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Abstract

We consider the problem of maximizing the variance explained from a data matrix using
orthogonal sparse principal components that have a support of fixed cardinality. While
most existing methods focus on building principal components (PCs) iteratively through
deflation, we propose GeoSPCA, a novel algorithm to build all PCs at once while satisfying
the orthogonality constraints which brings substantial benefits over deflation. This novel
approach is based on the left eigenvalues of the covariance matrix which helps circumvent
the non-convexity of the problem by approximating the optimal solution using a binary
linear optimization problem that can find the optimal solution. The resulting approxima-
tion can be used to tackle different versions of the sparse PCA problem including the case
in which the principal components share the same support or have disjoint supports and
the Structured Sparse PCA problem. We also propose optimality bounds and illustrate the
benefits of GeoSPCA in selected real world problems both in terms of explained variance,
sparsity and tractability. Improvements vs. the greedy algorithm, which is often at par
with state-of-the-art techniques, reaches up to 24% in terms of variance while solving real
world problems with 10,000s of variables and support cardinality of 100s in minutes. We
also apply GeoSPCA in a face recognition problem yielding more than 10% improvement
vs. other PCA based technique such as structured sparse PCA.

Keywords: Linear Integer Optimization, PCA, Sparse PCA

1. Introduction

PCA (Pearson, 1901) is a popular data analysis technique. It is used in a variety of appli-
cations including finance, data imputation, image processing and genome analysis. PCA is
of particular interest when the data matrix data X ∈ Rn×p has a high dimension p. Yet,
models resulting from PCA use all the features while sparsity of the PCs can be desired for
various benefits. Sparse versions of PCA that use a reduced number of variables to build
principal components were proposed to improve interpretability, enhance model’s predic-
tive power or reduce operational costs (such as in finance) and investment costs (such as
in spectroscopy). Solving the sparse PCA problem is particularly challenging due to the
non-convexity of the problem.
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1.1 Background

The optimization community has been studying several versions of sparse PCA problem
for decades now. Most of the methods proposed fall into two broad categories. One of
the categories aims at approximating the whole covariance matrix using sparse principal
components; the loss function is typically of the form ||X − Z|| where X ∈ Rn×p is the
covariance matrix and Z is constructed using problem variables. In this category, spar-
sity is generated using thresholding and/or regularization either directly in the objective
function or in the constraints. Thresholding has been used as early as in (Jeffers, 1967).
Limits of thresholding have also been documented (Cadima and Jolliffe, 1995), in particular
key variables could be zeroed and highly correlated variables chosen together which ulti-
mately could lead to inaccurate interpretations. The first algorithm to use `1 penalization
is SCOTLASS (Jolliffe et al., 2003). It was introduced then as a method for preserving
the orthogonality constraints while sparsity was induced by `1 constraints but, using this
technique, the number of features used in the resulting sparse model is capped by n and
the method is not tractable for p ≥ 100. Larger problems could be then tackled by the
introduction of the LASSO method to generate PCs by adopting an `1 penalized regression
approach in the generation of the PCs (Zou et al., 2006) which, on one hand, allowed the
number of variables used in the model to exceed n but, on the other hand, sacrificed the
orthogonality of the PCs and provided no guarantee on the optimality of the solution. (Shen
and Huang, 2008; Witten et al., 2009) introduced iterative thresholding methods to tackle
the sparse PCA problem building PCs iteratively. Other breakthroughs were achieved and
successfully implemented including the GPower method using `1 penalty which preserves
orthogonality (Journee et al., 2010), scales for p in 10,000s and n in 1,000s and outperforms
LASSO-based regression approach and greedy algorithm in terms of quality of solution and
computation speed. Subsequent works using penalization to induce sparsity adopting opti-
mization over Stiefel manifolds (Huang and Wei, 2019; Tan et al., 2021; Chen et al., 2020)
and the Procrustes reformulation (Benidis et al., 2016) showed that solution quality and
computation time could be further improved considering the same size of problems while
preserving orthogonality. The state of the art in this category of works can then handle
large instances in competitive time, delivers orthogonality of the PCs and can furthermore
be adapted to variations of the sparse PCA problem including the structured sparse PCA
(Jenatton et al., 2009; Li et al., 2017). Yet, the community is still making sizeable efforts to
improve the variance captured. Indeed, most of these approaches come with no guarantee
of the optimality of the solution and the control of the number of variables cannot be chosen
with precision. Recent efforts in (Erichson et al., 2020) introduce `0 penalization while keep-
ing a loss function of the form ||X−Z|| which could theoretically achieve sparser principal
components and achieve a tighter control over the number of nonzero variables (numerical
tests in this paper focusing essentially on `1 penalization). The number of variables used
in the first category of works is often too high to enable interpretability or to be practical
in several intended uses of sparse PCA.

The second category of approaches aims at having a strict control on the number of
variables used. For a given number k of variables, the objective sought is to maximize
the variance captured using one or several principal components that have a support of
cardinal k. Rather than generating sparsity through penalization, this family of approaches
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aims at finding optimal or near optimal solutions for a defined number of features to be
used. Initial work involved a greedy strategy as well as a branch-and-bound approach
(Moghaddam et al., 2006). Optimal solutions were sought through semidefinite optimization
modeling (SDO) (d’Aspremont et al., 2004). Further developments of this technique enabled
tackling relatively big problems with optimality certificates (d’Aspremont et al., 2008).
GPower technique was also adapted to propose a truncation approach in (Yuan and Zhang,
2013). Later, a novel technique that performs particularly well when the the decay of
eigenvalue of the data matrix X was proposed (Papailiopoulos et al., 2013). Although each
sparse PC constructed is optimal, the set of PCs are constructed iteratively using deflation
techniques of the data matrix, thus there is no guarantee of the overall optimality and
orthogonality is sacrificed. Another track of work develops branch-and-bound approaches
to construct optimal solutions while controlling k. This enabled solving problems for p in
the 1,000s and k ≤ 10 but the PCs are then constructed by iteratively deflating X (Berk
and Bertsimas, 2019). More recent work combines branch-and-bound and SDO formulation
to solve problems with p in 10,000s and k ≤ 10 to near optimality in hours (Bertsimas
et al., 2022; Li and Xie, 2020). Since the PCs are obtained by deflating X, orthogonality is
sacrificed. One variation of the sparse PCA tackled by this category of approaches includes
additional constraints aiming at building sparse PCs with disjoint supports (Asteris et al.,
2015). More recently, (Del Pia, 2022) proves that finding orthogonal principal components
sharing the same support and maximizing the variance captured is a polynomial problem
when the rank of the covariance matrix is fixed. The result is further extended to a special
case of the disjoint supports sparse PCA problem when the cardinality of the disjoint
supports is identical. This paper is theoretical and does not provide any numerical results
so there is no indication regarding how the suggested approach would perform from a
practical point of view. (Dey et al., 2022) also recently proposed the first algorithm that
builds simultaneously orthogonal sparse principal components sharing the same support
while upper-bounding the number of nonzero rows. The methods tackles problems for p
as high as 2000 in less than two hours and upper and lower bounds are provided for the
optimal solution.

The two broad categories of approaches presented do not span all of the approaches that
the machine learning community designed. Indeed, remarkable approaches aimed for in-
stance at approximating the subspace generated by the principal components of the classic
PCA algorithm were developed. (Johnstone and Lu, 2009) focuses on the principal com-
ponents that correspond to the largest eigenvalues of the covariance matrix and generates
sparsity through thresholding. (Ma, 2013) further improves the results achieved by this
approach by proposing a novel iterative thresholding technique achieving tighter loss than
comparable techniques.

1.2 Motivations and Contributions

As mentioned in the background section, one of the main approaches to construct sparse
principal components that the machine learning community adopted is to add a constraint
upper-bounding the number of nonzero variables. This approach is particularly relevant
when the desired number of nonzero variables is low compared to the dimension p of the
data points. When upper-bounding the number of nonzero variables by an integer k when
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k is significantly lower, the maximization of the variance captured is more relevant than
the minimization of the error ||X − Z|| where X ∈ Rn×p is the data matrix and Z is the
constructed sparse matrix as the error ||X−Z|| is too large. Considering this approach, the
machine learning community focused on constructing the PCs iteratively which does not
guarantee the optimality of the overall solution (and actually yields sub-optimal solutions).
Only very recent works (Del Pia, 2022; Dey et al., 2022) tackle the problem of building
multiple orthogonal principal components at once to guarantee optimality when PCs share
a common support (Del Pia, 2022; Dey et al., 2022) or when PCs have disjoint supports
(Del Pia, 2022). Our main motivation is to bring a new method that upper-bounds the
number of nonzero variables, builds multiple orthogonal principal components at once and
scales further than existing methods when PCs share the same support or have block-disjoint
supports. Furthermore, we also aim at providing guarantees on the quality of the solution
found.

In the present paper, we propose a novel approach to sparse PCA that considers the
left eigenvectors of X (it is worth noting that all works on sparse PCA focus on the right
eigenvectors). We derive then a geometrical interpretation of the resulting problem. This
interpretation leads to a binary linear formulation that aims at approximating the original
problem. This geometrical approach is versatile and can be adapted to several versions of
sparse PCA problem. We introduce two formulations; one for a version in which all PCs
share the same support and another version in which groups of PCs use disjoint supports
(a generalization of the version imposing to PCs to have disjoint supports). Building on
the versatility of the method, we also propose a formulation for the structured sparse PCA
problem. We provide optimality gap bounds and test the proposed method on real world
data sets. The geometrical approach we propose solves problem for p in 10,000s and k in
100s while preserving the orthogonality and controlling k in minutes.

As we mentioned earlier, upper-bounding the number of nonzero variables is a desirable
feature for practitioners whether the true principal components share the same support or
not. While the method we propose could be used in the general case, practitioners might me
even more interested in this technique when the data studied follows particular structures
(eg. hyperspectral imagery and spectroscopy when the focus is on particular variables (Fu
et al., 2017; Bertsimas et al., 2020), computer vision (Jenatton et al., 2009) or matching
(Benidis et al., 2016) among others).

We summarize our contributions in this paper below:

• We introduce a new approach to the sparse PCA problem based on left eigenvectors
that leads to a geometrical interpretation of sparse PCA. We approximate the sparse
PCA problem using binary linear optimization (BLO) and the introduction of cuts
that improve the solution.

• We prove that the optimal solution can be found using the approximation proposed
in a finite number of steps and provide a theoretical optimality gap to the solution
generated by the method we propose.

• We propose formulations and algorithms (i) for sparse PCA problem in which all PCs
share the same support, (ii) for a generalization of the version of PCA requiring that
the PCs have disjoint support, and (iii) for the structured sparse PCA problem.
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X(s)

U[s]U[s]TX(s)

X(s)−U[s]U[s]TX(s)

Figure 1: X(s)−U[s]U[s]TX(s) is the projection of X(s) on the subspace of lower dimension
defined by U[s]

• We test the proposed method on publicly available real world data sets and compare its
performance vs. existing methods and show that the geometrical approach produces
solutions of higher quality than alternative state-of-the-art methods.

The structure of the paper is as follows. In Section 2, we first study the sparse PCA problem
when all principal components share the same support. We introduce the geometrical
approach and offer interpretations and provide formulations, optimality gap bounds and
related algorithm. In Section 3, we extend the geometric approach to the case in which the
principal components have disjoint supports and to the structured sparse PCA problem. In
Section 4, we compare GeoSPCA to other state-of-the-art sparse PCA techniques and we
finally conclude in Section 5.

1.3 Notations and Definitions

In the remainder of this paper, we define X ∈ Rn×p a centered data matrix with n data
points and p features. We refer to the number of features used to build a sparse PCA model
by k. All matrices and vectors in bold characters.

We note MT , the transpose of matrix M. Consider the SVD decomposition of a real
matrix Rn×p, UΣVT . We call the columns of U (resp. V) the left (resp. right) eigenvectors
of X. Consider m a non-negative integer, we note [m] = {1, 2, . . . ,m}. We denote Xi the
ith column of a matrix X. The scalar si is the ith component of vector s. The matrix
S = diag(s) is the diagonal matrix with a diagonal equal to the vector s. Consider σ ⊂ [m],
we note sσ the vector of {0, 1}m such that sσi = 1 if i ∈ σ and sσi = 0, otherwise. If
E is a finite set, we note |E| its cardinality. Consider a matrix M ∈ Rn×p and a vector
s ∈ {0, 1}p, we note M(s) the matrix we obtain by suppressing all columns Mi of M
such that si = 0. ||.||F is the Frobenius norm. ||.||0 designates the number of nonzero
coefficients of a vector or the number of nonzero rows of a matrix. For b a non-negative
integer, Ib is the identity matrix of size b× b. Given s ∈ {0, 1}p, we note U[s] any element
of argmaxU∈Ra×n tr(UTX(s)X(s)TU) s.t.UTU = Ia for a given non-negative integer a
and η(s) = ||X(s) − U[s]U[s]TX(s)||2F , µ(s) = ||X(s)||2F =

∑p
i=1 si||Xi||2 and π(s) =

||U[s]U[s]TX(s)||2F = tr(U[s]TX(s)X(s)TU[s]). It is easy to verify that µ(s) = π(s) + η(s)
(See Figure 1). We define finally the vector e ∈ Rp as the vector e = {1, 1, . . . , 1}.
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2. Sparse PCA problem with Principal components sharing the same
support

In this section, we address the sparse PCA problem in which all the principal components
share the same support. We first transform the problem to a left eigenvectors problem
and derive a geometric interpretation of the problem. We then introduce a binary linear
optimization approximation of the sparse PCA problem. We finally propose an algorithm
that solves the approximation and that can find the optimal solution to the original problem.

2.1 An exact formulation using the left eigenvectors perspective

We consider the problem of maximizing the variance explained by a given number a of
sparse principal components that share the same support of cardinal less than or equal to
k. We write the problem as:

max
W∈Rp×a

tr(WTXTXW) (1)

s.t. ||W||0 ≤ k,
WTW = Ia,

where ||W||0 is the number of nonzero rows of W. The a principal components formed by
the columns of W share then the same support of cardinality at most k. We transform the
problem to let the left eigenvectors appear:

Proposition 1 Problem (1) is equivalent to:

max
s∈{0,1}p,U∈Rn×a

p∑
i=1

si

a∑
j=1

(XT
i Uj)

2 (2)

s.t. eT s ≤ k,
UTU = Ia.

Proof We introduce a variable s ∈ {0, 1}p and consider that si = 0 if WT
i = 0 and

si = 1, otherwise. When
∑p

i=1 si ≤ k, and W ∈ Rp×a, we have ||SW||0 ≤ k where
S = diag(s) and ||SW||0 is the number of nonzero rows of SW. If the principal components
are represented by the columns of SW, then WTSTSW = WTSW = Ia ensures that the
principal components are normalized and orthogonal. We note that if, in addition, we have
WTW = Ia, we have ∀i ∈ [p],

∑p
j=1W

2
ij = 1 but since

∑p
j=1 sjW

2
ij = 1, it means that

Wij = 0 if sj = 0. Hence, the combination of WTSW = Ia and WTW = Ia ensures that
||W||0 ≤ k. Problem (1) can then be rewritten:
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max
s∈{0,1}p,W∈Rp×a

tr(WTSXTXSW) (3)

s.t. eT s ≤ k,
WTSW = Ia,

WTW = Ia.

The constraints WTSW = Ia can be dropped (the proof is detailed in Proposition 2).
Consider X(s) the matrix obtained when the columns Xi are removed from X when si = 0.
Problem (3) can then be written considering inner and outer problems as follows:

max
s∈{0,1}p,W∈Rk×a

tr(WTX(s)TX(s)W)

s.t. eT s ≤ k
WTW = Ia.

The inner problem is a standard PCA problem for the data matrix X(s). We can now
write the equivalent problem considering the left eigenvectors of X(s):

max
s∈{0,1}p,U∈Rn×a

tr(UTX(s)X(s)TU)

s.t. eT s ≤ k
UTU = Ia.

By expanding the trace, we have then:

max
s∈{0,1}p,U∈Rn×a

k∑
i=1

a∑
j=1

(X(s)Ti Uj)
2

s.t. eT s ≤ k,
UTU = Ia,

which is equivalent to:

max
s∈{0,1}p,U∈Rn×a

p∑
i=1

si

a∑
j=1

(XT
i Uj)

2

s.t. eT s ≤ k
UTU = Ia,

as
k∑
i=1

a∑
j=1

(X(s)Ti Uj)
2 =

p∑
i=1

si

a∑
j=1

(XT
i Uj)

2.

∑a
j=1(XT

i Uj)
2 is the sum of the norms of the projections of Xi in the subspace generated

by the columns of U. In other words, the problem is to find k columns of X that maximize
the sum of the norms of their projections in a subspace of Rn of dimension a.
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Proposition 2 Problem (3) is equivalent to:

max
s∈{0,1}p,W∈Rp×a

tr(WTSXTXSW)

s.t. eT s ≤ k,
WTW = Ia.

Proof Consider an SVD decomposition of X(s) = UΣVT with U ∈ Rn×n, Σ ∈ Rn×k
and V ∈ Rk×k such that Σ is a diagonal matrix and UTU = VTV = Ik. Consider now
V ∈ Rp×k such that Vi = 0 if si = 0 and the columns of V appear in V in the indices i
for which si = 1 in the same order as in V. We can easily verify that XS = UΣV′T which
shows that XS and X(s) have the same nonzero eigenvalues and the same left eigenvectors.

2.2 Geometric approximation formulation

Although the problem has been transformed, the two main issues of the problem are still
present; the objective function is not concave and we still need to deal with the non-convex
orthogonality constraints. In this subsection, our objective is to provide a binary linear
problem that approximates Problem (2). We first propose a linear approximation of the
objective function and outline the geometric intuition supporting this approximation. We
then replace the non-convex constraints by a set of linear constraints yielding the same
optimal solutions. The approximation introduces a new parameter (noted η). We also show
that optimal solutions of Problem (2) are also optimal solutions for the approximation if η
is chosen appropriately.

We start by addressing the non-concavity of the objective function. The underlying
hypothesis when using PCA to tackle a data problem is that the data matrix X can be
written X = X′+ ε where X′ is a matrix of rank a < min(n, p) and ε is a low-norm matrix
representing noise, or second order phenomena or other perturbations that are to be ignored
by PCA modelling. X′ is found by projecting X according to a set of a orthonormal vectors
Vi, the columns of V, X′ = VVTX. Since ||X − X′||F = ||ε||F ≈ 0, we consider that
||X||F ≈ ||X′||F .

When considering Problem (2), the objective function is the sum of the norms of the
projections of k columns of X on the subspace generated by the columns of U. Since the
inner problem of problem (2) is the standard PCA problem, and using the approximation
we just mentioned, we can approximate the objective function as the sum of the norms of k
columns of X instead of the sum of the norms of their projections whenever ||X−UUTX||F
is small enough. We introduce then the parameter η that bounds that norm of the difference
of X and its projection UUTX. This can be expressed by a constraint ||X−UUTX||2F ≤ η
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for a given η ≥ 0:

max
s∈{0,1}p,U∈Rn×a

p∑
i=1

si||Xi||2 (5)

s.t. eT s ≤ k,
UTU = Ia,

||X(s)−UUTX(s)||2F ≤ η

that could be rewritten as follows:

max
s∈{0,1}p

p∑
i=1

si||Xi||2 (6)

s.t. eT s ≤ k,
η(s) ≤ η.

Indeed, since the objective function of (5) does not have U as variable, the s is feasible
if there exists U such that ||X(s)−UUTX(s)||2F ≤ η and UTU = Ia. If such U exists, the
objective function is equal to

∑p
i=1 si||Xi||2. If U[s] verifies ||X(s)−U[s]U[s]TX(s)||2F ≤ η,

then U[s] is a feasible solution of the inner problem of (5). Conversely, if s is feasible then
by definition ||X(s)−U[s]U[s]TX(s)||2F ≤ η.

We replace finally the constraints η(s) ≤ η by eliminating the vectors s for which we
have η(s) > η. Consider σ ⊂ [p], and sσ ∈ {0, 1}p such that sσi = 1 if i ∈ σ and sσi = 0
otherwise. If η(sσ) > η, sσ is not feasible and could be cut using the following inequality:∑

i∈σ
si ≤ |σ| − 1.

Hence, we derive the following approximate formulation for the sparse PCA problem with
PCs sharing a common support:

max
s∈{0,1}p

p∑
i=1

si||Xi||2 (7)

s.t. eT s ≤ k,
∀σ ⊂ [p], η(sσ) > η

⇒
∑
i∈σ

si ≤ |σ| − 1.

We note f(η) the value of the objective function of problem (2) evaluated for an arbitrarily
chosen optimal solution of problem (7) for a chosen η > 0 (if problem (7) has several
solutions, we choose one that minimizes ||X(s) − UTUX(s)||F ) and let us prove that an
optimal solution to problem (2) can be found using formulation (7):
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Theorem 3 Consider so an optimal solution of problem (2). There exists δ > 0 such that
for any η ∈ [η(so), η(so) + δ], optimal solutions of problem (7) are optimal solutions of
problem (2).

Proof By contradiction, consider η = η(so) and suppose that there exists s′ ∈ {0, 1}p such
that s′ is an optimal solution of problem (7) and is not an optimal solution for problem (2)
which implies

∑p
i=1 s

o
i

∑a
j=1(Uj [s

o]TXi)
2 >

∑p
i=1 s

′
i

∑a
j=1(Uj [s

′]TXi)
2 according to prob-

lem (2). Since s′ is an optimal solution of problem (7) and so is feasible in (7) because
η = η(so), we have

∑p
i=1 s

′
i||Xi||2 ≥

∑p
i=1 s

o
i ||Xi||2, which yields then:

p∑
i=1

s′i||Xi||2 −
p∑
i=1

s′i

a∑
j=1

(Uj [s
′]TXi)

2 >

p∑
i=1

soi ||Xi||2 −
p∑
i=1

soi

a∑
j=1

(Uj [s
o]TXi)

2,

i.e.

η(s′) > η(so),

which means that s′ is not feasible as it violates the constraint η(s) ≤ η(so).

Since f(η) takes discrete and finite values as the number of s ∈ {0, 1}p is finite, we can
choose δ > 0 such that the set of feasible solutions of problem (7) remains the same as if
η = η(so) to ensure that so remains an optimal solution of problem (7). For example, we
can consider s̃ ∈ argmins||X(s) −U[s]U[s]TX(s)||2F > η(so) and choose δ = (η̃ − η(so))/2
with η̃ = ||X(̃s)−U[̃s]U[̃s]TX(̃s)||2F .

Beyond the theoretical value of Theorem 4 as it shows that with an adequate η, an optimal
solution could be found. More practically, this theorem is also used in the design of a
practical algorithm in Section 2.4 (Algorithm 2) can approach and find the optimal solution
in a finite number of steps.

Although the objective function and the constraints of problem (7) are linear, there are
still potentially an exponential number of constraints (the number of subsets of [p] is 2p)
which can hinder the tractability of the problem and we still need to assess the quality of
the solution found by solving problem (7) relative to the optimal solution of (1). We start
by providing a theoretical bound that partially addresses the first question and further
address practical and empirical aspects in Section 3. We also address the large number
of constraints by proposing a simple separation procedure to generate useful constraints
without including all the constraints in the problem.

Finally we note that the approximation ||ε||F ≈ 0 is considered only to provide the
reader with an intuition behind the approximation. ||ε||F ≈ 0 is not a required assumption
in any of the results of this paper.

2.3 Worst case upper bound

Before introducing an algorithm to solve Problem (7), we provide tight worst case upper
bounds for the difference between the optimal value of Problem (2) and the value of the
objective function of Problem (2) evaluated at an optimal solution of the approximation
Problem (7). After showing the role η plays in these bounds, we derive a straightforward
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way to derive an upper bound without knowing η. The relationship between the worst
case upper bound and η furthermore enables us to design an algorithm that approaches an
optimal solution of the original Problem (2). Furthermore, this algorithm finds the optimal
solution to the original Problem (2) in a finite number of iterations.

Proposition 4 Consider (so,U[so]) an optimal solution of problem (2). Let sA be an opti-
mal solution of problem (7) for η ≥ η(so), then π(so)−π(sA) ≤ η; meaning that the difference
between the optimal value of problem (2),

∑p
i=1 s

o
i

∑a
j=1(XT

i U[so]j)
2, and the value of the

objective function of problem (2) evaluated at sA,
∑p

i=1 s
A
i

∑a
j=1(XT

i U[sA]j)
2 is bounded by

η. Furthermore, this bound is tight.

Proof Note Vo the optimal value of problem (2), sA a solution to problem (7) and VA =
maxU∈Rn×a

∑p
i=1 s

A
i

∑a
j=1(XT

i Uj)
2 s.t. UTU = Ia, the value of the objective function of

problem (2) evaluated at sA. We have:

p∑
i=1

soi ||Xi||2 ≥ Vo

and

VA ≥
p∑
i=1

sAi ||Xi||2 − η,

hence:
p∑
i=1

soi ||Xi||2 −
p∑
i=1

sAi ||Xi||2 + η ≥ Vo −VA.

As η ≥ η(so), so is feasible in Problem (7) so

p∑
i=1

soi ||Xi||2 ≤
p∑
i=1

sAi ||Xi||2,

then η ≥ Vo −VA.

We show now that the bound is tight. We build an example for X ∈ R2×4. Consider
0 < ε < 0.5 and

X =
(−ε ε 1 1

1 1 0 0

)
and consider k = 2 and a = 1. The columns of X are illustrated in Figure 2. Let us first
note that the value of the objective function of the optimal solution of problem (2) is 2
and is given by taking s∗ = (1 1 0 0). If η ≥ 2ε, then s∗ is feasible in Problem (7) and the
optimal solution is given by s∗ and U[s∗] = U1 = (0 1). If η < 2ε, then it is impossible to
have s1 = s2 = 1; the optimal solution is then s′ = (0 0 1 1) and the value of the objective
function of problem (2) when s = s′ is equal to 2 − 2ε as U[s′] = U2 = (1 0). Since η can
be taken as close as desired to 2ε, then the bound is tight.

This bound expresses the fact that the approximation is as good as the hypothesis that
the matrix X(so) composed of the columns of the optimal support can be approximated with
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X

y

X1(−ε, 1) X2(ε, 1)

X3(1 − ε, 0)

X4(1 − ε, 0)

X

y

X1 X2

X3

X4

U1(0, 1)η ≥ 2ε

X

y

X1X2

U2(1, 0)X3

X4

η < 2ε

Figure 2: Example illustrating the tightness of Proposition 4’s bound.

a matrix of rank a. Even if η0 is not known, we show in the implementation of Algorithm
2 that this bound is practical. We prove first that a bound can be found a priori by solving
the classic PCA problem. We need first the following result:

Proposition 5 Consider that X = VVTX + ε with V ∈ Rn×a and VTV = Ia. Let
(so,U[so]) be an optimal solution of problem (2). We have:

η(so) ≤ ||Soε||2.

Furthermore, so is feasible when η = ||Soε||2 in problem (7).

Proof We have:

||Soε||F = ||So(X−VVTX)||F
= ||SoX− SoVVTX||F
= ||SoX−VVTSoX||F as SoVVT = VVTSo

≥ ||X(so)−U[so]U[so]TX(so)||F by definition.

When η = ||Soε||2, since

||X(so)−U[so]U[so]TX(so)||2F ≤ ||Soε||,

then
||X(so)−U[so]U[so]TX(so)||2F ≤ η

and hence so is feasible in Problem (7).

Corollary 6 Consider V∗ ∈ argminV ∈Rn×a ||X−VVTX|| stVTV = Ia (i.e., V is a solu-
tion to the classical PCA problem). We denote ε = X −V∗V∗TX and σ ⊂ [p] the set of
the indices of k columns of ε with the highest norm. We have:

η(so) ≤ ||Soε||2F ≤
∑
i∈σ
||εi||2,

12
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ε can be easily computed using classic PCA. Although So is not known, the norm of
the columns of ε can be computed and so is

∑
i∈σ ||εi||. Using the same notations as in

Proposition 4 and Corollary 6, we have:

Corollary 7 The difference between the optimal value of problem (2), ||U[so]U[so]TX(so)||2F ,
and the value of the objective function of problem (2) evaluated at sA, ||U[sA]U[sA]TX(sA)||2F
is bounded by

∑
i∈σ ||εi||2.

2.4 Algorithm

We propose two algorithms. Algorithm 1 solves Problem (7) for a given parameter η while
Algorithm 2 starts without any knowledge on η and then approaches the optimal solution
of Problem (2) by exploring several values of η while also updating the worst case upper
bound.

We propose an implementation based on cut generation (Algorithm 1). We initially
solve the problem without any of the constraints

∑
i∈σ si ≤ |σ| − 1, and then iteratively

add these constraints. If at iteration t, the optimal solution found st violates η(st) ≤ η,
then we add the constraint

∑
i∈σt si ≤ |σt| − 1 such that σt is the set of indices i such that

sti = 1. Note that the computation of U[st] is inexpensive as it involves only the generation
of an SVD decomposition of the matrix X(st) which is of size n × k which can in done in
O(k3 + nk2).

Algorithm 1: Constraints generation algorithm for PCs with a common support

Input: Data matrix X, number of components a, number of variable sought k,
parameter η and a set cuts (optional); Output: Optimal support for the
approximation formulation;

Initiate (φ), a BLO problem with the following formulation:

max
s∈{0,1}p

p∑
i=1

si||Xi||2

s.t. eT s ≤ k,

Add the input set of cuts if there is any. Compute s0 an optimal solution of (φ)
using a BLO solver;

Compute U[s0] by solving the PCA problem for matrix X(s0);
while ||η(st) > η do

Update (φ) by adding the constraint
∑

i∈σt si ≤ |σt| − 1;
Compute st+1 an optimal solution of (φ) using a BLO solver;
Compute U[st+1] by solving the PCA problem for matrix X(st+1);

end
return the support found by solving (φ)

While Algorithm 1 terminates as {0, 1}p is finite and the while loop suppresses at least
one element of {0, 1}p, the number of iterations is still potentially exponential. However, in

13
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practice the algorithm is relatively fast and solves large real world problems in minutes as
illustrated in Section 4.

We also use the proof of Theorem 4 to refine the search for η(so). We have:

Lemma 8 We assume that Problem (7) has a unique optimal solution. The function f :
η → f(η) returning the value of the objective function of problem (2) evaluated at the optimal
value of problem (7) depending on η is a piece wise constant function.

Proof We note denote the function F as F (η) = {s ∈ {0, 1}p|η(s) ≤ η}. For a value
η ∈ R+, F returns the set of supports s such that η(s) ≤ η. The cardinality of F (η) is finite
as {0, 1}p is finite. The cardinality of F (η) is increasing with respect to η and f is constant
when F is which proves the lemma.

Using this lemma, we can derive a method to efficiently select η. Indeed, consider that we
solve problem (7) for a value η̃ and note s̃, an optimal solution. It is easy to see that f(η)
is constant for η ∈ [ η(̃s), η̃]. We can then start with a large value of η0 and iteratively
update ηt by computing η(st) where st is a solution obtained and then input a new value
ηt+1 = η(st)− δ for δ small enough as f(η) is constant on [ η(st), ηt].

This also provides means to obtain tighter optimality gaps. Indeed, using Proposition 4
and starting with η0, which is large enough, we can store and update η∗, the value of η that
achieves the largest value f(η) and since we have started with values of η larger than the
η(so) corresponding to the optimal solution of problem (2), then according to Proposition
4, the difference between the optimal solution of problem (2) and f(η∗) is capped by η∗.

We report then the following algorithm to solve or approximate problem (2) and obtain
η∗.

Algorithm 2: Approximate solution for problem (2)

Input: Data matrix X, number of components a, number of variable sought k and
an integer λ ;

Output: Support s∗ approximating the solution and η∗;
Initiate with η0 and η∗ large enough;
c:=0;
while c ≤ λ do

Run Algorithm 1 using ηt and cuts generated so far; if f(η∗) < f(ηt) then
η∗ := ηt;

ηt+1 := η(st)− δ;
c:= c + 1;

end
return s∗, η∗, f(η∗)

Proposition 9 Algorithm 2 converges and for δ > 0 small enough, Algorithm 2 finds an
optimal solution to (2) in a finite number of steps for λ large enough.

Proof We first note that Algorithm 2 converges as f(η∗) increases from an iteration to
another by construction and is upper-bounded by ||X||2F .
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We consider now so an optimal solution of (2), and let ∆ = {|η(s)−η(s′)| > 0, s.t.eT s =
eT s′ = k; s, s′ ∈ {0, 1}p}. Suppose that ∆ is not empty. Consider any δ > 0 such that
δ < min(∆). Considering Algorithm 2, we know that η0 > η(so). If f(η0) = f(η(so)) then
Algorithm 2 finds an optimal solution s0 at the first iteration as f(η(so)) is an optimal
solution to problem (2) according to Theorem 4. Consider now t such that ηt > η(so) such
that f(ηt) < f(η(so)). We show now that f(ηt+1) = f(η(so)) or ηt+1 > ηo. If ηt+1 < η(so),
then so is feasible in (7) and

∑p
i=1 s

t+1
i ||Xi||2 ≥

∑p
i=1 s

o
i ||Xi||2. We also have by construction

of δ, η(st+1) ≤ η(so). Since f(η(s)) =
∑p

i=1 si||Xi||+ η(s), we have f(ηt+1) ≥ f(η(so)) and
since f(η(so)) is the optimal value of (2), then f(ηt+1) = f(η(so)) meaning that Algorithm
2 finds an optimal solution st+1.

If ηt+1 = η(so), then f(ηt+1) = f(η(so)) according to Theorem 4. We conclude that if
f(ηt+1) < f(η(so)) then ηt+1 < η(so).

Hence, since ηt+1− ηt+2 > δ > 0 by construction, Algorithm 2 finds an optimal solution
in less than (η0 − η(so))/δ steps.

If ∆ = ∅, then an optimal solution of (7) is also an optimal solution to (2) as all η(s)
are equal and the Algorithm 2 finds the optimal solution at the first iteration.

We note that the number of values f(η) takes is lower than the number of feasible
solution, which contributes to simplifying the problem. The condition c ≤ λ in the while
loop is a stopping criteria. It stops the search of a solution if no improvement is achieved
after λ attempts after η∗ is updated. Of course, other stopping criteria could be considered
in this algorithm.

We finally provide an additional upper-bound for the optimal solution of (2) that lever-
ages on the history of search of Algorithm 2.

Proposition 10 Consider that Algorithm 2 generated θ cuts and note sθ an optimal so-
lution of (7) using the θ cuts generated. If f(η∗) ≥

∑p
i=1 s

θ
i ||Xi||2, then s∗ is an optimal

solution for (2). Otherwise, the optimal solution of (2) is upper-bounded by
∑p

i=1 s
θ
i ||Xi||2.

Proof We note sθ a solution of (7) after generating θ cuts using Algorithm 2, φ(θ) the value
taken by the objective function of (2) at sθ and ψ(θ) =

∑p
i=1 s

θ
i ||Xi||2, the value objective

function of (7) at the same point sθ. We first note that ψ is a decreasing function. Indeed,
the optimal value of (7) can only decrease when we add constraints. We also note that for
any θ, φ(θ) ≤ ψ(θ).

If f(η∗) ≥
∑p

i=1 s
θ
i ||Xi||2 = ψ(θ), then for any θ′ ≥ θ, f(η∗) >= ψ(θ′) as ψ is decreasing;

and since φ(θ′) ≤ ψ(θ′), then f(η∗) ≥ ψ(θ′) so f(η∗) is optimal.

Otherwise, by construction, f(η∗) ≥ φ(θ′′) for any θ′′ ≤ θ. We also have for any θ′ ≥ θ,
ψ(θ) ≥ ψ(θ′) ans ψ is decreasing and we also have φ(θ′) ≤ ψ(θ′) so ψ(θ) ≥ φ(θ′) so the
optimal solution of (2) is indeed upper-bounded by

∑p
i=1 s

θ
i ||Xi||2 = ψ(θ).
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2.5 Complexity assessment

There are two aspects that need to be considered to assess the theoretical efficiency of the
proposed algorithms; the number of cuts generated) and the computational cost of each
iteration.

Let us start by the number of cuts. As mentioned earlier, the number of cuts is po-
tentially exponential. We provide here a theoretical example in which the number of cuts
generated is exponential whatever the dimension p chosen. We choose k = 2 and a = 1 and
consider α = 5/24 and n = p. Consider the matrix X ∈ Rn×p such that x1,1 = 1, x1,2 = 1,
x1,j = 1 − α for j ≥ 3, xi,i = 2α and xi,i+1 = −2α for i ≥ 3, x2,p = −2α and xi,j = 0
otherwise. It is easy to verify that the norm of any column Xj is strictly greater than 1 for
j ≥ 1 and the norm of the two first columns is equal to 1. Is is also easy to verify that pair
of columns (i, j) 6= (1, 2), (2, 1), UTX(ij)TX(ij)U < 2 where X(ij) is a sub-matrix of X
formed by its i and j columns and U ∈ Rp with ||U || = 1. It is then easy to verify that the
optimal solution so of (2) is achieved with s1 = s2 = 1 and si = 0 for i ≥ 3. We set now
η = 0.00001, then the only feasible solution for (7) is so. Since ||Xi||2 + ||Xj ||2 > 2 for any
(i, j) 6= (1, 2), (2, 1), and the cuts generated cut one binary point at a time, then Algorithm
1 will have to cut all the binary points except the optimal solution before it reaches the
optimal solution.

We examine now the cost of each iteration. Each iteration involves two steps (i) solving
a BLO problem and (ii) a running a separation algorithm. As mentioned earlier, the sepa-
ration algorithm consists of a classic PCA problem of dimension n× k which can be solved
by using an SVD decomposition in O(k3 + nk2). Solving the BLO problem in Algorithm 1
is not trivial and the constraints matrix defines a polyhedron that has non-integer vertices
in the general case. Yet, we can show that the BLO problem can be replaced by a much
simpler algorithm. Indeed, at the first iteration of Algorithm 1 (no cut generated yet), the
solution is obtained by choosing the k columns of X that have the largest norms. Suppose
now that we are at iteration t. If the separation algorithm finds a violated cut at iteration
t − 1, the new cut generated cuts exactly one binary point which is the optimal solution
found of iteration t−1. This means that a solution of the BLO at iteration t is defined by a
set of vectors with the largest sum of norms that are different from the solutions of iterations
1, 2, 3, ..., t − 1. Since the BLO chooses the sets with largest sums of norms, a solution for
the BLO of iteration t has a sum of norms lower or equal to the sum of the binary solutions
that were cut. Finding such solution could then be performed through tree search with a
cost of O(k) as this process is then reduced finding the k columns with the largest norms,
then the set with the second largest sum of norms,..., then the set with the tth largest sum
of norms. The actual computational cost of each iteration is then O(k3 + nk2).

Since the cost of each iteration is modest, theoretically the potential issue would be
with the number of iteration that could be theoretically exponential. Yet, in practice, high
quality solutions are found in a tractable fashion for fairly large instances as we show in the
following section using real-life data.

In addition, it is worth noting that our method does not require computing the covari-
ance matrix XTX. Since we are interested in particular in instances in which p is large
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(and in general high dimension setting we have n � p), this results in dramatic reduction
in memory requirements in addition to reductions in computation time.

Finally, although solving the BLO is computationally costly in theory, we have found
that it is actually fast in practice when it comes to the BLO proposed in Algorithm 1.
In Section 4, we illustrate how Algorithm 2 performs vs. other methods. We keep using
the BLO because (i) solving the BLO using commercial solvers is so fast that Algorithm 2
already scales more than any other known method that tackles the problem considered in
this section, (ii) the BLO could hold the opportunity to add tighter cuts (for potential future
research) and (iii) too often, solving is deemed computationally costly while in practice it
can be competitive, so we decided to illustrate the fact that considering BLO could be a
valid approach to tackle high dimension problems.

3. Extension to the Disjoint Support Block Sparse PCA and the
Structured Sparse PCA problems

We consider now the problem of maximizing the variance generated by b sets of PCs such
that the PCs of a same set share the same support while the supports of PCs of different
sets are disjoint. We call this problem the Disjoint Support Block Sparse PCA (DSB SPCA)
problem.

3.1 DSB SPCA Formulation

We note (ki)i∈[b] the desired cardinality of supports for each set and (ai)i∈[k] the number of
PCs in each set. Following the same method to formulate problem (3), the problem can be
written as follows:

max
si∈{0,1}p,(Wi∈Rp×ai );i∈[b]

b∑
i=1

tr(WT
i SiX

TXSiWi) (8)

s.t.

p∑
j=1

sij ≤ ki,∀i ∈ [b],

WT
i SiWi = Iai ,∀i ∈ [b],

WT
i Wi = Iai ,∀i ∈ [b],
p∑
i=1

sij ≤ 1,∀j ∈ [p].

We first note that when ∀i ∈ [b], ai = 1, then formulation (5) matches the sparse PCA
problem with disjoint support as formulated in (Bertsimas et al., 2022). Following the same
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steps to construct problem (7), we obtain the following approximation for (5):

max
si∈{0,1}p;i∈[b]

b∑
i=1

p∑
j=1

sij ||Xi||2 (9)

s.t.

p∑
j=1

sij ≤ ki,∀i ∈ [b],

∀σ ⊂ [p], ∀i ∈ [b], ||X(sσi )−U[sσi ]U[sσi ]TX(sσi )||2F > η

⇒
∑
j∈σ

sij ≤ |σ| − 1,

p∑
i=1

sij ≤ 1,∀j ∈ [p].

3.2 Worst Case Scenario Upper Bound

We generalize Proposition 4 as follows:

Proposition 11 Let (sol ,U[sol ])l∈[b] be an optimal solution of Problem (8). We note

η(so) =

b∑
l=1

||X(sol )−U[sol ]U[sol ]
TX(sol )||2F

Consider (sAl )l∈[b] an optimal solution of Problem (9) for η =
∑b

l=1 ηl ≥ η(so), then the
difference between the optimal value of (8),

b∑
l=1

p∑
i=1

soli

al∑
j=1

(XT
i U[sol ]j)

2,

and the value of the objective function of (8) evaluated at (sAl )l∈[b],

b∑
l=1

p∑
i=1

sAli

al∑
j=1

(XT
i U[sAl ]j)

2

is bounded by η. Furthermore, this bound is tight.

Proof Let Vo be the optimal value of Problem (8), (sAl )l∈[b] be a solution to Problem (9)
and

b∑
l=1

p∑
i=1

sAli

al∑
j=1

(XT
i U[sAl ]j)

2,

be the value of the objective function of Problem (8) evaluated at (sAl )l∈[b]. We have

b∑
l=1

p∑
i=1

soli||Xi||2 ≥ Vo
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and

VA ≥
b∑
l=1

p∑
i=1

sAli ||Xi||2 − η.

Hence,

b∑
l=1

p∑
i=1

soli||Xi||2 −
b∑
l=1

p∑
i=1

sAli ||Xi||2 + η ≥ Vo −VA.

(sol )l∈[b] is feasible in Problem (9) so
∑b

l=1

∑p
i=1 s

o
li||Xi||2 ≤

∑b
l=1

∑p
i=1 s

A
li ||Xi||2, then η ≥

Vo −VA.

Proposition 4 and corollaries 6 and 7 are still applicable in the case of disjoint block supports
and the proofs are almost identical.

3.3 Algorithm

Algorithm 1 can be easily adapted for the case of groups of PCs having disjoint supports

Algorithm 3: Constraints generation algorithm for group of PCs with disjoint
supports

Input: Data matrix X, number of components (al)l∈[b], number of variables sought

(kl) and parameter (ηl)l∈[b] per group of PCs.;
Result: Optimal supports for the disjoint supports approximation formulation
Initiate the following BLO problem (φ):

max
si∈{0,1}p;i∈[b]

b∑
i=1

p∑
j=1

sij ||Xi||2

s.t.

p∑
j=1

sij ≤ ki,∀i ∈ [b],

p∑
i=1

sij ≤ 1, ∀j ∈ [p].

Compute (so) an optimal solution of (φ) using a BLO solver;
Compute U[so] by solving the PCA problem for matrix X(so);
while ∃l ∈ [b] ||X(stl)−U[stl ]U[stl ]

TX(stl)||2F > ηl do
Update (φ) by adding the constraint

∑
i∈σt sli ≤ |σt| − 1 for all l ∈ [b] such that

||X(stl)−U[stl ]U[stl ]
TX(stl)|| > ηl; Compute (st+1

l )l∈[b] an optimal solution of

(φ) using a BLO solver;

Compute (U[st+1
l ])l∈[b] by solving the PCA problem for matrix (X(st+1

l ))l∈[b];

end
return the support found by solving (φ)
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3.4 Structured Sparse PCA

In some applications of sparse PCA, additional properties to sparsity are needed either to
further improve interpretability or to enhance performances in subsequent classification or
regression. One of the notable applications of Structured Sparse PCA is image recognition
in which the fact that the features selected need to be adjacent and/or form a particular
2D pattern (Jenatton et al., 2009). Another notable similar application is protein complex
dynamics in which practitioners require that the 3D distance between the features to be
limited and more recently, more abstract structures have been considered in genomics based
on the interaction among different genes (Li et al., 2017).

The approximation (7) can be adapted to virtually any pattern that can be defined
by linear constraints. We propose a general formulation for the approximation Structured
Sparse PCA problem following the same approach that lead us to propose problem (7) and
problem (9). We then illustrate this formulation for 2D data in Section 3.

Consider Π = {π1, ..., π|Π|} a set of subsets of [p] that represent the patterns that are
desired and b > 0 a number of patterns that would be used to construct the PCs. In practice,
patterns could represent a structure that is sought in the data; for instance, patterns could
be related genes in genomics or 2D shapes in image recognition. We propose the following
exact formulation:

max
s∈{0,1}p,z∈{0,1}|Π|,W∈Rp×a

tr(WTSXTXSW) (10)

s.t. si ≤
∑

j∈[Π]:i∈πj

zj , ∀i ∈ [p],

|Π|∑
j=1

zj ≤ b,

WTW = Ia.

Following the same steps as the ones we used to build the approximation (7), we propose
the following approximation for the structured sparse PCA problem for a given ητ > 0:

max
s∈{0,1}p

p∑
i=1

si||Xi||2 (11)

s.t. si ≤
∑

j∈[Π]:i∈πj

zj , ∀i ∈ [p],

|Π|∑
j=1

zj ≤ b,

∀πj ∈ Π, ||X(sπj )−U[sπj ]U[sπj ]TX(sπj )||2F > ητ ,

⇒ zj = 0.
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This formulation can also be extended to the case in which the patterns are disjoint:

max
s∈{0,1}p

p∑
i=1

si||Xi||2 (12)

s.t. si ≤
∑

j∈[Π]:i∈πj

zj , ∀i ∈ [p],

|Π|∑
j=1

zj ≤ b,

∀πj ∈ Π, ||X(sπj )−U[sπj ]U[sπj ]TX(sπj )|| > ητ

⇒ zj = 0,

∀i ∈ [p]
∑
j:i∈πj

zj ≤ 1.

(12) being a special case of problem (9) (each pattern representing one group of PCs sharing
the same support), optimality bounds and algorithm apply in this case for ηl = ητ . Further-
more, if |Π| is not too large, all patterns πj that violate ||X(sπj )−U[sπj ]U[sπj ]TX(sπj )|| ≤ ητ
can be enumerated and eliminated before solving the problem. In this case, all the con-
straints of Problem (12) can be enumerated and and there is no need to use a cut generation
algorithm.

4. Results

We aim in this section to illustrate the benefits of Geometric Sparse PCA (GeoSPCA)
method in terms of variance explained, sparsity, predictive power and tractability. We also
aim at comparing the performances obtained when building all the PCs at once vs. building
them iteratively by deflating the data matrix.

We first explicit principles for the choice of a and tuning of η. We then test and compare
GeoSPCA in the case of all PCs sharing the same support on real world data sets. We finally
test GeoSPCA on a image recognition data set using its structured sparsity version including
disjointedness constraints of problem (9).

All tests are conducted computations on an Intel Core i7-8750H CPU at 2.20GHz with
16Gb of RAM on Windows 10 Pro. The solver we used is Gurobi Optimizer 9.1 running
with Python 3.6.5.

4.1 Choosing η and a

We base the approach we use to choose a and η on the the similarities GeoSPCA has with
the classic PCA.

We first tune a by finding a suitable number of PCs for the classic PCA following a
standard procedure. Namely, a could be chosen as the number of PCs beyond which the
marginal gain in explained variance is limited (Figure 3a). If X can be approximated by a
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Figure 3: Illustrative figures for the choice of a and η.

matrix X′ of rank a, then a sub-matrix X(s) of X composed of selected columns of X can be
approximated by a matrix of rank a. Although, theoretically, X(s) could be approximated
by a matrix of a rank lower than a, this is could be the case in a real data setting but
this would involve a special structure in the data; in particular, a subset of the columns of
X′ must be orthogonal to the remaining columns, or in other words, independence among
variables would be required.

The parameter η is found using Algorithm 2. We start by choosing η0 that is large
(for example ||X||2F ) and then Algotrithm 2 tightens the values of η by updating ηt. When
ηt > η(so) + δ for a δ > 0 (see Theorem 4), then f(η∗) is lower than the optimal value of
(2). When ηt > η(so) then the optimal solutions of problem (2) are cut from the feasible
set of problem (7) (Figure 3.b).

4.2 GeoSPCA with common support

We consider the problem of maximizing the variance explained from X using a number a
of orthogonal PCs that have a common support of cardinal k. We use the formulation (7)
to approximate problem (2). We use real world data sets of various natures and sizes to
illustrate the benefits of GeoSPCA. In this subsection, we focus on the amount of explained
variance, the benefit of building all PCs at once and the tractability depending on the size
of the data set, the number of PCs and the cardinality k chosen. We selected publicly
available data sets that are widely used in the literature including Mturk (n; p) = (180; 500)
(Cheng et al., 2016) which consists of descriptions of randomly chosen pictures using a bag
of words, Colon (n; p) = (62; 2, 000) (Alon et al., 1999) a colon cancer gene expression data
set, Arcene (n, p) = (700; 10, 000) a mass-spectrometric data aiming at detecting cancer
patterns proposed at the NIPS 2003 Feature Selection Challenge (Guyon et al., 2007) and
CGD (n; p) = (286; 22, 283) (Wang et al., 2005), a gene expression data set used to classify
breast cancers.

We compare GeoSPCA to other techniques that control the sparsity by imposing k, the
number of variables that are used in the sparse model. Comparison with other techniques
in which sparsity is induced by regularization is not significant because achieving the level
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of sparsity that is achieved while controlling k requires to choose a very large weight for
the regularization which skews the objective function and produces ultimately low quality
solutions. Since we are also aiming at choosing k higher than 100 and p in 10,000s; we choose
PathSPCA (d’Aspremont et al., 2008) to illustrate the benefits of building all PCs at once
as its performance is comparable to other techniques extracting iteratively (Papailiopoulos
et al., 2013; Yuan and Zhang, 2013). Since this technique extracts one PC at each iteration,
a deflation technique is needed. We choose Schur complement deflation for its empirical
performance and ease of use (see (Mackey, 2009) for a description and a full discussion on
deflation techniques). Sparse PCs found with this process are then orthogonalized. We also
use a greedy algorithm directly inspired from (Moghaddam et al., 2006) and (d’Aspremont
et al., 2008). We build the support of the solution σ by iteratively including the indices
that maximize the increase in variace pactured from an iteration to another. We start with
an empty set and we iteratively add indices i to σ such that:

i ∈ argmaxi∈[p]\σ max
W∈Rp×a

tr(WTSσ∪{i}XTXSσ∪{i}W)

s.t.WTW = Ia.

Greedy approaches have proven to be particularly effective and are often at par with
state-of-the-art techniques (d’Aspremont et al., 2008; Bertsimas et al., 2022; Journee et al.,
2010; Papailiopoulos et al., 2013).

We report the sorted norms of the columns on X for the different data sets considered in
Figure 4 (Top). Formulation (2) sheds a light on one reason the greedy approach performs
well. Indeed, as explained in problem (2), the objective function is

∑p
i=1 si

∑a
j=1(XT

i Uj)
2,

so maximizing the variance captured from k features is closely related to the norm of the
k columns related to these features. If some columns of X have a much higher norm than
the rest of the columns, they are likely to be selected by the greedy algorithm and their
related variables are also likely to be in the support of the optimal solution. This is true
for a = 1 which is the case that is the most studied in the literature and many of the data
sets considered in the literature have columns with a norm far exceeding the norms of the
remaining columns.

We first conduct tests with PathSPCA using a constant number of features for the
construction of each PC. After generating a PCs, we count the total number of features
used k (we note that different PCs may use common features). We then conduct tests using
Algorithm 1 using k variables. Values of k are chosen for illustration purposes and are
also the result of the number of variables that the deflation method produces. Indeed, in
all cases studied in this paper, PathSPCA often chooses to reuse variables that were used
in previously constructed PCs. The cuts are generated as lazy constraints.

We report results in Table 1. We first notice that deflation produces significantly lower
explained variance vs. GeoSPCA and the greedy in all cases; sometimes by more than an
order of magnitude. The illustrates the benefit of constructing all the PCs at once instead
of doing so iteratively through deflation. Considering the Greedy approach, GeoSPCA
outperforms this method in almost all cases by up to 24.2%. When it comes to the variance
explained by sparse PCA, even 1% is significant as this implies, depending on the application
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Table 1: Explained Variance captured by each approach, GeoSPCA algorithm computa-
tion time, the optimality gap (GAP) and the number of cuts generated. a is the
number of PCs used. k is the number of variables in the support. The columns
Deflation, Greedy and GeoSCPA indicate the variance obtained using PathPCA
combined with Schur complement deflation technique, the Greedy algorithm and
GeoSPCA respectively. The GeoSPCA vs. Greedy column shows the relative im-
provement in captured variance of GeoSPCA vs. the Greedy algorithm. The Time
column indicates the computation time of GeoSPCA Algorithm. GAP indicates
the theoretical upper bound of the relative gap between the variance captured by
GeoSPCA vs. the variance captured by the optimal solution of the exact formu-
lation as per propositions 4 and 10 (0% gap means that the solution is optimal as
per Proposition 10).

Data set a k Deflation Greedy GeoSPCA

GeoSPCA
vs.

Greedy Time GAP #cuts

Mturk 8 16 5.62E+3 1.57E+5 1.59E+5 +1.1% <1s 0% 56
(n, p) = 21 5.6E+3 1.66E+5 1.67E+5 +1% <1s 1.7% 44

(180;500) 26 8.73E+3 1.71E+5 1.74E+5 +1.7% <1s 2.8% 30
29 8.7E+3 1.76E+5 1.78E+5 +0.8% <1s 3.4% 154
32 9.06E+3 1.8E+5 1.81E+5 +0.4% <1s 4% 1208

Colon 5 11 1.02E+9 4.57E+9 4.79E+9 +4.9% <1s 1.7% 120
(n, p) = 12 1.97E+9 4.74E+9 4.92E+9 +3.8% <1s 3.8% 85

(62;2,000) 15 2.27E+9 5.41E+9 5.49E+9 +1.5% <1s 8.4% 562
18 2.8E+9 5.9E+9 5.94E+9 +0.6% <1s 12% 384
33 3.81E+9 7.62E+9 7.6E+9 -0.3% <1s 21.2% 1214

Arcene 3 14 7.43E+7 8.2E+8 1.02E+9 +24.2% <1s 0% 6
(n, p) = 22 8.7E+7 1.27E+9 1.5E+9 +18.1% <1s 0% 9

(700; 53 1.76E+8 2.74E+9 3.01E+9 +9.7% <1s 1.6% 7
10,000) 132 5.9E+8 5.83E+9 6.08E+9 +4.4% <1s 4.1% 35

270 7.95E+8 9.78E+9 9.82E+9 +0.4% 45s 7.1% 590

CGD 11 23 5.11E+10 1.84E+12 1.89E+12 +2.7% <1s 1% 71
(n,p) = 43 1.09E+11 2.5E+12 2.63E+12 +5.1% <1s 6.3% 50
(286; 58 1.91E+11 2.89E+12 3E+12 +3.9% 6s 10.2% 166

22,283) 85 2.82E+11 3.45E+12 3.54E+12 +2.9% 20s 14.4% 359
174 3.25E+11 4.64E+12 4.67E+12 +0.6% 118s 23% 1308
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Figure 4: (Top) Norms of the columns of X in decreasing order (Bottom) Variance explained
by standard PCA depending on the number of PCs

Table 2: Computation time range for PathSPCA and Greedy Algorithms
Method Mturk Colon Arcene CGD

PathSPCA 1 to 3s 9 to 11s 4 to 8 mins 2 mins to 11 hours
Greedy 2 to 10s 4 to 20s 2min to 8 hours 4 mins to 51 hours

considered, more lives saved or increased profits. Even theoretically, considering problem
(2), when the vectors with the largest norms have a norm far exceeding the remaining
columns (Figure 3), improving the explained variance by 1% is remarkable. We notice also
that for Arcene and CDG data sets, the error ε has a greater norm compared to other data
sets with respect to a. This signals that the sparse PCA problem is harder to solve which
explains the edge GeoSPCA has over a simple greedy approach.

Computation time for GeoSPCA did not exceed 2 mins while PathSPCA and the greedy
approach needed several hours (and often tens of hours on CGD) to provide a solution (see
Table 2. We note also that GeoSPCA does not need to compute or handle the covariance
matrix XTX which also contribute to drastically reduced computation time, especially for
the largest instances. XTX has 4.84 10E9 entries that, besides the inherent PathSPCA com-
putation time, needs to be deflated to compute each PC. This already creates complications
in the management of the memory capacity of most personal computers.

Still considering the same data sets and a and k values, we report in Figure 5 the
evolution of the objective function of (2) in blue and (7) in orange as cuts are iteratively
added in Algorithm 2 with respect to the number of cuts for the 3000 first cuts generated.
For this experiment, we drop the lazy constraints feature in Gurobi. An optimal solution
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Figure 5: Values of the objective functions of (2) (in blue) and (7) (in orange) in function
of the number of cuts added using Algorithm 2.

is found when the lowest value of (7) (in orange) is lower than a value of (2) (in blue). The
green dotted line represents the lowest value of (7) achieved.

We also report for the same experiment f(ηt) with respect to t in Figure 6. We chose
instances in which the optimal value is found by Algorithm 2 (using Proposition 10 to prove
it). For Mturk (left), we notice that Algorithm 2 reduces ηt until the optimal solution is
found at t = 2, then optimal solutions are cut and f(ηt) then decreases below the optimal
solution value. For Arcene (right), the optimal solution is found at the first iteration, then
the optimal solution is cut and f(ηt) decreases also to values below the optimal value.
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Figure 6: f(ηt) with respect to t on the left for Mturk data set ((a, k) = (8, 16)) and Arcene
((a, k) = 3, 22))

Figure 7: Sample of pictures of the data set chosen

4.3 Experiments for Structured Sparse PCA

Imposing a structure in the variables to build the PCs can yield substantial benefits vs.
PCA or sparse PCA in a number of applications including genomics and face recognition(Li
et al., 2017; Jenatton et al., 2009). We test GeoSPCA in its structured version (12) (we will
call it GeoSSPCA). We chose to use face recognition for its ease of interpretation to test
the method and use the data set (Martinez and Kak, 2001). The data set consists of 2600
cropped pictures of the faces of 50 men and 50 women. For each person, 26 pictures are
provided with the different face expressions and lightning configurations. In 12 of the 26
pictures, parts of the face is hidden either by black glasses or scarves (a sample of pictures is
provided in Figure7). We use as patterns triangles, rectangles and octagons with dimensions
varying from 3 to 8 pixels as elements of the patterns set. We filter all patterns π that violate
the constraint ||X(sπj )−U[sπj ]U[sπj ]TX(sπj )||2F ≤ ητ (using the same notations as in (12))
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Figure 8: Example of PCs constructed for k = 10 and a = 3. First row shows 2 halves of
the mouth; second row represents the shape of the jaw; third row the eye and the
glasses (many participants to the data set were wearing glasses); fourth and fifth
rows focus on the shape of the forehead and some on the eyebrows.

so we solve only a BLO problem once as all remaining patterns verify this constraint. We
choose a = 3 and k = 7 and report an example of PCs constructed while solving (12)
in Figure8. We notice that the shapes and the location of the shape capture intuitive
components of the face most of the time (eyes, mouth, shape of the jaw and forehead,...).

We follow the same procedure used in (Jenatton et al., 2009); the resolution of the
images is reduced from 165×120 to 38×27; for each person represented in the data set, we
use the 14 pictures in which the whole face is visible for training and test on the 12 pictures
in which part of the face is hidden. We also use k-NN algorithm to classify the pictures
after reducing the dimension using GeoSSPCA and compare to the precision achieved by
Structured Sparse PCA(Jenatton et al., 2009) (using the modeling scheme proposed by the
authors), and PCA depending on the number of PCs. For GeoSSPCA, we choose k = 5 and
increase a to have a number of PCs varying from 10 to 70. A comparison of the precision
is provided in Figure 9.

We note that the patterns can be written also as intersections of half spaces by modifying
accordingly (12). However, the polyhedron resulting from the relaxation of the binary
constraints leads to computational considerations that go beyond the scope of this paper.

4.4 Discussion

We deduct from the geometric interpretation of GeoSPCA some implications on good prac-
tices when using Sparse PCA in terms of choice of a and k. First on the choice of a, if
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Figure 9: Out-of-sample face recognition precision by method

the matrix X can be approximated with a matrix X′ of rank a∗, it seems unlikely that a
submatrix X(s) of X would need to be approximated by a matrix of rank higher than a∗.
Choosing a value a higher than a∗ would lead to capture elements that were meant to be
ignored such as noise and could then lead to over-fitting. It is however possible to consider
values of a that are lower than a∗. If X can be approximated by a matrix of rank a∗, a
submatrix X(s) could eventually be approximated by a matrix X(s)′ of rank b < a if X(s)′

has columns that are orthogonal to other columns of X′, or in other words if the variables
defined by the support of s are independent from other features of X. This is true when
the supports of the PCs are disjoint for example as we have considered in the Structured
Sparse PCA setting in the current section.

Regarding the choice of k, we notice first that choosing k ≤ a leads to a trivial problem
as an optimal solution can be constructed using the k columns of X that have the largest
norm. In this case, k columns can be projected into a space of dimension a using U[s] with
X(s) = U[s]U[s]TX(s). On the other hand, k cannot be chosen too big to preserve the
putpose of sparse PCA. We provide a summary in Figure 10.

5. Conclusion

In this paper, we proposed GeoSPCA, a new approach to the sparse PCA problem building
on a geometrical interpretation of the problem. We addressed in particular the case in
which the PCs share a common support. We then illustrated the versatility of this method
to the case in which PCs are organized in groups that have disjoint supports and further
extended this adaptation to the Structured Sparse PCA problem. The experiments we
conducted showed that GeoSPCA can tackle real world instances with a number of features
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Figure 10: Map for the choice of a and k.

in the 10,000s exceeding the performance of state-of-the-art approaches while providing high
quality solutions in minutes.

We believe the method can be further applied to more variants of the Sparse PCA
problem and can also be improved especially by generating more efficient cuts at each
iteration of the algorithms proposed.
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