0.95 1.03
0.95 0.80 -0.24 4.66 4.49 0.96 -0.20 4.43 4.29 0.95 1.11
0.99 0.80 -0.22 4.65 4.49 0.94 -0.17 4.33 4.18 0.95 1.15
0.999 0.80 -0.32 4.70 4.48 0.95 -0.33 4.33 4.11 0.94 1.18
0.80 0.90 -0.26 4.68 4.49 0.94 -0.16 4.56 4.34 0.94 1.06
0.90 0.90 -0.26 4.64 4.49 0.94 -0.22 4.13 4.09 0.94 1.27
0.95 0.90 -0.33 4.72 4.49 0.94 -0.18 4.13 3.92 0.94 1.31
0.99 0.90 -0.31 4.63 4.49 0.95 0.03 3.79 3.65 0.94 1.50
0.999 0.90 -0.24 4.68 4.48 0.95 -0.07 3.63 3.50 0.94 1.67
0.80 0.95 -0.32 4.69 4.49 0.95 -0.26 4.53 4.27 0.95 1.07
0.90 0.95 -0.31 4.62 4.49 0.95 -0.36 3.94 3.91 0.94 1.37
0.95 0.95 -0.27 4.71 4.49 0.95 -0.27 3.89 3.67 0.94 1.46
0.99 0.95 -0.21 4.71 4.48 0.95 -0.11 3.44 3.28 0.93 1.87
0.999 0.95 -0.33 4.71 4.48 0.93 -0.19 3.21 3.05 0.93 2.15
0.80 0.99 -0.31 4.67 4.49 0.95 -0.25 4.29 4.15 0.95 1.19
0.90 0.99 -0.31 4.68 4.49 0.94 -0.09 3.76 3.64 0.94 1.55
0.95 0.99 -0.28 4.71 4.49 0.94 -0.11 3.46 3.27 0.94 1.86
0.99 0.99 -0.30 4.73 4.49 0.94 -0.09 2.79 2.67 0.94 2.89
0.999 0.99 -0.28 4.70 4.48 0.95 -0.12 2.32 2.27 0.94 4.11
0.80 0.999 -0.30 4.65 4.48 0.96 -0.22 4.26 4.09 0.95 1.19
0.90 0.999 -0.26 4.70 4.49 0.95 -0.04 3.55 3.50 0.96 1.76
0.95 0.999 -0.24 4.68 4.48 0.95 -0.09 3.13 3.06 0.94 2.23
0.99 0.999 -0.27 4.69 4.49 0.95 -0.08 2.39 2.33 0.95 3.86
0.999 0.999 -0.32 4.69 4.49 0.95 -0.05 1.85 1.78 0.94 6.49
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Table A6: Detailed simulation results on bias, standard deviation (SD), average standard
error (ASE), coverage of 95% confidence interval (Cov) for SMMAL and super-
vised benchmark (SL) under high-dimensional models with miss-specified PS and
correct OR models. The 25 rows correspond to 5 × 5 points in bottom right
plot in Figure 3, indexed by the designed AUC of surrogates for A (column 1,
vertical axis in Figure 3) and Y (column 2, horizontal axis in Figure 3). Bias,
standard deviation (SD) and average standard error (ASE) were multiplied by
100.

AUC SL SMMAL RE
A Y Bias SD ASE Cov Bias SD ASE Cov

0.80 0.80 -0.28 4.67 4.46 0.94 -0.21 4.61 4.43 0.94 1.03
0.90 0.80 -0.31 4.72 4.45 0.94 -0.32 4.55 4.31 0.94 1.08
0.95 0.80 -0.26 4.74 4.45 0.94 -0.17 4.46 4.22 0.94 1.13
0.99 0.80 -0.29 4.67 4.45 0.95 -0.19 4.28 4.09 0.94 1.20
0.999 0.80 -0.29 4.72 4.45 0.95 -0.29 4.21 4.03 0.96 1.25
0.80 0.90 -0.28 4.70 4.45 0.94 -0.26 4.64 4.32 0.94 1.02
0.90 0.90 -0.29 4.71 4.45 0.94 -0.26 4.27 4.08 0.95 1.22
0.95 0.90 -0.30 4.73 4.46 0.95 -0.25 4.18 3.90 0.93 1.28
0.99 0.90 -0.31 4.78 4.46 0.94 0.04 3.95 3.65 0.93 1.47
0.999 0.90 -0.27 4.76 4.46 0.95 -0.04 3.83 3.51 0.94 1.55
0.80 0.95 -0.29 4.70 4.45 0.95 -0.25 4.54 4.23 0.93 1.08
0.90 0.95 -0.32 4.72 4.46 0.94 -0.13 4.03 3.89 0.95 1.37
0.95 0.95 -0.27 4.69 4.45 0.95 -0.10 3.85 3.63 0.93 1.49
0.99 0.95 -0.26 4.72 4.46 0.94 -0.07 3.43 3.24 0.94 1.90
0.999 0.95 -0.31 4.65 4.45 0.94 -0.01 3.16 3.01 0.94 2.18
0.80 0.99 -0.28 4.70 4.45 0.94 -0.22 4.39 4.12 0.94 1.15
0.90 0.99 -0.31 4.72 4.45 0.94 -0.15 3.61 3.65 0.96 1.71
0.95 0.99 -0.23 4.71 4.45 0.94 -0.05 3.45 3.27 0.92 1.87
0.99 0.99 -0.37 4.72 4.46 0.94 -0.12 2.92 2.71 0.95 2.62
0.999 0.99 -0.25 4.75 4.45 0.94 -0.04 2.40 2.32 0.94 3.91
0.80 0.999 -0.32 4.72 4.46 0.94 -0.25 4.31 4.05 0.94 1.20
0.90 0.999 -0.26 4.70 4.45 0.94 -0.09 3.51 3.50 0.96 1.79
0.95 0.999 -0.28 4.69 4.45 0.94 -0.08 3.07 3.04 0.94 2.33
0.99 0.999 -0.32 4.76 4.45 0.94 -0.07 2.38 2.32 0.95 4.03
0.999 0.999 -0.30 4.68 4.46 0.94 0.11 1.81 1.79 0.95 6.68
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Table A7: Detailed simulation results on bias, standard deviation (SD), average standard
error (ASE), coverage of 95% confidence interval (Cov) for SMMAL and su-
pervised benchmark (SL) under high-dimensional models with correct PS and
miss-specified OR models. The 25 rows correspond to 5 × 5 points in bottom
left plot in Figure 3, indexed by the designed AUC of surrogates for A (column
1, vertical axis in Figure 3) and Y (column 2, horizontal axis in Figure 3). Bias,
standard deviation (SD) and average standard error (ASE) were multiplied by
100.

AUC SL SMMAL RE
A Y Bias SD ASE Cov Bias SD ASE Cov

0.80 0.80 -0.21 4.70 4.49 0.95 -0.19 4.70 4.46 0.94 1.00
0.90 0.80 -0.20 4.75 4.49 0.95 -0.22 4.60 4.35 0.94 1.07
0.95 0.80 -0.16 4.64 4.49 0.96 -0.18 4.35 4.27 0.94 1.13
0.99 0.80 -0.22 4.64 4.49 0.95 -0.14 4.36 4.15 0.94 1.13
0.999 0.80 -0.17 4.74 4.49 0.95 -0.19 4.30 4.09 0.95 1.21
0.80 0.90 -0.20 4.69 4.48 0.95 -0.23 4.50 4.33 0.95 1.08
0.90 0.90 -0.23 4.70 4.48 0.95 -0.24 4.21 4.10 0.94 1.24
0.95 0.90 -0.25 4.75 4.48 0.95 -0.16 3.99 3.92 0.95 1.42
0.99 0.90 -0.22 4.67 4.49 0.95 0.01 3.83 3.66 0.95 1.49
0.999 0.90 -0.26 4.68 4.48 0.95 -0.15 3.68 3.51 0.94 1.62
0.80 0.95 -0.18 4.67 4.48 0.96 -0.21 4.41 4.25 0.93 1.12
0.90 0.95 -0.19 4.69 4.48 0.95 -0.19 3.99 3.93 0.95 1.38
0.95 0.95 -0.21 4.67 4.48 0.96 -0.03 3.65 3.68 0.95 1.64
0.99 0.95 -0.21 4.67 4.48 0.95 -0.32 3.38 3.29 0.94 1.90
0.999 0.95 -0.17 4.65 4.49 0.96 0.09 3.20 3.07 0.94 2.12
0.80 0.99 -0.18 4.64 4.49 0.96 -0.21 4.20 4.13 0.95 1.22
0.90 0.99 -0.23 4.65 4.49 0.95 -0.25 3.72 3.68 0.95 1.56
0.95 0.99 -0.16 4.71 4.48 0.95 -0.05 3.27 3.30 0.95 2.08
0.99 0.99 -0.22 4.61 4.49 0.95 -0.08 2.81 2.70 0.94 2.70
0.999 0.99 -0.25 4.69 4.48 0.96 -0.01 2.51 2.32 0.92 3.51
0.80 0.999 -0.20 4.67 4.48 0.95 -0.08 4.09 4.06 0.96 1.31
0.90 0.999 -0.17 4.71 4.48 0.95 -0.09 3.60 3.53 0.95 1.71
0.95 0.999 -0.21 4.60 4.48 0.95 -0.08 3.02 3.09 0.95 2.33
0.99 0.999 -0.24 4.68 4.48 0.95 -0.05 2.39 2.35 0.95 3.85
0.999 0.999 -0.17 4.67 4.48 0.95 0.11 1.94 1.84 0.94 5.81
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Table A8: Detailed simulation results on bias, standard deviation (SD) and coverage of
95 % confidence interval (Cov) for unsupervised analyses under settings in
Figure 4 low-dimensional smooth model (Low-d, top left plot in Figure 4), high-
dimensional logistic model (High-d, top right plot), high-dimensional model with
mis-specified propensity scores (High-d misPS, bottom right plot in Figure 4),
high-dimensional model with mis-specified outcome regression (High-d misOR,
bottom left plot in Figure 4). The 25 rows correspond to 5 × 5 points in each
plot in Figure 4, indexed by the designed AUC of surrogates for A (column 1,
vertical axis in Figure 4) and Y (column 2, horizontal axis in Figure 4). Bias
and standard deviation (SD) were multiplied by 100.

AUC Low-d High-d High-d misPS High-d misOR
A Y Bias SD Cov Bias SD Cov Bias SD Cov Bias SD Cov
0.80 0.80 -9.08 0.92 0.00 -2.55 1.04 0.27 -2.57 1.04 0.29 -2.87 0.97 0.16
0.90 0.80 -8.37 0.92 0.00 -2.14 0.98 0.44 -2.12 0.98 0.45 -2.47 0.95 0.31
0.95 0.80 -7.85 0.99 0.00 -1.77 1.04 0.58 -1.75 1.04 0.59 -2.10 1.07 0.48
0.99 0.80 -7.15 0.99 0.00 -1.36 1.06 0.73 -1.38 1.09 0.72 -1.59 1.03 0.68
0.999 0.80 -6.94 1.05 0.00 -1.25 1.06 0.77 -1.13 1.09 0.80 -1.47 1.09 0.69
0.80 0.90 -8.47 0.94 0.00 -2.04 1.00 0.48 -2.04 1.05 0.46 -2.46 0.94 0.29
0.90 0.90 -7.18 0.98 0.00 -1.66 1.04 0.61 -1.73 0.92 0.61 -1.92 1.01 0.54
0.95 0.90 -6.31 0.98 0.00 -1.35 0.96 0.74 -1.42 1.11 0.68 -1.61 1.07 0.61
0.99 0.90 -5.27 0.99 0.00 -1.01 1.09 0.83 -0.96 1.11 0.80 -1.19 1.08 0.78
0.999 0.90 -4.75 1.01 0.00 -0.80 1.12 0.87 -0.82 1.10 0.86 -1.03 1.15 0.81
0.80 0.95 -8.09 0.95 0.00 -1.77 1.01 0.59 -1.77 1.03 0.58 -2.15 0.99 0.43
0.90 0.95 -6.42 0.99 0.00 -1.37 1.02 0.73 -1.46 1.00 0.70 -1.74 1.04 0.60
0.95 0.95 -5.29 1.00 0.00 -1.15 1.07 0.79 -1.21 1.09 0.77 -1.34 1.02 0.74
0.99 0.95 -4.11 1.02 0.01 -0.75 1.16 0.86 -0.75 1.12 0.87 -0.96 1.13 0.81
0.999 0.95 -3.50 0.96 0.03 -0.60 1.14 0.89 -0.59 1.17 0.88 -0.74 1.11 0.87
0.80 0.99 -7.53 0.93 0.00 -1.39 1.05 0.72 -1.49 1.00 0.69 -1.74 0.96 0.58
0.90 0.99 -5.40 0.99 0.00 -1.05 1.02 0.81 -1.16 0.97 0.79 -1.38 0.98 0.74
0.95 0.99 -3.95 0.97 0.01 -0.82 1.09 0.86 -0.86 1.06 0.86 -0.97 1.04 0.86
0.99 0.99 -2.46 1.02 0.25 -0.47 1.14 0.91 -0.51 1.11 0.90 -0.58 1.16 0.87
0.999 0.99 -1.65 1.04 0.57 -0.31 1.11 0.93 -0.33 1.14 0.92 -0.44 1.14 0.90
0.80 0.999 -7.29 0.96 0.00 -1.23 1.00 0.76 -1.28 1.01 0.75 -1.60 0.98 0.63
0.90 0.999 -5.01 1.01 0.00 -0.93 1.02 0.84 -1.01 0.95 0.83 -1.20 0.96 0.78
0.95 0.999 -3.53 1.06 0.04 -0.71 1.06 0.89 -0.73 1.06 0.86 -0.84 1.06 0.87
0.99 0.999 -1.82 1.03 0.51 -0.38 1.15 0.91 -0.40 1.14 0.91 -0.48 1.13 0.90
0.999 0.999 -1.03 1.00 0.77 -0.23 1.15 0.92 -0.20 1.15 0.92 -0.29 1.17 0.92
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Table A9: Treatment, outcomes and their surrogates in full study cohort and two arms in
the labeled subset. The format is “count (percentage %)” for binary variables
and “mean (standard deviation)” for numerical variables.

Full data Labeled set
Size 4147 100

Treatment Arms Chemotherapy Targeted Therapy
Gold-standard labels – 79 21
EHR proxies for treatment between metastasis and treatment

Targeted Medication Code Count 0.2 (0.7) 0.1 (0.4) 0.6 (1.2)
Targeted Therapy Mention Count in Note 4.6 (13.6) 1.4 (3.9) 14.4 (24.6)

Endpoints up to 1 year after treatment:
Gold-standard labels
Terminal Condition – 18 (23%) 11 (52%)
New Metastasis – 7 (9%) 2 (10%)
EHR proxies for outcome during 1 year follow-up

Occurrence of death record 781 (19%) 12 (15%) 9 (43%)
Diagnosis Code Count in Last Month 33.5 (50.8) 34.1 (49) 53.4 (52.6)
Procedure Code Count in Last Month 1.9 (4.8) 2 (5) 2.8 (4.9)
New Metastasis Code Counts 3.2 (9.3) 4.9 (10.7) 1.9 (4.9)

Appendix B. Treatment and Outcomes in Data Example

We report the treatment and outcome labels as well as their EHR proxies in Table A9.
The targeted therapy arm was marginally associated with poorer outcomes in terms of
terminal conditions (52 % vs 23 %). Tables A9 shows that occurrence of EHR proxies
cannot accurately indicate prescription information. We used the log counts of targeted
medication mention in note from metastasis to treatment as the surrogate for treatment
indicator due to its large contrast between the two labeled arms. Progress-free survival
is poorly structured in EHR with no clear indicator. We construct a terminal-progression
score with reasonably good prediction power (see Table 2) using death records, activity
(diagnosis and procedure codes) in last EHR month and metastasis code for a new site
during 1 year follow-up.
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Appendix C. Proofs of Main Text Theorems

To analyze the cross-fitting, we adopt the following notations for the conditional expecta-
tions given different part of the data.

Definition A14 Recall that we denote the full data, fold-k data, out-of-fold-k data and
out-of-folds-k1-k2 data as D , Dk, Dc

k and Dc
k1,k2

, respectively. The conditional expectation
for samples with index in set I conditionally on subset of the data D ′ is denoted as

Ei∈I{f(Di) | D}, I ⊆ {1, . . . , n+N},D ′ ⊆ D .

C1 Proof of Theorem 2

We first analyze the bias terms in ∆̂SMMAL and V̂SMMAL from the cross-fitted estimators through
a lemma. We group the limiting nuisance models as η̄ = (π∗, µ∗, Π̄, m̄∗). In the proof, we
repeat the same analyze on two components for treatment arms in ϕSSL,

ϕSSL,a(D;η) =µ(a,X) +
I(A = a)

π(a,X)
{Y − µ(a,X)} (A.20)

+
1

π(a,X)

{
R

ρN

− 1

}
{I(A = a)Y −Π(a,W)m(a,W)}

− µ(a,X)

π(a,X)

{
R

ρN

− 1

}
{I(A = a)−Π(a,W)}. (A.21)

Notice the connection of ϕSSL,a to the efficient influence function when η equals the true
models η∗ ϕSSL(RY,RA,W, R) = ϕSSL,1(D;η∗) − ϕSSL,0(D;η∗) − ∆∗. We may identify the
average treatment by ∆∗ = E{µ(1,X)− µ(0,X)} = E{ϕSSL,1(D; η̄)− ϕSSL,0(D; η̄)}.

Lemma A15 Let ηn = (πn, µn,Πn,mn) be a (deterministic) sequence of nuisance models
satisfying almost surely

sup
a=0,1

max {|1/πn(a,Xi)|, |µn(a,Xi)|, |Πn(a,Wi)|, |mn(a,Wi)|} ≤M. (A.22)

Under Assumptions 2a and 2b, we have

1. For bias:
|E {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}| ≲ ∥πn − π∗∥2∥µn − µ∗∥2,

2. For variance:

ρN Var {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}
≲∥πn − π∗∥22 + ∥µn − µ∗∥22 + ∥mn − m̄∥22 + ∥Πn − Π̄∥22,

3. For variance estimation:

E
{
ρNϕSSL,a(D;ηn)

2
}
− E

{
ρNϕSSL,a(D; η̄)2

}
≲∥πn − π∗∥2 + ∥µn − µ∗∥2 + ∥mn − m̄∥2 + ∥Πn − Π̄∥2

+ ∥πn − π∗∥22 + ∥µn − µ∗∥22 + ∥mn − m̄∥22 + ∥Πn − Π̄∥22.
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Proof [Proof of Lemma A15] We prove the lemma through a calculation of the expectations
and variances of the quantities of interest. To simplify our notation, we denote

△µ = µn(a,X)− µ∗(a,X), △π = πn(a,X)− π∗(a,X), (A.23)

△m = mn(a,W)− m̄(a,W), △Π = Πn(a,W)− Π̄(a,W). (A.24)

We substitute Y and A in analysis by the model definition

E{I(A = a) | X} = π∗(a,X), E{I(A = a)Y | X} = π∗(a,X)µ∗(a,X),

E{I(A = a) |W} = Π̄(a,W), E{I(A = a)Y |W} = Π̄(a,W)m̄(a,W).

1. For bias:

We decompose the expectation into

E {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}
=E {ϕSSL,a(D; (πn, µn,Πn,mn))− ϕSSL,a(D; (πn, µ∗,Πn,mn))}︸ ︷︷ ︸

T1

+ E {ϕSSL,a(D; (πn, µ∗,Πn,mn))− ϕSSL,a(D; (π∗, µ∗,Πn,mn))}︸ ︷︷ ︸
T2

+ E
{
ϕSSL,a(D; (π∗, µ∗,Πn,mn))− ϕSSL,a(D; (π∗, µ∗, Π̄, m̄))

}︸ ︷︷ ︸
T3

,

which we shall analyze separately.

First, note that T1 can be written as

T1 =E
(
△µ

[
1− I(A = a)

πn(a,X)
− 1

πn(a,X)

(
R

ρN

− 1

)
{I(A = a)−Πn(a,W)}

])
=E {−△µ△π/πn(a,X)} .

As a result, we have a bound for T1 by (A.22) and the Cauchy-Schwartz inequality to
obtain |T1| ≤M∥△µ∥2∥△π∥2. Second, we calculate T2,

T2 =E
[

△π
πn(a,X)π∗(a,X)

(
R

ρN

− 1

)
{I(A = a)Y −Πn(a,W)mn(a,W)}

]
− E

[
△π

πn(a,X)π∗(a,X)
µ∗(a,X)

(
R

ρN

− 1

)
{I(A = a)−Πn(a,W)}

]
=0.

Third, we calculate T3,

T3 =E
[

1

π∗(a,X)

(
R

ρN

− 1

)
{I(A = a)Y −Πn(a,W)mn(a,W)}

]
− E

[
1

π∗(a,X)
µ∗(a,X)

(
R

ρN

− 1

)
{I(A = a)−Πn(a,W)}

]
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− E
[

1

π∗(a,X)

(
R

ρN

− 1

)
{I(A = a)Y − Π̄(a,W)m̄(a,W)}

]
+ E

[
1

π∗(a,X)
µ∗(a,X)

(
R

ρN

− 1

)
{I(A = a)− Π̄(a,W)}

]
=0.

Putting the bounds for T1-T3 together, we have therefore have that

|E {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}| ≲ ∥πn − π∗∥2∥µn − µ∗∥2.

2. For variance:

Here, we first establish the order for the second moments of terms with (R/ρN− 1) in
them as follows

E[{h1(Y,A,W) + (R/ρN − 1)h2(Y,A,W)}2]
=E{h1(Y,A,W)2}+ E{(R/ρN − 1)2}E{h2(Y,A,W)2}
=∥h1∥22 + (1/ρN − 1)∥h2∥22
≤∥h1∥22 + ∥h22∥2/ρN. (A.25)

The bound for the variance is derived from the bound for the second moment

Var {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)} ≤ E
[
{ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}2

]
.

By the inequality (a+ b+ c)2 ≤ 4(a2 + b2 + c2) for any a, b, c ∈ R, we can control the
bound in the decomposition:

E
[
{ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}2

]
=4E

[
{ϕSSL,a(D; (πn, µn,Πn,mn))− ϕSSL,a(D; (πn, µ∗,Πn,mn))}2

]
︸ ︷︷ ︸

T ′
1

+ 4E
[
{ϕSSL,a(D; (πn, µ∗,Πn,mn))− ϕSSL,a(D; (π∗, µ∗,Πn,mn))}2

]
︸ ︷︷ ︸

T ′
2

+ 4E
[{
ϕSSL,a(D; (π∗, µ∗,Πn,mn))− ϕSSL,a(D; (π∗, µ∗, Π̄, m̄))

}2]︸ ︷︷ ︸
T ′
3

.

Under Assumptions 2a, 2b and (A.22), since we have everything except for R/ρN

bounded in T ′
1-T

′
3, we can derive upper bounds on their rates as follows:

T ′
1 =E

(
△µ2

[
1− I(A = a)

πn(a,Xi)
− 1

πn(a,Xi)

(
R

ρN

− 1

)
{I(A = a)−Πn(a,W)}

]2)
≲∥µn − µ∗∥22/ρN,
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T ′
2 =E

((
△π

πn(a,X)π∗(a,X)

)2 [(R
ρN

− 1

)
{I(A = a)Y −Πn(a,W)mn(a,W)}

−µ∗(a,X)

(
R

ρN

− 1

)
{I(A = a)−Πn(a,W)}

]2)
≲∥πn − π∗∥22/ρN,

T ′
3 ≤2E

[
△Π2

{
µ∗(a,X)− m̄(a,W)

π∗(a,X)

(
R

ρN

− 1

)}2
]
+ 2E

(
△m2

[
Πn(a,W)

π∗(a,X)

(
R

ρN

− 1

)]2)
≲∥Πn − Π̄∥22/ρN + ∥mn − m̄∥22/ρN.

Putting the rates for T ′
1-T

′
3 together, we therefore obtain

ρN Var {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}

≤E
[
{ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}2

]
≲∥πn − π∗∥22 + ∥µn − µ∗∥22 + ∥mn − m̄∥22 + ∥Πn − Π̄∥22.

3. For variance estimator:

We establish the last result by connecting it to the second bound above,

E
{
ρNϕSSL,a(D;ηn)

2
}
− E

{
ρNϕSSL,a(D; η̄)2

}
≤ρNE

[
{ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}2

]
+ 2ρNE [ϕSSL,a(D; η̄) {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}]

≤ρNE
[
{ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}2

]
+ ρN

√
E {ϕSSL,a(D; η̄)2}E

[
{ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}2

]
≲∥πn − π∗∥2 + ∥µn − µ∗∥2 + ∥mn − m̄∥2 + ∥Πn − Π̄∥2

+ ∥πn − π∗∥22 + ∥µn − µ∗∥22 + ∥mn − m̄∥22 + ∥Πn − Π̄∥22.

Thus, we have obtained all three rates for bias, variance and variance estimation.

Using Lemma A15, we can now proceed to prove Theorem 2. Denote the out-of-k-fold
estimators for nuisance models as η̂(k) = (π̂(k), µ̂(k), Π̂(k), m̂(k)). We shall first establish the
asymptotic approximation for the fold-k estimator

∆̂(k)
SMMAL =

K

N

∑
i∈Ik

ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))

=
K

N

∑
i∈Ik

ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄) + op

(
n−1/2

)
.
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Then the asymptotic normally follows from the central limit theorem regarding the empirical
mean term of the i.i.d. random variables. We will thereafter conclude the proof by showing
the variance estimator is indeed consistent.

To establish the asymptotic expansion, we consider the decomposition

∆̂(k)
SMMAL

=
K

N

∑
i∈Ik

ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄)

+
K

N

∑
i∈Ik

[
ϕSSL,1(Di; η̂

(k))− ϕSSL,1(Di; η̄)− Ei∈Ik{ϕSSL,1(Di; η̂
(k))− ϕSSL,1(Di; η̄) | Dc

k}
]

+ Ei∈Ik{ϕSSL,0(Di; η̂
(k))− ϕSSL,0(Di; η̄) | Dc

k}

− K

N

∑
i∈Ik

[
ϕSSL,0(Di; η̂

(k))− ϕSSL,0(Di; η̄)− Ei∈Ik{ϕSSL,0(Di; η̂
(k))− ϕSSL,0(Di; η̄) | Dc

k}
]

− Ei∈Ik{ϕSSL,0(Di; η̂
(k))− ϕSSL,0(Di; η̄) | Dc

k}. (A.26)

We can now apply Lemma A15 along with Assumption 2d to get

Vari∈Ik{ϕSSL,a(Di; η̂
(k))− ϕSSL,a(Di; η̄) | Dc

k} = op (1/ρN) ,

Ei∈Ik{ϕSSL,a(Di; η̂
(k))− ϕSSL,a(Di; η̄) | Dc

k} = op

(
n−1/2

)
. (A.27)

Therefore, by the Tchebychev’s inequality and the fact that ρNN = n, we have

K

N

∑
i∈Ik

[
ϕSSL,a(Di; η̂

(k))− ϕSSL,a(Di; η̄)− Ei∈Ik{ϕSSL,a(Di; η̂
(k))− ϕSSL,a(Di; η̄) | Dc

k}
]

=op

(
n−1/2

)
. (A.28)

Thereafter combining (A.27) and (A.28) to (A.26), we have

∆̂(k)
SMMAL =

K

N

∑
i∈Ik

ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄) + op

(
n−1/2

)
.

Summing over all the folds, we obtain

∆̂SMMAL =
1

K

K∑
k=1

∆̂(k)
SMMAL =

1

N

N∑
i=1

ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄) + op

(
n−1/2

)
. (A.29)

Using (A.25) along with Assumptions 2a and 2b, we therefore obtain that the variance of
each summand in (A.29) scales with 1/ρN as,

Var{ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄)} = V∗/ρN +O(1).

Under Assumption 2e, we can then scale it to obtain a stable variance

VSMMAL = Var{√ρNϕSSL,1(Di; η̄)−
√
ρNϕSSL,0(Di; η̄)} = V∗ +O(ρN) ∈ [1/2M, 2M ] (A.30)
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for sufficiently small ρN. Applying the central limit theorem at
√
n-scale, we have

√
n(∆̂SMMAL −∆∗) =

1√
N

N∑
i=1

√
ρNϕSSL,1(Di; η̄)−

√
ρNϕSSL,0(Di; η̄) + op (1)⇝ N(0,VSMMAL)

(A.31)
Finally, we can use Lemma A15 again to show the consistency of the variance estimator.

To this end, we decompose the variance estimator as

V̂SMMAL =
1

N

K∑
k=1

∑
i∈Ik

ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2 − ρN∆̂
2
SMMAL

=VSMMAL + ρN(∆
2
∗ − ∆̂2

SMMAL)

+
1

N

K∑
k=1

∑
i∈Ik

ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2

− Ei∈Ik [ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2 | Dc
k]

+
1

K

K∑
k=1

Ei∈Ik [ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2 | Dc
k]

− E[ρN{ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄)}2 | Dc
k]. (A.32)

By the asymptotic normality of ∆̂SMMAL and the boundedness of ∆∗ from Assumption 2a,
we have

ρN(∆
2
∗ − ∆̂2

SMMAL) = Op

(
ρNn

−1/2
)
. (A.33)

We denote the labeled data component and unlabeled data component of ϕSSL,1 − ϕSSL,0 as

ψ1(D;η) =µ(1,X) +
Π(1,X)

π(1,X)
{m(1,W)− µ(1,X)}

− µ(0,X)− Π(0,X)

π(0,X)
{m(0,W)− µ(0,X)}

ψ2(D;η) =
I(A = 1)

π(1,X)
{Y − µ(1,X)} − Π(1,X)

π(1,X)
{m(1,W)− µ(1,X)}

− I(A = 0)

π(0,X)
{Y − µ(0,X)}+ Π(0,X)

π(0,X)
{m(0,W)− µ(0,X)} .

Using the identity R2
i = Ri, we express the term ρN{ϕSSL,1(Di; η̂

(k))−ϕSSL,0(Di; η̂
(k))}2 in the

generic form analyzed in Lemma A19

ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2

=ρN

{
ψ1(Di; η̂

(k)) +
Ri
ρN

ψ2(Di; η̂
(k)

}2

= ρNψ1(Di; η̂
(k))2 + 2Riψ1(Di; η̂

(k))ψ2(Di; η̂
(k))︸ ︷︷ ︸

h1 for Lemma A19

+
Ri
ρN

ψ2(Di; η̂
(k))2︸ ︷︷ ︸

h2 for Lemma A19

.
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Under Assumptions 2a and 2c, the h1 and h2 components are all bounded, so we can apply
the concentration result in Lemma A19 to get

1

N

K∑
k=1

∑
i∈Ik

ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2

− Ei∈Ik [ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2 | Dc
k] = Op

(
n−1/2

)
. (A.34)

Also, applying Lemma A15 with Assumption 2d, we have

1

N

K∑
k=1

∑
i∈Ik

Ei∈Ik [ρN{ϕSSL,1(Di; η̂
(k))− ϕSSL,0(Di; η̂

(k))}2 | Dc
k]

− E[ρN{ϕSSL,1(Di; η̄)− ϕSSL,0(Di; η̄)}2 | Dc
k] = op(1). (A.35)

Putting the rates (A.33)-(A.35) to (A.32), we have

V̂SMMAL = VSMMAL + op(1). (A.36)

With the asymptotic normality (A.31), stable variance (A.30) and consistent variance
estimator (A.36), we apply the continuous mapping theorem to get√

n/V̂SMMAL(∆̂SMMAL −∆∗)⇝ N(0, 1).

C2 Proof of Theorem 5

Here we directly apply the conclusion of Theorem 13 by verifying Assumption 5. See the
proof of Theorem 13 for details. By the Theorem 2.2 Setting IV of Kallus and Mao (2024),
the efficient influence function for ∆∗ under complete data is ϕcmp. Now, we verify each item
in Assumption 5.

(a) We assume missing completely at random (1) throughout;

(b) We assume the stable variance from labeled portion as Assumption 2e;

(c) We are considering nonparametric model, so H contains all the mean zero square
integrable random variables;

(d) The complete data efficient influence function ϕcmp is bounded under Assumptions 2a
and 2b.

C3 Proof of Corollary 7

We verify the Assumption 2 using existing results for B-spline regression summarized in
Lemma A24 (see Newey and Robins, 2018, for example). Under (1), Assumptions 3a and
2b, the densities of X | R = 1, X | R = 1, A = 1, X | R = 1, A = 0 , W | R = 1,
W | R = 1, A = 1 and W | R = 1, A = 0 are all bounded and bounded away from zero.
We have the boundedness of Y from Assumption 2a, and A is naturally bounded by one.
Under Assumption 3b, all nuisance models are Hölder smooth. Choosing tensor B-splines
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with equally spaced knots and proper normalization, B-spline regressions for π, µ, Π and
m all satisfy the conditions of Lemma A24.

Apply Lemma A24 with the order κ and degrees from the statement of Corollary 7, we
have

∥π̂(k)(a, ·)− π∗(a, ·)∥2 = Op

(
n
− H(π∗(a,·))/p

1+H(π∗(a,·))/p

)
, ∥µ̂(k)(a, ·)− µ∗(a, ·)∥2 = Op

(
n
− H(µ∗(a,·))/p

1+H(µ∗(a,·))/p

)
,

∥Π̂(k)(a, ·)− π∗(a, ·)∥2 = Op

(
n
− H(π∗(a,·))/p

1+H(Π∗(a,·))/p

)
, ∥m̂(k)(a, ·)− µ∗(a, ·)∥2 = Op

(
n
− H(µ∗(a,·))/p

1+H(m∗(a,·))/p

)
.

Under Assumptions 2a and 2b, truncation at M does not increase estimation error,

∥min{M, π̂(k)(a, ·)} − π∗(a, ·)∥2 = Op

(
n
− H(π∗(a,·))/p

1+H(π∗(a,·))/p

)
,

∥min{M, µ̂(k)(a, ·)} − µ∗(a, ·)∥2 = Op

(
n
− H(µ∗(a,·))/p

1+H(µ∗(a,·))/p

)
,

∥min{M, Π̂(k)(a, ·)} − π∗(a, ·)∥2 = Op

(
n
− H(π∗(a,·))/p

1+H(Π∗(a,·))/p

)
,

∥min{M, m̂(k)(a, ·)} − µ∗(a, ·)∥2 = Op

(
n
− H(µ∗(a,·))/p

1+H(m∗(a,·))/p

)
.

The truncation at M secures Assumption 2c. Under Assumptions 2b and 3b, the rates for
the truncated estimators above satisfy Assumption 2d with Π̄ = Π∗ and m̄ = m∗. Therefore,
we can apply the asymptotic normality (A.31) from Theorem 2 to get

√
n(∆̂SSL −∆∗)⇝ N(0, ρN Var{ϕSSL(RY,RA,W, R)}).

C4 Proof of Theorem 8

In Section D1, we developed the estimation rates for Lasso estimators defined in (9)-(12)
in Lemma A21. Two estimation rates from Lemma A21 corresponds to the two situation:
1) the general case in which the cross-fitted parameter must be consistent to identify the
target parameter; 2) the special case in which the cross-fitted parameter does not exist or is
not needed for identifying the target parameter. The special case applies to the imputation
Lasso (9), the initial Lasso (10) and the calibrated Lasso (12) if the underlying model is
correct. The general case applies to the calibrated Lasso (12) if the underlying model is
wrong. We do not require any concentration of the initial estimator for the mis-specified
model following the truncation of the weights in the calibrated Lasso (12). The proofs for
Lemma A21 are based on the technique developed in Hou et al. (2021b). In summary, we
obtain

1. Both models correct: α∗ = ᾱinit = ᾱa and β∗ = β̄a,init = β̄a,

∥α̂(k)

a −α∗∥2 = Op

(√
∥α∗∥0 log(p)/n

)
, ∥β̂

(k)

a − β∗,a∥2 = Op

(√
∥β∗,a∥0 log(p)/n

)
,

∥ξ̂
(k)

− ξ̄∥2 = Op

(√
∥ξ̄∥0 log(p+ q)/n

)
, ∥ζ̂

(k)

a − ζ̄a∥2 = Op

(√
∥ζ̄a∥0 log(p+ q)/n

)
.
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2. PS model correct: α∗ = ᾱinit = ᾱa,

∥α̂(k)

a −α∗∥2 = Op

(√
∥α∗∥0 log(p)/n

)
,

∥β̂
(k)

a − β̄a∥2 = Op

(√(
∥β̄a∥0 + ∥α∗∥0

)
log(p)/n

)
,

∥ξ̂
(k)

− ξ̄∥2 = Op

(√
∥ξ̄∥0 log(p+ q)/n

)
, ∥ζ̂

(k)

a − ζ̄a∥2 = Op

(√
∥ζ̄a∥0 log(p+ q)/n

)
.

3. OR model correct: β∗ = β̄a,init = β̄a,

∥α̂(k)

a − ᾱa∥2 = Op

(√(
∥β∗,a∥0 + ∥ᾱa∥0

)
log(p)/n

)
,

∥β̂
(k)

a − β∗,a∥2 = Op

(√
∥β∗,a∥0 log(p)/n

)
,

∥ξ̂
(k)

− ξ̄∥2 = Op

(√
∥ξ̄∥0 log(p+ q)/n

)
, ∥ζ̂

(k)

a − ζ̄a∥2 = Op

(√
∥ζ̄a∥0 log(p+ q)/n

)
.

Similar to the proof of Theorem 2, we group the limiting nuisance models (15) as

η̄ = (π̄, µ̄, Π̄, m̄), π̄(a,X) = ag(ᾱT
1X) + (1− a)g(−ᾱT

0X),

µ̄(a,X) = g(ᾱT
aX), Π̄(a,W) = g(ξ̄

T
W), m̄(a,W) = g(−ζ̄T

aW). (A.37)

The L2 estimation rates translate to the mean square error rate of the model estimators
(13) by Lemma A20,

∥π̂(k)(a, ·)− π̄(a, ·)∥2 ≲ ∥α̂(k)

a − ᾱa∥2, ∥µ̂(k)(a, ·)− µ̄(a, ·)∥2 ≲ ∥β̂
(k)

a − β̄a∥2,

∥Π̂(k)(a, ·)− Π̄(a, ·)∥2 ≲ ∥ξ̂
(k)

− ξ̄∥2, ∥m̂(k)(a, ·)− m̄(a, ·)∥2 ≲ ∥ζ̂
(k)

a − ζ̄a∥2.

For the case of both models being correct in Assumption 4d-iii, we can directly apply
Theorem 2. We study the other cases in which one of the PS or OR is correct in the rest of
the proof.

We use the ϕSSL,a(D;η) notation defined in (A.21). Notice that

E{ϕSSL,1(D; η̄)− ϕSSL,0(D; η̄)} =E
[
g(XTβ̄1) +

A

g(XTᾱ1)
{Y − g(XTβ̄1)}

]
− E

[
g(XTβ̄0) +

1−A
g(−XTᾱ0)

{Y − g(XTβ̄0)}
]

so ∆∗ = E{ϕSSL,1(D; η̄)− ϕSSL,0(D; η̄)} if either the PS or OR is correct (Bang and Robins,
2005). We state a modified version of Lemma A15.

Lemma A16 Let ηn = (πn, µn,Πn,mn) be a (deterministic) sequence of nuisance models
satisfying almost surely

sup
a=0,1

max {|1/πn(a,Xi)|, |µn(a,Xi)|, |Πn(a,Wi)|, |mn(a,Wi)|} ≤M. (A.38)
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Define

Ψ1(µn) = E
[
{µn(a,X)− µ̄(a,X)}

{
I(A = a)

π̄(a,X)
− 1

}]
,

Ψ2(πn) = E
[{

1

πn(a,X)
− 1

π̄(a,X)

}
I(A = a){Y − µ̄(a,X)}

]
. (A.39)

Under Assumptions 2a and 2b, we have

1. For bias:

|E {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}| ≲ ∥πn − π̄∥2∥µn − µ̄∥2 +Ψ1(µn) + Ψ2(πn),

2. For variance:

ρN Var {ϕSSL,a(D;ηn)− ϕSSL,a(D; η̄)}
≲∥πn − π̄∥22 + ∥µn − µ̄∥22 + ∥mn − m̄∥22 + ∥Πn − Π̄∥22,

3. For variance estimation:

E
{
ρNϕSSL,a(D;ηn)

2
}
− E

{
ρNϕSSL,a(D; η̄)2

}
≲∥πn − π̄∥2 + ∥µn − µ̄∥2 + ∥mn − m̄∥2 + ∥Πn − Π̄∥2

+ ∥πn − π̄∥22 + ∥µn − µ̄∥22 + ∥mn − m̄∥22 + ∥Πn − Π̄∥22.

We omit the proof of Lemma A16 as it merely repeats that of Lemma A15. The only
difference is that limiting models π̄ and µ̄ can deviate from the truth π∗ and µ∗, so we
have the extra terms (A.39) in the bias representation. In the next lemma, we study (A.39)
under Assumption 4d-i or 4d-ii.

Lemma A17 Let πn and µn be the logistic regression predictions

πn(a,X) = gτ((−1)a+1XTαn), µn(a,X) = g((−1)a+1XTβn).

We have

1. under Assumption 4d-i: for ∥αn −α∗∥2 ≤ 1/(2M),

Ψ1(µn) = 0, Ψ2(πn) ≲ ∥αn −α∗∥22 + e−1/(2∥αn−α∗∥22);

2. under Assumption 4d-ii:

Ψ2(πn) = 0, Ψ1(µn) ≲ ∥βn − β∗,a∥22.

Proof [Proof of Lemma A17]
PS correct: We have ᾱa = α∗ and π̄ = π∗. As the result, we have

Ψ1(µn) = E
[
{µn(a,X)− µ̄(a,X)}E{I(A = a)− π∗(a,X) | X}

π∗(a,X)

]
= 0.
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In the following, we set a = 1, while the a = 0 case can be obtained by the same steps. To
analyze Ψ2(πn), we consider the following decomposition

Ψ2(πn) =E [{expτ(−XTαn)− exp(−XTαn)}A{Y − µ̄(1,X)}]
− (αn −α∗)

TE [exp(−XTα∗)XA{Y − µ̄(1,X)}]

+
1

2
(αn −α∗)

TE [exp(−XTα̃)XXTA{Y − µ̄(1,X)}] (αn −α∗) (A.40)

for some α̃ between αn and α∗. Under Assumption 4c, |XTα∗| ≤M the truncation at 2M
for XTαn would only be triggered if |XT(αn−α∗)| ≥M . Thus, we may derive the following
upper bound for the truncation error,

|E [{expτ(−XTαn)− exp(−XTαn)}A{Y − µ̄(1,X)}]|
≤E [exp(|XTαn|)I(|XT(αn −α∗)| ≥M)]

≤E
[
eM exp(|XT(αn −α∗)|)I(|XT(αn −α∗)| ≥M)

]
≤eM

√
E {exp(2|XT(αn −α∗)|)}P(|XT(αn −α∗)| ≥M)

≤eM
√
E
{
exp

(
|XT(αn −α∗)|
M∥αn −α∗∥2

)}
P(|XT(αn −α∗)| ≥M). (A.41)

The last inequality above follows from the assumption that ∥αn −α∗∥2 ≤ 1/(2M). Under
Assumption 4a, XT(αn −α∗) is sub-Gaussian thus sub-exponential

∥XT(αn −α∗)∥ψ1 ≤ ∥XT(αn −α∗)∥ψ2 ≤M∥αn −α∗∥2,

so we may apply the definition of sub-Gaussian/sub-exponential random variable and its
property in tail probability to get

E
{
exp

(
|XT(αn −α∗)|
M∥αn −α∗∥2

)}
≤ 2, P(|XT(αn −α∗)| ≥M) ≤ 2e−1/∥αn−α∗∥22 , . (A.42)

Applying (A.42) to (A.41), we have

|E [{expτ(−XTαn)− exp(−XTαn)}A{Y − µ̄(1,X)}]| ≲ e−1/(2∥αn−α∗∥22). (A.43)

By the definition β̄a (15), they must satisfy the first order condition of optimality

E
[
exp(−XTᾱinit)AX{Y − g(XTβ̄1)

]
= 0. (A.44)

By the definition of µ̄ and the fact ᾱinit = α∗ under correct OR model, we infer from (A.44),

E [exp(−XTα∗)XA{Y − µ̄(1,X)}] = 0. (A.45)

We bound the quadratic term in (A.40) with Assumptions 4a, 4c,∣∣∣∣12(αn −α∗)
TE [exp(−XTα̃)XXTA{Y − µ̄(1,X)}] (αn −α∗)

∣∣∣∣ (A.46)

≲E[eM exp(|XT(αn −α∗)|){(αn −α∗)
TX}2]
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≲eM
√
E
{
exp

(
|XT(αn −α∗)|2
M2∥αn −α∗∥22

)}
E[{(αn −α∗)TX}4]

≲∥αn −α∗∥22. (A.47)

We have used again the sub-Gaussian property of (A.42) in the last inequality. Applying
A.43, (A.45) and (A.47) to (A.40), we have shown

Ψ2(πn) ≲ ∥αn −α∗∥22 + e−1/(2∥αn−α∗∥22).

OR correct: We have β̄a = β∗,a and µ̄ = µ∗. As the result, we have

Ψ2(πn) = E
[{

1

πn(a,X)
− 1

π̄(a,X)

}
I(A = a)E{Y − µ∗(a,X) | A,X}

]
= 0.

Using the Mean Value Theorem on Ψ1(µn), we have

Ψ1(µn) =(βn − β∗,a)
TE
[
ġ(XTβ∗,a)X

{
I(A = a)

π̄(a,X)
− 1

}]
+

1

2
(βn − β∗,a)

TE
[
g′′(XTβ̃)XXT

{
I(A = a)

π̄(a,X)
− 1

}]
(βn − β∗,a) (A.48)

for some β̃ between βn and β∗,a. By the definition ᾱa (15), they must satisfy the first order
condition of optimality

E
[
ġ(XTβ̄1,init){1−A(1 + e−XTᾱ1)}

]
= 0,

E
[
ġ(XTβ̄0,init){1− (1−A)(1 + eX

Tᾱ0)}
]
= 0. (A.49)

By the definition of π̄ and the fact β̄a,init = β∗,a under correct OR model, we infer from
(A.49),

E
[
ġ(XTβ∗,a)X

{
I(A = a)

π̄(a,X)
− 1

}]
= 0. (A.50)

We bound the quadratic term in (A.48) with Assumptions 4a, 4c and bounds for ∥g′′∥∞ ≤
1/(6
√
3),∣∣∣∣12(βn − β∗,a)

TE
[
g′′(XTβ̃)XXT

{
I(A = a)

π̄(a,X)
− 1

}]
(βn − β∗,a)

∣∣∣∣ ≲E[{(βn − β∗,a)
TX}2]

≲∥βn − β∗,a∥22. (A.51)

Applying (A.50) and (A.51) to (A.48), we have shown

Ψ1(µn) ≲ ∥βn − β∗,a∥22.
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As Lemma A17 require ∥αn −α∗∥2 to be sufficiently small, we create the hypothetical
error truncated estimators for α̂(k)

a ,

α̌(k)
a = ᾱa + (α̂(k)

a − ᾱa)min

{
1,

1

M∥α̂(k)

a − ᾱa∥2

}
. (A.52)

Under Assumption 4d, we have ∥α̂(k)

a − ᾱa∥2 = op(1), so α̌
(k)
a = α̂(k)

a with large probability.
From here, we repeat the proof of Theorem 2 after Lemma A15 and obtain√

n/V̂DR(∆̂DR −∆∗)⇝ N(0, 1).

C5 Proof of Proposition 12

The proof runs in two steps. First, we show that ψSSL is an influence function for θ under
SSSL using the property of ψcmp being the influence function for θ under Scmp. Second, we
show that ψSSL is efficient in the sense that it belongs to the tangent space of model SSSL.

Consider a generic parametric sub-model for complete data and SSL data as follows

Scmp(η) = {f(z,w;η) : η ∈ Rp} ⊂ Scmp,

fW(w;η) =

∫
fZ,W(z,w;η)dνz(z),

SSSL(η) =
{
[ρNf(z,w;η)]r [(1− ρN)fW(w;η)](1−r) dνSSL(r, z,w) : η ∈ Rp

}
⊂ SSSL. (A.53)

The true model is attained at f(z,w;η∗) = f∗(z,w). We denote the score function from
the complete data as

Ψcmp(Z,W) =
∂

∂η
log {f(Z,W;η)}

∣∣∣∣
η=η∗

. (A.54)

The score function under the SSL model SSSL can be expressed as

ΨSSL(R,Z,W) =RΨcmp(Z,W) + (1−R) ∂

∂η
log {fW(W;η)}

∣∣∣∣
η=η∗

=RΨcmp(Z,W) + (1−R)E∗{Ψcmp(Z,W) |W} (A.55)

Since ψcmp is the influence function for θ, we must have

E∗{ψcmp(Z,W)Ψcmp(Z,W)} = ∂

∂η
θ(η)

∣∣∣∣
η=η∗

. (A.56)

Under Assumption 5a, we can calculate

E∗{ψSSL(R,Z,W)ΨSSL(R,Z,W)}

=E∗

{
R

ρN

ψcmp(Z,W)Ψcmp(Z,W)

}
+ E∗

(
R

ρN

E∗{ψcmp(Z,W) |W} [Ψcmp(Z,W)− E∗{Ψcmp(Z,W) |W}]
)
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+ E∗
{
(R/ρN − 1)E∗{ψcmp(Z,W) |W}E∗{Ψcmp(Z,W) |W}

}
=E∗

{
ψcmp(Z,W)Ψcmp(Z,W)

}
=

∂

∂η
θ(η)

∣∣∣∣
η=η∗

. (A.57)

Thus, we verify that ψSSL is an influence function for θ under model SSSL.
Now, we prove that ψSSL belongs to the maximal nonparametric tangent space under

model SSSL. From the Assumption 5c and the efficient influence function ψcmp, we know two
elements in the tangent space under model Scmp,

ψcmp(Z,W), E∗{ψcmp(Z,W) |W}. (A.58)

According to the connection between the scores for Scmp and SSSL (A.55), we obtain two
elements in the tangent space under model SSSL,

U = R
[
ψcmp(Z,W)− E∗{ψcmp(Z,W) |W}

]
+ E∗{ψcmp(Z,W) |W},

V = E∗{ψcmp(Z,W) |W}. (A.59)

Notice that we can express ψSSL as the linear combination of the two elements above

ψSSL(R,Z,W) = U/ρN +V(1− 1/ρN). (A.60)

Since the tangent space is a linear space, ψSSL must also be an element in the tangent space.
We have shown that ψSSL is an element in the tangent space of SSSL satisfying (A.57).

Therefore, ψSSL is the efficient influence function for θ under SSSL.

C6 Proof of Theorem 13

Suppose the dimension of θ is q. We start with the construction of the 2q-dimensional least
favorable model. From the Assumption 5c and the efficient influence function ψcmp, we know
two elements in the nuisance parameter tangent space under model SSSL,

ψcmp(Z,W), E∗{ψcmp(Z,W) |W}. (A.61)

We set the two tilt directions as

g1(Z,W) = ψcmp(Z,W)− E∗{ψcmp(Z,W) |W},
g2(W) = E∗{ψcmp(Z,W) |W}. (A.62)

We denote the variances of two directions as

Vψ,1 = Var∗{g1(Z,W)} = E∗[Var∗{g1(Z,W)}],
Vψ,2 = Var∗{g2(W)} = Var∗[E∗{g1(Z,W)}],

Vψ =

(
Vψ,1 Oq

Oq Vψ,2

)
. (A.63)

Denote[
1 +

hT
1g1(zi,wi)√

ρNN
+

hT
2g2(wi)√

N

]
+

= max

{
0, 1 +

hT
1g1(zi,wi)√

ρNN
+

hT
2g2(wi)√

N

}
,
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Ch = E∗

([
1 +

hT
1g1(Zi,Wi)√

ρNN
+

hT
2g2(Wi)√

N

]
+

)
,

we construct the two-way tilted density as

fh(zi,wi) = f∗(zi,wi)

[
1 +

hT
1g1(zi,wi)√

ρNN
+

hT
2g2(wi)√

N

]
+

/Ch.

In Lemma A25, we proved that the two-way tilted density falls in the neighborhood in ∥·∥TV
under Assumption 5d.

∥f∗ − fh∥TV ≤M
√
∥h1∥22/ρNN + ∥h2∥22/N + o(∥h∥2/

√
ρNN). (A.64)

Thus for ∥h1∥22 + ∥h2∥22 ≤ c2 and sufficiently large ρNN (as the expected number of labels
grows asymptotically to infinity, ρNN →∞), we have∥∥∥∥f∗ − f∗ [1 + hT

1g1√
ρNN

+
hT
2g2√
N

]
+

∥∥∥∥
TV

≤ 2Mc/
√
ρNN.

We may consider the relaxed minimax problem to the 2q-dimensional least favorable model:

aMSE = lim inf
c→∞

lim inf
N→∞

sup
∥h1∥22+∥h2∥22≤c2

∫
ρNN{aT(θ̂ − θ∗)}2d

N∏
i=1

Ph(ri, zi,wi) (A.65)

where dPhTg is the tilted distribution

dPh(ri, zi,wi)

=ρN

(
f∗

[
1 +

hT
1g1√
ρNN

+
hT
2g2√
N

]
+

)
(zi,wi)/Chdνcmp(zi,wi)× δ1(ri)

+

∫
z
(1− ρN)

(
f∗

[
1 +

hT
1g1√
ρNN

+
hT
2g2√
N

]
+

)
(zi,wi)/Chdνcmp(zi,wi)× δ0(ri). (A.66)

To simplify the notation, we invoke Assumption 5d and drop the truncation at zero for√
ρNN > 2cM ,

dPh(ri, zi,wi)

=ρN

(
f∗

[
1 +

hT
1g1√
ρNN

+
hT
2g2√
N

])
(zi,wi)dνcmp(zi,wi)× δ1(ri)

+

∫
z
(1− ρN)

(
f∗

[
1 +

hT
1g1√
ρNN

+
hT
2g2√
N

])
(zi,wi)dνcmp(zi,wi)× δ0(ri). (A.67)

Notice that the tilted data distribution dPh has two components: 1) the model is restricted
to the least favorable model; 2) the neighborhood along the direction of g2 is narrowed to
c/
√
N . The representation would hold approximately with an error 2Mc/

√
ρNN without

Assumption 5d, following the approximation of total variation established in Lemma A25.
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The design of our least favorable model leads to a factorization of the tilted model

f∗(z,w)

{
1 +

hT
1g1(z,w)√
ρNN

+
hT
2g2(w)√
N

}
=f∗Z|W(z | w)

{
1 +

hT
1g1(z,w)√
ρNN

}
f∗W(w)

{
1 +

hT
2g2(w)√
N

}
+O (1/(N

√
ρN)) ,

f∗W(w) =

∫
z∈Z

f∗(z,w)dνz(z), f
∗
Z|W(z | w) = f∗(z,w)/f∗W(w).

The factorization is also reflected in the decomposition of the log-likelihood ratio. By the
definition of g1 and g2, we have the identities

E∗{g1(Z,W) |W} = E∗[ψcmp(Z,W)− E∗{ψcmp(Z,W) |W} |W] = 0,

E∗{g1(Z,W)g2(W)} = Oq×q. (A.68)

For sufficiently large n and N , we have

log

(
N∏
i=1

dPh(Ri,Zi,Wi)

dP0(Ri,Zi,Wi)

)

=

N∑
i=1

Ri log

(
1 +

hT
1g1(Zi,Wi)√

ρNN
+

hT
2g2(Wi)√

N

)

+
N∑
i=1

(1−Ri) log
(
1 +

hT
2g2(w)√
N

)

+
N∑
i=1

(1−Ri) log
(∫ {

1 +
hT
1g1(z,w)√
ρNN

}
f∗(z,Wi)dνz(z)

)

−
N∑
i=1

(1−Ri) log
(∫

f∗(z,Wi)dµ(z)

)

=(ρNN)−1/2
N∑
i=1

Rih
T
1g1(Zi,Wi) +N−1/2

N∑
i=1

hT
2g2(Wi)

+
1

2
hT
1Vψ,1h1 +

1

2
hT
2Vψ,2h2 + op(1), (A.69)

where Vψ,1 and Vψ,2 were variances of g1 and g2 defined in (A.63). This shows that the
locally asymptotically normality of the least favorable model.

Based on the local asymptotic normality of the proposed two-dimensional least favor-
able model (A.69) , we apply the standard “Le Cam” method (Le Cam and Yang, 2000;
Tsybakov, 2009) of the minimax efficiency lower bound for parametric sub-model. First,
we relax the supremum over the local neighborhood by the Bayesian posterior average over
the neighborhood according to the truncated Gaussian prior,

(hT
1,h

T
2)

T ∼ p(h, c,A) = ϕ(h,0,A)I(∥h∥2 ≤ c)∫
∥h∥2≤c ϕ(h,0,A)dh

, ϕ(v,µ,Σ) =
exp

(
−(v − µ)TΣ−1(v − µ)/2

)
(2π)−q det(Σ)−1/2

,
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lim inf
c→∞

lim inf
N→∞

sup
∥h1∥22+∥h2∥22≤c2

∫
n{aT(θ̂ − θh)}2d

N∏
i=1

Ph(ri, zi,wi)

≥ lim inf
c→∞

lim inf
N→∞

∫ ∫
n{aT(θ̂ − θh)}2d

N∏
i=1

Ph(ri, zi,wi)× p(h, c,A)dh.

Following Chapter 6 of Le Cam and Yang (2000), we concluded in Lemma A26 that the
posterior distribution h | DN with DN = {(Ri, RiZi,Wi) : i = 1, . . . , N} approaches
the Gaussian posterior with (untruncated) Gaussian prior ϕ(h,0,A) and Gaussian data
V | h → N (h,Vψ) whose variance Vψ is defined in (A.63). The limiting Gaussian data V
comes from the limits of empirical processes in the log likelihood of the LAN model Ph,

V = (VT
1,V

T
2)

T, V1 = −
N∑
i=1

Rig1(Zi,Wi)/
√
ρNN, V2 = −

N∑
i=1

g2(Wi)/
√
N.

The limiting Gaussian posterior of h = (hT
1,h

T
2)

T is thus

h | DN
TV−→ h̃ | V ∼ N

(
µ̃, Ṽ

)
, Ṽ = (A+ Vψ)−1 , µ̃ = ṼVψV. (A.70)

According to Lemma A26, the average aMSE over truncated Gaussian prior approaches the
average aMSE over Gaussian posterior and marginal,

lim inf
c→∞

lim inf
N→∞

∫ ∫
ρNN{aT(θ̂ − θh)}2d

N∏
i=1

Ph(ri, zi,wi)p(h, c,A)dh

= lim inf
c→∞

lim inf
N→∞

∫ ∫
ρNN{aT(θ̂ − θ

h̃
)}2ϕ(h̃, µ̃, Ṽ)dh̃× ϕ(v,0,Vψ + A)dv

= lim inf
c→∞

lim inf
N→∞

Ẽ
(
Ẽ
[
ρNN{aT(θ̂ − θ

h̃
)}2 | V

])
. (A.71)

The expectation Ẽ is taken according to the limiting Gaussian models V ∼ N(0,Vψ + A)
and h̃ | V ∼ N(µ̃, Ṽ) as defined in (A.70). We are using expression in (A.71) as the
ultimate characterization of the asymptotic mean squared estimation error initially defined
in (A.65).

While the efficient influence function ψcmp under complete data setting Scmp can be
characterized in multiple ways, we specifically chose the following definition connecting to
the least-favorable model (van der Vaart, 1998, Section 25.3).

Definition A18 Under local exponential-tilt sub-model,

fh(z,w) = f∗(z,w)[1 + hTg(z,w)]+/Ch, Ch = E∗ ([1 + hTg(z,w)]+) ,

the local shift of parameter θ along h observe

θh = θ∗ + E∗{ψcmp(Z,W)g(Z,W)T}h+ o(∥h∥2).

54



Sample JMLR Paper

According to Definition A18, estimating θ under our chosen local sub-model (A.61) is
asymptotically equivalent to projecting the estimated local sub-model

θh =θ∗ + E∗{ψcmp(Z,W)g1(Z,W)T} h1√
ρNN

+ E∗{ψcmp(Z,W)g2(Z,W)T} h2√
N

+ o

(
c√
ρNN

)
=θ∗ + Vψ,1

h1√
ρNN

+ Vψ,2
h2√
N

+ o

(
c√
ρNN

)
,

=θ∗ +
1√
ρNN

{Vψ,1h1 +
√
ρNVψ,2h2 + o (c)} ,

θ̂ =θ∗ +
1√
ρNN

{
Vψ,1ĥ1 +

√
ρNVψ,2ĥ2 + o (c)

}
.

The variances Vψ,1 and Vψ,2 of g1 and g2 above have been defined in (A.63). The asymptotic

mean squared estimation error of θ̂ can be derived from that of ĥ,

Ẽ
[
ρNN{aT(θ̂ − θh)}2 | V

]
=Ẽ

[{
aT(Vψ,1,

√
ρNVψ,2)(ĥ− h)

}2
| V
]
+ o(c2)

=aT(Vψ,1,
√
ρNVψ,2)Ẽ

{
(ĥ− h)(ĥ− h)T | V

}
(Vψ,1,

√
ρNVψ,2)Ta+ o(c2). (A.72)

Conditioning on V1,V2, the asymptotically optimal ĥ is given by the conditional mean
ĥ = Ẽ(h | V1,V2) according to the Andersen’s Lemma

uTẼ
{
(ĥ− h)(ĥ− h)T | V

}
u = Ẽ

[
{uT(ĥ− h)}2 | V

]
≥ uTṼu, (A.73)

where Ṽ is the posterior variance of h | V defined in (A.70). Applying (A.73) and (A.72)
to the characterization of asymptotic mean squared estimation error (A.71), we have estab-
lished the lower bound

aMSE ≥ lim inf
c→∞

lim inf
N→∞

Ẽ
{
aT(Vψ,1,

√
ρNVψ,2)Ṽ(Vψ,1,

√
ρNVψ,2)Ta+ o(c2)

}
≥aT(Vψ,1,

√
ρNVψ,2) {A+ Vψ}−1

(
Vψ,1√
ρNVψ,2

)
a. (A.74)

The lower bound (A.74) holds for any prior of h with arbitrary positive definite A, so the
limit of lower bound when A→ O is still a lower bound,

aMSE ≥ lim inf
∥A∥2→0

aT(Vψ,1,
√
ρNVψ,2) {A+ Vψ}−1

(
Vψ,1√
ρNVψ

)
a

≥aT(Vψ,1,
√
ρNVψ,2)

(
V−1
ψ,1, O
O, V−1

ψ,2

)(
Vψ,1√
ρNVψ,2

)
a

=aT(Vψ,1 + ρNVψ,2)a.

The lower bound is proportional to the variance of proposed SMMAL influence function

ψSSL(R,RZ,W) = Rg1(Z,W)/ρN + g2(W), Var{√ρNψSSL(R,RZ,W)} = Vψ,1 + ρNVψ,2.

The Assumption 5b is only needed in the end to show that the variance ρNVar∗{ψSSL(R,Z,W)}
is not degenerating when ρN → 0.
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Appendix D. Auxiliary Lemmas

Lemma A19 Let h1(Y,A,W) and h2(Y,A,W) be two uniformly bounded measurable func-
tions. We have the concentration

1

N

N∑
i=1

h1(Yi, Ai,Wi) +
Ri
ρN

h2(Yi, Ai,Wi)− E{h1(Y,A,W) + h2(Y,A,W)} = Op

(
n−1/2

)
.

Proof [Proof of Lemma A19]

First establish the rate for
√
ρN
N

∑N
i=1(Ri/ρN − 1). By the variance expression

Var{√ρN(Ri/ρN − 1)} = 1− ρN,

we may apply the Tchebychev’s inequality to obtain

√
ρN

N

N∑
i=1

(Ri/ρN − 1) = Op

(
N−1/2

)
.

Thus, we have two consequences∑N
i=1Ri
ρNN

− 1 = Op

(
(ρNN)−1/2

)
= Op

(
n−1/2

)
,(

N∑
i=1

Ri

)−1/2

=
{
n+Op

(√
n
)}−1/2

= Op

(
n−1/2

)
. (A.75)

Now, we decompose the empirical process of interest

1

N

N∑
i=1

h1(Yi, Ai,Wi) +
Ri
ρN

h2(Yi, Ai,Wi)− E{h1(Y,A,W) + h2(Y,A,W)}

=
1

N

N∑
i=1

[h1(Yi, Ai,Wi)− E{h1(Y,A,W)}]

+

∑
i:Ri=1 h2(Yi, Ai,Wi)− E{h2(Y,A,W)}∑N

i=1Ri

∑N
i=1Ri
ρNN

. (A.76)

Conditionally on R1, . . . , RN , we apply the Hoeffding’s inequality,

1

N

N∑
i=1

[h1(Yi, Ai,Wi)− E{h1(Y,A,W)}] = Op

(
N−1/2

)
,

∑
i:Ri=1 h2(Yi, Ai,Wi)− E{h2(Y,A,W)}∑N

i=1Ri
= Op

( N∑
i=1

Ri

)−1/2
 . (A.77)

Applying the rates of (A.75) and (A.77) to (A.76), we have shown

1

N

N∑
i=1

h1(Yi, Ai,Wi) +
Ri
ρN

h2(Yi, Ai,Wi)− E{h1(Y,A,W) + h2(Y,A,W)}
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=Op

(
N−1/2

)
+Op

( N∑
i=1

Ri

)−1/2
{1 +Op

(
n−1/2

)}
=Op

(
n−1/2

)
.

Lemma A20 Let X be sub-Gaussian random vector satisfying sup∥v∥2=1 ∥vTX∥ψ2 ≤ M
, g(x) be a continuously differentiable link function and τ(x) = sign(x)min{2M, |x|} be a
truncation at 2M . For coefficient β̄ satisfying |XTβ̄| ≤M almost surely, we have the mean
squared error bound √

E[{g(XTβ̄)− g(XTβ)}2] ≤
√
2/4M∥β̄ − β∥2,√

E[{g(XTβ̄)− gτ(XTβ)}2] ≤
√
2/4M∥β̄ − β∥2.

Proof [Proof of Lemma A20] We focus on the case with truncation. The case without
truncation can be derived from the same steps. By the Mean Value Theorem, we have

g(XTβ̄)− gτ(XTβ) = ġ(t){XTβ̄ − τ(XTβ)}

for some t between XTβ̄ and τ(XTβ). The link function for logistic regression has bounded
derivative |ġ(t)| ≤ 1/4. The truncation at 2M never increases estimation error

|XTβ̄ − τ(XTβ)|
{

= |XTβ̄ −XTβ|, |XTβ| ≤ 2M
< |XTβ̄ −XTβ|, |XTβ| > 2M

.

Thus, we have √
E[{g(XTβ̄)− gτ(XTβ)}2] ≤ 1/4

√
E[{XT(β̄ − β)}2].

Applying the sub-Gaussian property of X, we have

∥XT(β̄ − β)∥ψ2 ≤M∥β̄ − β∥2.

Using the bound of moments for sub-Gaussian random variables, we have

E[{XT(β̄ − β)}2] ≤ 2M2∥β̄ − β∥22.

Putting everything together, we have the conclusion√
E[{g(XTβ̄)− gτ(XTβ)}2] ≤

√
2/4M∥β̄ − β∥2.
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D1 Lasso with Cross-fitted Parameters

We establish the estimation rates for a generic problems. There are two estimation rates
in Lemma A21. In the general case, the asymptotic solution can not be identified by the
population level first order condition due to a bias from the cross-fitted parameters. The
general case applies to the Lasso of a mis-specified model with cross-fitted parameters. In
the special case, the asymptotic solution can be identified by the population level first order
condition. The special case applies to the Lasso with no cross-fitted parameters or the Lasso
of a correctly specified model which might include cross-fitted parameters.

Consider the cross-fitted Lasso estimator with folds {1, . . . , n} = ⊔Kk=1Ik,

β̂ = argmin
β∈Rp

1

K

K∑
k=1

ℓk(β; γ̂
(k)) + λ∥β∥1 (A.78)

whose loss has derivatives with respect to β of the following forms:

ℓ̇k(β;γ) =
K

n

∑
i∈Ik

w1(γ
TXi)w2(β

TXi)Xi{Yi − g(βTXi)},

l̈k(β;γ) =
K

n

∑
i∈Ik

w1(γ
TXi)w3(β

TXi)XiX
T
i (A.79)

for nonnegative weights w1, w2 and w3. The solution is identified by the population mini-
mum at a specific γ̄,

β̄ = argmin
β∈Rp

E{ℓk(β; γ̄)}, ∥β̄∥0 = s. (A.80)

We make the following generic assumptions:

Assumption 6 (a) (Sub-Gaussian and bounded Covariates) sup∥v∥2=1 ∥vTX∥ψ2 ≤ M
and ∥X∥∞ ≤M almost surely;

(b) (Bounded responses) |Y | ≤M almost surely and ∥g∥∞ ≤M ;

(c) (Identifiability) inf∥v∥2=1 v
TE(XXT)v ≥ 1/M ;

(d) (Bounds for weights) w1(x) ∈ [1/M,M ] ∀x ∈ R, ∥w′
1∥∞ ≤ M , w2(β̄

T
X) ∈ [1/M,M ]

and w3(β̄
T
X) ∈ [1/M,M ] almost surely;

(e) (Restricted strong convexity) w3 is the derivative of some generalized linear model link

satisfying ∥w3∥∞ ≤M or E
[
sup|u|<1{w3(β̄

T
X+ u)}α

]
≤M for some α ≥ 2.

Assumption 6 covers all the estimators in (9)-(12) under Assumption 4. The truncations
in (12) secure the requirement for w1 in Assumption 6d. Two w3 needed for (9)-(12)
correspond to the link of logistic regression g(x) and Poisson model ex, both have been
studied in Negahban et al. (2010).

Lemma A21 Choose the penalty λ ≍
√

log(p)/n such that

λ ≥ 3

K

K∑
k=1

∥∥∥ℓ̇k(β̄; γ̂(k))− Ei∈Ik{ℓ̇k(β̄; γ̂
(k)) | Dk}

∥∥∥
∞

+ 3κ1κ2/M
√

log(p)/n (A.81)
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with large probability for a restricted strong convexity (Negahban et al., 2012) constants κ1
and κ2 associated with the auxiliary loss

ℓ̃k(β) =
K

n

∑
i∈Ik

G̃(βTXi)− ỸiβTXi, G̃
′′ = w3.

Under Assumption 6, we have

In general: ∥β̂ − β̄∥2 = Op

(√
s log(p)/n

)
+ sup
k=1,...,K

∥γ̂(k) − γ̄∥2,

Special case: Ei∈Ik{ℓ̇k(β̄; γ̂
(k)) | Dk} = 0, k = 1, . . . ,K, ∥β̂ − β̄∥2 = Op

(√
s log(p)/n

)
.

Proof [Proof of Lemma A21] We focus on the proof of the “in general” case. The proof of the

“special case” is simpler and can be made by dropping the steps regarding Ei∈Ik{ℓ̇
(k)
(β̄; γ̂(k)) |

Dk} from proof of the “in general” case. The proof of the “in general” case takes three steps.
First, we justify that the oracle choice yields λ ≍

√
log(p)/n. Second, we obtain a prelim-

inary bound for the estimation error ∥β̂ − β̄∥2 through the restricted strong convexity
argument. Third and finally, we analyze the preliminary bound in two situations: 1) the
error inherited from γ̂(k) is dominant, which leads to an immediate bound for ∥γ̂(k) − γ̄∥2;
2) the error from Lasso is dominant, which leads to the typical cone property analysis for
Lasso.

We first validate the rate for oracle λ. Under Assumptions 6a, 6b and 6d, the summands
in ℓ̇k(β̄; γ̂

(k)) have bounded infinity norm

∥w1(γ
TXi)w2(β

TXi)Xi{Yi − g(βTXi)}∥∞ ≤ 2M4.

By the union bound of the element wise Hoeffding inequality, we have∥∥∥ℓ̇k(β̄; γ̂(k))− Ei∈Ik{ℓ̇k(β̄; γ̂
(k)) | Dk}

∥∥∥
∞

= Op

(√
log(p)/n

)
.

Thus, we may choose λ ≍
√
log(p)/n to satisfy (A.81) with large probability.

By the definition of β̂, we have

1

K

K∑
k=1

ℓk(β̂; γ̂
(k)) + λ∥β̂∥1 ≤

1

K

K∑
k=1

ℓk(β̄; γ̂
(k)) + λ∥β̄∥1. (A.82)

Denote the standardized estimation error as δ = (β̂− β̄)/∥β̂− β̄∥2. The Hessian of the loss
in (A.79) is positive semi-definite under Assumptions 6d,

vT 1

K

K∑
k=1

l̈k(β; γ̂
(k))v =

1

K

K∑
k=1

w1(γ
TXi)w3(β

TXi)(v
TXi)

2 ≥ 0, (A.83)

indicating that the loss is convex. Using the convexity of the loss function, we have for the
truncated L2-estimation error t = min{∥β̂ − β̄∥2, 1}

1

K

K∑
k=1

ℓk(β̄ + tδ; γ̂(k)) + λ∥β̄ + tδ∥1 ≤
1

K

K∑
k=1

ℓk(γ̄; γ̂
(k)) + λ∥β̄∥1. (A.84)
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By the triangle inequality ∥β̄∥1 − ∥β̄ + tδ∥1 ≤ t∥δ∥1, we have from (A.84)

1

K

K∑
k=1

ℓk(β̄ + tδ; γ̂(k))− ℓk(β̄; γ̂(k)) ≤ tλγ∥δ∥1 (A.85)

Now, we establish the restricted strong convexity property for each ℓk(·; γ̂(k)). By Assump-
tion 6e, we may a hypothetical generalized linear model loss for Ỹi ∼ G̃′(β̄

T
Xi)

ℓ̃k(β) =
K

n

∑
i∈Ik

G̃(βTXi)− ỸiβTXi, G̃
′′ = w3. (A.86)

The restricted strong convexity of (A.86) is established by analyzing the lower bound for

ℓ̃k(β̄ +∆)− ℓ̃k(β̄)−∆T ˙̃ℓ(β̄) =
K

n

∑
i∈Ik

w3(β̄
T
Xi + ν∆TXi)(∆

TXi)
2 (A.87)

uniformly for ∥∆∥2 ≤ 1 and ν ∈ [0, 1] (Negahban et al., 2010, Proof of Proposition 2).
Under Assumptions 6a and 6e, the lower bound is given by

K

n

∑
i∈Ik

w3(β̄
T
Xi + ν∆TXi)(∆

TXi)
2 ≥ κ1∥∆∥2

{
∥∆∥2 − κ2

√
log(p)/n∥∆∥1

}
(A.88)

for all ∥∆∥2 ≤ 1 and ν ∈ [0, 1] with absolute constants κ1 and κ2. Under Assumption 6d,
the restricted strong convexity for ℓk(·; γ̂(k)) can be also established by analyzing the same
quantity in (A.87)

ℓk(β̄ +∆; γ̂(k))− ℓk(β̄; γ̂(k))−∆Tℓ̇(β̄; γ̂(k)) =
K

n

∑
i∈Ik

w1(X
T
i γ̂

(k))w3(β̄
T
Xi + ν∆TXi)(∆

TXi)
2

≥K
n

∑
i∈Ik

M−1w3(β̄
T
Xi + ν∆TXi)(∆

TXi)
2

(A.89)

Applying the lower bound in (A.88) to (A.89) at ∆ = tδ, we obtain

ℓk(β̄ + tδ; γ̂(k))− ℓk(β̄; γ̂(k))− tδTℓ̇(β̄; γ̂(k)) ≥ t2κ1/M − t2κ1κ2/M
√

log(p)/n∥δ∥1. (A.90)

Combining (A.85) and (A.90), we obtain

tκ1/M ≤ λ∥δ∥1 −
1

K

K∑
k=1

δTℓ̇k(β̄; γ̂
(k)) + tκ1κ2/M

√
log(p)/n∥δ∥1. (A.91)

We decompose 1
K

∑K
k=1 δ

Tℓ̇k(β̄; γ̂
(k))∣∣∣∣∣ 1K

K∑
k=1

δTℓ̇k(β̄; γ̂
(k))

∣∣∣∣∣ =
∣∣∣∣∣δT

K

K∑
k=1

ℓ̇k(β̄; γ̂
(k))− Ei∈Ik

[
ℓ̇k(β̄; γ̂

(k)) | Dc
k

]
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+
δT

K

K∑
k=1

Ei∈Ik
[
ℓ̇k(β̄; γ̂

(k)) | Dc
k

]∣∣∣∣∣
≤∥δ∥1

∥∥∥∥∥∥KN
∑
i∈Ik

ℓ̇k(β̄; γ̂
(k))− Ei∈Ik

[
ℓ̇k(β̄; γ̂

(k)) | Dc
k

]∥∥∥∥∥∥
∞

+ sup
k=1,...,K

∥∥∥Ei∈Ik [ℓ̇k(β̄; γ̂(k)) | Dc
k

]∥∥∥
2
. (A.92)

For “special case”, the second term in (A.92) is zero, so the proofs up to Case 2 following
(A.99) can be skipped. Using the first order condition of optimality for β̄, we have

E
[
ℓ̇k(β̄; γ̄)

]
= 0,

so we can bound the second term in (A.92) for “in general” by∥∥∥Ei∈Ik [ℓ̇k(β̄; γ̂(k)) | Dc
k

]∥∥∥
2

=
∥∥∥Ei∈Ik [ℓ̇k(β̄; γ̂(k))− ℓ̇k(β̄; γ̄) | Dc

k

]∥∥∥
2

=
∥∥∥Ei∈Ik [{w1(X

T
i γ̂

(k))− w1(X
T
i γ̄)}w2(β̄

T
Xi){g(β̄

T
Xi)− Yi} | Dc

k]
∥∥∥
2
. (A.93)

Using the Lipschitz condition for w1 from Assumption 6d and other bounds from Assump-
tions 6b and 6d, we may bound (A.93) by∥∥∥Ei∈Ik [{w1(X

T
i γ̂

(k))− w1(X
T
i γ̄)}w2(β̄

T
Xi){g(β̄

T
Xi)− Yi} | Dc

k]
∥∥∥
2

≤2M3Ei∈Ik{|X
T
i (γ̂

(k) − γ̄)| | Dc
k} (A.94)

Applying the sub-Gaussian property in Assumption 6a, we have

Ei∈Ik{|X
T
i (γ̂

(k) − γ̄)| | Dc
k} ≤

√
π∥XT

i (γ̂
(k) − γ̄)∥ψ2 ≤

√
πM∥γ̂(k) − γ̄∥2. (A.95)

Collecting (A.92)-(A.95), we obtain∣∣∣∣∣ 1K
K∑
k=1

δTℓ̇k(β̄; γ̂
(k))

∣∣∣∣∣ ≤∥δ∥1
∥∥∥∥∥∥KN

∑
i∈Ik

ℓ̇k(β̄; γ̂
(k))− Ei∈Ik

[
ℓ̇k(β̄; γ̂

(k)) | Dc
k

]∥∥∥∥∥∥
∞

+ 2
√
πM4∥γ̂(k) − γ̄∥2. (A.96)

Applying (A.96) and the definition of λ to (A.91), we get the preliminary estimation bound

tκ1/M ≤ 4/3λ∥δ∥1 + 2
√
πM4 sup

k=1,...,K
∥γ̂(k) − γ̄∥2. (A.97)

Then, we separately analyze two cases.
Case 1:

2
√
πM4 sup

k=1,...,K
∥γ̂(k) − γ̄∥2 ≥ λ∥δ∥1/3.
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In this case, the estimation error is dominated by γ̂(k) − γ̄. We simply have from (A.97)

tκ1/M ≤ 10
√
πM4 sup

k=1,...,K
∥γ̂(k) − γ̄∥2.

Thus, we have

∥β̂ − β̄∥2 ≤ 10
√
πM5/κ1 sup

k=1,...,K
∥γ̂(k) − γ̄∥2. (A.98)

Case 2:
2
√
πM4 sup

k=1,...,K
∥γ̂(k) − γ̄∥2 ≤ λ∥δ∥1/3. (A.99)

In this case, the estimation error is comparable to the situation that we have the asymptotic
weights w1(γ̄

TXi). Thus, the sparsity of β̄ may affect the estimation error.
Following the typical approach to establish the cone condition for δ, we analyze the

symmetrized Bregman’s divergence,

(β̂ − β̄)T 1

K

K∑
k=1

{ℓ̇k(β̂; γ̂(k))− ℓ̇k(β̄; γ̂(k))} = ∥β̂ − β̄∥2δT 1

K

K∑
k=1

{ℓ̇k(β̂; γ̂(k))− ℓ̇k(β̄; γ̂(k))}.

(A.100)
Due to the convexity of the quadratic loss ℓ(γ) from (A.83), the symmetrized Bregman’s
divergence (A.100) is nonnegative. Denote the indices set of nonzero coefficient in β̄ as
O = {j : β̄j ̸= 0}. We denote the δO and δOc as the sub-vectors for δ at positions in O and

at positions not in O, respectively. The solution β̂ satisfies the KKT condition∥∥∥∥∥ 1

K

K∑
k=1

ℓ̇k(β̂; γ̂
(k))

∥∥∥∥∥
∞

≤ λ, 1

K

K∑
k=1

ℓ̇k(β̂; γ̂
(k))j = −λ sign(β̂j), j : β̂j ̸= 0.

From the KKT condition and the definitions of δ and O, we have

δj
1

K

K∑
k=1

ℓ̇k(β̂; γ̂
(k))j ≤ |δj |λ, j ∈ O; δj

1

K

K∑
k=1

ℓ̇k(β̂; γ̂
(k))j =

−β̂jλ sign(β̂j)
∥β̂ − β̄∥2

= −λ|δj |, j ∈ Oc.

(A.101)
Applying the (A.101) to (A.100), we have the upper bound,

δT 1

K

K∑
k=1

{ℓ̇k(β̂; γ̂(k))− ℓ̇k(β̄; γ̂(k))}

=
∑
j∈O

δj
1

K

K∑
k=1

ℓ̇k(β̂; γ̂
(k))j +

∑
j∈Oc

δj
1

K

K∑
k=1

ℓ̇k(β̂; γ̂
(k))j − δT

K∑
k=1

ℓ̇k(β̄; γ̂
(k))

≤λ
∑
j∈O
|δj | − λ

∑
j∈Oc

|δj |+

∣∣∣∣∣δT

K∑
k=1

ℓ̇k(β̄; γ̂
(k))

∣∣∣∣∣ .
Then, we apply (A.96), the definition of λ and (A.99),

0 ≤ λ∥δO∥1 − λ∥δOc∥1 +
2

3
λ∥δ∥1.
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Therefore, we can bound the L1 norm of δ by the cone property,

∥δ∥1 ≤ 6λ∥δO∥1 ≤ 6
√
s∥δ∥2 = 6

√
s. (A.102)

Applying (A.99) and (A.102) to (A.97), we have the other bound for the estimation error

tκ1/M ≤ 5/3λ∥δ∥1 ≤ 10M
√
sλ, ∥β̂ − β̄∥2 ≤ 10M2/κ1

√
sλ. (A.103)

The “special case” estimation error is directly given by (A.103)

∥β̂ − β̄∥2 = Op

(√
s log(p)/n

)
.

For “in general”, we combine the bounds from the two cases (A.98) and (A.103),

∥β̂ − β̄∥2 ≤max

{
10
√
πM5/κ1 sup

k=1,...,K
∥γ̂(k) − γ̄∥2, 10M2/κ1

√
sλ

}

=Op

(√
s log(p)/n+ sup

k=1,...,K
∥γ̂(k) − γ̄∥2

)
.

Appendix E. Additional Technical Details

E1 Definitions

Definition A22 (Hölder class) A function f(x) defined over [−M,M ]d is Hölder class
s if

sup
x1,x2∈[−M,M ]d

sup
a1,...,ad∈N

a1+···+ad=[s]

∣∣∣∣∣ ∂[s]

∂xa11 . . . xadd
{f(x1)− f(x2)}

∣∣∣∣∣ ∥x1 − x2∥[s−1]−s
2 <∞.

We note the maximal Hölder class as H(f) = sup{s : f is Hölder class s}.

We adopt the following definition of sub-Gaussian and sub-exponential random variables.

Definition A23 (Sub-Gaussian and Sub-Exponential Random Variables) The sub-
Gaussian parameter for a random variable V is defined as

∥V ∥ψ2 = inf
{
σ > 0 : E(eV

2/σ2
) ≤ 2

}
.

The random variable V is sub-Gaussian if ∥V ∥ψ2 is finite. The sub-Gaussian parameter for
a random vector U is defined as

∥U∥ψ2 = sup
∥v∥2=1

∥vTU∥ψ2 .

The sub-Gaussian parameter for a random variable V is defined as

∥V ∥ψ1 = inf
{
ν > 0 : E(e|V |/ν) ≤ 2

}
.

The random variable V is sub-exponential if ∥V ∥ψ1 is finite.
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E2 Geometry of model tangent space

The nonparametric model for observed data is thus

Mobs =
{
fX,A,Y,S,R(x, a, t, s, r) = fX(x)[π(a,x)afY |A,X(y|a,x)

× fS|Y,A,X(s|y, a,x)m(x)]r
(
fS|X(s|x){1−m(x)}

)1−r
:

fX, π, fY |A,X, fS|Y,A,X,m are arbitrary pdfs/pmfs
}
. (A.104)

We consider the parametric sub-model indexed by parameter γ

Mpar =
{
fX,A,Y,S,R(x, a, t, s, r;γ) = fX(x;γ)[π(a,x;γ)fY |A,X(y|a,x;γ)

× fS|Y,A,X(s|y, a,x;γ)m∗(x)]r

×
[
fS|X(s|x;γ){1−m∗(x)}

]1−r
: γ ∈ Γ

}
,

(A.105)

fS|X(s|x;γ) =
∑
a∈N

∫
y∈R

π(a,x;γ)fY |A,X(y|a,x;γ)fS|Y,A,X(s|y, a,x;γ)dy. (A.106)

where γ = γ∗ indicates the true parameter.
Utilizing the identity

∂ log{fS|X(S|X;γ)}
∂γ

∣∣∣∣
γ=γ∗

=
∑
a∈N

∫
y∈R

∂

∂γ
π(a,X;γ)

∣∣∣∣
γ=γ∗

fY |A,X(y|a,X;γ∗)fS|Y,A,X(S|y, a,X;γ∗)

fS|X(X|X;γ∗)
dy

∑
a∈N

∫
y∈R

∂

∂γ
fY |A,X(y|a,X;γ)

∣∣∣∣
γ=γ∗

π(a,X;γ∗)fS|Y,A,X(S|y, a,X;γ∗)

fS|X(X|X;γ∗)
dy

+
∑
a∈N

∫
y∈R

∂

∂γ
fS|Y,A,X(S|y, a,X;γ)

∣∣∣∣
γ=γ∗

π(a,X;γ∗)fY |A,X(y|a,X;γ∗)

fS|X(X|X;γ∗)
dy

=
∑
a∈N

∫
y∈R

∂

∂γ
[log{π(a,X;γ)}+ log{fY |A,X(y|a,X;γ)}+ log{fS|Y,A,X(S|y, a,X;γ)}]

∣∣∣∣
γ=γ∗

×
π(a,X;γ∗)fY |A,X(y|a,X;γ∗)fS|Y,A,X(S|y, a,X;γ∗)

fS|X(X|X;γ∗)
dy

=E

[
∂

∂γ
log{π(A,X;γ)}

∣∣∣∣
γ=γ∗

| S,X

]
+ E

[
∂

∂γ
log{fY |A,X(Y |A,X;γ)}

∣∣∣∣
γ=γ∗

| S,X

]

+ E

[
∂

∂γ
log{fS|Y,A,X(S|Y,A,X;γ)}

∣∣∣∣
γ=γ∗

| S,X

]
,

we express the score vector of the parametric sub-model as

Ψ(X, A,S, Y, R) =
∂ log{fX,A,Y,S,R(X, A, Y,S, R;γ)}

∂γ

∣∣∣∣
γ=γ∗
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=ΨX(X;γ∗) +ΨA(R,X;γ∗) +ΨY (R,A,X;γ∗) +ΨS(R, Y,A,X;γ∗)
(A.107)

where the components are

ΨX(X;γ∗) =
∂ log{fX(X;γ)}

∂γ

∣∣∣∣
γ=γ∗

,

ΨA(R,X;γ∗) =R
∂ log{π(A|X;γ)}

∂γ

∣∣∣∣
γ=γ∗

+ (1−R)E

[
∂ log{π(A|X;γ)}

∂γ

∣∣∣∣
γ=γ∗

| S,X

]
,

ΨY (R,A,X;γ∗) =R
∂ log{fY |A,X(Y |A,X;γ)}

∂γ

∣∣∣∣
γ=γ∗

+ (1−R)E

[
∂ log{fY |A,X(Y |A,X;γ)}

∂γ

∣∣∣∣
γ=γ∗

| S,X

]
,

ΨS(R,S, A,X;γ∗) =R
∂ log{fS|Y,A,X(S|Y,A,X;γ)}

∂γ

∣∣∣∣
γ=γ∗

+ (1−R)E

[
∂ log{fS|Y,A,X(S|Y,A,X;γ)}

∂γ

∣∣∣∣
γ=γ∗

| S,X

]
. (A.108)

Let H be the Hilbert space of mean zero finite variance random variables measurable to
σ{X, AR,S, Y R,R}. The nuisance parameter tangent space is spanned byΨ(X, A,S, Y, R),

Λ = {vTΨ(X, A,S, Y, R) :Mpar ⊂Mobs}. (A.109)

According to the decomposition (A.107), we can decompose the nuisance parameter tangent
space

Λ = ΛX + ΛA + ΛY + ΛS.

We derive ΛX, ΛA, ΛY and ΛS as

ΛX = {h(X) ∈H : E[h(X)] = 0},

ΛA =

{
Rh(A,X) + (1−R)E[h(A,X) | S,X] ∈H : E[h(A,X) | X] = 0

}
,

ΛY =

{
Rh(Y,A,X) + (1−R)E[h(Y,A,X) | S,X] ∈H : E[h(Y,A,X) | A,X] = 0

}
,

ΛS =

{
Rh(S, Y, A,X) + (1−R)E[h(S, Y, A,X) | S,X] ∈H :

E[h(S, Y, A,X) | Y,A,X] = 0

}
.

(A.110)

Under the settings of Robins et al. (1994) and Kallus and Mao (2024), the scores for
fA|X and fY |A,X belong to two linear subspaces orthogonal to each other in H , the Hilbert
space of mean zero finite variance random variables. However, the two scores under SSSL

belong to the linear subspaces ΛA and ΛY which share a correlated component from the
unlabeled data induced by the surrogates S.
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E3 B-spline Regression

Lemma A24 Under the assumptions:

1. X ∈ [0, 1]p with density fX(x) ∈ [1/M,M ], ∀x ∈ [0, 1]p;

2. q(x) ∈ Rb is the vector of tensor product B-splines of order κ with knot spacing
approximately proportional to the number of knots;

3. inf∥v∥2=1 v
TE{q(X)q(X)T}v ≥ 1/M ;

4. supx∈[0,1]p ∥q(x)∥2 ≤M
√
b;

5. |Y | ≤M ;

6. µ∗(x) = E(Y | X = x) is Hölder of order s.

Let µ̄(x) be the best linear approximation of µ∗(x) with basis q(x)

µ̄(x) = q(x)T [E{q(X)q(X)T}]−1 E{q(X)Y },

and its estimator with n samples

µ̂(x) = q(x)T

{
1

n

n∑
i=1

q(Xi)q(Xi)
T

}−1
1

n

n∑
i=1

q(Xi)Yi

The approximation error is

∥µ̄− µ∗∥2 = O(b−min{1+κ,s}/p).

The estimation error with sample n is

∥µ̄− µ̂∥2 = Op

(√
b/n
)
.

See in Newey and Robins (2018) for example.

E4 Minimax Lower Bound

Lemma A25 Denote the truncation at zero [·]+ and the normalizing constant Ch[
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

= max

{
0, 1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

}
,

Ch = E∗

([
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

]
+

)
and the two-way tilted density

fh(zi,wi) = f∗(zi,wi)

[
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

/Ch.
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If g1 and g2 has bounded variance under f∗,

sup
∥v∥2=1

E∗[{vTg1(Zi,Wi)}2] + sup
∥u∥2=1

E∗[{uTg2(Wi)}2] ≤M,

the tilted density falls in the neighborhood in ∥ · ∥TV,

∥f∗ − fh∥TV ≤M
√
∥h1∥22/n+ ∥h2∥22/N + o(∥h∥2/

√
n). (A.64)

Proof [Proof of Lemma A25] The proof extends Example 5 page 11 of Duchi (2021) to two-
way tilted sub-models for characterizing semi-supervised learning setting. First we show
that the normalizing constant approaches 1 at

Ch = 1 +O(∥h∥22/n).

By definition of Ch and mean zero assumption for g1 and g2, we have the lower bound for
Ch

Ch =E∗

([
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

]
+

)
≥E∗

(
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

)
=1 +

hT
1E∗{g1(Zi,Wi)}√

n
+

hT
2E∗{g2(Wi)}√

N

=1. (A.111)

Define the event of activated truncation

Ξi = I

{
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N
< 0

}
, (A.112)

we may alternatively represent the tilt factor as[
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

]
+

=1 +
hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N
− Ξi

{
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

}
. (A.113)

Using (A.113), we establish an upper bound of Ch

Ch =E∗

(
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

)
− E∗

(
Ξi

{
1 +

hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

})
=1 + E∗

(
Ξi

∣∣∣∣1 + hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

∣∣∣∣)
≤1 + E∗

(
Ξi

∣∣∣∣hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

∣∣∣∣2
)
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≤1 + 2E∗
(
|hT

1g1(Zi,Wi)|2/n+ |hT
2g2(Wi)|2/N

)
. (A.114)

Applying the bounded variance assumption for g1 and g2, we have the upper bound

Ch ≤1 + 2E∗
(
|hT

1g1(Zi,Wi)|2/n+ |hT
2g2(Wi)|2/N

)
≤1 + 2E∗

(
|hT

1g1(Zi,Wi)|2 + |hT
2g2(Wi)|2

)
/n

≤1 + 2M∥h∥22/n. (A.115)

Combining the lower bound (A.111) and upper bound (A.115) of Ch, we have shown

Ch = 1 +O(∥h∥22/n) = 1 + o(∥h∥2/
√
n). (A.116)

Then, we bound the distance in total variation

∥f∗ − fh∥TV =

∫
f∗(z,w)

∣∣∣∣1− [1 + hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

/Ch

∣∣∣∣ dzdw
=E∗

{∣∣∣∣1− [1 + hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

/Ch

∣∣∣∣} .
We decompose the tilted factor into 3 parts

1−
[
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

/Ch

=1− 1/Ch︸ ︷︷ ︸
T1

+

{
hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

}
/Ch︸ ︷︷ ︸

T2

+

(
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N
−
[
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

)
/Ch︸ ︷︷ ︸

T3

(A.117)

and evaluate their L1-norm separately. Applying the order of Ch established in (A.116), we
bound the L1-norm of T1

E∗{|T1|} = |1− 1/Ch| = 1 + o(∥h∥2/
√
n). (A.118)

Applying the bounded variance assumption for g1 and g2 and the rate of Ch, we bound the
L1-norm of T2

E∗{|T2|} =E∗

{∣∣∣∣hT
1g1(Zi,Wi)√

n
+

hT
2g2(Wi)√

N

∣∣∣∣} /Ch

≤
√

E∗

[
{hT

1g1(Zi,Wi)}2 /n
]
/Ch +

√
E∗

[
{hT

2g2(Wi)}2 /N
]
/Ch

≤M
√
∥h1∥22/n+ ∥h2∥22/N/Ch

=M
√
∥h1∥22/n+ ∥h2∥22/N + o(∥h∥2/

√
n). (A.119)
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For T3, we repeat the analysis of upper bound for Ch (A.114) and (A.115) through alter-
native representation (A.113) with truncation indicator Ξ defined in (A.112),

E∗{|T3|}

=E∗

(∣∣∣∣1 + hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N
−
[
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

∣∣∣∣) /Ch

=E∗

{
Ξi

∣∣∣∣1 + hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

∣∣∣∣} /Ch

≤2M∥h∥22/n
=o
(
∥h∥2/

√
n
)
. (A.120)

Combining the rates (A.118)-(A.120) and the decomposition (A.117), we have shown

∥f∗ − fh∥TV ≤ E∗(|T1|) + E∗(|T2|) + E∗(|T3|) ≤M
√
∥h1∥22/n+ ∥h2∥22/N + o(∥h∥2/

√
n).

Lemma A26 Consider the settings detailed in the proof of Theorem 13, i. e. the two-way
tilted density for Z,W | h

fh(zi,wi) = f∗(zi,wi)

[
1 +

hT
1g1(zi,wi)√

n
+

hT
2g2(wi)√

N

]
+

/Ch

with the truncated Gaussian prior for h,

(hT
1,h

T
2)

T ∼ p(h; c,A) = ϕ(h,0,A)I(∥h∥2 ≤ c)∫
∥h∥2≤c ϕ(h,0,A)dh

, ϕ(v,µ,Σ) =
exp

(
−(v − µ)TΣ−1(v − µ)/2

)
(2π)−q det(Σ)−1/2

.

Define the marginal distribution of i.i.d. data DN = {(Ri, RiZi,Wi) : i = 1, . . . , N} as

P(DN ) =

∫
h

N∏
i=1

{ρfh(Zi,Wi)}Ri

{
(1− ρ)

∫
v
fh(v,Wi)dv

}1−Ri

p(h; c,A)dh

and posterior h | DN as

Q(h | DN ) =

∏N
i=1 {ρfh(Zi,Wi)}Ri

{
(1− ρ)

∫
v fh(v,Wi)dv

}1−Ri p(h; c,A)
P(DN )

.

With finite variances of g1(Z,W) and g2(W), the posterior Q(h | DN ) is approximated by
the Gaussian posterior ϕ(h, µ̃, Ṽ),

lim
c,N→∞

∫ ∥∥∥Q(h | DN )− ϕ(h, µ̃, Ṽ)
∥∥∥

TV

P(DN )dDN = 0.
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Proof [Proof of Lemma A26] The proof extends Theorem 2 page 15 of Duchi (2021) to
two-way tilted sub-models for characterizing semi-supervised learning setting. it suffices to
analyze the difference in conditional densities. In the proof of Theorem 13, we defined the
empirical processes

V = (VT
1,V

T
2)

T, V1 = −
N∑
i=1

Rig1(Zi,Wi)/
√
n, V2 = −

N∑
i=1

g2(Wi)/
√
N → V2

characterizing the local asymptotic normality (LAN) property of the two-way tilted sub-
model. Consider the event indicator

EN,b = I
{∥∥∥V−1

ψ V
∥∥∥
2
≤ b
}
. (A.121)

With finite variances of g1(Z,W) and g2(W), we apply Le Cam and Yang (2000) Chapter
6.3 Proposition 2 to obtain

a) Event EN,b occurs with large probability: there exists sufficiently large bc,ε and Nc,ε

such that
Eh(EN,b) ≥ 1− ε, ∀∥h∥2 ≤ c,N ≥ Nc,ε, b ≥ bc,ε; (A.122)

b) Approximation of tilted model

dMh(DN ) =
N∏
i=1

{ρfh(Zi,Wi)}Ri

{
(1− ρ)

∫
v
fh(v,Wi)dv

}1−Ri

dDN

by Gaussian model

dGh(DN ) = exp

{
−1

2
(h− V−1

ψ V)TVψ(h− V−1
ψ V)

}
dM0(DN )

lim
N→∞

sup
∥h∥≤c

∫
EN,b |dMh(DN )− dGh(DN )| . (A.123)

In the following, we define a series models to link the exact posterior and its Gaussian
approximation. First, we define the model restricted to the “good set” on which E = 1 in
the model,

dM E
h (DN ) = E dMh(DN ),

dG E
h (DN ) = exp

{
−1

2
(h− V−1

ψ V)TVψ(h− V−1
ψ V)

}
dM E

0 (DN ). (A.124)

Using the newly defined notations in (A.123), we have

lim
N→∞

sup
∥h∥≤c

∥M E
h − G E

h ∥TV = 0. (A.125)

Next, we define the exact, approximate Gaussian and E -restricted joint distributions with
truncated prior and another approximate Gaussian joint distributions with (untruncated)
Gaussian prior

dJ (DN ,h) = dMh(DN )p(h; c,A)dh,
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dJ G (DN ,h) = dG E
h (DN )p(h; c,A)dh,

dJ E (DN ,h) = dM E
h (DN )p(h; c,A)dh,

dJ P(DN ,h) = dG E
h (DN )ϕ(h,0,A)dh. (A.126)

Since the truncated prior p(h; c,A) restricts h to ∥h∥2 ≤ c, we may bound the difference
between dJ G and dJ E by (A.125),

lim
N→∞

∥J G
h −J E

h ∥TV ≤ lim
N→∞

∫
∥G E

h −M E
h ∥TVp(h; c,A)dh = 0. (A.127)

Since Eh{E } ≥ 1 − ε uniformly in ∥h∥2 ≤ c, we can control the error from restricting
measure in {E = 1} for sufficiently large N ,

∥J −J E ∥TV ≤
∫
∥M E

h −M E
h ∥TVp(h; c,A)dh =

∫
(1− E )p(h; c,A)dh ≤ ε. (A.128)

As the final link, we control the error from truncation in prior

∥J G −J P∥TV =

∫
|dG E

h (DN )p(h; c,A)dh− dG E
h (DN )ϕ(h,0,A)dh|

≤
∫

sup
h
dG E

h (DN )∥ϕ(h,0,A)− p(h; c,A)∥TV

≤
∫

exp

(
1

2
VTV−1

ψ V

)
dM E

0 (DN )∥ϕ(h,0,A)− p(h; c,A)∥TV. (A.129)

Over the restricted measure M E
0 , ∥V−1

ψ V∥2 ≤ b is bounded, so

E = 1 : exp

(
1

2
VTV−1

ψ V

)
≤ exp(∥Vψ∥2b2/2) = O(1).

By choosing sufficiently large c such that∫
∥h∥2>c

ϕ(h,0,A)dh ≤ ε/{2 exp(∥Vψ∥2b2/2)},

we can control the truncation error in prior

∥ϕ(h,0,A)− p(h; c,A)∥TV ≤ ε/ exp(∥Vψ∥2b2/2).

Apply the two bounds above to (A.129), we obtain

∥J G −J P∥TV ≤ ε. (A.130)

Through (A.127), (A.128), (A.130) and (A.130), we have established the approximation
among joint measures defined in (A.126) and in particular

lim sup
N→∞

∥J −J P∥TV ≤ 2ε. (A.131)

To derive the approximation in posterior distribution from the approximation of joint dis-
tribution, we invoke the following lemma,
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Lemma A27 (Le Cam and Yang (2000) Chapter 6.4 Lemma 2 page 136) Let

Mj(dD , dθ) = νj(dD)Mj(dθ | D), j = 1, 2,

be two joint measure for (D ,θ). Then, the difference of conditional distributions in total
variation is controlled by the difference of joint distributions in total variation∫
∥M1(dθ | D)−M2(dθ | D)∥

TV
|ν1(dD) + ν2(dD)| ≤ 4∥M1(dD , dθ)−M2(dD , dθ)∥TV.

Notice that the joint measure J P has (untruncated) Gaussian prior and approximated
Gaussian model, we can explicitly derive its posterior

dJ P = ϕ(h, µ̃, Ṽ)dhϕ(V,0,Vε + A)dM0(DN ).

Applying Lemma A27 with (A.131), we have proven

lim
N→∞

∫ ∥∥∥Q(h | DN )− ϕ(h, µ̃, Ṽ)
∥∥∥

TV

P(DN )dDN

≤ lim
N→∞

∫ ∥∥∥Q(h | DN )− ϕ(h, µ̃, Ṽ)
∥∥∥

TV

|P(DN )dDN + ϕ(V,0,Vε + A)dM0(DN )|

≤ lim
N→∞

4∥J −J P∥TV

≤2ε.

Setting c→∞ thus ε→ 0 yields

lim
c→∞

lim
N→∞

∫ ∥∥∥Q(h | DN )− ϕ(h, µ̃, Ṽ)
∥∥∥

TV

P(DN )dDN = 0.

We have proven that the asymptotic posterior follows the Gaussian distribution N(µ̃, Ṽ).
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