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Abstract

In classification with a reject option, the classifier is allowed in uncertain cases to abstain
from prediction. The classical cost-based model of a reject option classifier requires the re-
jection cost to be defined explicitly. The alternative bounded-improvement model and the
bounded-abstention model avoid the notion of the reject cost. The bounded-improvement
model seeks a classifier with a guaranteed selective risk and maximal cover. The bounded-
abstention model seeks a classifier with guaranteed cover and minimal selective risk. We
prove that despite their different formulations the three rejection models lead to the same
prediction strategy: the Bayes classifier endowed with a randomized Bayes selection func-
tion. We define the notion of a proper uncertainty score as a scalar summary of the
prediction uncertainty sufficient to construct the randomized Bayes selection function. We
propose two algorithms to learn the proper uncertainty score from examples for an arbitrary
black-box classifier. We prove that both algorithms provide Fisher consistent estimates of
the proper uncertainty score and demonstrate their efficiency in different prediction prob-
lems, including classification, ordinal regression, and structured output classification.
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1. Introduction

In safety critical applications of classification models, prediction errors may lead to serious
losses. In such cases, estimating when the model makes an error can be as important as its
average performance. These two objectives are taken into account in classification with a
reject option when the classifier is allowed in uncertain cases to abstain from prediction.

The cost-based model of a classification strategy with the reject option was proposed by
Chow in his pioneering work Chow (1970). The goal is to minimize the expected loss equal
to the cost of misclassification, when the classifier predicts, and to the reject cost, when
the classifier abstains from prediction. An optimal strategy leads to the Bayes classifier
abstaining from prediction when the conditional expected risk exceeds the reject cost. The
known form of the optimal strategy allows to construct the classifier by plugging in an
estimate of the class posterior probabilities to the formula for the conditional risk. Besides
the plug-in rule, the reject option classifiers can be learned by empirical risk minimization
based approaches like e.g. modifications of Support Vector Machines (Grandvalet et al.,
2008), Boosting (Cortes et al., 2016), or Prototype-based classifiers (Villman et al., 2016)
to name a few.
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The cost-based model requires the reject cost to be defined explicitly, which is difficult
in some applications, e.g., when the misclassification costs have different physical units than
the reject cost. Alternative bounded-improvement and bounded-abstention models coined
in Pietraszek (2005) avoid explicit definition of the reject cost. The rejection strategy is
evaluated by two antagonistic quantities: i) a selective risk defined as the expected misclassi-
fication cost of accepted predictions and ii) a coverage which corresponds to the probability
that the prediction is accepted. The optimal strategy for the bounded-improvement model
maximizes the coverage under the condition that the selective risk does not exceed a target
value. The optimal strategy of the bounded-abstention model is defined symmetrically as
the one which minimizes the selective risk under the condition that the coverage does not
drop below a target value. In contrast to the cost-based model, it is unknown what are
the optimal prediction strategies of the two models when the underlying statistical model
is given. A solution has been proposed only for special instances of the tasks. Pietraszek
(2005) proposed a method for constructing a specific type of reject option strategy for a pre-
trained two-class classifier using the ROC analysis. El-Yaniv and Wiener (2010) proposed
an algorithm learning the optimal strategy in the noise-free setting, i.e., when a perfect
strategy with zero selective risk exists. Geifman and El-Yaniv (2017) shows how to equip
a trained classifier with a reject option provided an uncertainty measure is known and the
task is to find only a rejection threshold optimal under the bounded-improvement model.

A large number of other works address the problem of uncertainty prediction, including
recent papers related to deep learning like e.g. Lakshminarayanan et al. (2017); Jiang et al.
(2018); Corbiere et al. (2019). They seek for an uncertainty score 1 defined informally
as a real-valued summary of an input observation that is predictive of the classification
error. These works do not formulate the problem to be solved explicitly as a rejection
model. However, most of these works assess the performance of their uncertainty scores
using evaluation metrics for the rejection models, namely, using the Risk-Coverage (RC)
curve and the Area under the RC curve (AuRC).

This article unifies and extends existing formulations of an optimal reject option clas-
sifier and proposes theoretically grounded algorithms to learn the rejection strategy for an
arbitrary black-box classifier from examples. The main contributions are as follows:

1. We derive necessary and sufficient conditions for an optimal prediction strategy of the
bounded-improvement model when the underlying distribution is known. We show
that an optimal solution is the Bayes classifier endowed with a rejection strategy,
which we call randomized Bayes selection function. The randomized Bayes selection
function is constructed from the conditional expected risk and two parameters: a
decision threshold and an acceptance probability. The strategy rejects prediction
when the conditional risk is above the threshold, accepts prediction when it is below
the threshold and randomizes with the acceptance probability otherwise. We provide
an explicit relation between the decision threshold, the acceptance probability and
the target risk.

2. We derive necessary and sufficient conditions for an optimal prediction strategy of the
bounded-abstention model when the underlying distribution is known. We show that

1. Some works use term confidence score which is inverse to the uncertainty score utilized in this paper.
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the conditions are satisfied by the Bayes classifier endowed with the randomized Bayes
selection function. We provide an explicit relation between the decision threshold, the
acceptance probability and the target coverage.

3. We define a notion of a proper uncertainty score as a function which preserves ordering
of the inputs induced by the conditional expected risk. A proper uncertainty score
is sufficient for construction of the randomized Bayes selection function. We propose
two generic algorithms to learn the proper uncertainty score from examples for an
arbitrary black-box classifier. The first is based on regression of the classifier loss.
The second is based on minimization of a newly proposed loss function which we call
SElective classifier LEarning (SELE) loss. We show that SELE loss is a close ap-
proximation of the AuRC and, at the same time, amenable to optimization. We prove
that both proposed algorithms provide Fisher consistent estimate of the proper uncer-
tainty score. As a proof of concept, we apply the proposed algorithms to learn proper
uncertainty scores for different prediction problems including classification, ordinal
regression and structured output classification. We demonstrate that the algorithm
based on the SELE loss minimization learns uncertainty scores which consistently out-
perform common baselines and work on par with the state-of-the-art methods that
are, unlike our algorithm, applicable only to particular prediction models.

Besides the algorithms proposed that are applicable to learning uncertainty score for
an arbitrary classification model, our contributions may have the following uses. Firstly,
our analysis shows that despite their different objectives, the cost-based, the bounded-
improvement and the bounded-abstention rejection models are equivalent in the sense that
they lead to the same prediction strategy. Secondly, the explicit characterization of optimal
strategies provides a recipe to construct plug-in rules, which has been so far possible only for
the cost-based model. That is, any method estimating the class posterior distribution can
be turned into an algorithm learning the reject option classifier that solves the bounded-
improvement and the bounded-abstention model, respectively. Thirdly, there is a tight
connection between the proposed bounded-abstention model and the RC curve. The RC
curve represents the quality of all solutions of the bounded-abstention model that can be
constructed from a pair of classifier and uncertainty score. The AuRC is then an expected
quality of the reject option classifier constructed from the pair when the target coverage
is selected uniformly at random. This connection sheds light on many published methods
which do not explicitly define the target objective but use the RC curve and the AuRC as
evaluation metrics.

This article is an extension of our previous work published in Franc and Prusa (2019).
The major extensions involve deriving optimality conditions for the bounded-abstention
model, regression-based algorithm for learning the proper uncertainty score, analysis of the
learning algorithms including the proof of Fisher consistency, describing the connection
between the AuRC and the bounded-abstention model, and most of the experiments.

The paper is organized as follows. Section 2 introduces the three rejection models and
provides a characterization of their optimal solutions. Algorithms to learn a proper uncer-
tainty score from examples are discussed in Section 3. Survey of related literature is given
in Section 4. Experimental evaluation of the proposed learning algorithms is provided in
Section 5. Section 6 concludes the paper. Proofs of all theorems are deferred to Appendix.
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2. Reject Option Models and Their Optimal Strategies

Let X be a set of input observations and Y a finite set of labels. Let us assume that the
inputs and labels are generated by a random process with p.d.f. p(x, y) defined over X ×Y.
The goal in the non-reject setting is to find a classifier h : X → Y with a small expected risk

R(h) =

∫
X

∑
y∈Y

p(x, y)`(y, h(x)) dx ,

where ` : Y × Y → R+ is a loss penalizing the predictions.

The expected risk can be reduced by abstaining from prediction in uncertain cases. To
this end, we use a selective classifier 2 (h, c) composed of a classifier h : X → Y and a
selection function c : X → [0, 1]. When applying the selective classifier to input x ∈ X it
outputs

(h, c)(x) =

{
h(x) with probability c(x) ,

reject with probability 1− c(x) .

In the sequel, we introduce three models of an optimal selective classifier: the cost-based,
the bounded-improvement and the bounded-abstention model. We characterize the optimal
strategies of the three models provided the underlying distribution p(x, y) is known.

2.1 Cost-based model

Besides the label loss ` : Y × Y → R+, let us define a reject loss ε ∈ R+ incurred when a
classifier rejects to predict. The selective classifier (h, c) is then evaluated in terms of the
expected risk

RB(h, c)=

∫
X

∑
y∈Y

p(x, y)
(
`(y, h(x))c(x) + (1− c(x))ε

)
dx . (1)

Problem 1 (Cost-based model) The optimal selective classifier (hB, cB) is a solution
to the minimization problem

min
h,c

RB(h, c) , (2)

where we assume that both minimizers exist.

The well-known optimal strategy (hB, cB) solving Problem 1 reads

hB(x) ∈ argmin
ŷ∈Y

∑
y∈Y

p(y | x) `(y, ŷ) , (3)

cB(x) =


1 if r∗(x) < ε ,
τ if r∗(x) = ε ,
0 if r∗(x) > ε ,

(4)

2. The classifier with a reject option is usually represented by a single function h′ : X → Y ∪ {reject}.
We use the decomposition h′(x) = (h, c)(x), and the terminology selective classifier from El-Yaniv and
Wiener (2010) because we analyze h and c separately.
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where
r∗(x) = min

ŷ∈Y

∑
y∈Y

p(y | x) `(y, ŷ)

is the minimal conditional expected risk associated with input x, and τ is any real number
from the interval [0, 1]. In the boundary case when r∗(x) = ε one can arbitrarily reject or
return the best label hB(x) without affecting the value of the risk RB(h, c). In turn, there
always exists a deterministic optimal strategy solving the cost-based model. In the sequel,
we denote the classifier hB alone as Bayes classifier.

The cost-based model was coined in Chow (1970) who also provides an optimal strategy
in the case p(x, y) is known. Chow (1970) considers only the 0/1-loss `(y, y′) = [[y 6= y′]] 3. A
generalization for an arbitrary loss and the optimal strategy of the generalized formulation
can be found e.g. in Schlesinger and Hlaváč (2002); Santos-Pereira and Pires (2005).

2.2 Bounded-improvement model

One can characterize the selective classifier by two antagonistic quantities: i) the coverage

φ(c) =

∫
X
p(x) c(x) dx (5)

corresponding to the probability that the prediction is accepted and ii) the selective risk

RS(h, c) =

∫
X

∑
y∈Y

p(x, y) `(y, h(x)) c(x) dx

φ(c)
, (6)

defined for non-zero φ(c) as the expected classification loss on the accepted predictions.

Problem 2 (Bounded-improvement model) Given a target risk λ > 0, the optimal
selective classifier (hI , cI) is a solution to the problem

max
h,c

φ(c) s.t. RS(h, c) ≤ λ , (7)

where we assume that both maximizers exist.

Theorem 1 Let (h, c) be an optimal solution to (7). Then, (hB, c), where hB is the Bayes
classifier (3), is also optimal to (7).

According to Theorem 1 the Bayes classifier hB is also optimal for the task (7) defining
the bounded-improvement model which is not surprising. Note however that the Bayes
classifier is not a unique solution to (7) because the predictions on the reject region Xc(x)=0

4

do not count to the selective risk and hence they can be arbitrary.
Theorem 1 allows to solve the bounded-improvement task (7) in two consecutive steps:

First, set hI to be the Bayes classifier hB. Second, when hI is fixed, the optimal selection
function cI is obtained by solving the task (7) only with respect to c which boils down to

3. [[A]] is the Iverson bracket which evaluates to 1 if A is true and it is 0 otherwise.
4. For a function f : X → R and a ∈ R ∪ {∞}, we define Xf(x)≤a={x ∈ X |f(x) ≤ a}, Xf(x)<a= {x ∈ X |
f(x) < a},Xf(x)=a= {x ∈ X |f(x) = a}, Xf(x)>a = {x ∈ X |f(x) > a},Xf(x)≥a= {x ∈ X |f(x) ≥ a}.
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Problem 3 (Bounded-improvement model for known h(x)) Given a classifier h(x),
the optimal selection function c∗(x) is a solution to

max
c∈[0,1]X

φ(c) s.t. RS(h, c) ≤ λ . (8)

Note that Problem 3 is meaningful even if h is not the Bayes classifier hB. In practice,
we can seek for an optimal selection function c∗ for any fixed h which is usually our best
approximation of hB learned from data. We will show that the key concept to characterize
the optimal selection function of Problem 3 is the conditional expected risk of h 5 defined
as

r(x) =
∑
y∈Y

p(y | x) `(y, h(x)) . (9)

Theorem 2 A selection function c∗ : X → [0, 1] is an optimal solution to Problem 3 if and
only if it holds ∫

Xr(x)<b
p(x)c∗(x)dx =

∫
Xr(x)<b

p(x)dx, (10)

∫
Xr(x)=b

p(x)c∗(x)dx =

{
−ρ(Xr(x)<b)

b if b > 0 ,∫
Xr(x)=0

p(x)dx if b = 0 ,
(11)∫

Xr(x)>b
p(x)c∗(x)dx = 0 , (12)

where r(x) = r(x) − λ measures how much the conditional risk r(x) of the classifier h(x)
exceeds the target λ,

ρ(X ′) =

∫
X ′
p(x)r(x) dx (13)

is the expectation of r(x) restricted to inputs in X ′, and

b = sup {a | ρ(Xr(x)≤a) ≤ 0} ≥ 0 . (14)

Theorem 2 defines behaviour of an optimal selection function c∗(x) on a partition of
the input space X into three regions Xr(x)<b, Xr(x)=b and Xr(x)>b. Informally, b can be
interpreted as a threshold characterizing the largest “prefix” X ′ ⊆ X of inputs in X sorted
by the conditional risk r(x) for which the expectation of r(x) does not exceed the target
risk λ. In each region, the expected value of c∗(x) is constrained to a particular constant,
the value of which depends on parameters of the problem. A particular selection function
satisfying the optimality condition is given by the following theorem.

Theorem 3 Let r : X → R be the conditional risk (9) of a classifier h : X → Y, γ = b+ λ
the rejection threshold given by the target risk λ and a constant b computed by (14). Then
the selection function

c∗(x) =


1 if r(x) < γ ,
τ if r(x) = γ ,
0 if r(x) > γ ,

(15)

5. Note that the conditional risk r is a function of the classifier h. Since the classifier h is effectively fixed
throughout the paper, the dependency is not expressed explicitly to keep the notation simple.
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where τ is the acceptance probability given by

τ =

{
1 if ρ(Xr(x)=γ) = 0 ,

−ρ(Xr(x)<γ))
ρ(Xr(x)=γ))

if ρ(Xr(x)=γ) > 0 ,
(16)

satisfies the optimality condition of Theorem 2, and hence it is a solution to Problem 3.

The selection function (15) is defined by the conditional risk r(x), the decision threshold
γ and the acceptance probability τ . The prediction is always accepted when r(x) < γ
and always rejected when r(x) > γ. In the boundary case, when r(x) = γ, the strategy
randomizes and the prediction is accepted with probability τ . The decision threshold is
given by γ = b + λ where λ is the target risk in the definition of Problem 3 and b is given
by (14). Solving (14) is hard and it requires knowledge of p(x, y). When the probability mass
of the set of boundary cases Xr(x)=γ is zero, which usually happens in case of continuous
p(x), the acceptance probability is τ = 1 and the boundary cases are always accepted, i.e.
no randomization is needed.

The bounded-improvement model was coined in Pietraszek (2005) for two-classes and a
specific class of rejection strategies. A generalized formulation which imposes no restriction
on the number of classes and the class of decision strategies appeared e.g. in Geifman and
El-Yaniv (2017). The necessary and sufficient conditions for an optimal selective classifier
were provided in Franc and Prusa (2019).

2.3 Bounded-abstention model

In this section, we introduce bounded-abstention model, the definition of which is symmetric
to the definition of the bounded-improvement model.

Problem 4 (Bounded-abstention model) Given a target coverage ω > 0, the optimal
selective classifier (hA, cA) is a solution to the problem

min
h,c

RS(h, c) s.t. φ(c) ≥ ω , (17)

where we assume that both minimizers exist.

Theorem 4 Let (h, c) be an optimal solution to (17). Then, (hB, c), where hB is the
optimal Bayes classifier (3), is also optimal to (17).

Theorem 4 ensures that the Bayes classifier hB is an optimal solution to (17) defining
the bounded-abstention model. Note that the solution is not unique as the predictions on
Xc(x)=0 do not count to the selective risk, hence they can be arbitrary. After fixing the
classifier h = hB the search for an optimal selection function leads to:

Problem 5 (Bounded-abstention model for known h(x)) Given a classifier h(x) and
a target coverage 0 < ω ≤ 1, the optimal selection function c∗(x) is a solution to the problem

min
c∈[0,1]X

RS(h, c) s.t. φ(c) ≥ ω , (18)

where we assume that the minimizer exists.
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Theorem 5 A selection function c∗ : X → [0, 1] is an optimal solution to Problem 5 if and
only if it holds ∫

Xr(x)<β
p(x)c∗(x)dx =

∫
Xr(x)<β

p(x)dx, (19)∫
Xr(x)=β

p(x)c∗(x)dx = ω −
∫
Xr(x)<β

p(x)dx, (20)∫
Xr(x)>β

p(x)c∗(x)dx = 0 , (21)

where

β = inf

{
a |
∫
Xr(x)<a

p(x)dx ≥ ω

}
. (22)

Theorem 5 defines necessary and sufficient conditions for an optimal solution to Prob-
lem 5. A particular selection function satisfying the optimality conditions is given by the
following theorem.

Theorem 6 Let r : X → R be the conditional risk (9) of a classifier h : X → Y, 1 ≥ ω > 0
be a target coverage and β be the constant computed by (22). Then the selection function

c∗(x) =


1 if r(x) < β ,
κ if r(x) = β ,
0 if r(x) > β ,

(23)

where κ is the acceptance probability given by

κ =


0 if

∫
Xr(x)=β

p(x)dx = 0 ,
ω−

∫
Xr(x)<β

p(x)dx∫
Xr(x)=β

p(x)dx
otherwise ,

(24)

satisfies the optimality condition of Theorem 6, and hence it is a solution of Problem 5.

The selection function (23) is determined by the conditional risk r(x), the decision
threshold β and the acceptance probability κ. Both computations of the decision threshold
β, defined by (22), and the acceptance probability κ, defined by (24), involve integration of
p(x). When the probability mass of the set of boundary cases Xr(x)=β is zero, the acceptance
probability is κ = 0 and the boundary cases are always rejected without any randomization.

The bounded-abstention model was coined in Pietraszek (2005) for two-classes and a
specific class of rejection strategies. In this article, we provide a generalized formulation
with no restriction on the number of classes and the class of decision strategies, and we
characterize the necessary and sufficient conditions for an optimal selective classifier.
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Model Parameter Definition

Cost-based reject cost ε min
h,c

RB(h, c)

Bounded-improvement target risk λ max
h,c

φ(c) s.t. RS(h, c) ≤ λ

Bounded-abstention target coverage ω min
h,c

RS(h, c) s.t. φ(c) ≥ ω

Table 1: Summary of three rejection models analyzed in the article. Each model has a
single parameter shown in the middle column. The definition of the optimal se-
lective classifier is in the right column. The cost-based model defines the optimal
selective classifier using the expected risk RB(h, c) given by (1). The bounded-
improvement and the bounded-abstention model are defined in terms of the selec-
tive risk RS(h, c), equation (6), and the coverage φ(c), equation (5). Regardless the
definition, the optimal solution is composed of the Bayes classifier hB given by (3),
and an instance of the randomized Bayes selection function cR given by (25).

2.4 Summary

We have shown that the three rejection models summarized in Table 1, namely, the cost-
based model (Problem 1), the bounded-improvement model (Problem 2) and the bounded-
abstention model (Problem 4), share the same class of optimal prediction strategies. An
optimal selective classifier (h, c) can be always constructed from the Bayes classifier h = hB
given by (3) and an optimal selection function

cR(x) =


1 if r(x) < α ,
ν if r(x) = α ,
0 if r(x) > α ,

(25)

where r(x) is the conditional expected risk of h given by (9), α ∈ R is a decision threshold
and ν ∈ [0, 1] is an acceptance probability. We denote cR defined by (25) as the randomized
Bayes selection function. The randomized Bayes selection function cR is also an optimal
solution of the rejection models defined for an arbitrary (i.e. not necessarily the Bayes)
classifier h, that is, an optimal solution of Problem 3 and Problem 5.

The constants (ν, α) are defined for each rejection model differently and their value
depends on parameters of the model (i.e. reject cost ε, target risk λ or target coverage ω),
and the underlying distribution p(x, y). For example, in the case of the cost-based model,
the acceptance threshold α equals to the reject cost ε and the acceptance probability ν can
be arbitrary. In the case of the bounded-improvement and the bounded-abstention model,
the constants (ν, α) are defined implicitly via optimization problems and integral equations.
In practice, (ν, α) can be tuned on data. For example, Geifman and El-Yaniv (2017) show
how to find α from a finite sample such that it is optimal for the bounded-improvement
model in PAC sense.
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The key component of the randomized Bayes selection function cR is ranking of the
inputs X according to r(x). We introduce notion of a proper uncertainty score which is less
informative than the conditional risk r(x), yet it is sufficient to construct cR.

Definition 1 Let h : X → Y be a classifier and r(x) =
∑

y∈Y p(y | x) `(y, h(x)) its condi-
tional expected risk. We say that function s : X → R is a proper uncertainty score of h iff
∀(x, x′) ∈ X × X : r(x) < r(x′)⇒ s(x) < s(x′).

By definition, the proper uncertainty score s(x) preserves ordering of the inputs X induced
by the conditional risk r(x). Therefore, replacing r(x) by s(x) in function (25), and changing
the decision threshold α appropriately, leads to the same optimal selection function.

3. Learning uncertainty function

Assume that we want to construct a selective classifier (h, c) solving any of the three rejection
models described in Section 2. We have shown that regardless the rejection model, an
optimal h is the Bayes classifier hB given by (3) and an optimal c is the randomized Bayes
selection function cR given by (25). In this section we consider the scenario where h : X → Y
is known, e.g., it has been trained from examples, and we want to endow it with cR. The
key component of cR is a proper uncertainty score s : X → R that satisfies Definition 1. In
this section we address the problem of learning a proper uncertainty score from examples
Tn = {(xi, yi) ∈ X×Y | i = 1, . . . , n} assumed to be generated from n i.i.d. random variables
with distribution p(x, y). Before describing the algorithms, in Section 3.1 we introduce the
notion of Risk-Coverage (RC) curve and Area under Risk-Coverage curve (AuRC). In line
with the literature, we use the AuRC as a metric to evaluate performance of the learned
uncertainty scores. We also show a connection between the RC curve, the AuRC and the
bounded-abstention model. In Section 3.2 we describe a plug-in conditional risk rule and
point out that a frequently used Maximum Class Probability rule (MCP) is its special
instance (Chow, 1970; Herbei and Wegkamp, 2006). In Section 3.3 we outline a learning
approach based on a loss regression. In Section 3.4 we introduce a proxy of AuRC which we
call a loss for SElective classifier LEarning (SELE). We prove that both proposed methods
learn the Fisher consistent estimator of the proper uncertainty score. The SELE loss and
Theorem 9 proving its Fisher consistency were published in Franc and Prusa (2019). All
other results presented in this section are novel.

3.1 Area under Risk Coverage curve

The majority of existing methods that learn selective classifiers output a classifier h : X → Y
and a deterministic selection function c : X → [0, 1] defined as 6

c(x) = [[s(x) ≤ θ]] , (26)

where s : X → R is an uncertainty score and θ ∈ R is a decision threshold. The performance
of the pair (h, s) is evaluated by the RC curve obtained after computing the empirical

6. Note that the deterministic (26) and the randomized Bayes selection function cR coincide if the accep-
tance probability is ν = 1, which is a usual case when p(x) is continuous.
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selective risk and the coverage for all settings of the threshold θ. That is, the computation
is as follows. Let us order the examples Tn = {(xi, yi) ∈ X × Y | i = 1, . . . , n} according
to s(x) so that s(xπ(1)) ≤ s(xπ(2)) ≤ · · · ≤ s(xπ(n)), where π : {1, . . . , n} → {1, . . . , n} is

a permutation defining the order7. Let L(i, s) =
∑i

j=1 `(yπj , h(xπj )) be a sum of losses
incurred by the classifier h(x) on the examples with uncertainty not higher than the i-th
highest uncertainty on the examples Tn. The Risk-Coverage curve C = {(1iL(i, s), in) | i =
1, . . . , n} is a set of two-dimensional points, where the pair (1iL(i, s), in) corresponds to the
empirical estimate of the selective risk RS(h, c) and the coverage φ(c) of a selective classifier
(h, c) with the deterministic selective function (26) and the decision threshold θ = s(xπi).
The area under the RC curve C is then

AuRC(s, Tn) =
1

n

n∑
i=1

1

i
L(i, s) =

1

n

n∑
i=1

1

i

i∑
j=1

`(yπj , h(xπj )) . (27)

The value of AuRC(s, Tn) can be interpreted as an arithmetic mean of the empirical selective
risks corresponding to the coverage spread evenly over the interval [0, 1] with step 1

n .

There is a tight connection between the RC curve, AuRC and the bounded-abstention
model. The RC curve C represents the quality of all admissible solutions of the bounded-
abstention model that can be constructed from the pair (h, s) when using the sample Tn for
evaluation. The value of AuRC(s, Tn) is an estimate of the expected quality of the selective
classifier constructed from the pair (h, s) when the target coverage is selected uniformly at
random.

3.2 Plug-in conditional risk rule

Prediction models, like, e.g., Logistic Regression or Neural Networks learned by cross-
entropy loss, use the training set Tn to learn an estimate p̂(y | x) of the class posterior
distribution p(y | x). The estimate is then used to construct a plug-in Bayes classifier
ĥ(x) ∈ argminŷ∈Y

∑
y∈Y p̂(y | x)`(y, ŷ). Similarly, using p̂(y | x) instead of p(y | x) in (9)

gives the plug-in rule for the conditional risk of the classifier h defined as

r̂(x) =
∑
y∈Y

p̂(y | x) `(y, h(x)) .

Provided p(y | x) = p̂(y | x),∀x ∈ X ,∀y ∈ Y, the plug-in conditional risk r̂(x) is by
definition a proper uncertainty score and it can be used to construct the randomized Bayes
selection function cR which is an optimal rejection strategy for all three rejection models.

Example 1 (Maximum Class Probability rule) In case of 0/1-loss `(y, y′) = [[y 6= y′]]
the plug-in Bayes classifier decides based on the maximum posterior probability ĥ(x) ∈
argmaxy∈Y p̂(y | x) and the plug-in conditional risk rule is

r̂(x) =
∑
y∈Y

p̂(y | x) `(y, ĥ(x)) = 1−max
y∈Y

p̂(y | x) .

7. To break ties we use the index of the input in case the scores are the same.
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3.3 Loss regression

A straightforward approach to learn the uncertainty score is to pose it as a regression
problem. The regression function gets an input x ∈ X and outputs an estimate of the
classification loss `(y, h(x)). Formally, given a hypothesis space F ⊂ {s : X → R}, classifier
h(x) and training set Tn, the loss regression score s : X → R is a solution to mins∈F Freg(s)
where

Freg(s) =
1

n

n∑
i=1

(
`(yi, h(xi))− s(xi)

)2
.

It is easy to show that the loss regression score is Fisher consistent estimate of the proper
uncertainty score. This amounts to defining the expectation Freg(x) with respect to i.i.d.
generated training set Tn, i.e.,

Ereg(s) = ETn∼p(x,y)Freg(s)

=

∫
Xn

∑
y∈Yn

n∏
i=1

p(xi, yi)

[
1

n

n∑
i=1

(
`(yi, h(xi))− s(xi)

)2]
dx1 · · · dxn (28)

=

∫
X

∑
y∈Y

p(x, y)
(
`(y, h(x))− s(x)

)2
dx ,

and showing that its minimizer is the conditional risk r(x) which is by definition a proper
uncertainty score. This is ensured by the following theorem.

Theorem 7 The conditional risk r(x) defined by (9) is an optimal solution to min
s:X→R

Ereg(s).

3.4 Minimization of SELE loss

In this section, we define a computationally manageable proxy of AuRC, which we call
SElective classifier LEarning (SELE) loss. The SELE loss ∆sele : Rn × X n × Yn → R+ is
defined as 8

∆sele(s, Tn) =
1

n2

n∑
i=1

n∑
j=1

`(yi, h(xi))[[s(xi) ≤ s(xj)]] . (29)

In contrast to AuRC the computation of ∆sele does not require sorting the examples, i.e., we
eliminate the permutations that make the evaluation difficult. ∆sele is still hard to optimize
directly due to the step function in its definition. After replacing the step function [[·]] by a
logistic function, we obtain its proxy ψsele : Rn ×X n × Yn → R+ defined as

ψsele(s, Tn) =
1

n2

n∑
i=1

n∑
j=1

`(yi, h(xi)) log
(
1 + exp(s(xj)− s(xi)

)
. (30)

The function ψsele(s, Tn) is smooth and convex w.r.t. the argument s and therefore is
amenable to optimization. Minimization of ψsele is the core of the proposed learning algo-
rithm which works as follows.

8. We assume that the training set Tn has at least two examples, i.e. n ≥ 2.
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Given a hypothesis space F ⊂ {s : X → R}, a classifier h(x) and training set Tn, the
SELE score s : X → R is a solution to the problem mins∈F ψsele(s, Tn). We justify the
proposed algorithm empirically in Section 5. The theoretical justification is based on the
following three arguments:

1. The value of ∆sele is a close approximation to AuRC. In case the values of s(x) are
different for each input in Tn, i.e. s(xi) 6= s(xj), ∀i 6= j, then we have

∆sele(s, Tn) ≤ AuRC(s, Tn) ≤ 2 ·∆sele(s, Tn) .

The first inequality follows from

∆sele(s, Tn) =
1

n

n∑
i=1

1

n
L̂(i, s) ≤ 1

n

n∑
i=1

1

i
L̂(i, s) = AuRC(s, Tn) .

The second inequality is ensured by Theorem 8.

2. The uncertainty score estimator defined as ŝ ∈ argmins∈[0,1]X ∆sele(s, Tn) is Fisher
consistent. Namely, Theorem 9 ensures that a population minimizer of ∆sele is a
proper uncertainty score.

3. The Fisher consistency is preserved even for the smooth proxy ψsele the minimization
of which is in the core of the proposed algorithm. Namely, Theorem 11 ensures the
population minimizer of ψsele is a proper uncertainty score.

Theorem 8 The inequality AuRC(s, Tn) < 2 ·∆sele(s, Tn) holds true for any s : X → R and
Tn = {(xi, yi) ∈ X ×Y | i = 1, . . . , n}. Moreover, for any ε > 0, there are n, s and Tn such
that AuRC(s, Tn) ≥ (2− ε) ·∆sele(s, Tn).

To show the Fisher consistency of ∆sele we define its expectation with respect to i.i.d.
generated examples Tn, i.e.,

Esele(s) =

∫
Xn

∑
y∈Yn

n∏
i=1

p(xi, yi)∆sele(s, Tn)dx1 · · · dxn

=
1

n2

∫
Xn

n∏
i=1

p(xi)
n∑
i=1

n∑
j=1

r(xi) [[s(xi) ≤ s(xj)]] dx1 · · · dxn

=
1

n2

∑
i 6=j

∫
X

∫
X
p(xi)p(xj)r(xi)[[s(xi) ≤ s(xj)]]dxi dxj

+
1

n2

n∑
i=1

∫
X

∫
X
p(xi)p(xi)r(xi)[[s(xi) ≤ s(xi)]]dxi dxi

=
n2 − n
n2

∫
X
p(x) r(x)

(∫
X
p(z) [[s(x) ≤ s(z)]]dz

)
dx+

1

n

∫
X

∫
X
p2(x)r(x)dx dx .

(31)

Minimizers of Esele are characterized by the following theorem 9.

9.
∫
X

∫
z 6=x

s∗(z)=s∗(x)
f(x,z)dz dx stands for

∫
X

∫
X ′f(x,z)dz dx where X ′ = {z∈X |z 6=x ∧ s∗(z)=s∗(x)}, etc.

13
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Theorem 9 A function s∗ : X → R is an optimal solution to mins:X→REsele(s) iff∫
X

∫
z 6=x

s∗(z)=s∗(x)

max{r(x), r(z)}p(x)p(z)dz dx = 0 , and (32)∫
X

∫
r(z)<r(x)
s∗(z)>s∗(x)

(r(x)− r(z)) p(x)p(z)dz dx = 0 . (33)

The conditions (32) and (33) imply that the conditional expectations Ex,z∼p(x)[max{r(x), r(z)} |
z 6= x ∧ s∗(x) = s∗(z)] and Ex,z∼p(x)[r(x) − r(z) | r(z) < r(x) ∧ s∗(z) > s∗(x)] are both
zero. If combined, it further implies that a subset of the input space X ′ = {(x, z) ∈ X ×X |
r(z) < r(x) ∧ s∗(z) > s∗(x)}, on which the order is violated, has probability measure zero.
In other words, the optimal s∗(x) preserves the ordering induced by r(x) almost surely 10.

Corollary 10 Any function s : X → R fulfilling

∀(x, x′) ∈ X × X : x 6= x′ ⇒ s(x) 6= s(x′), and (34)

∀(x, x′) ∈ X × X : r(x) < r(x′)⇒ s(x) < s(x′) (35)

satisfies the optimality conditions of Theorem 9.

Note that (34) requires the minimizer of ∆sele to assign a unique value to each input x ∈ X
which is not necessary for the score to be proper. Hence, the minimizers of ∆sele form a
subset of all proper uncertainty scores.

To show the Fisher consistency of the smooth proxy ψsele we define its expectation with
respect to i.i.d. generated examples Tn, i.e.,

Eproxy(s) =

∫
Xn

∑
y∈Yn

n∏
i=1

p(xi, yi)ψsele(s, Tn) dx1 · · · dxn

=
n2 − n
n2

∫
X
p(x) r(x)

(∫
X
p(z) log

(
1 + exp(s(z)− s(x))

)
dz

)
dx

+
log(2)

n

∫
X
p(x) r(x)dx . (36)

We omitted the derivation as it is similar to (31). The key property of the minimizers of
Eproxy is stated in the following theorem.

Theorem 11 Let s∗ : X → R be an optimal solution to mins : X→REproxy(s). Then, the
condition

∀(x, x′) ∈ X × X : r(x) < r(x′)⇒ s∗(x) < s∗(x′)

is satisfied almost surely.

10. This means that the condition can be violated at most on a subset of X with probability measure zero.
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4. Related Works

The cost-based rejection model was proposed in Chow (1970) who also provides the optimal
strategy in case the distribution p(x, y) is known, analyzes the error-reject trade-off, and
proves the basic properties of the error-rate and the reject-rate, e.g., that both functions
are monotone with respect to the reject cost. The original paper considers the risk with
0/1-loss only. The model with arbitrary classification costs was analyzed, e.g., in Tortorella
(2000); Santos-Pereira and Pires (2005); Schlesinger and Hlaváč (2002).

The bounded-improvement model and the bounded-abstention model were coined in
Pietraszek (2005). He proposes a method to construct a specific class of rejection strategies
composed of two classifiers described by a single ROC curve. The task is to find the
optimal decision thresholds of the two classifiers, which is done numerically based on ROC
analysis. The original formulation assumes two classes and the particular form of the
rejection strategies. In this article, we consider a generalization of the bounded-improvement
model, see Problem 2, and the bounded-abstention model, see Problem 4, which allow for
an arbitrary number of classes (including structured output prediction) and do not impose
any constraint on the rejection strategy. We have proved that necessary and sufficient
conditions on an optimal strategy for both models in the case where p(x, y) is known. We
showed that in both cases, a particular optimal solution is composed of the Bayes classifier
and the randomized Bayes selection function.

There exist other formulations of rejection models for two-class classifiers. For example,
in Hanczar and Dougherty (2008) the objective is to maximize coverage under the con-
straints that each class has an error rate below a specific threshold. Hence, it can be seen
as a generalization of the bounded-improvement model. The objective of a rejection model
proposed in Lei (2014) is to maximize the total coverage under the constraint that each
class has coverage above a specific threshold. None of the two articles analyzes optimal
strategies of the corresponding models.

A common approach to construct selective classifiers for the cost-based model is based on
the plug-in rule, which involves learning the class posterior distribution from examples and
plugging the distribution into the formula defining the Bayes-optimal strategy (3). In the
case of 0/1-loss the plug-in rule rejects based on the maximal class posterior which is denoted
as Maximal Class Probability (MCP) rule (see Example 1). The MCP rule is probably the
most frequently used uncertainty score in the literature. The statistical consistency of the
plug-in rejection rule is discussed in Herbei and Wegkamp (2006). Fumera et al. (2000)
investigate how errors in estimation of the posterior distribution affect effectiveness of the
plug-in rule, and they also try to improve its performance by using class-specific thresholds.
Other methods to improve the plug-in rule by tuning multiple thresholds were proposed
in Kummert et al. (2016); Fischer et al. (2016). In our work, we have derived the optimal
strategies for the bounded-improvement model and the bounded-abstention model. Our
results thus provide a recipe to construct the plug-in rules also for these two rejection
models.

There exist many modifications of standard prediction models to learn reject option
classifiers for the cost-based model. For example, extensions of the Support Vector Machines
to learn a reject option classifier have been extensively studied in Grandvalet et al. (2008);
Bartlett and Wegkamp (2008); Yuan and Wegkamp (2010). These works are limited to
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two-class problems and 0/1-loss. Learning leads to minimization of a convex surrogate
of the cost-based model’s objective function. Under some conditions, the algorithms are
statistically consistent. A boosting algorithm is proposed in Cortes et al. (2016) to learn a
two-class classifier with reject option. The algorithm minimizes a convex surrogate for the
cost-based model and shows that the surrogate is calibrated with Bayes solution. Learning
prototype-based classifier with the rejection option has been addressed in Villman et al.
(2016). All these methods require the reject cost to be fixed at the time of learning, and
hence changing the cost requires re-training. In contrast, we propose algorithms to learn the
proper uncertainty score on top of a pre-trained classifier so that the risk-coverage trade-off
can be set by tuning the reject threshold without re-training.

For many prediction models, it is easy to devise an ordinal uncertainty score from
outputs of the learned (non-reject) classifier. Such strategies are often heuristically based
but work reasonably well in practice. For example, LeCun et al. (1990) proposed a reject
strategy for a Neural Network classifier based on thresholding either the output of the
maximally activated unit of the last layer or a difference between the maximal and runner-
up output units. Other heuristically based strategies for neural networks were evaluated
in Zaragoza and d’Alche Buc (1998); Fisher et al. (2015). In case of Support Vector Machine
classifiers (Vapnik, 1998) the trained linear score, proportional to the distance between the
input and the decision hyperplane, is directly used as the uncertainty score (Fumera and
Roli, 2002). We denote this approach as the margin score and use it as a baseline in our
experiments.

The learning of a selective classifier optimal for the bounded-improvement model was
discussed in El-Yaniv and Wiener (2010). Their method requires a noisy-free scenario, i.e.
they maximize the coverage under the constraint that the selective risk is zero. They provide
a characterization of the lower and upper bounds of the risk-coverage curves in the PAC
setting. Geifman and El-Yaniv (2017) assume a selective classifier based on thresholding an
uncertainty score and show how to find a decision threshold for the bounded-improvement
model which is optimal in the PAC sense. They do not address the problem of learning the
uncertainty score. We complement their work by showing that the threshold-based selective
classifier is an optimal solution when the uncertainty function is proper, and we propose
algorithms to learn the proper uncertainty score from examples.

Recent work addresses uncertainty prediction in the context of deep learning (Laksh-
minarayanan et al., 2017; Jiang et al., 2018; Corbiere et al., 2019). These works do not
formulate the problem to be solved explicitly as a rejection model. However, they empir-
ically evaluate their uncertainty scores in terms of the Risk-Coverage curve and the Area
under the RC curve which we have shown to be connected with the bounded-abstention
model (see Section 3.1). Lakshminarayanan et al. (2017) construct the MCP rule from a
posterior distribution modeled as an ensemble of neural networks trained from multiple
random initialization. They use adversarial examples to smooth out the posterior estimate.
Jiang et al. (2018) propose a Trust Score as the ratio between the distance from the test
sample to the samples of the nearest class with a different label and the distance to the
samples with the same labels as the predicted class. Corbiere et al. (2019) propose a True
Class Probability (TCP) score as a measure of prediction confidence. The TCP predicts
the value of p(y∗ | x) where y∗ is the ground truth label. They learn an NN, the so-called
ConfNet, by minimizing L2-loss between the ConfNet output and p̂(yi | x) on training ex-
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amples, where p̂(y | x) is the soft-max distribution trained by standard cross-entropy loss.
They show that the TCP empirically outperforms the MCP score and the Trust Score (Jiang
et al., 2018) in terms of the AuRC metric. Both Jiang et al. (2018); Corbiere et al. (2019)
consider the two-stage approach to learn the uncertainty score similarly to our paper. We
show empirically that our proposed SELE score, in addition to having a theoretical backing
and being applicable to a generic classification problem, outperforms the state-of-the-art
TCP score.

5. Experiments

In Section 3, we outlined two risk minimization based methods to learn the uncertainty
score s(x) for a pre-trained predictor h(x), namely, the algorithm based on i) loss regres-
sion (Section 3.3) and ii) minimization of SELE loss (Section 3.4). We have shown that
both methods are Fisher consistent, i.e., they are guaranteed to find the proper score in
the idealized setting when the distribution p(x, y) is known (estimation error is zero), the
hypothesis space F contains the proper score (approximation error is zero) and the loss
minimizer can be found exactly (optimization error is zero). In this section, we evaluate
these methods experimentally on real data when all assumptions are presumably violated.
We design the experiments so that the optimization and the estimation error are small by
using a large number of training examples and linear rules, making the loss minimization a
convex problem. We compare against the recently proposed True Class Probability (TCP)
score (Corbiere et al., 2019) which is learned from examples like the proposed methods.
Unlike the proposed methods, the TCP requires the prediction model h(x) to provide an
estimate of the posterior p(y | x), hence it is not applicable to fully discriminative models
like e.g. SVMs. We emphasize that the experiments are meant to be a proof of concept
rather than an exhaustive comparison of all existing methods. On the other hand, we are
not aware of any other generic method (i.e., being not connected to a particular prediction
model) we could compare with.

To demonstrate that the proposed methods are generic, we consider three different cate-
gories of prediction problems: classification, ordinal regression, and structured output clas-
sification. For each prediction problem, we use several benchmark datasets and frequently
used prediction models like Logistic Regression (LR), three variants of Support Vector Ma-
chines (SVMs), and Gradient Boosted Trees. For each prediction model, there exists an
uncertainty score that is commonly used in practice, like, e.g., Maximal Class Probability
(MCP) for logistic regression or distance to the decision hyper-plane (a.k.a. margin score)
for SVMs. We use these uncertainty scores as additional baselines in our experiments.

5.1 Compared methods for uncertainty score learning

In this section, we describe three algorithms that use a training set Tn = {(xi, yi) ∈ X ×Y |
i = 1, . . . , n} to learn an uncertainty score s(x) for a pre-trained classifier h(x). We consider
linear scores sθ(x) = 〈θ,ψ(x)〉, where θ ∈ Rd are parameters to be learned and ψ : X → Rd
is a fixed mapping that will be defined for each prediction model separately in the following
sections. All evaluated methods are instances of a regularized risk minimization frame-
work. In all cases, learning leads to an unconstrained minimization of a convex objective
F (θ) = C

2 ‖θ‖
2 + R̂(θ, Tn), where C > 0 is a regularization constant and R̂(θ, Tn) is an
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empirical risk defined by each method differently. The optimal value of C is selected from
{0, 1, 10, 100, 1000} based on the minimal value of the AuRC evaluated on a validation set.

5.1.1 Regression score

The parameters θ ∈ Rd are learned by minimizing a convex function

FREG(θ) =
C

2
‖θ‖2 +

1

n

n∑
i=1

(
`(yi, h(xi))− sθ(xi)

)2
.

Minimization of FREG(θ) is an instance of ridge regression that can be solved efficiently,
e.g., by Singular Value Decomposition (SVD).

5.1.2 SELE score

Evaluation of the proposed SELE loss ψsele(s, Tn) as defined by (30) requires O(n2) opera-
tions. To decrease the complexity, we approximate its value by splitting the examples into
chunks and computing the average loss over the chunks. Namely, the parameters θ ∈ Rd
are learned by minimizing a convex function

FSELE(θ) =
C

2
‖θ‖2 +

1

P

P∑
i=1

ψsele(s, T kn ) ,

where C > 0 is a regularization constant and T 1
n ∪ T 2

n ∪ · · · ∪ T Pn is a randomly generated
partition of the training set Tn into P approximately equally sized batches. In all exper-
iments, we used P = round(n/500), i.e., the chunks contain around 500 examples. We
minimize FSELE(θ) by the Bundle Method for Risk Minimization (BMRM) algorithm (Teo
et al., 2010) which is set to find a solution whose objective is at most 1% off the optimum 11.
The total computation time of the BMRM algorithm is in the order of units of minutes for
all datasets using a contemporary PC.

5.1.3 True Class Probability score

The TCP (Corbiere et al., 2019) was originally designed for getting uncertainty score on
top of a Convolution Neural Network (CNN) trained with cross-entropy loss. The setting
we consider here can be seen as the original method applied to a single layer CNN. Namely,
let p̂(y | x) be an estimate of the posterior distribution in our experiments provided by
the Logistic Regression (a.k.a. single layer NN). The parameters θ ∈ Rd are learned by
minimizing a convex function

FTCP(θ) =
C

2
‖θ‖2 +

1

n

n∑
i=1

(p̂(yi | xi)− sθ(xi))
2 .

Minimization of FREG(θ) is an instance of the ridge regression which we solve by SVD.

11. We use (Fprimal − Fdual)/Fprimal ≤ 0.01 as the stopping condition of the BMRM algorithm.
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5.2 Benchmark problems

5.2.1 Classification

Given real-valued features x ∈ X ⊆ Rd, the task is to predict a hidden state y ∈ Y =
{1, . . . , Y } so that the expectation of 0/1-loss `(y, y′) = 100 [[y 6= y′]] is as small as possi-
ble 12. We selected 11 classification problems from the UCI repository (Dua and Taniskidou,
2017) and libSVM datasets (Chang and Lin, 2011). The datasets are summarized in Ta-
ble 2. We chose the datasets with a sufficiently large number of examples relative to the
number of features, as we need to learn both the classifier and the uncertainty score and
simultaneously keep the estimation error low. Each dataset was randomly split 5 times
into 5 subsets, Trn1/Val1/Trn2/Val2/Tst, in ratio 30/10/30/10/20 (up to CODRNA with
ratio 25/5/20/20/30 and COVTYPE with ratio 28/20/2/20/30). The subsets Trn1/Val1
were used for learning and tuning the best regularization constant of the classifier h(x).
The subsets Trn2/Val2 were used for learning and tuning the regularization constant of the
uncertainty score s(x) as described in Section 5.1. All features were normalized to have
zero mean and unit variance. The normalization coefficients were estimated using only the
Trn1 and Trn2 subsets, respectively. The Tst subset was used solely to evaluate the test
performance.

We used two prediction models: Logistic Regression (LR) (Hastie et al., 2009) and
Support Vector Machines (SVM) (Vapnik, 1998).

Logistic Regression learns parameters θLR = ((wy, by) ∈ Rd × R | y ∈ Y) of the
posterior probabilities p̂θ(y | x) ≈ exp(〈wy,x〉 + by) by maximizing the regularized log-
likelihood FLR(θ) = C

2 ‖θ‖
2 + 1

n

∑n
i=1 log

(
p̂θ(yi |xi)

)
. The optimal C was selected from

{1, 10, 100, 1000} based on the validation classification error. After learning θLR we used
the plug-in Bayes classifier h(x) = argmaxy∈Y p̂θLR

(y | x). As a baseline uncertainty score
we use the plug-in class conditional risk r̂(x) = 1− p̂θLR

(h(x) |x). In accordance with the
literature we refer to this baseline as the Maximal Class Probability (MCP) rule. As shown
in Section 3.2, the MCP score is the proper uncertainty score provided the estimate p̂(y | x)
matches the true posterior p(y | x).

Support Vector Machines learn parameters θSVM = ((wy, by) ∈ Rd × R | y ∈ Y) of
the linear classifier h(x) = argmaxy∈Y(〈wy,x〉 + by) by minimizing FSVM(θ) = C

2 ‖θ‖
2 +

1
n

∑n
i=1 maxy∈Y

(
[[y 6= yi]]+ 〈wy−wyi ,xi〉

)
. The optimal C was selected in the same way as

in case of the LR. As the baseline uncertainty measure we use s(x) = maxy∈Y〈wy,x〉+by. In
the binary case |Y| = 2, the setting was θSVM = (w, b), h(x) = sgn(〈w,x〉+ b), FSVM(θ) =
C
2 ‖θ‖

2 + 1
n

∑n
i=1 max{0, 1 − yi(〈w,xi〉 + b)} and s(x) = |〈w,x〉 + b|. In both cases, the

value of s(x) is proportional to a distance between the input x and the decision boundary.
We denote this baseline as the margin score.

Given the pre-trained LR or SVM classifier h(x), we apply the methods from Section 5.1
to learn the uncertainty score

sθ(x) = 〈wh(x),x〉+ by , (37)

where θ = ((wy, by) ∈ Rd × R | y ∈ Y) are the parameters to be learned. It is seen that
the rule (37) can be re-written as sθ(x) = 〈θ,ψ(x)〉, where ψ : X → Rd is an appropriately

12. Due to the factor 100 the reported errors correspond to the percentage of misclassified examples.
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defined feature map. The form of the score (37) can be justified by noting that its special
instance is the margin score which is obtained after substituting θSVM for θ.

5.2.2 Ordinal regression

The task is to predict a hidden state from Y = {1, . . . , Y } based on real-valued features
X ⊆ Rd. Unlike the classification problem, the hidden states Y are assumed to be ordered
and the goal is to minimize the expectation of the Mean Absolute Error `(y, y′) = |y − y′|.
We selected 11 regression problems from UCI repository (Dua and Taniskidou, 2017). The
datasets are summarized in Table 2. The real-valued hidden states were discretized into Y
bins, which are constructed to get a uniform class prior. Each dataset was randomly split
5 times into 5 subsets, Trn1/Val1/Trn2/Val2/Tst, in ratio 30/10/30/10/20. We used the
same normalization and evaluation protocol as described for the classification benchmarks.

As a prediction model, we used a variant of the Support Vector Machine algorithm
developed for ordinal regression (Chu and Keerthi, 2005) 13.

Support Vector Ordinal Regression (SVOR) learns parameters θSVOR = (w ∈
Rd, (b1, . . . , bY−1) ∈ RY−1) of the ordinal linear classifier h(x) = 1 +

∑Y−1
y=1 [[〈x,w〉 > by]] by

minimizing FSVOR(θ) = C
2 ‖θ‖

2+ 1
n

∑n
i=1

(∑yi−1
y=1 max(0, 1−〈w,xi〉+by)+

∑Y−1
y=yi

max(0, 1+

〈xi,w〉 − by)
)
. The optimal C was selected from {1, 10, 100, 1000} based on the valida-

tion MAE. The ordinal classifier can be thought of as a standard linear classifier com-
posed of parallel decision hyper-planes. Similarly to the standard SVM, we use s(x) =
miny∈{1,...,Y−1} |〈x,w〉 − by| as a baseline uncertainty score. The value of s(x) is propor-
tional to the distance of x to the closest hyper-plane hence we also denote it as the margin
score. When learning the uncertainty from examples, we use the parametrization (37).

5.2.3 Structured Output Classification

Given an RGB image x ∈ X = {0, . . . , 255}W×H×3 capturing a human face, the task is to
predict a pixel positions of 68 landmarks y = (l1, . . . , l68) ∈ Y = ({1, . . . ,W}×{1, . . . ,H})68
corresponding to contours of eyes, mouth, nose, etc. We use the 300-W dataset and the
associated evaluation protocol which was created by the organizers of landmark detection
challenge (Sagonas et al., 2016). The 300-W dataset contains 5,807 faces each annotated
with 68 landmarks. The faces are split into 3,484 training, 1,161 validation and 1,162 test
examples. The prediction accuracy is measured in terms of normalized average localization
error `(y, ŷ) = 100

iod(y)

∑68
i=1 ‖li − l̂i‖, where iod(y) is the inter-ocular distance computed

from the ground-truth landmark positions y.

As the structured classifier h(x) we use the landmark detector from DLIB package (King,
2009). The detector predicts the landmark positions based on HOG descriptors (Dalal and
Triggs, 2005) of the input image using an ensemble of regression trees that are trained by
gradient boosting (Kazemi and Sullivan, 2014). The DLIB landmark detector has been
widely used by developers due to its robustness and exceptional speed even on low-end
hardware. The detector does not provide any measure of prediction uncertainty and it is
unclear how to derive it from outputs of the regression trees. A commonly used uncertainty

13. (Chu and Keerthi, 2005) introduced two variants of SVOR algorithm. We use so called SVOR with
implicit constraints which is designed for minimization of the MAE loss.
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score for face recognition related prediction problems is a score function of a face detector.
The face detector score is the output of a binary classifier trained to distinguish a face from
non-face images. The value of the score is high for well-looking prototypical faces and low
for corrupted or “difficult” faces. As a baseline, we use the score of the DLIB face detector
which is a linear SVM classifier on top of HOG descriptors extracted from the image.

When learning the uncertainty score from examples, the score is a linear regressor
sθ(x) = 〈θ,ψ(x)〉 on top of a feature vector ψ(x) ∈ R2,448 which is a concatenation of
HOG descriptors extracted from the input facial image x along landmark positions pre-
dicted by the landmark detector h(x). The DLIB detector uses the same features to predict
the landmark positions, hence the extra computational time required to evaluate the un-
certainty score is neglectable.

Classification problems

dataset examples feat cls

AVILA 20,867 10 12
CODRNA 331,152 8 2
COVTYPE 581,012 54 7
IJCNN 49,990 22 2
LETTER 20,000 16 26
MARKETING 45,211 51 2
PENDIGIT 10,992 16 10
PHISHING 11,055 68 2
SATTELITE 6,435 36 6
SENSORLESS 58,509 48 11
SHUTTLE 58,000 9 7

Ordinal regression problems

dataset examples feat cls

ABALONE 4,177 10 19
BANK 8,192 32 10
BIKESHARE 17,379 11 10
CALIFORNIA 20,640 8 10
CCPP 9568 4 10
CPU 8192 21 10
FACEBOOK 50,993 53 10
GPU 24,1600 14 10
METRO 48,204 30 10
MSD 499,671 90 41
SUPERCOND 21,263 81 10

Table 2: Summary of 11 classification problems (left) and 11 ordinal regression problems
(right) selected from UCI repository (Dua and Taniskidou, 2017) and libSVM
datasets (Chang and Lin, 2011). The table shows the total number of examples,
the number of features and the number of classes.

5.3 Results

5.3.1 Classification problems

For both classification models, LR and SVM, we recorded the test risk of the classifier
h(x) and the AuRC computed from h(x) and uncertainty score s(x) produced by the cor-
responding method under evaluation. In the case of LR, we compare the baseline MCP
score (sec 5.2.1) and scores learned from examples including the state-of-the-art TCP
score (sec 5.1.3) and the two proposed SELE score (sec 5.1.2) and Regression (REG) score
(sec 5.1.1). In the case of SVM, we compare the baseline margin score (sec 5.2.1) against the
proposed SELE and REG scores. Note that TCP score is not applicable for SVM classifier
as it does not provide an estimate of the posterior probability p(y | x). The results are
summarized in Table 3.
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For each dataset, we rank the compared methods according to the AuRC 14. Following
the methodology of Demšar (2006) we summarize the performance of each method by its av-
erage rank and use the Friedman test and the post-hoc Nemenyi test to analyze significance
of the results.

• We used the Friedman test to check whether the measured average ranks are signif-
icantly different from the mean rank. The null hypothesis states that the compared
scores are equivalent so that their average ranks should be equal. In both cases, the
null hypothesis is rejected for p-value 0.05, i.e., performance of the compared methods
is significantly different.

• We used post-hoc Nemenyi test for pairwise comparison. For each pair of methods, it
checks whether their average ranks are significantly different. In the case of LR, when
we compare K = 4 methods using N = 11 datasets, the critical difference for p-value
0.10 is CD = 1.26. By comparing the average ranks, we conclude that SELE score
performs significantly better than MCP score and REG score. In the case of SVM,
when we compare K = 3 methods using N = 11 dataset, the critical difference for
p-value 0.10 is CD = 0.98. We conclude that SELE performs significantly better than
REG score and Margin score. The data is not sufficient to reach any conclusion about
other pairwise comparisons. The result of the Nemenyi test is visualized in Figure 1.

We further computed the relative improvement gained by using the scores SELE, TCP,
and REG, that are all learned from examples, with respect to the baseline scores derived
from the classifier output, i.e. MCP in the case of LR and Margin score in the case of SVM.
The results are summarized in Figure 2. It is seen that the MCP uncertainty computed
from the estimated p(y | x) constitutes a much stronger baseline than the Margin score
of the fully discriminative SVM model. The relative improvement of scores learned on
top of the LR is only moderate in contrast to the SVM classifier where the improvements
are more significant and consistent. It is also seen that on the majority of datasest, the
performance of the learned scores is similar taking into account the statistical error of the
AuRC estimate. It is also worth mentioning that the results of SELE score have the lowest
variance of the AuRC estimates as seen from the error bars in Figure 2.

CD

1234

LR+SELE
LR+TCP

LR+REG
LR+MCP

123

CD

SVM+SELESVM+Margin
SVM+REG

a) Average ranks for scores on top LR. b) Average ranks for scores on top of SVM.

Figure 1: Comparison of all uncertainty scores against each other with the Nemenyi test.
The test is computed separately for the LR classifier (4 scores compared) and the
SVM classifier (3 scores compared). The figures show the average ranks for each
score and the critical distance (CD). Groups of scores that are not significantly
different at p-value 0.10 are connected.

14. The score with smallest AuRC is ranked 1, the second smallest 2 and so on.

22



Optimal Strategies for Reject Option Classifiers

LR+MCP LR+SELE LR+REG LR+TCP LR
AuRC AuRC AuRC AuRC R@100

AVILA 27.18±0.55 25.79±0.44 26.62±0.74 26.85±0.78 43.71±0.42
CODRNA 0.88±0.05 0.65±0.03 0.82±0.06 0.78±0.04 4.81±0.08

COVTYPE 16.49±0.06 17.58±0.07 17.62±0.09 17.19±0.07 27.56±0.17
IJCNN 1.26±0.04 1.00±0.03 1.16±0.08 1.14±0.06 7.54±0.15

LETTER 7.43±0.40 6.42±0.34 7.44±0.59 6.71±0.42 23.32±0.60
MARKETING 2.60±0.31 1.88±0.11 1.97±0.12 1.90±0.11 9.88±0.29

PENDIGIT 0.69±0.04 1.55±0.19 1.97±0.55 1.47±0.39 5.29±0.40
PHISHING 0.76±0.10 0.75±0.10 0.91±0.31 0.85±0.25 6.29±0.44

SATTELITE 3.83±0.26 3.68±0.27 4.93±1.07 4.52±0.85 15.06±0.46
SENSORLESS 2.03±0.11 1.82±0.08 2.69±0.09 2.37±0.22 8.23±0.45

SHUTTLE 0.59±0.09 0.26±0.07 1.24±0.51 0.58±0.13 3.36±0.25

average rank 2.73 1.36 3.55 2.36
(a) Uncertainty scores on top of LR classifier.

SVM+MARGIN SVM+SELE SVM+REG SVM
AuRC AuRC AuRC R@100

AVILA 31.65±0.83 25.26±0.67 25.95±0.75 43.34±0.70
CODRNA 0.89±0.05 0.65±0.03 0.82±0.05 4.78±0.08

COVTYPE 25.71±0.81 17.79±0.21 17.77±0.14 27.41±0.11
IJCNN 1.40±0.04 1.01±0.04 1.18±0.08 7.56±0.16

LETTER 10.20±0.22 6.05±0.65 7.15±0.65 22.06±0.69
MARKETING 2.24±0.20 1.97±0.10 2.04±0.20 10.48±0.39

PENDIGIT 2.79±0.40 1.57±0.21 2.16±0.43 4.88±0.57
PHISHING 0.84±0.12 0.72±0.12 0.90±0.30 6.37±0.44

SATTELITE 4.75±0.60 3.82±0.27 5.44±0.68 15.36±0.37
SENSORLESS 3.68±0.20 1.56±0.08 2.46±0.29 6.92±0.17

SHUTTLE 1.31±0.47 0.24±0.07 0.55±0.15 2.02±0.15

average rank 2.82 1.09 2.09
(b) Uncertainty scores on top of SVM classifier.

Table 3: Performance of the uncertainty scores on 11 classification problems. The scores
are constructed on top of the LR classifier and the SVM classifier measured in
terms of AuRC. For each score we show the mean and the standard deviation of
the test AuRC computed over 5 random splits. We compare the performance of
scores learned from examples (SEL, REG, TCP) and the baseline scores derived
from the classifiers output (MCP and Margin score). The last column shows the
risk of the base (non-selective) classifier. All the values correspond to percentage
of misclassification. The best results for each dataset are shown in bold. The last
row shows the average rank.
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(a) Improvement over LR+MCP score. (b) Improvement over SVM+Margin score.

A
V

IL
A

C
O

D
R

N
A

C
O

V
T

Y
P

E

IJ
C

N
N

L
E

T
T

E
R

M
A

R
K

E
T

IN
G

P
E

N
D

IG
IT

P
H

IS
H

IN
G

S
A

T
T

E
L
IT

E

S
E

N
S

O
R

L
E

S
S

S
H

U
T

T
L
E

-300

-200

-100

0

100

im
p
ro

v
e
m

e
n
t 
[%

]

LR+SELE

LR+REG

LR+TCP

A
V

IL
A

C
O

D
R

N
A

C
O

V
T

Y
P

E

IJ
C

N
N

L
E

T
T

E
R

M
A

R
K

E
T

IN
G

P
E

N
D

IG
IT

P
H

IS
H

IN
G

S
A

T
T

E
L

IT
E

S
E

N
S

O
R

L
E

S
S

S
H

U
T

T
L

E

-50

0

50

100

im
p

ro
v
e

m
e

n
t 

[%
]

SVM+SELE

SVM+REG

Figure 2: Relative improvement gained by using the uncertainty scores (SELE, REG and
TCP) that are learned from examples over the baseline scores (MCP for LR
and Margin score for SVM) constructed from the classifier output. The relative
improvement is computed as 100×(AuRCbaseline−AuRCmethod)/AuRCbaseline. We
show the mean and the standard deviation (error bar) of the relative improvement
computed over the random 5 splits.

5.3.2 Ordinal regression

In the case of SVOR classifier, we compared the baseline Margin score (sec 5.2.2) and the
scores learned from examples including SELE (sec 5.1.2) and REG score (sec 5.1.1). We
used the same evaluation protocol as for the classification task, however, instead of 0/1-loss,
the errors were evaluated by the MAE loss. The results are summarized in Table 4.

We again ranked the methods according to the AuRC and summarized their performance
by the average rank:

• We applied the Friedman test checking whether the measured average ranks are signif-
icantly different from the mean rank. The null hypothesis, stating that the compared
scores are equivalent, is rejected for p-value 0.05, i.e., performance of the compared
methods is significantly different.

• We used post-hoc Nemenyi test to check for each pair whether their average ranks are
significantly different. Considering K = 3 compared methods using N = 11 dataset
yields the critical difference for p-value 0.10 is CD = 0.98. We conclude that SELE
and REG scores are significantly better than the baseline Margin score. The data is
not sufficient to reach any conclusion about the comparison of SELE and REG. The
result of the Nemenyi test is visualized in Figure 3(a).

The relative improvement gained by using SELE and REG scores learned from examples
w.r.t. baseline Margin score is shown in Figure 3(b). It is seen that the performance of the
learned scores is similar and that they consistently outperform the baseline by a significant
margin.

24



Optimal Strategies for Reject Option Classifiers

SVOR+MARGIN SVOR+SELE SVOR+REG SVOR
AuRC AuRC AuRC R@100

CALIFORNIA 0.98±0.03 0.82±0.02 0.84±0.02 1.18±0.01
ABALONE 1.48±0.10 1.19±0.09 1.21±0.05 1.54±0.02

BANK 1.07±0.04 0.99±0.04 0.98±0.03 1.50±0.03
CPU 0.41±0.01 0.36±0.02 0.36±0.02 0.64±0.03

BIKESHARE 1.60±0.07 1.25±0.01 1.27±0.01 1.70±0.03
CCPP 0.46±0.02 0.41±0.02 0.42±0.02 0.58±0.02

FACEBOOK 0.51±0.01 0.37±0.01 0.36±0.01 1.11±0.01
GPU 1.43±0.02 0.85±0.03 0.86±0.03 1.49±0.02

METRO 2.20±0.07 1.97±0.01 1.98±0.03 2.37±0.03
MSD 6.23±0.07 4.26±0.03 4.25±0.03 6.22±0.03

SUPERCONDUCT 0.98±0.02 0.75±0.01 0.77±0.01 1.07±0.01

average rank 3.00 1.27 1.73

Table 4: Performance of the uncertainty scores on 11 ordinal regression problems. The
scores are constructed on top of the SVOR classifier. For each score we show the
mean and the standard deviation of the test AuRC computed over 5 random splits.
We compare the performance of scores learned from examples (SEL, REG) and the
baseline Margin score derived from the SVOR classifier output. The last column
shows the risk of the base (non-selective) classifier. All the values correspond to
the Mean Absolute Error (MAE). The best results for each dataset are shown in
bold. The last row shows the average rank.

5.3.3 Structured Output Classification

We trained SELE score (sec 5.1.2) and REG score (sec 5.1.1) on top of the DLIB detector
and compared them with the baseline which uses the DLIB face detector score (sec 5.2.3)
as an uncertainty measure. The Risk-Coverage curves of the three methods and their
corresponding AuRC are shown in Figure 4(a). Both the learned scores, SELE and REG,
are significantly better than the baseline face detector score. The SELE is slightly better
than REG score. The largest differences between the three scores are seen for low values
of coverage where SELE outperforms the other two methods. High selective risk for low
values of coverage means that faces with very bad landmark predictions are assigned the
lowest uncertainty scores. SELE score does not suffer from this problem. This can be seen
in Figure 5 where we show examples of the 10 test faces with the lowest uncertainty and
the highest uncertainty predicted by SELE.

Unlike the experiments in the previous section, the number of parameters to be learned
(m = 2, 448) relative to the number of training examples (n = 3, 484) is much higher. To
see whether the number of examples is sufficient, we trained SELE and REG scores on an
increasingly bigger training set. Figure 4(b) shows the test AuRC as a function of the the
number of training examples. It is seen that AuRC of the SELE is not yet saturated and
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a) Average rank for scores on top of SVOR. b) Relative improvement over
SVOR+Margin score.
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Figure 3: Statistics derived from results obtained on 11 ordinal regression problems. Fig-
ure (a) shows pair-wise comparison of uncertainty scores with the Nemenyi test.
The figure shows the average ranks for each score and the critical distance (CD).
Groups of scores that are not significantly different at p-value 0.10 are connected.
Figure (b) shows relative improvement gained by using the SELE and REG un-
certainty scores learned from examples over the baseline Margin score.

would most likely converge to a significantly lower value relative to the REG score provided
300-W dataset had more training examples.

6. Conclusions

The standard cost-based rejection model introduced by Chow (1970) requires an explicit
definition of the rejection cost, which is difficult in applications when the reject cost and
the loss of the label have a different nature or physical units. Pietraszek (2005) proposed a
bounded-improvement model and a bounded-abstention model which avoid the problem by
defining an optimal prediction strategy in terms of coverage and selective risk. Our main
result is a formal proof that despite their different objectives, the three rejection models are
equivalent in the sense that they lead to the same prediction strategy: the Bayes classifier
and the randomized Bayes selection function. Thanks to the common optimal solution, it
is possible to convert the parameters of different rejection models. For example, for any
target risk defining the bounded-improvement model, there exists a corresponding reject
cost so that both models have the same optimal strategy.

The explicit characterization of the optimal strategies provides a recipe for building
plug-in rules to solve bounded-improvement and bounded-abstention models. Any method
estimating the class posterior probabilities can be thus turned into an algorithm for learning
the selective classifier that solves the bounded-improvement and the bounded-abstention
model.

We have defined a notion of a proper uncertainty score which is sufficient to construct
the randomized Bayes selection function. We proposed two algorithms to learn a proper
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(a) Risk-Coverage curve (b) Learning curve
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Figure 4: Evaluation of uncertainty scores on top of DLIB landmark detector using the
300-W benchmark. Figure (a) shows the RC curve and AuRC of computed from
the predictions of DLIB detector endowed with the three compared uncertainty
scores: the proposed SELE and REG scores and the DLIB face detector score
used as a baseline. Figure (b) shows the test AuRC for SELE and REG scores
as a function of the number of training examples.

uncertainty score from examples for a given classifier. We have shown that both algorithms
provide a Fisher-consistent estimate of the proper uncertainty score. As a proof of concept,
we evaluated the proposed algorithms on different types of prediction problems. We have
shown that the proposed algorithm based on minimization of the SELE loss outperforms
existing approaches tailored for a particular prediction model and works on a par with
the recently published state-of-the-art TCP score (Corbiere et al., 2019). Unlike the TCP
score, which requires the classifier to output the class posterior probabilities, the proposed
algorithms are applicable to an arbitrary black-box classifier.

We have drawn a connection between the proposed bounded-abstention model and the
RC curve. Namely, the RC curve represents the quality of all admissible solutions of the
bounded-abstention model that can be constructed from a pair of classifier and uncertainty
score. The AuRC is then the expected quality of the selective classifier constructed from
the pair when the target coverage is selected uniformly at random. This connection sheds
light on many published methods which do not explicitly define the target objective but
use the RC curve and the AuRC as evaluation metrics.

Finally, let us mention some topics for future work. First, the proposed algorithms
consider a two-stage scenario in which the classifier and the uncertainty score are learned
separately from independent training sets. Although the scenario is useful in practice, an
algorithm that learns the classifier and the uncertainty score simultaneously from a single
training set constitutes an interesting topic to be solved. Secondly, we have shown how
to learn the proper uncertainty score, but have not discussed how to set up the decision
threshold and the acceptance probability that are also needed to construct the selective
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classifier. It is straightforward to tune these parameters using empirical data and the RC
curve. Analysis of the generalization error of this empirical approach is an open issue
which has been solved only for the decision threshold of the bounded-improvement model
by Geifman and El-Yaniv (2017). Thirdly, the empirical evaluation is limited to uncertainty
scores linear in the parameters to be learned. Efficient implementations of the algorithms
applicable to non-linear models, like e.g. the neural networks, is an another topic left
for future. Forth, we use Fisher consistency to justify the proposed SELE loss. Deriving
efficient finite sample guarantees constitutes another interesting open problem.
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1: loss=0.02 6: loss=0.03 1153: loss=0.53 1158: loss=0.25

2: loss=0.02 7: loss=0.02 1154: loss=0.71 1159: loss=0.82

3: loss=0.02 8: loss=0.03 1155: loss=0.32 1160: loss=0.30

4: loss=0.02 9: loss=0.02 1156: loss=0.49 1161: loss=0.46

5: loss=0.03 10: loss=0.02 1157: loss=0.43 1162: loss=0.37

Figure 5: Figure shows examples of 10 test faces from 300-W database with the lowest and
10 faces with the highest value of the SELE uncertainty score. The ground-truth
landmark positions (red) and the landmark positions predicted by DLIB detector
(blue) are superimposed into the image. The image title shows the rank induced
by the SELE score and the normalized localization error which is used as the
classification loss in this application.
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Appendix A. Proofs of theorems from Section 2

A.1 Proof of Theorem 1

The Bayes classifier reads

hB(x) ∈ argmin
ŷ∈Y

∑
y∈Y

p(y | x) `(y, ŷ) (3)

Problem 2 (Bounded-improvement model) Given a target risk λ > 0, the optimal
selective classifier (hI , cI) is a solution to the problem

max
h,c

φ(c) s.t. RS(h, c) ≤ λ , (7)

where we assume that both maximizers exist.

Theorem 1 Let (h, c) be an optimal solution to (7). Then, (hB, c), where hB is the Bayes
classifier (3), is also optimal to (7).

Proof It is sufficient to show that (hB, c) is feasible to (7), i.e., that RS(hB, c) ≤ λ. Then
(hB, c) attains the same maximum objective value φ(c) as (h, c). Derive

RS(hB, c) =
1

φ(c)

∫
X

∑
y∈Y

p(x, y) `(y, hB(x)) c(x) dx

=
1

φ(c)

∫
X

p(x)c(x)

∑
y∈Y

p(y |x) `(y, hB(x))

 dx

(3)

≤ 1

φ(c)

∫
X

p(x)c(x)

∑
y∈Y

p(y |x) `(y, h(x))

 dx

=
1

φ(c)

∫
X

∑
y∈Y

p(x, y) `(y, h(x)) c(x) dx

= RS(h, c) ≤ λ.

A.2 Proof of Theorem 2

The presented proof of the theorem uses Lemmas 13 and 14, both derived based on Lemma 12
bellow.

Lemma 12 For a set X , let f : X → R+
15 and g : X → R be measurable functions such

that
∫
X f(x)dx > 0 and g(x) > 0 for all x ∈ X . Then it holds

∫
X g(x)f(x)dx > 0.

15. We use R, R+ and N+ to denote the set of real numbers, non-negative real numbers and positive integers,
respectively.
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Proof For n ∈ N+, define functions

fn(x) =

{
f(x) if g(x) ≥ 1

n ,
0 otherwise.

The sequence {fn}∞n=1 is monotone and converges to f . Using the monotone convergence
theorem (Stein and Shakarchi, 2009), derive

0 <

∫
X

f(x)dx =

∫
X

lim
n→∞

fn(x)dx = lim
n→∞

∫
X

fn(x)dx .

This means that there is a k ∈ N+ such that
∫
X fk(x)dx > 0, hence we conclude∫

X

g(x)f(x)dx ≥
∫
X

g(x)fk(x)dx ≥
∫
X

1

k
fk(x)dx > 0.

Lemma 13 For a set X , let f : X → R+ and g : X → R be measurable functions such that∫
X f(x)dx > 0 and g(x) > b for all x ∈ X and some b ∈ R. Then it holds

∫
X g(x)f(x)dx >

b
∫
X f(x)dx.

Proof By Lemma 12, we have ∫
X

(g(x)− b)f(x)dx > 0,

thus ∫
X

g(x)f(x)dx =

∫
X

(g(x)− b)f(x)dx+

∫
X

bf(x)dx > b

∫
X

f(x)dx.

Lemma 14 For a set X , let f : X → R+ and g : X → R be measurable functions such that∫
X g(x)f(x)dx > 0 and g(x) < 1 for all x ∈ X . Then it holds

∫
X f(x)dx >

∫
X g(x)f(x)dx.

Proof
∫
X g(x)f(x)dx > 0 implies

∫
X f(x)dx > 0. Since it holds ∀x ∈ X : (1 − g(x)) > 0,

Lemma 12 yields

0 <

∫
X

(1− g(x))f(x)dx =

∫
X

f(x)dx−
∫
X

g(x)f(x)dx,

and
∫
X f(x)dx >

∫
X g(x)f(x)dx is obtained as a direct consequence.
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Problem 3 (Bounded-improvement model for known h(x)) Given a classifier h(x),
the optimal selection function c∗(x) is a solution to

max
c∈[0,1]X

φ(c) s.t. RS(h, c) ≤ λ . (8)

Theorem 2 A selection function c∗ : X → [0, 1] is an optimal solution to Problem 3 if and
only if it holds ∫

Xr(x)<b
p(x)c∗(x)dx =

∫
Xr(x)<b

p(x)dx, (10)

∫
Xr(x)=b

p(x)c∗(x)dx =

{
−ρ(Xr(x)<b)

b if b > 0 ,∫
Xr(x)=0

p(x)dx if b = 0 ,
(11)∫

Xr(x)>b
p(x)c∗(x)dx = 0 , (12)

where r(x) = r(x) − λ measures how much the conditional risk r(x) of the classifier h(x)
exceeds the target λ,

ρ(X ′) =

∫
X ′
p(x)r(x) dx (13)

is the expectation of r(x) restricted to inputs in X ′, and

b = sup {a | ρ(Xr(x)≤a) ≤ 0} ≥ 0 . (14)

Proof Observe that b ≥ 0, because ρ(Xr(x)≤0) ≤ 0. Next, observe that Problem 3 can be
rewritten into the form

max
c∈[0,1]X

∫
X
p(x)c(x)dx s.t.

∫
X
p(x)c(x)r(x)dx ≤ 0 (38)

since

RS(h, c)− λ =

∫
X

∑
y∈Y

p(x, y) `(y, h(x)) c(x) dx− λφ(c)

φ(c)
(39)

=

∫
X
p(x)c(x)r(x) dx− λ

∫
X
p(x)c(x)

φ(c)
=

∫
X
p(x)c(x)r(x) dx

φ(c)
. (40)

Let F (c) = φ(c) =
∫
X p(x)c(x)dx denote the objective function of (38).

Case 1 b > 0.
Claim I Each c∗ : X → [0, 1] which fulfils (10), (11) and (12) is feasible to (38) and

F (c∗) =

∫
Xr(x)<b

p(x)dx− 1

b
ρ(Xr(x)<b). (41)

Proof of Claim I.
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Equality (41) is simply obtained by summing LHS and RHS of (10), (11) and (12). To
verify the constraint of (38), observe that, since r is a bounded function and∫

Xr(x)<b
p(x)(c∗(x)− 1)dx

(10)
= 0 , (42)

it holds that ∫
Xr(x)<b

p(x)(c∗(x)− 1)r(x)dx = 0 , (43)

which implies ∫
Xr(x)<b

p(x)c∗(x)r(x)dx =

∫
Xr(x)<b

p(x)r(x)dx
(13)
= ρ(Xr(x)<b). (44)

If b <∞, then∫
X

p(x)c∗(x)r(x)dx
(12)
=

∫
Xr(x)<b

p(x)c∗(x)r(x)dx+

∫
Xr(x)=b

p(x)c∗(x)r(x)dx

(44)
=

∫
Xr(x)<b

p(x)r(x)dx+ b

∫
Xr(x)=b

p(x)c∗(x)dx (45)

(11),(13),(44)
= ρ(Xr(x)<b)− ρ(Xr(x)<b) = 0. (46)

If b =∞, then∫
X

p(x)c∗(x)r(x)dx =

∫
Xr(x)<b

p(x)c∗(x)r(x)dx
(44)
= ρ(Xr(x)<b) ≤ 0.

Claim II Let c : X → [0, 1] be a feasible solution to (38) that violates at least one of the
constraints (10), (11) and (12). Then, F (c) < F (c∗), where c∗ : X → [0, 1] is a confidence
function satisfying (10), (11), (12), and, without loss of generality,

∀x ∈ Xr(x)<b : c∗(x) = 1 . (47)

Proof of Claim II.
Distinguish three cases.

Case 1.1 Condition (12) is violated (note that this is possible only if b <∞), i.e.∫
Xr(x)>b

p(x)c(x)dx > 0. (48)

Inequality (48) and Lemma 13 (applied to f(x) = p(x)c(x) and g(x) = r(x)) yield∫
Xr(x)>b

p(x)c(x)r(x)dx > b

∫
Xr(x)>b

p(x)c(x)dx.

33



Franc, Prusa and Voracek

Therefore, we can write ∫
Xr(x)>b

p(x)c(x)r(x)dx = b′
∫

Xr(x)>b

p(x)c(x)dx (49)

for a suitable b′ ∈ R+ such that
b′ > b > 0. (50)

Based on the constraint of (38), derive∫
X

p(x)c(x)r(x)dx
(49)
=

∫
Xr(x)<b

p(x)c(x)r(x)dx+ b

∫
Xr(x)=b

p(x)c(x)dx+ b′
∫

Xr(x)>b

p(x)c(x)dx

(38)

≤ 0
(46)
=

∫
Xr(x)<b

p(x)c∗(x)r(x)dx+ b

∫
Xr(x)=b

p(x)c∗(x)dx. (51)

Let σ(x) = 1
b r(x). Inequality (51) can be rearranged and upper bounded as∫

Xr(x)=b

p(x)c(x)dx−
∫

Xr(x)=b

p(x)c∗(x)dx+
b′

b

∫
Xr(x)>b

p(x)c(x)dx (52)

(51)

≤
∫

Xr(x)<b

p(x)(c∗(x)− c(x))σ(x)dx ≤
∫

Xr(x)<b

p(x)c∗(x)dx−
∫

Xr(x)<b

p(x)c(x)dx

where the second inequality follows from ∀x ∈ Xr(x)<b : σ(x) ≤ 1. From this we get∫
Xr(x)≤b

p(x)c(x)dx
(52)

≤
∫

Xr(x)≤b

p(x)c∗(x)dx− b′

b

∫
Xr(x)>b

p(x)c(x)dx . (53)

Now, derive

F (c) =

∫
Xr(x)≤b

p(x)c(x)dx+

∫
Xr(x)>b

p(x)c(x)dx

(53)

≤
∫

Xr(x)≤b

p(x)c∗(x)dx−
(
b′

b
− 1

) ∫
Xr(x)>b

p(x)c(x)dx

(48),(50)
<

∫
Xr(x)≤b

p(x)c∗(x)dx = F (c∗).

Case 1.2 Condition (12) holds, condition (11) is violated.

If
∫
Xr(x)=b

p(x)c(x)dx < −ρ(Xr(x)<b)
b , then obviously F (c) < F (c∗). Hence, assume∫

Xr(x)=b

p(x)c(x)dx > −
ρ(Xr(x)<b)

b
. (54)
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Analogically to (51), derive∫
Xr(x)<b

p(x)c(x)r(x)dx+ b

∫
Xr(x)=b

p(x)c(x)dx
(38)

≤ 0 (55)

(46)
=

∫
Xr(x)<b

p(x)c∗(x)r(x)dx+ b

∫
Xr(x)=b

p(x)c∗(x)dx, (56)

and∫
Xr(x)<b

p(x)c(x)σ(x)dx+

∫
Xr(x)=b

p(x)c(x)dx ≤
∫

Xr(x)<b

p(x)c∗(x)σ(x)dx+

∫
Xr(x)=b

p(x)c∗(x)dx

(57)
where σ(x) = 1

b r(x) < 1 for all x ∈ Xr(x)<b.
Denote and derive

∆ =

∫
Xr(x)=b

p(x)c(x)dx−
∫

Xr(x)=b

p(x)c∗(x)dx
(11)
=

∫
Xr(x)=b

p(x)c(x)dx+
ρ(Xr(x)<b)

b

(54)
> 0. (58)

Then, (57) can be rewritten as∫
Xr(x)<b

p(x)(c∗(x)− c(x))σ(x)dx ≥ ∆
(58)
> 0. (59)

Inequality (59) and Lemma 14 (applied to g(x) = σ(x) < 1 and f(x) = p(x)(c∗(x)−c(x))
(47)

≥
0 over Xr(x)<b) yield ∫

Xr(x)<b

p(x)(c∗(x)− c(x))dx > ∆. (60)

Now, combine and rearrange (58) and (60) to obtain

F (c∗) =

∫
Xr(x)<b

p(x)c∗(x)dx+

∫
Xr(x)=b

p(x)c∗(x)dx
(60)
> ∆ (61)

(58)
=

∫
Xr(x)<b

p(x)c(x)dx+

∫
Xr(x)=b

p(x)c(x)dx = F (c). (62)

Case 1.3 Conditions (11) and (12) hold, condition (10) is violated, i.e.∫
Xr(x)<b

p(x)c(x)dx <

∫
Xr(x)<b

p(x)dx. (63)

Then,

F (c∗) =

∫
Xr(x)<b

p(x)c∗(x)dx−
ρ(Xr(x)<b)

b

(63)
>

∫
Xr(x)<b

p(x)c(x)dx−
ρ(Xr(x)<b)

b
= F (c).
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Case 2 b = 0.
This occurs only if

∫
Xr(x)<0

p(x)r(x)dx = 0. The constraint of (38) implies∫
Xr(x)>0

p(x)c(x)r(x)dx = 0 ,

thus ∫
Xr(x)>0

p(x)c(x)dx = 0 ,

which confirms condition (12).
Finally, the obvious equations

max
c:X→[0,1]

∫
Xr(x)<0

p(x)c(x)dx =

∫
Xr(x)<0

p(x)dx , and

max
c:X→[0,1]

∫
Xr(x)=0

p(x)c(x)dx =

∫
Xr(x)=0

p(x)dx

confirm condition (10) and (11), respectively.

A.3 Proof of Theorem 3

Theorem 3 Let r : X → R be the conditional risk (9) of a classifier h : X → Y, γ = b+ λ
the rejection threshold given by the target risk λ and a constant b computed by (14). Then
the selection function

c∗(x) =


1 if r(x) < γ ,
τ if r(x) = γ ,
0 if r(x) > γ ,

(15)

where τ is the acceptance probability given by

τ =

{
1 if ρ(Xr(x)=γ) = 0 ,

−ρ(Xr(x)<γ))
ρ(Xr(x)=γ))

if ρ(Xr(x)=γ) > 0 ,
(16)

satisfies the optimality condition of Theorem 2, and hence it is a solution to Problem 3.

Proof The optimality conditions (10) and (12) given in Theorem 2 are equivalent to a prob-
abilistic statement Px∼p(x)[c∗(x) = 0 ∧ r(x) < b] = 0 and Px∼p(x)[c∗(x) = 1 ∧ r(x) > b] = 0,
respectively. Hence the two conditions are satisfied by a selection function which predicts,
c∗(x) = 1, whenever r(x) < b and rejects, c∗(x) = 0, whenever r(x) > b. Or equiva-
lently, using the identity r(x) = r(x) − λ and a threshold γ = b + λ, by c∗(x) = 1 when
r(x) < γ and c∗(x) = 0 when r(x) > γ. Finally, if we opt for a selection function that
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is constant c∗(x) = τ inside the boundary region Xr(x)=b, then the condition (11) im-

plies τ = −ρ(Xr(x)<γ)
b·ρ0 if b > 0, where ρ0 =

∫
Xr(x)=b

p(x) dx, and τ = 1 if b = 0. Using

Xr(x)<b = Xr(x)<γ and b · ρ0 = ρ(Xr(x)=b) = ρ(Xr(x)=γ), we derive (16).

A.4 Proof of Theorem 4

Theorem 4 Let (h, c) be an optimal solution to (17). Then, (hB, c), where hB is the
optimal Bayes classifier (3), is also optimal to (17).

Proof The theorem follows from the fact that RS(hB, c) ≤ RS(h, c) for any (h, c) feasible
to (17). This inequality was already derived within the proof of Theorem 1.

A.5 Proof of Theorem 5

Problem 5 (Bounded-abstention model for known h(x)) Given a classifier h(x) and
a target coverage 0 < ω ≤ 1, the optimal selection function c∗(x) is a solution to the problem

min
c∈[0,1]X

RS(h, c) s.t. φ(c) ≥ ω , (18)

where we assume that the minimizer exists.

Theorem 5 A selection function c∗ : X → [0, 1] is an optimal solution to Problem 5 if and
only if it holds ∫

Xr(x)<β
p(x)c∗(x)dx =

∫
Xr(x)<β

p(x)dx, (19)∫
Xr(x)=β

p(x)c∗(x)dx = ω −
∫
Xr(x)<β

p(x)dx, (20)∫
Xr(x)>β

p(x)c∗(x)dx = 0 , (21)

where

β = inf

{
a |
∫
Xr(x)<a

p(x)dx ≥ ω

}
. (22)

Proof By substituting the definitions of RS(h, c) and φ(c) to (18), we rewrite the problem
into the form

min
c∈[0,1]X

∫
X
p(x)c(x)r(x)dx∫
X
p(x)c(x)dx

s.t.

∫
X

p(x)c(x)dx ≥ ω . (64)
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Let F (c) =
∫
X p(x)c(x)r(x)dx∫
X p(x)c(x)dx

denote the objective function of (64). Whenever c∗ : X →
[0, 1] fulfils (19), (20) and (21), it is feasible to (64) and

F (c∗) = β +
1

ω

∫
Xr(x)<β

p(x)r(x)dx− β

ω

∫
Xr(x)=β

p(x)dx , (65)

which is a value independent of c∗.
We will prove the theorem by showing that any c : X → [0, 1] feasible to (64) that

violates at least one of conditions (19), (20), (21) is not an optimal solution. Three cases
will be examined.
Case 1 Condition (19) is violated, i.e.,∫

Xr(x)<β

p(x)c(x)dx <

∫
Xr(x)<β

p(x)dx. (66)

This means that there is a subset X ⊆ X such that

∀x ∈ X : r(x) ≥ β (67)

and ∫
X

p(x)c(x)dx =

∫
Xr(x)<β

p(x)dx−
∫

Xr(x)<β

p(x)c(x)dx
(66)
> 0 . (68)

Define c′ : X → [0, 1] as follows.

c′(x) =


1 if r(x) < β ,
0 if x ∈ X ,
c(x) otherwise .

(69)

c′ is feasible to (64) as φ(c′) = φ(c). Derive

φ(c)
(
F (c)− F (c′)

)
=

∫
X

p(x)c(x)r(x)dx−
∫

Xr(x)<β

p(x)r(x)dx+

∫
Xr(x)<β

p(x)c(x)r(x)dx

(70)

(67),(68)

≥
∫

Xr(x)<β

β · p(x)(1− c(x))dx−
∫

Xr(x)<β

p(x)(1− c(x))r(x)dx (71)

=

∫
Xr(x)<β

p(x)(1− c(x))(β − r(x))dx > 0 (72)

where the inequality in (72) is obtained from Lemma 12 applied to f(x) = p(x)(1− c(x)),
g(x) = β − r(x), and the set Xr(x)<β. This shows that c is not an optimal solution.
Case 2 Condition (19) is satisfied, condition (20) is violated and∫

Xr(x)=β
p(x)c(x)dx < ω −

∫
Xr(x)<β

p(x)dx > 0 . (73)
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In this case, there is a c′ : X → [0, 1] such that

c′(x) = c(x) if r(x) < β , (74)

c′(x) = 0 if r(x) > β , (75)

and ∫
Xr(x)=β

p(x)c′(x)dx =

∫
Xr(x)=β

p(x)c(x)dx+

∫
Xr(x)>β

p(x)c(x)dx . (76)

If Lemma 13 is applied to f(x) = p(x)c(x), g(x) = r(x), and the set Xr(x)>β, we get∫
Xr(x)>β

p(x)c(x)r(x)dx > β

∫
Xr(x)>β

p(x)c(x)dx . (77)

It also holds that φ(c′) = φ(c). Now, deriving

φ(c)
(
F (c)− F (c′)

) (76)
=

∫
Xr(x)>β

p(x)c(x)r(x)dx− β
∫

Xr(x)>β

p(x)c(x)dx (78)

(77)
> β

∫
Xr(x)>β

p(x)c(x)− β
∫

Xr(x)>β

p(x)x(x)dx = 0 (79)

shows that c is not an optimal solution.
Case 3 φ(c) > ω, which occurs if∫

Xr(x)=β
p(x)c(x)dx > ω −

∫
Xr(x)<β

p(x)dx > 0 (80)

(implying that condition (20) is violated), or if condition (21) is violated.
Observe that F (c) = F (α · c) for any a ∈ R+. Let c′ = ω

φ(c) · c. Since φ(c′) = ω, the

selection function c′ is feasible to (64). Because∫
Xr(x)<β

p(x)c′(x)dx =
ω

φ(c)

∫
Xr(x)<β

p(x)c(x)dx <

∫
Xr(x)<β

p(x)dx , (81)

c′ violates condition (19) and is therefore not an optimal solution (see Case 1). This implies
that c is not an optimal solution too.

A.6 Proof of Theorem 6

Theorem 6 Let r : X → R be the conditional risk (9) of a classifier h : X → Y, 1 ≥ ω > 0
be a target coverage and β be the constant computed by (22). Then the selection function

c∗(x) =


1 if r(x) < β ,
κ if r(x) = β ,
0 if r(x) > β ,

(23)
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where κ is the acceptance probability given by

κ =


0 if

∫
Xr(x)=β

p(x)dx = 0 ,
ω−

∫
Xr(x)<β

p(x)dx∫
Xr(x)=β

p(x)dx
otherwise ,

(24)

satisfies the optimality condition of Theorem 6, and hence it is a solution of Problem 5.

Proof It is easy to see that c∗ satisfies conditions (19) and (21). The validity of con-
dition (20) is proved as follows. If

∫
Xr(x)=β

p(x)dx = 0, then
∫
Xr(x)=β

p(x)dx = ω, and

condition (20) is met. If
∫
Xr(x)=β

p(x)dx > 0, we derive

∫
Xr(x)=β

p(x)c∗(x)dx =
ω −

∫
Xr(x)<β

p(x)dx∫
Xr(x)=β

p(x)dx

∫
Xr(x)=β

p(x)dx = ω −
∫
Xr(x)<β

p(x)dx . (82)

Appendix B. Proofs of theorems from Section 3

B.1 Proof of Theorem 7

The expectation of the squared loss deviation reads

Ereg(s) =

∫
X

∑
y∈Y

p(x, y)
(
`(y, h(x))− s(x)

)2
dx . (83)

Theorem 7 The conditional risk r(x) defined by (9) is an optimal solution to min
s:X→R

Ereg(s).

Proof We can rewrite Ereg(s) as

Ereg(s) =

∫
X
p(x)

∑
y∈Y

p(y | x)
(
`(y, h(x))2−2 `(y, h(x)) s(x)+s(x)2

)
dx =

∫
X
p(x)f(s(x))dx.

Due to additivity, we can solve mins : X→REreg(s) for each x ∈ X separately by setting
derivative of f(s) to zero and solving for s which yields

f ′(s) = −2
∑
y∈Y

p(y | x)`(y, h(x)) + 2
∑
y∈Y

p(y | x)s(x) = 0⇒ s∗(x) =
∑
y∈Y

p(y | x)`(y, h(x)) .
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B.2 Proof of Theorem 8

Lemma 15 For an integer n ≥ 1, let {ai}ni=1 and {bi}ni=1 be sequences of positive real
numbers such that {aibi }

n
i=1 is a non-increasing sequence. For each non-decreasing sequence

{`i}ni=1 of non-negative real numbers with a positive sum it holds that∑n
i=1 ai`i∑n
i=1 bi`i

≤
∑n

i=1 ai∑n
i=1 bi

.

Proof We will show that the lemma statement is a direct consequence of the four-letter
identity

n∑
i=1

AiCi ·
n∑
i=1

BiDi −
n∑
i=1

AiBi ·
n∑
i=1

CiDi =
∑
j<k

(AjDk −AkDj) (CjBk − CkBj)

(Steele, 2004). Setting Ai = ai, Bi = 1, Ci = `i, and Di = bi for all i = 1, . . . , n yields

n∑
i=1

ai`i ·
n∑
i=1

bi −
n∑
i=1

ai ·
n∑
i=1

bi`i =
∑
j<k

(ajbk − akbj) (`j − `k) . (84)

The lemma assumptions ensure that for any j < k, ajbk − akbj ≥ 0 and `j − `k ≤ 0. Thus
each term in the right-hand side of equality (84) is non-positive, which implies the required
result.

For i = 1, . . . , n and a permutation π on {1, . . . , n}, let aπi =
∑n

j=i
n
j and bπi = n− i+1.

We can write

∆sele(s, Tn) =
1

n2

n∑
i=1

bπi`πi

and

AuRC(s, Tn) =
1

n2

n∑
i=1

aπi`πi ,

where `πi = `(yπi , h(xπi)).

Without loss of generality, assume that `1 ≤ `2 ≤ . . . ≤ `n and πi = i for all i = 1, . . . , n.

Let Hk =
∑k

i=1
1
i denote the k-th harmonic number. As shown in (Havil, 2003), it fulfils

ln(k) + γ +
1

2(k + 1)
< Hk < ln(k) + γ +

1

2k
(85)

where γ ≈ 0.5772156649 is the Euler–Mascheroni constant. Moreover, let us define H0 = 0.

Lemma 16 Let n ≥ 2 be an integer. For each i = 1, . . . , n, let ai =
∑n

j=i
n
j and bi =

n− i+ 1. Then, ai
bi
≥ ai+1

bi+1
holds for all i = 1, . . . , n− 1.
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Proof Since

ai
bi
− ai+1

bi+1
=
n · (Hn −Hi−1)

n− i+ 1
− n · (Hn −Hi)

n− i

it suffices to show that

(n− i)(Hn −Hi−1) ≥ (n− i+ 1)(Hn −Hi)

and this is equivalent to showing that

(n− i+ 1)Hi − (n− i)Hi−1 ≥ Hn .

If we substitute Hi−1 = Hi − 1
i , the inequality further reduces to

Hn −Hi ≤
n− i
i

=
n

i
− 1 . (86)

Now we derive

Hn −Hi

(85)
< ln

(n
i

)
+

1

2n
− 1

2(i+ 1)
≤ ln

(n
i

)
<
n

i
− 1

where the last inequality follows from the fact that ln(x) < x−1 for all x > 1. This confirms
inequality (86).

Lemma 17
∑n

i=1(Hn −Hi−1) = n.

Proof By induction on n. The lemma trivially holds for n = 1. Let n > 1. Then, using
the induction hypothesis, we derive

n∑
i=1

(Hn −Hi−1) = Hn −Hn−1 +

n−1∑
i=1

(
1

n
+Hn−1 −Hi−1

)

=
1

n
+
n− 1

n
+
n−1∑
i=1

(Hn−1 −Hi−1) = n .

Theorem 8 The inequality AuRC(s, Tn) < 2 ·∆sele(s, Tn) holds true for any s : X → R and
Tn = {(xi, yi) ∈ X ×Y | i = 1, . . . , n}. Moreover, for any ε > 0, there are n, s and Tn such
that AuRC(s, Tn) ≥ (2− ε) ·∆sele(s, Tn).
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Proof The first statement trivially holds if
∑n

i=1 `i = 0. If
∑n

i=1 `i > 0, we apply Lem-
mas 16, 15 and 17 to derive

AuRC(s, Tn)

∆sele(s, Tn)
≤
∑n

i=1 ai∑n
i=1 bi

=

∑n
i=1 n · (Hn −Hi−1)∑n

i=1(n− i+ 1)
=

n2

n
2 (n+ 1)

=
2n

n+ 1
< 2 .

Taking `i = 1 for all i = 1, . . . , n yields

AuRC(s, Tn)

∆sele(s, Tn)
=

∑n
i=1 ai∑n
i=1 bi

=
2n

n+ 1
.

Since limn→∞
2n
n+1 = 2, we see that also the second statement is valid.

B.3 Proof of Theorem 9

Remark 18 For the sake of simplicity, for predicates ϕ1(x, z), . . . , ϕk(x, z) and a function
f : X × X → R, we write ∫

X

∫
ϕ1(x,z)

...
ϕk(x,z)

f(x, z)dz dx

to represent ∫
X

∫
X

f(x, z)[[ϕ1(x, z) ∧ . . . ∧ ϕk(x, z)]]dz dx .

Theorem 9 A function s∗ : X → R is an optimal solution to mins:X→REsele(s) iff

∫
X

∫
z 6=x

s∗(z)=s∗(x)

max{r(x), r(z)}p(x)p(z)dz dx = 0 , and (32)∫
X

∫
r(z)<r(x)
s∗(z)>s∗(x)

(r(x)− r(z)) p(x)p(z)dz dx = 0 . (33)
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Proof We first present four equalities to be used later. We assume that s : X → R is any
measurable function. The validity of the equalities can be easily verified.

∫
X

r(x)p(x)

∫
r(z)>r(x)
s(z)<s(x)

p(z)dz dx =

∫
X

p(z)

∫
r(x)<r(z)
s(x)>s(z)

r(x)p(x)dx dz =

∫
X

p(x)

∫
r(z)<r(x)
s(z)>s(x)

r(z)p(z)dz dx ,

(87)∫
X

∫
r(z)<r(x)
s(z)=s(x)

r(x)p(x)p(z)dz dx =
1

2

∫
X

∫
z 6=x

s(z)=s(x)

max{r(x), r(z)}p(x)p(z)dz dx

− 1

2

∫
X

∫
z 6=x

r(z)=r(x)
s(z)=s(x)

max{r(x), r(z)}p(x)p(z)dz dx , (88)

∫
X

∫
r(z)=r(x)
s(z)<s(x)

r(x)p(x)p(z)dz dx =
1

2

∫
X

∫
r(z)=r(x)

r(x)p(x)p(z)dz dx− 1

2

∫
X

∫
r(z)=r(x)
s(z)=s(x)

r(x)p(x)p(z)dz dx ,

(89)∫
X

∫
r(z)=r(x)
s(z)=s(x)

r(x)p(x)p(z)dz dx = 2

∫
X

∫
z>x

r(z)=r(x)
s(z)=s(x)

r(x)p(x)p(z)dz dx+

∫
X

∫
z=x

r(x)p(x)p(z)dz dx .

(90)

Since argmins:X→RE(s) = argmins:X→R (E(s)− E(r)), it suffices to analyze minimizers of
E(s)− E(r) instead of E(s). Derive

E(s)− E(r) =

∫
X

∫
s(z)≥s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)≥r(x)

r(x)p(x)p(z)dz dx

=

∫
X

∫
r(z)<r(x)
s(z)≥s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)≥r(x)
s(z)<s(x)

r(x)p(x)p(z)dz dx

=

∫
X

∫
r(z)<r(x)
s(z)>s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)>r(x)
s(z)<s(x)

r(x)p(x)p(z)dz dx

+

∫
X

∫
r(z)<r(x)
s(z)=s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)=r(x)
s(z)<s(x)

r(x)p(x)p(z)dz dx

= F1(s) + F2(s)
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where

F1(s) =

∫
X

∫
r(z)<r(x)
s(z)>s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)>r(x)
s(z)<s(x)

r(x)p(x)p(z)dz dx

(87)
=

∫
X

∫
r(z)<r(x)
s(z)>s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)<r(x)
s(z)>s(x)

r(z)p(x)p(z)dz dx

=

∫
X

∫
r(z)<r(x)
s(z)>s(x)

(r(x)− r(z)) p(x)p(z)dz dx

and

F2(s) =

∫
X

∫
r(z)<r(x)
s(z)=s(x)

r(x)p(x)p(z)dz dx−
∫
X

∫
r(z)=r(x)
s(z)<s(x)

r(x)p(x)p(z)dz dx

(88,89,90)
=

1

2

∫
X

∫
z 6=x

s(z)=s(x)

max{r(x), r(z)}p(x)p(z)dz dx+
1

2

∫
X

∫
z=x

r(x)p(x)p(z)dz dx

− 1

2

∫
X

∫
r(z)=r(x)

r(x)p(x)p(z)dz dx .

Observe that

min
s:X→R

F1(s) = 0,

min
s:X→R

F2(s) =
1

2

∫
X

∫
z=x

r(x)p(x)p(z)dz dx− 1

2

∫
X

∫
r(z)=r(x)

r(x)p(x)p(z)dz dx ,

and both minima are attained by a scoring function s∗ : X → R if and only if conditions
(32) and (33) hold for s∗. Moreover, note that the conditions can be fulfilled, e.g., by any
s∗ such that

(∀x, z ∈ X ) (x 6= z ⇒ s∗(x) 6= s∗(z) ∧ r(x) < r(z)⇒ s∗(x) < s∗(z)) .

B.4 Proof of Theorem 11

The expectation of ψsele reads

Eproxy(s)=
n2 − n
n2

∫
X
p(x)r(x)

(∫
X
p(z) log

(
1+exp(s(z)−s(x))

)
dz

)
dx+

log(2)

n

∫
X
p(x)r(x)dx.
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Theorem 11 Let s∗ : X → R be an optimal solution to mins : X→REproxy(s). Then, the
condition

∀(x, x′) ∈ X × X : r(x) < r(x′)⇒ s∗(x) < s∗(x′)

is satisfied almost surely.

Proof For every a ∈ X , Eproxy(s) can be seen as a function of one variable s(a), where the
others s(b), b ∈ X \ {a} are fixed. Hence if s is a minimizer of Eproxy(s), then for every
s(a), a ∈ X , the partial derivative w.r.t. s(a) must be zero, i.e.,

0 =
∂

∂s(a)

∫
X
p(x) r(x)

(∫
X
p(z) log (1 + exp(s(z)− s(x))) dz

)
dx

= p(a)r(a)

∫
X
p(z)

− exp(s(z)− s(a))

1 + exp(s(z)− s(a))
dz + p(a)

∫
X
p(x)r(x)

exp(s(a)− s(x))

1 + exp(s(a)− s(x))
dx

= p(a)

∫
X

r(a) p(x) + r(x) p(x)

1 + exp(s(a)− s(x))
dx− p(a)

∫
X
p(x) r(x) dx

= f(r(a), s(a))− C .

It shows that f(r(a), s(a)) = C for any a ∈ X in order to guarantee that s is a minimizer
of Eproxy(s). We prove by contradiction that the condition r(a) < r(b) ⇒ s(a) < s(b) is
satisfied up to a set {(a, b)|(a, b) ∈ X 2} of zero measure. Assume s is optimal and the
condition is violated, i.e. r(a) < r(b) ∧ s(a) ≥ s(b) holds for a pair (a, b) ∈ X 2. Since s
is optimal then f(r(a), s(a)) = C. Since r(b) > r(a) and s(b) ≤ s(a) then f(r(b), s(b)) >
f(r(a), s(b)) because the function f(u, v) is strictly increasing in u and strictly decreasing
in v. Combined, it implies that f(r(b), s(b)) > C which leads to a contradiction because an
optimal s requires f(r(b), s(b)) = C.
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