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Abstract
We present a general framework for graph clustering and bi-clustering where we are given a general
observation (called a label) between each pair of nodes. This framework allows a rich encoding
of various types of pairwise interactions between nodes. We propose a new tractable and robust
approach to this problem based on convex optimization and maximum likelihood estimators. We
analyze our algorithms under a general statistical model extending the planted partition and stochas-
tic block models. Both sufficient and necessary conditions are provided for successful recovery of
the underlying clusters. Our theoretical results subsume many existing graph clustering results for
a wide range of settings, including planted partition, weighted clustering, submatrix localization
and partially observed graphs. Furthermore, our results are applicable to novel settings including
time-varying graphs, providing new insights to solutions of these problems. We provide empirical
results on both synthetic and real data that corroborate with our theoretical findings.
Keywords: graph clustering, convex optimization, low-rank matrix, information divergence, time-
varying graphs, pairwise observation, dynamic graphs

1. Introduction

In the standard formulation of graph clustering, we are given an unweighted graph and seek a
partitioning of the nodes into disjoint groups such that members of the same group are more densely
connected than those in different groups. Here, the presence of an edge represents certain affinity
or similarity between the nodes, and the absence of an edge represents the lack thereof.

In many applications, from chemical interactions to social networks, the interactions between
nodes are much richer than a simple “edge” or “non-edge”. Such extra information can be used to
improve the clustering quality. We may represent each type of pairwise interaction by a label. One
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simple setting of this type is weighted graphs, where instead of a 0-1 graph, we have edge weights
representing the strength of the pairwise interaction. In this case the observed label between each
pair is a real number. In a more general setting, the label need not be a number. For example, on
social networks like Facebook, the label between two persons may be “they are friends”, “they went
to different schools”, “they liked 21 common pages”, or the concatenation of them. In such cases
different labels carry different information about the underlying community structure. A standard
approach that converts these pairwise interactions into a simple edge/non-edge and then applies
standard clustering algorithms, often does not work well here, as much of the information may be
lost. Even in the simple case of a standard weighted/unweighted graph, it may not be immediately
clear how information in the graph should be used in clustering. For example, should the absence of
an edge be interpreted as a neutral observation carrying no information, or as a negative observation
indicating dissimilarity between the two nodes?

We emphasize that our notion of labels (types of pairwise observations) is very general. A label
can take real, discrete, categorical or even mixed values—we will see several such examples in
Section 4. A label can even take the form of a time series, i.e., a record of time varying interactions
such as “A and B messaged each other on June 1st, 4th, 15th and 21st”, or “they used to be friends,
but they stop talking to each other since 2012”. The labeled graph model is therefore an immediate
tool for analyzing time-varying graphs.

In this paper, we present a new and principled approach for graph clustering that is directly
based on general pairwise labels. We assume that between each pair of nodes i and j, one observes
a label Lij that takes values in a label set L. The set L may be continuous, discrete or mixed,
and need not have any algebraic or geometric structure. The standard graph model corresponds to
a binary label set L = {edge, non-edge}, and a weighted graph corresponds to L = R. Given
the matrix of observed labels L = (Lij) ∈ Ln×n between n nodes, the goal is to partition these
nodes into disjoint clusters. Our algorithmic approach is based on finding a partition that optimizes
a weighted objective that is appropriately constructed from the observed labels. This formulation
leads to a combinatorial optimization problem, and our algorithms use its convex relaxation.

To systematically evaluate clustering performance, we consider a generalization of the stochastic
block model and the planted partition model (Holland et al., 1983; Condon and Karp, 2001). Our
model assumes that the observed labels are generated based on an underlying set of ground truth
clusters, where node pairs from the same cluster generate labels using a distribution µ over L, and
pairs from different clusters use a different distribution ν. The standard planted partition model
corresponds to the case where µ and ν are Bernoulli distributions with µ(edge) = p and ν(edge) =
q, p 6= q. We provide theoretical guarantees for our algorithm under this generalized model.

By specializing to concrete examples of the distributions µ and ν, our results cover a wide
range of clustering settings—with theoretical guarantees matching or stronger than existing work—
including the standard stochastic block model, partially observed graphs, weighted graphs and sub-
matrix localization. Our framework in fact allows us to handle new classes of problems that are not
a priori obvious to be a special case of our model, including the clustering of time-varying graphs.

Our framework easily generalizes to the bi-clustering setting, where pairwise labels are ob-
served between two disjoint sets of nodes, potentially from different domains, and the task is to
jointly cluster these two sets of nodes given the bipartite label observations. All our algorithmic and
statistical results extend to this bi-clustering setting with only minor changes.
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Remark 1 Preliminary versions of some of the results here have appeared in part in Chen et al.
(2014b) and Lim et al. (2014). The theory was previously stated with respect to only discrete la-
bel sets, but are now extended to general label sets, including continuous and mixed-valued labels,
which appear frequently in applications (see, for example, Section 4). We also include a more
detailed and systematic discussion on the bi-clustering setting and various special cases. Imple-
mentation details of efficient first-order solvers are now included. We also report a much more
extensive set of empirical results on both synthetic and real data, including comparison with other
methods.

1.1 Related Work

The planted partition model/stochastic block model (Condon and Karp, 2001; Holland et al., 1983)
are standard models for studying graph clustering. Variants of the models cover partially observed
graphs (Oymak and Hassibi, 2011; Chen et al., 2014a), weighted graphs and the submatrix local-
ization and bi-clustering problems (Balakrishnan et al., 2011; Kolar et al., 2011). All these models
are special cases of ours. Various algorithms have been proposed and analyzed under these mod-
els, such as spectral clustering (McSherry, 2001; Chaudhuri et al., 2012; Rohe et al., 2011), convex
optimization approaches (Mathieu and Schudy, 2010; Ames and Vavasis, 2011) and tensor decom-
position methods (Anandkumar et al., 2014). Ours is based on convex optimization, generalizing
the convexified maximum likelihood approach in Chen et al. (2014c).

Time-varying graphs arise in a broad range of applications, and the problem of clustering such
graphs has been studied in various context (see Fortunato, 2010; Sun et al., 2007; Chakrabarti
et al., 2006; Kawadia and Sreenivasan, 2012; Nguyen et al., 2011, and the references therein). The
stochastic block model has also been extended in a number of ways to accommodate time-varying
graphs. For example, Han et al. (2015) consider multiple, independent graphs, where edge distribu-
tions can differ in each graph and each cluster membership pair. In the work of Xu and Hero (2014);
Matias and Miele (2016), the cluster membership of an individual node is allowed to change with
time. Another extension is in allowing mixed cluster membership in time-varying networks, as done
by Fu et al. (2009). These extensions allow additional flexibilities, but the existing solutions lack
the kind of theoretical performance guarantees afforded by our approach. Also note that dealing
with time-varying graph is only one of the applications of our general theory on clustering based on
pairwise labels.

Most related to our setting is the labelled stochastic block model proposed by Heimlicher et al.
(2012) and Lelarge et al. (2013). A main difference in their model is that they assume each pairwise
observation is from a two-step process: first an edge/non-edge is observed; if it is an edge then a
label is associated with it. In our model all observations are in the form of labels—in particular, an
edge or no-edge is also a label—which covers their setting as a special case. Our model is therefore
more general and natural, and as a result our theory covers a broad class of subproblems including
time-varying graphs. Moreover, their analysis is mainly restricted to the two-cluster setting with
edge probabilities on the order of Θ(1/n), while we allow for an arbitrary number of clusters and a
wide range of edge/label distributions. In addition, we consider the setting where the distributions of
the labels are not precisely known. Algorithmically, they use belief propagation (Heimlicher et al.,
2012) and spectral methods (Lelarge et al., 2013).

Appearing after the conference versions of this paper, the work by Jog and Loh (2015) stud-
ies a form of labelled stochastic block model and thus is also related to ours. Restricting to the
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homogeneous case with equal-size clusters, they derive recovery conditions in terms of the Renyi
divergence. Their results are based on the maximum likelihood decoder, which is not computa-
tionally feasible. Another recent work by Chen et al. (2015) also studies the statistical limits of
information recovery from pairwise observations. Their model is however quite different from ours,
and the results are again based on the intractable maximum likelihood decoder.

2. Problem Setup and Algorithms

We assume n nodes are partitioned into r disjoint clusters of size at least K. The clusters are un-
known and considered as the ground truth. For each pair of nodes (i, j), a label Lij ∈ L is observed,
whereL is the set of all possible values of the label. These labels are generated independently across
node pairs according to some distributions µ and ν on L.1 In particular, if nodes i and j are in the
same cluster, the observed label Lij follows the distribution µ, otherwise Lij follows ν. The goal
is to recover the ground truth clusters given the pairwise labels, which is represented as a matrix
L = (Lij) ∈ Ln×n. We encode the true clusters as an n × n cluster matrix Y ∗, where Y ∗ij = 1 if
nodes i and j belong to the same cluster and Y ∗ij = 0 otherwise, with the convention that Y ∗ii = 1
for all i. The problem is therefore to find Y ∗ given L.

We take an optimization approach to this problem. To motivate our algorithm, first consider the
case of clustering a weighted graph, where L = R and all labels are real numbers. Suppose that
positive weights indicate affinity between node pairs while negative weights indicate dissimilarity.
A natural approach is to partition the nodes in a way that maximizes the total weight inside the
clusters (this is equivalent to correlation clustering by Bansal et al. 2004). Mathematically, this
formulation is to find a clustering, represented by a cluster matrix Y ∈ {0, 1}n×n, such that the sum∑

i,j LijYij is maximized. In the setting of general labels, we pick a weight function w : L → R,
which assigns a number Wij = w(Lij) to the label Lij observed at each pair (i, j). We then solve
the following max-weight problem:

max
Y

〈W,Y 〉

s.t. Y is an n× n cluster matrix,
(1)

where 〈W,Y 〉 :=
∑

i,jWijYij is the trace inner product. Note that once the weight function is
specified, this formulation effectively converts the problem of clustering from labels into a weighted
clustering problem.

The optimization program (1) is non-convex due to the combinatorial constraint. Our algorithm
is based on a convex relaxation of (1), using the fact that any cluster matrix is a symmetric positive
semidefinite, block-diagonal 0-1 matrix. Relaxing the constraint in (1) leads to the following convex
optimization problem:

max
Y

〈W,Y 〉

s.t. Y ∈ Sn+ ,
0 ≤ Yij ≤ 1,∀(i, j),

(2)

where Sn+ denotes the set of n × n symmetric positive semidefinite matrices. We say that the
program (2) recovers the true clusters if it has a unique optimal solution equal to the true cluster
matrix Y ∗.

1. More precisely, we assume that there is a σ-algebra F such that (L,F) is a measurable space, endowed with proba-
bility measures µ and ν.

4



CLUSTERING FROM GENERAL PAIRWISE OBSERVATIONS

One has the freedom of choosing the weight function w. Here, the likelihood ratio between
label distributions µ and ν will play an important role. We assume that the measures µ and ν are
absolutely continuous with each other, as well as with some base measure λ on L. With a slight
abuse of notation, the likelihoods of a label l ∈ L with respect to µ and ν are given by

µ(l) =
dµ

dλ
(l) and ν(l) =

dν

dλ
(l),

where dµ
dλ and dν

dλ are the respective Radon-Nikodym derivatives. In the sequel, unless specified
otherwise, we will always assume that λ is the counting measure if L is a discrete label set, in
which case we simply have µ(l) = Pr(Lij = l). For a continuous set L, we use the Lebesgue base
measure and hence µ(l) is the usual density function of µ. Later we will encounter more general,
mixed-valued label sets L.

Intuitively, a weight function w should assign w(Lij) > 0 to a label Lij with µ(Lij) > ν(Lij),
so the program (2) is encouraged to place nodes i and j in the same cluster, the more likely pos-
sibility; similarly we should have w(Lij) < 0 if µ(Lij) < ν(Lij). In other words, a good weight
function should reflect the information in µ and ν. Our theoretical results in Section 3 character-
ize the performance of the program (2) for any given weight function w. Building on this general
result, we further derive robust and optimal choices of w. Since µ and ν are often unknown, Sec-
tion 3 also includes results when w is chosen based on distributions that are different from the true
distributions.

For cluster recovery to be possible, the observed labels must contain sufficient information to
distinguish different clusters. If µ = ν, the observed labels for intra- and inter-cluster pairs will
have the same distribution, in which case the data L is distributed independently of the underlying
clusters and recovery is impossible. In general, the problem becomes harder if µ and ν are more
similar to each other. We quantify this relation precisely in Section 3.

2.1 Alternative Formulations and the Bi-clustering Problem

Program (2) uses the fact that Y ∗ is symmetric positive semidefinite. The following program, which
is based on a more relaxed constraint using the nuclear norm ‖ · ‖∗,2 also works and has essentially
the same theoretical guarantees:

max
Y

〈W,Y 〉,

s.t. ‖Y ‖∗ ≤ ‖Y ∗‖∗
0 ≤ Yij ≤ 1, ∀(i, j).

(3)

Intuitively, this relaxed problem uses the fact that a cluster matrix always satisfies ‖Y ∗‖∗ = n,
which is much smaller than a general n× n binary matrix.

The formulation (3) has the advantage that it applies directly to a bi-clustering setting. In this
setting, there are two disjoint sets of nodes N1 and N2, where |N1| = n1 and |N2| = n2. Each
of the sets N1 and N2 are partitioned into r clusters {Ck, k ∈ [r]} and {C ′k, k ∈ [r]}, respectively,
where the clusters Ck and C ′k are associated with each other and called a bi-cluster. Similarly to
the clustering case, the true cluster matrix Y ∗ ∈ {0, 1}n1×n2 is defined as Y ∗ij = 1 if and only if

2. The nuclear norm of a matrix is defined as the sum of its singular values. A cluster matrix is positive semidefinite, so
its nuclear norm is equal to its trace and also called the trace norm.
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(i, j) ∈ Ck × C ′k for some k ∈ [r]. Labels are generated from the distribution µ for each pair (i, j)
with Y ∗ij = 1, and from ν otherwise. Here Y ∗ is not necessarily a square or positive semidefinite
matrix. The program (3) still applies, with the understanding that the matrices W and Y have size
n1 × n2 instead of n× n.

While we always have ‖Y ∗‖∗ = n in the clustering case, this is not the case in general for
bi-clustering. The value of ‖Y ∗‖ used in the constraint of (3) is usually unknown in practice, in
which case we can instead solve an equivalent formulation in terms of a Lagrange multiplier:

max
Y

〈W,Y 〉 − η‖Y ‖∗

s.t. 0 ≤ Yij ≤ 1,∀(i, j).
(4)

The formulations (2)–(4) are semidefinite programs that can be solved in polynomial time by various
methods. In Section 5 we describe efficient first order solvers and discuss other implementation
details. Note that by convex duality, if the constrained formulation (3) succeeds in recovering the
true cluster matrix Y ∗, then there exists a multiplier η for which the Lagrangian formulation (4) also
succeeds.3 Therefore, all our theoretical results for the formulations (2) and (3) in Section 3 also
hold for the formulation (4) with a suitable η.

3. Theoretical Results

In this section, we provide theoretical analysis for the performance of the convex formulations (2)
and (3) under the statistical model described in Section 2. We give sufficient and necessary con-
ditions for cluster recovery, and discuss choices of the weight function. All our results apply to
both clustering and bi-clustering settings. In the bi-clustering case, we let n = max{n1, n2},
and recall that (Ck, C

′
k) is the k-th bi-cluster for k ∈ [r]. The minimum cluster size is K =

mink∈[r] min
{
|Ck|, |C ′k|

}
. These notations are consistent with the clustering setting, for which n

is the total number of nodes and K the minimum cluster size.

Our main result is a general theorem that gives sufficient conditions for the programs (2) and (3)
to recover the true cluster matrix Y ∗. These conditions are stated in terms of the minimum cluster
size K, the label distributions µ and ν, as well as any given weight function w(·) through the
quantities

Eµw :=

∫
L
w(l) dµ and Varµw :=

∫
L

[w(l)− Eµw]2 dµ;

Eνw and Varνw are defined similarly. We assume in the sequel that all the relevant integrals and
expectations are well-defined. With these notations, we now state our general theorem.

Theorem 2 (Main) Suppose b is any number that satisfies |w(l)| ≤ b almost everywhere (a.e.)
over L with respect to µ and ν. There exists a universal constant c > 0 such that if

−Eνw ≥ c
b log n+

√
K log n

√
Varνw

K
, (5)

Eµw ≥ c
b log n+

√
n log n

√
max(Varµw,Varνw)

K
, (6)

3. Both (3) and (4) are strictly feasible, so strong duality holds by Slater’s condition.
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then Y ∗ is the unique solution to the programs (2) and (3) with probability at least 1− n−10.4

We prove this claim in Section 7. Theorem 2 is in fact a special case of the more general Theorem 9
(Section 3.5), which does not require the boundedness assumption w(l) ≤ b.

Theorem 2 is valid for any given weight function w. Below we discuss how to choose w opti-
mally, and then address the case where w deviates from the optimal choice.

3.1 Optimal Weights

A candidate for a good weight function w can be derived from the maximum likelihood estima-
tor (MLE) of Y ∗. Given the observed label matrix L, the log-likelihood of the true cluster matrix
taking the value Y is

log p
(
L |Y ∗ = Y

)
=
∑
i,j

log
[
µ(Lij)

Yijν(Lij)
1−Yij

]
=
∑
i,j

Yij log
µ(Lij)

ν(Lij)︸ ︷︷ ︸
Wij

+
∑
i,j

log ν(Lij)︸ ︷︷ ︸
c

= 〈W,Y 〉+ c.

The MLE, which maximizes the above expression over Y , therefore corresponds to using the log
likelihood ratio as the weight function:

w(l)← wMLE(l) := log
µ(l)

ν(l)
.

Specializing Theorem 2 to the weight function wMLE, we obtain the following theorem that
characterizes the performance of using the MLE weights in the convex relaxations. Here D(· ‖ ·)
denotes the KL divergence between two distributions.

Theorem 3 (MLE) Suppose that w = wMLE is used as the weight function, and b and ζ are any
numbers that satisfy with D(ν‖µ) ≤ ζD(µ‖ν) and

∣∣∣log µ(l)
ν(l)

∣∣∣ ≤ b,∀l ∈ L. There exists a universal
constant c > 0 such that if

D(ν‖µ) ≥ c(b+ 2)
log n

K
, (7)

D(µ‖ν) ≥ c(ζ + 1)(b+ 2)

(
n log n

K2

)
, (8)

then with probability at least 1 − n−10, Y ∗ is the unique solution to the programs (2) and (3).
Moreover, it always holds that D(ν‖µ) ≤ (2b+ 3)D(µ‖ν), so we can take ζ = 2b+ 3.

We prove this claim in Appendix A. The two conditions (7) and (8) are not symmetric due to the
fact that there are more cross-cluster pairs than in-cluster pairs in general. The quantity ζ accounts
for the asymmetry between D(ν‖µ) and D(µ‖ν).

4. In all subsequent results, we use an arbitrary choice of exponent in the failure probability n−10. It is easily seen from
Theorem 9 that the constant c scales linearly with the exponent.
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Theorem 3 has the intuitive interpretation that the in/cross-cluster label distributions µ and ν
should be sufficiently different, measured by their KL divergence, for the underlying clusters to be
recovered. Using a classical result in information theory (Topsoe, 2000), we may replace the KL
divergences with a quantity called the triangle discrimination that is often easier to work with. This
is summarized in the following corollary.

Corollary 4 (MLE 2) Suppose wMLE is used, and b, ζ are defined as in Theorem 3. There exists a
universal constant c such that Y ∗ is the unique solution to the programs (2) and (3) with probability
at least 1− n−10 if ∫

L

(µ(l)− ν(l))2

µ(l) + ν(l)
dλ ≥ c(ζ + 1)(b+ 2)

(
n log n

K2

)
. (9)

One may take ζ = 2b+ 3.

We prove this claim in Appendix A. Note that the left hand side of (9) is the triangle discrimination
between µ and ν, which lower bounds of the KL-divergence (cf. Lemma 23.) It can be seen that the
constant c if Corollary 4 may be trivially chosen such that it only differs from the c in Theorem 3
by a factor of 2. In general, we do not assume any special relationship between universal constants.

The MLE weight function wMLE turns out to be near-optimal, at least in the two-cluster case, in
the sense that no other weight function (in fact, no other algorithm) has significantly better statistical
performance. This is shown by establishing a necessary condition for any algorithm to recover
the true clustering Y ∗. Here, an algorithm is a measurable function Ŷ that maps the data L to a
clustering represented by a cluster matrix.

Theorem 5 (Converse) The following holds for some universal constants c, c′ > 0. Suppose K =
n
2 , and the quantity b defined in Theorem 3 satisfies b ≤ c′. If∫

L

(µ(l)− ν(l))2

µ(l) + ν(l)
dλ ≤ c log n

n
, (10)

then inf Ŷ supY ∗ P
(
Ŷ (L) 6= Y ∗

)
≥ 1

2 , where the supremum is over all possible cluster matrices.

We prove this claim in Appendix B.
Under the assumption of Theorem 5, the conditions (9) and (10) match up to a constant factor,

showing that program (3) with the MLE weights wMLE is statistically order-wise optimal.

3.2 Monotonicity

We sometimes do not know the exact label distributions µ and ν in computing the MLE weightswMLE.
Instead, we may construct the weights using the log likelihood ratios of some “incorrect” distribu-
tions µ̄ and ν̄. Our algorithms have a nice monotonicity property: as long as the divergence between
the true µ and ν is larger than that between µ̄ and ν̄ (hence an “easier” problem), then the algorithm
still has the same (if not better) probability of success, even though the wrong weights are used.

More precisely, we say that the pair (µ, ν) is more divergent than (µ̄, ν̄) if, for each l ∈ L, we
have

either
µ(l)

ν(l)
≥ µ(l)

ν̄(l)
≥ µ̄(l)

ν̄(l)
≥ 1 or

ν(l)

µ(l)
≥ ν(l)

µ̄(l)
≥ ν̄(l)

µ̄(l)
≥ 1.
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Theorem 6 (Monotonicity) Suppose that we use the weight function w(l) = log µ̄(l)
ν̄(l) , ∀l ∈ L,

while the actual label distributions are µ and ν. If the conditions in Theorem 3 or Corollary 4 hold
with µ, ν replaced by µ̄, ν̄, and (µ, ν) is more divergent than (µ̄, ν̄), then with probability at least
1− n−10, Y ∗ is the unique solution to programs (2) and (3).

We prove this claim in Appendix C.
Theorem 6 suggests that one may choose the weight function by using the log likelihood ratios

of a conservative estimate (i.e., a less divergent one) of the true label distribution pair.

3.3 Using Inaccurate Weights

We now consider a more general way of choosing the weight function w, which need not be conser-
vative, but is only required to be not too far from the true log-likelihood ratios wMLE. Let

ε(l) := w(l)− wMLE(l) = w(l)− log
µ(l)

ν(l)

be the weighting error for each label l ∈ L. Then the quantities ∆µ :=
∫
L ε(l) dµ and ∆ν :=∫

L ε(l) dν represent the average errors with respect to µ and ν. Note that ∆µ and ∆ν can be positive
or negative. The theorem below characterizes the performance of using such an inaccurate weight
function w.

Theorem 7 (Inaccurate Weights) Let b and ζ be defined as in Theorem 3. Suppose that the weight
function w satisfies

|w(l)| ≤ α
∣∣∣∣log

µ(l)

ν(l)

∣∣∣∣ , ∀l ∈ L, |∆µ| ≤ γD(µ‖ν), and |∆ν | ≤ γD(ν‖µ)

for some numbers α > 0 and γ < 1. Then Y ∗ is unique solution to the programs (2) and (3) with
probability at least 1− n−10 provided that

D(ν‖µ) ≥ c α2

(1− γ)2
(b+ 2)

log n

K
and D(µ‖ν) ≥ c α2

(1− γ)2
(ζ + 1)(b+ 2)

(
n log n

K2

)
.

We prove this claim in Appendix D.
Therefore, as long as the errors ∆µ and ∆ν in w are not too large, the condition for recovery is

order-wise similar to that of the MLE weight given in Theorem 3. The numbers α and γ measure
the level of inaccuracy in the weight function w with respect to the ideal choice wMLE. The last two
conditions in Theorem 7 thus quantify the relation between the inaccuracy in w and the statistical
price to pay for using such a weight.

3.4 Linear Weights

We next consider a weight function that is an alternative to the MLE weights, and may be preferable
in certain scenarios. It is based on a linear approximation to the MLE weight function, hence
referred to as the linear weights:

wLIN(l) :=
µ(l)− ν(l)

µ(l) + ν(l)
.

9
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It is straightforward to show that

EµwLIN = −EνwLIN =
Varµw

LIN + Varνw
LIN

2
=

1

2

∫
L

(µ(l)− ν(l))2

µ(l) + ν(l)
dλ.

Using this observation, we immediately obtain the following corollary for wLIN from Theorem 2.

Corollary 8 (Linear) Suppose the weight function wLIN is used. There exists a universal constant c
such that Y ∗ is the unique solution to the program (3) with probability at least 1− n−10 if∫

l∈L

(µ(l)− ν(l))2

µ(l) + ν(l)
dλ ≥ cn log n

K2
. (11)

Note the the left hand side of (11) coincides with the triangle discrimination term that has appeared
in Corollary 4 as a lower bound of the KL-divergence. Comparing Corollary 8 above to the converse
results in Theorem 5, we see that, at least for the case of two equal-size clusters, the linear weight
function wLIN provides order-wise optimal recovery guarantees.

The linear weights wLIN(l) are always between−1 and 1 and thus well bounded. Empirically, it
is observed thatwLIN performs slightly worse than the MLE weight functionwMLE in general. How-
ever, in certain cases wLIN can actually outperform wMLE. In particular, comparing Corollaries 4
and 8 suggests that this most likely happens when the quantity ζ is large, i.e., D(ν‖µ)� D(µ‖ν).
We demonstrate this phenomenon in our empirical results in Section 6.2, where ζ is large in the case
of dense graphs.

3.5 Unbounded Weights

The general result in Theorem 2 is valid for any weight function that is uniformly bounded, i.e.,
|w(l)| ≤ b a.e. on L. (The theorem becomes vacuous if b → ∞.) We now give a more general
result, which allows some of the weights to have arbitrarily large magnitudes. Unbounded weights
arise when some of the pairwise observations are highly certain, or given as hard constraints. For
example, the label between nodes i and j may have the form lsame = “these nodes are known to be in
the same cluster”, in which case assigning an unbounded weight w(lsame)→∞ in the program (1)
forces the nodes i and j to be clustered together. Similarly, for two nodes that are known to be in
different clusters, a large negative weight would be desirable.

We identify the set of labels associated with unbounded weights as

L∞ := {l ∈ L : |w(l)| > b∞},

where b∞ should be thought of as a very large positive number. For all l /∈ L∞, we assume that
|w(l)| ≤ b for some b < b∞. We further assume that the weight function w is L∞-consistent in the
sense that

µ(l) = 0, ∀l ∈ L∞ : w(l) < 0 and ν(l) = 0, ∀l ∈ L∞ : w(l) > 0.

This condition ensures that whenever a node pair is assigned with unbounded weight, the sign of
the weight is consistent with the true cluster relation between the pair, that is, with probability one,

Wij(2Y
∗
ij − 1) > 0, ∀(i, j) : Lij ∈ L∞. (12)

10
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Denote by sµ :=
∫
L∞ dµ the total probability of the labels in L∞ under the distribution µ, and

w̃b(l) :=

{
0 if l ∈ L∞,
w(l) otherwise,

the weight function restricted to labels with bounded weights. Finally, in the bi-clustering setting,
we need an additional parameter ξ that measures bi-cluster skewness:

ξ := max
k∈[r]

{√
|Ck|
|C ′k|

,

√
|C ′k|
|Ck|

}
.

In the standard clustering case we simply have ξ = 1.
Under the above setting, we have the following result valid for unbounded weights with arbi-

trarily large b∞.

Theorem 9 Suppose that the weight function w is L∞-consistent, and β > 0 is any fixed number.
There exists a universal constant c > 0 such that the following is true. If

Eµw̃b ≥ 0, (13)

−Eνw̃b > c
bβ log n+

√
Kβ log n

√
Varνw̃b

K
, (14)

and at least one of the following two inequalities holds:

Eµw̃b > c
bβ log n+

√
nβ log n

√
max(Varµw̃b,Varνw̃b)

K
, (15)

sµ +
Eµw̃b
b∞

> c max

{
max

{
1,
bξ

b∞

}β log n

K
,
nmax(Varµw̃b,Varνw̃b)

Kb2∞

}
, (16)

then with probability at least 1 − n−β the solution to the programs (2) and (3) is unique and
equals Y ∗.

We prove this claim in Section 7.
Theorem 9 is particularly useful when we take b∞ → ∞ while keeping b, n and K finite. In

this case the condition (16) simplifies to

sµ > c
β log n

K
, (17)

a lower bound on the probability of observing a label from L∞ between two nodes in the same
cluster. The conditions (17) together with (14) are sufficient for successful recovery of Y ∗. Signif-
icantly, these conditions only depend logarithmically on n, which is in contrast to the dependence
on
√
n in Theorem 2. This improvement demonstrates the benefit of assigning unbounded weights

to labels in L∞ (i.e., label with high certainty).
Also note that Theorem 2 is a special case of Theorem 9, as we show in Section 7.

11
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4. Consequences and Applications

We now apply the general results in the last section to different concrete cases. In sections 4.1
and 4.2, we consider two clustering settings with sub-Gaussian weights or non-uniform edge prob-
abilities, both of which generalize the standard stochastic block model. In these settings two im-
mediate corollaries of our main theorems recover, and in fact improve upon, existing results. In
sections 4.3 and 4.4, we turn to the more complicated setting of clustering time-varying graphs and
derive several new results.

Throughout this section we use c, c0 etc. to denote universal positive constants.

4.1 Clustering a Sub-Gaussian Matrix with Partial Observations

Analogous to the planted partition and stochastic block models for unweighted graphs, the subma-
trix localization problem concerns clustering a weighted graph whose adjacency matrix has sub-
Gaussian entries. This problem is often used as an idealized model for the bi-clustering of drugs
and proteins, species and gene sequences, customers and products, and other forms of object-feature
pairs (see Kolar et al., 2011, and references therein).

Here we consider a generalization of this problem, where some of the entries are unobserved.
This setting arises when the relations between some node pairs are costly to determine, so it is
unknown whether or not they are connected by an edge, nor is the weight of the edge (Shamir
and Tishby, 2011). For simplicity, we state our results assuming that the adjacency matrix and its
submatrices are symmetric, and that the entries of the matrix are Gaussian. Our theoretical results
apply to the general sub-Gaussian case without change.

Specifically, we observe a matrix L ∈ (R ∪ {?})n×n, where Lij =? with probability 1 − s,
and otherwise Lij follows the Gaussian distribution N (uij , 1).5 Here Lij =? denotes that the
relation between the i-th and j-th nodes is unobserved. The means {uij} of the Gaussians satisfy
the following: within L there are r submatrices of size at least K×K with disjoint row and column
support; we have uij = ū if the pair (i, j) is inside one of the submatrices, and uij = u if outside,
where ū > u ≥ 0. The goal is to locate these submatrices with elevated means given the large
matrix L. We may think of this problem as finding clusters in a weighted graph with the partially
observed adjacency matrix L.

This problem is a special case of our general framework with a mixed-valued label set L =
R ∪ {?}. The base measure λ is chosen to be such that it equals the Lebesgue measure on R and 1
on {?}. Then the density functions of µ and ν are

µ(l) =

{
1− s, if l =?,

s · 1√
2π

exp
(
− (l−ū)2

2

)
, if l ∈ R,

and ν(l) =

{
1− s, if l =?,

s · 1√
2π

exp
(
− (l−u)2

2

)
, if l ∈ R.

The MLE weight function therefore has the form

wMLE(l) ∝

{
0, if l =?,

l − (ū+ u)/2, if l ∈ R.

5. Equivalently, Lij is generated according toN (uij , 1), and then is replaced by ? with probability 1− s.

12
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This submatrix localization problem is most interesting when ū − u ≤ c0
√

log n for some
universal constant c0 > 0,6 which we assume to hold in the sequel. Observe that D (µ‖ν) =
D (ν‖µ) = 1

4s(ū − u)2. In Appendix E we apply the general result in Theorem 2 to derive the
following recovery guarantee.

Corollary 10 (Gaussian Graphs) Under the above setting, if

s (ū− u)2 ≥ cn log3 n

K2
, (18)

then with probability at least 1− 2n−10, Y ∗ is the unique solution to the programs (2) and (3) with
the weight function w = wMLE.

In the full observation case s = 1, Corollary 10 recovers the results in Ames (2014); Balakrish-
nan et al. (2011); Kolar et al. (2011) up to log factors. Our results are more general as we allow for
partial observation, which is not considered in previous work. Corollary 10 allows the observation
probability to be as small as s = Ω( n

K2 ), or the signal strength to be ū− u = Ω(
√
n
K ) (ignoring log

factors). In general we see a quadratic tradeoff between these two quantities: with four times more
observations, the signal strength can be 50% smaller.

4.2 Planted Partition with Non-Uniform Edge Probabilities

Recall that in the standard planted partition model, the observed unweighted graph is generated by
independently connecting each node pair with probability p if they are in the same cluster, or with
probability q if they are in different clusters, where p, q ∈ [0, 1] are two fixed numbers. Here we
consider a more general setting, where the in/cross-cluster edge probabilities can be different across
node pairs. This setting has a range of applications as discussed at the end of this sub-section.

Concretely, suppose that each node pair (i, j) is associated with two numbers Pij and Qij .
Independently for each (i, j), the values of Pij and Qij are generated randomly according to some
distribution ψ on [0, 1] × [0, 1], which is assumed to have a density function with respect to some
reference measure λ0. Conditioned on Pij and Qij , the nodes i and j are connected by an edge with
probability Pij if they are in the same cluster, or with probabilityQij if they are in different clusters.
For each (i, j), one knows the values of Pij and Qij , but not which of them is the probability that
generates the edge. Assuming that there are r ground-truth clusters of size at least K, the goal is to
find these clusters given the graph adjacency matrix A ∈ {0, 1}n×n and the edge probabilities (Pij)
and (Qij) ∈ [0, 1]n×n.

This model can be cast as a special case of our labeled framework, in which each pairwise label
is a triplet of the form Lij = (Aij , Pij , Qij) ∈ L = {0, 1}× [0, 1]× [0, 1]. Note that the labels take
a combination of discrete and real values. If we choose the base measure λ to be the product of the
counting measure on {0, 1} and λ0, then the density functions of µ and ν are given as follows: for
each l = (a, p, q) ∈ {0, 1} × [0, 1]× [0, 1],

µ(l) =

{
pψ(p, q), if a = 1,

(1− p)ψ(p, q), if a = 0,
and ν(l) =

{
qψ(p, q), if a = 1,

(1− q)ψ(p, q), if a = 0.

6. Otherwise, if ū− u > c0
√

logn for some sufficiently large constant c0 > 0, then with high probability the smallest
entry inside the submatrices will dominate the largest entry outside, so simple element-wise thresholding finds the
submatrices (Balakrishnan et al., 2011; Kolar et al., 2011).

13
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The MLE weight function therefore has the form

wMLE(l) = wMLE((a, p, q)) = a log
p

q
+ (1− a) log

1− p
1− q

. (19)

Applying Corollary 4 for MLE weights, we immediately obtain the following recovery guaran-
tee:

Corollary 11 (Non-uniform Edge Probabilities, I) Under the above setting, suppose that there
exist ζ and b such that D(ν‖µ) ≤ ζD(µ‖ν) and | log µ(l)

ν(l) | ≤ b almost everywhere. If

E(P,Q)∼ψ

[
(P −Q)2

(P +Q)(2− P −Q)

]
≥ c (ζ + 1)(b+ 2)

n log n

K2
.

then with probability at least 1 − n−10, Y ∗ is the unique solution to the programs (2) and (3) with
the MLE weight function in (19). One may take ζ = 2b+ 3.

Here the notation (P,Q) ∼ ψ means that (P,Q) is a pair of numbers sampled from the distribu-
tion ψ.

We can simplify the above condition considerably by considering a conservative weight function
(cf. Section 3.2): on the RHS of (19) we replace p and q with p̄ = 3

4p + 1
4q and q̄ = 1

4p + 3
4q,

respectively, which leads to the weight function

w̄MLE(l) = w̄MLE((a, p, q)) = a log
3p+ q

p+ 3q
+ (1− a) log

4− 3p− q
4− p− 3q

. (20)

These weights are clearly bounded by a constant. Applying Theorem 6 for monotonicity together
with Corollary 4 for MLE weights, we obtain the following recovery guarantee:

Corollary 12 (Non-uniform Edge Probabilities, II) Under the above setting, suppose that P ≥
Q almost surely with respect to ψ. If

E(P,Q)∼ψ

[
(P −Q)2

P (1−Q)

]
≥ c n log n

K2
,

then with probability at least 1 − n−10, Y ∗ is the unique solution to the programs (2) and (3) with
the conservative MLE weight function w̄MLE in (20).

As a passing observation, we note the log n factor in the above two corollaries can be removed by a
slightly more careful analysis; see Remark 20.

Below we discuss two applications of Corollary 12, which leads to generalization and improve-
ment over existing results.

4.2.1 CLUSTERING PARTIALLY OBSERVED UNWEIGHTED GRAPHS

In Section 4.1 we discussed clustering Gaussian weighted graphs with partial observations. Here
we consider such a similar setting for unweighted graphs under the planted partition model.7

7. The planted partition model satisfies the sub-Gaussian assumption, so the results in Section 4.1 in fact apply to this
setting. Here we take into account the variance information to derive tighter bounds.
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Specifically, suppose that the edge probabilities (Pij , Qij) ∼ ψ is distributed as (Pij , Qij) =
(p, q) with some probability s, and Pij = Qij = 1

2 with probability 1 − s, where p > q are two
fixed numbers. This setting extends the standard planted partition model to partial observation:
with probability 1 − s, the connection Aij between a pair (i, j) is known to be purely random and
uninformative about the cluster membership of i and j—having such a purely random observa-
tion is equivalent to saying that one does not observe whether or not i and j are connected by an
edge.8 This setting is sometimes called the planted partition model with partial or censored edge
observation. Note that the conservative MLE weight function (20) assigns zero weight to unob-
served/uninformative pairs, as should be expected.

By calculating the left hand side of the condition in Corollary 12, we immediately obtain the
following guarantee.

Corollary 13 Under the above planted partition model with partial observation, if

s(p− q)2

p(1− q)
≥ c n log n

K2
,

then with probability at least 1 − n−10, Y ∗ is the unique solution to the programs (2) and (3) with
the conservative MLE weight function w̄MLE in (20).

In the full observation setting s = 1, the above result matches the best existing bounds for standard
planted partition (e.g., in Chen et al., 2014c; Anandkumar et al., 2014), up to a log n factor that
can be removed (see the remark after Corollary 12). In the partial observation setting s < 1,
the work by Vinayak et al. (2014); Chen et al. (2014a) gives a similar bound under the additional
assumption p > 0.5 > q, which is not required by Corollary 13. For general p and q, the best
existing bounds can be found in Oymak and Hassibi (2011); Chen et al. (2014c), where unobserved
entries in the adjacency matrixA are replaced with 0 and recovery is guaranteed under the condition
s(p−q)2
p(1−sq) & n logn

K2 .9 Our result is tighter when p and q are close to 1. Finally, we note that our result
is non-asymptotic and valid under any scaling of the parameters n,K, r, p, q, s.

4.2.2 PLANTED PARTITION WITH NON-UNIFORM UNCERTAINTY

We next consider an application of Corollary 12 to a further generalization of the partial observation
setting above. In the above setting, if an entry Aij of the adjacency matrix is unobserved or purely
random, the cluster relation between the nodes i and j is completely uncertain (based on only Aij).
Here we assume that each Aij is associated with a different, continuous level of uncertainty. For
some node pairs, the observation Aij of the existence of an edge (or respectively, the absence of an
edge) may be generated by accurate measurements, and therefore a strong indicator that the nodes i
and j should be assigned to the same (or respectively, different) clusters.

For example, in crowd-clustering a number of users are asked whether or not they think a pair
of nodes (e.g., movies or images) are similar, and the final graph is constructed by aggregating
the users’ answers by say majority voting (Gomes et al., 2011; Yi et al., 2012). The uncertainty
levels are naturally non-uniform across pairs: a pair receiving a large number of unanimous votes

8. This model can be rephrased in the following equivalent form: given a partially observed adjacency matrix A ∈
{0, 1, ?}n×n, one replaces each unobserved entry ? in A with an independent Bernoulli random variable.

9. We use & when the inequality is up to a constant factor.
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is associated with high confidence, whereas those with a few votes or divergent votes have low
confidence, and a pair receiving no votes is completely uncertain.

In such a setting, each pairwise observation Aij should be treated differently according to its
level of uncertainty. Often, one has prior knowledge on the uncertainty levels, for example when
the graph is built from a known process as in the crowd-clustering example. Intuitively, using such
knowledge improves clustering performance. It is, however, less clear how this knowledge can be
used and how much improvement it can provide. Below we use Corollary 12 to obtain a quantitative
answer.

For simplicity, we focus on a special case of the setting in Corollary 12: we assume that the
distribution ψ of edge probabilities is symmetric, in the sense that we always have Qij ≡ 1 − Pij ,
where Qij ∈ [0, 1

2 ].10 In this case, the quantity Qij can be interpreted as the probability of an
erroneous observation—namely, a no-edge between two nodes in the same cluster (a false negative),
or an edge between two nodes in different clusters (a false positive). Therefore, Qij measures the
level of uncertainty in the observation Aij at (i, j). In particular, Qij = 0 means that Aij is a
noiseless observation of the cluster relation between i and j, whereas Qij = 1

2 corresponds to a
completely uncertain observation with no information.

For each observation Aij ∈ {0, 1} with an uncertainty level Qij ∈ [0, 1
2 ], the conservative MLE

weight function (20) assigns the weight

Wij = (2Aij − 1) log
3− 2Qij
1 + 2Qij

.

Note that the magnitude |Wij | of the weight is small for a high uncertainty level Qij ; in particular,
one has Wij = 0 for a completely uncertain observation with Qij = 1

2 .
Using these weight, Corollary 12 guarantees that the programs (2) and (3) recover the clusters

with high probability provided that

E
[(1

2
−Q

)2
]
&
n log n

K2
,

where the expectation is with respect to (P,Q) ∼ ψ. We can compare this result with the presum-
ably sub-optimal unweighted approach, which ignores the non-uniformity of the uncertainty level
and uses uniform weights Wij = 2Aij − 1 ∈ {−1, 1}. By Theorem 2 this unweighted approach
succeeds if (1

2
− EQ

)2
&
n log n

K2
.

The difference between the left hand sides of the last two conditions is E[Q2] − (EQ)2 = Var[Q],
the variance of the uncertainty level.11 This is therefore evidence that the weighted approach is
indeed better than the unweighted one, and the gain is large precisely when the uncertainty level is
very non-uniform with a high variance. We refer the readers to Chen et al. (2014b) for empirical
verification of this gain as well as further discussion and applications.

Of course our results are not limited to the symmetric setting Qij ≡ 1 − Pij . Corollary 12 is
applicable under a general distribution ψ of Pij and Qij , in which case a larger value of |Pij −Qij |
corresponds to a lower level of uncertainty. We omit discussion of this general setting due to space
limit.
10. That is, the density function ψ(p, q) is supported on the line segment {(p, q) ∈ R2 : q = 1− p, 0 ≤ q ≤ 1

2
}.

11. Asymptotically the difference between the right hand sides can be made arbitrarily small, regardless of the contants.
Furthermore, empirically the constants involved are very similar, depending on how the weights are bounded.
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4.3 Clustering Time-varying Multiple-snapshot Graphs

Standard graph clustering concerns the partition of a single, static graph. We now consider a setting
where the graph is time-varying. Specifically, for each time interval t = 1, 2, . . . , T , one observes
a snapshot of the (label) graph L(t) ∈ Ln×n. In this subsection, we assume that each snapshot is
generated by the distributions µ and ν independently of other snapshots. In the next subsection we
consider the more general setting of Markov snapshots.

We can map this problem into our labeled framework, by considering the whole time sequence
of L̄ij := (L

(1)
ij , . . . , L

(T )
ij ) as a single label observed at the pair (i, j). In this case the label set is

the set of all possible sequences, i.e., L̄ = LT , and the label distributions are (with a slight abuse
of notation) given by the products µ(L̄ij) =

∏T
t=1 µ(L

(t)
ij ) and ν(L̄ij) =

∏T
t=1 ν(L

(t)
ij ). The MLE

weight (normalized by T ) is therefore the average log-likelihood ratio:

wMLE(L̄ij) =
1

T
log

µ(L̄ij)

ν(L̄ij)
=

1

T

T∑
t=1

log
µ(L

(t)
ij )

ν(L
(t)
ij )

.

Since the weight wMLE(L̄ij) is the average of T independent random variables, its variance scales
as 1

T . Applying Theorem 2 and following almost identical arguments as in the proof of Theorem 3,
we obtain the following guarantee for clustering a time-varying graph with independent snapshots.

Corollary 14 (Independent Snapshots) Suppose that | log µ(l)
ν(l) | ≤ b,∀l ∈ L and D(ν‖µ) ≤

ζD(µ‖ν). If

D(ν‖µ) ≥ c(b+ 2)
log n

K
and (21)

D(µ‖ν) ≥ c(b+ 2) max
{ log n

K
, (ζ + 1)

n log n

TK2

}
, (22)

then with probability at least 1 − n−10, Y ∗ is the unique solution to the programs (2) and (3) with
the MLE weights given above.

Note that setting T = 1 above recovers the result in Theorem 3 for clustering a single label graph.
The second term on the right hand side of (22) usually dominates. In this case, Corollary 14

says that the clustering problem becomes easier if T is larger (i.e., more snapshots of the graph are
observed), and the relation between T and cluster recovery is quantified precisely. As a concrete
example, suppose that each snapshot is generated by the standard planted partition model with edge
probabilities p and q, where q = p/2. By Corollary 14 we need p & n logn

TK2 to guarantee cluster
recovery. Therefore, if four times more snapshots are available, then one can recover clusters whose
sizes K are 50% smaller. Similarly, we see a tradeoff between the number of snapshots T and the
graph sparsity p.

4.4 Markov Sequence of Snapshots

We now consider a more general and useful setting for time-varying graphs, where the graph snap-
shots are not assumed to be independent but instead form a Markov chain.

For simplicity we assume that the Markov chain is time-invariant and has a finite state space
and a unique stationary distribution that is also the initial distribution. Therefore, the observations
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L
(t)
ij , t = 1, 2, . . . at each pair (i, j) are generated by first drawing a label L(1)

ij from the stationary
distribution µ0 (or ν0, according to the cluster membership of i and j) over the finite set L at t = 1,
then applying a one-step transition to obtain the label at each subsequent t. In particular, given
the previously observed label l, let the intra-cluster and inter-cluster conditional distributions of
the next observation be µ(·|l) and ν(·|l). We assume that the Markov chains {L(1)

ij , L
(2)
ij , . . .} with

respect to both µ and ν are geometrically ergodic, in the sense that for each integer τ ≥ 1 and pair
L

(1)
ij , L

(τ+1)
ij ,∣∣∣Prµ
(
L

(τ+1)
ij |L(1)

ij

)
− µ0

(
L

(τ+1)
ij

)∣∣∣ ≤ κφτ and
∣∣∣Prν

(
L

(τ+1)
ij |L(1)

ij

)
− ν0

(
L

(τ+1)
ij

)∣∣∣ ≤ κφτ (23)

for some constants κ ≥ 1 and 0 < φ < 1 that only depend on µ and ν. Let Dl(µ‖ν) denote the
KL-divergence between µ(·|l) and ν(·|l); Dl(ν‖µ) is similarly defined. Let

Eµ0Dl(µ‖ν) :=
∑

l∈Lµ0(l)Dl(µ‖ν)

and similarly for Eν0Dl(ν‖µ). As in the previous subsection, we use the average log-likelihood
ratio wMLE(L̄ij) = 1

T log
µ(L̄ij)

ν(L̄ij)
as the weight, where µ(L̄ij) is the joint distribution of the sequence

L̄ij =
(
L

(1)
ij , . . . , L

(T )
ij

)
under the above Markov chain; similarly for ν(L̄ij). Finally, define the

quantity
Φ :=

κ

(1− φ) minl∈L{µ0(l), ν0(l)}
.

With these notations, we have the following corollary of Theorem 2.

Corollary 15 (Markov Snapshots) Under the above setting, suppose that for each label pair (l, l′) ∈
L × L, we have

∣∣∣log µ0(l)
ν0(l)

∣∣∣ ≤ b,
∣∣∣log µ(l′|l)

ν(l′|l)

∣∣∣ ≤ b, D(ν0‖µ0) ≤ ζD(µ0‖ν0) and Eν0Dl(ν‖µ) ≤
ζEµ0Dl(µ‖ν) for some numbers b and ζ. If

1

T
D(ν0‖µ0) +

(
1− 1

T

)
Eν0Dl(ν‖µ) ≥ c(b+ 2)

log n

K
, (24)

1

T
D(µ0‖ν0) +

(
1− 1

T

)
Eµ0Dl(µ‖ν) ≥ c(b+ 2) max

{ log n

K
, (ζ + 1)Φ

n log n

TK2

}
, (25)

then with probability at least 1 − n−10, Y ∗ is the unique solution to the programs (2) and (3) with
MLE weight function wMLE.

See Appendices F for the proof of this claim, and G for additional discussion of the assumptions.

As an illuminating example, consider the case where µ0 ≈ ν0, i.e., the marginal distributions
for individual snapshots are very close or even identical in and across clusters. This means that
the information about cluster membership is not contained in the labels themselves in individual
snapshots, but instead in the change of labels between snapshots. This point is made evident in
the left hand sides of (24) and (25), as first terms therein are approximately zero. In this case, it is
necessary to use the temporal information in order to perform clustering. Such information would
be lost if one disregards the ordering of the snapshots (for example, by averaging the snapshots)
and then applies a single-snapshot clustering algorithm. This example therefore highlights a crucial
difference between clustering time-varying graphs and static graphs.
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5. Implementation

The convex programs (2) and (4) used in our clustering approach are semidefinite programs and
can be solved efficiently by the Alternating Direction Method of Multipliers (ADMM) (Boyd et al.,
2011). We provide the pseudocode for a complete implementation of the programs (2) and (4) in
Algorithms 1 and 2 below.

Algorithm 1 ADMM solver for Program (2)
Input: Weight matrix W ∈ Rn×n symmetric, convergence threshold ε > 0
Output: Y

1. ρ← 1, k ← 0

2. Y k ← 0, Qk ← 0, (Y k, Qk ∈ Rn×n)

3. Xk+1 ← U max{Λ, 0}U>, where UΛU> is an eigen-decomposition of (Y k −Qk + 1
ρW ).

4. Y k+1 ← min
{

max
{
Xk+1 +Qk, 0

}
, 1
}

5. Qk+1 ← Qk +Xk+1 − Y k+1

6. If ‖Xk+1−Y k+1‖F ≤ εmax{‖Xk+1‖F , ‖Y k+1‖F } and ‖Y k+1−Y k‖F ≤ ε‖Qk+1‖F then
stop and output Y = Y k+1.

7. (Optional) Update ρ and Qk+1

8. k ← k + 1, go to step 3.

The inputs and outputs of Algorithms 1 and 2 are the same terms used in the programs (2)
and (4), respectively. We find that in practice, using the tuning parameter η =

√
2n for the pro-

gram (4) works well. The criterion for convergence is specified by the threshold ε > 0, and using
ε = 10−4 provides a good tradeoff between the convergence time and the quality of the solution.
All our experiment results in Section 6 are based on these choices of η and ε.

In both Algorithms 1 and 2, an optional Step 7 for updating ρ can be used to potentially im-
prove the speed of convergence. Boyd et al. (2011) suggest one such updating rule, which takes
an additional parameter τ and aims to balance the primal and dual residuals. In particular, if
‖Xk+1 − Y k+1‖F > τρ‖Y k+1 − Y k‖F , then set ρ ← 2ρ and Qk+1 ← Qk+1/2. On the other
hand, if τ‖Xk+1− Y k+1‖F < ρ‖Y k+1− Y k‖F , then set ρ← ρ/2 and Qk+1 ← 2Qk+1. Typically
τ = 10 is a stable choice, which we use in all our experiments. For further details of this updating
rule we refer the reader to Boyd et al. (2011).

In practice, due to finite precision and numerical errors, the output matrix Y will not in general
have entries that are exactly 0 or 1, even if the true cluster matrix Y ∗ is in fact the unique optimal
solution. If this is the case, a simple rounding of Y will give the correct solution, from which the
clusters can then be obtained by sorting the rows. If Y can not be rounded into a cluster matrix, we
use a simple k-means algorithm to the rows of Y to extract a desired number of clusters.
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Algorithm 2 ADMM solver for Program (4)
Input: Weight matrix W ∈ Rn1×n2 , tuning parameter η > 0, convergence threshold ε > 0
Output: Y

1. ρ← 1, k ← 0

2. Y k ← 0, Qk ← 0, (Y k, Qk ∈ Rn1×n2)

3. Xk+1 ← U max{Σ− η
ρ , 0}V

>, where UΣV > is an SVD of (Y k −Qk).

4. Y k+1 ← min
{

max
{
Xk+1 +Qk + 1

ρW, 0
}
, 1
}

5. Qk+1 ← Qk +Xk+1 − Y k+1

6. If ‖Xk+1−Y k+1‖F ≤ εmax{‖Xk+1‖F , ‖Y k+1‖F } and ‖Y k+1−Y k‖F ≤ ε‖Qk+1‖F then
stop and output Y = Y k+1.

7. (Optional) Update ρ and Qk+1

8. k ← k + 1, go to step 3.

6. Empirical results

In this section we report empirical results by applying Algorithm 1 to a variety of both synthetic
and real data sets.12 In our experiments, unless specified otherwise, we report the “full recovery
rate” based on 100 repeated trials, i.e., the fraction of trials where the output of Algorithm 1 (after
rounding to the nearest 0 and 1) equals Y ∗ exactly. Error bars show 95% confidence intervals.

6.1 Clustering with General Labels

We first evaluate graph clustering performance on a generic graph model with 5 labels. We use
n = 200 with 4 equal-size clusters. In each experiment, two distributions µ and ν are randomly
chosen from a uniform prior over all distributions as the in-cluster and the cross-cluster label distri-
butions. Then, 100 random graphs are generated using this (µ, ν) pair, and each clustering outcome
is checked against the corresponding ground truth. This is repeated 500 times to get a large va-
riety of pairs. In other words, 500 random (µ, ν) pairs are generated, each tested on 100 random
graphs. According to Theorem 3, the KL-divergence between µ and ν is the key deciding factor
for the successful recovery of the underlying true clusters. The results are shown in Figure 1. In
the left panel of Figure 1, we use the sum D(µ‖ν) + D(ν‖µ) as the predictor (the horizontal axis
is cut off at 2 since beyond this range all recovery rates are essentially 1). In the right panel, we
use min{D(µ‖ν), D(ν‖µ)} as the predictor. The results indeed support the theoretical prediction
as given by conditions (7) and (8) of Theorem 3.

12. Although we only report results from Algorithm 1 and for standard clustering, we note that similar results are obtained
with Algorithm 2 and in the bi-clustering case as well.
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Figure 1: Clustering performance under different label distributions

6.2 Clustering Sparse/Dense Graphs with Partial Observations

In the next experiment, we test the planted partition model with partial observations. The model is
as described in Section 4.2. Each pair is observed with probability s. For each observed in-cluster
pairs, an edge is generated with probability p while for each observed cross-cluster pairs, an edge is
generated with probability q. We consider both sparse graphs (p and q close to 0) and dense graphs
(p and q close to 1). For the sparse case, we fix q = 0.02 and vary p, whereas for the dense case, we
fix p = 0.98 and vary q.

Figures 2 and 3 show the results for graphs with n = 200, and Figures 4 and 5 show the results
for n = 1000, with 4 equal-size clusters in both cases. For n = 200, we set the observation
probability to s = 0.8; for n = 1000, we use s = 0.5 since the problem is significantly easier.

For comparison, we include results for the MLE weights (wMLE), the linear weights (wLIN),
and the uniform weights. An imputation scheme labeled “MLE (no partial)”, where all unobserved
entries are treated as “no edge”, is also included.
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Figure 2: Clustering sparse graph (n = 200)
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Figure 3: Clustering dense graph (n = 200)
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Figure 4: Clustering sparse graph (n = 1000)
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Figure 5: Clustering dense graph (n = 1000)

Corollary 11 predicts more success as the ratio s(p−q)2
p(1−q) gets larger. All else being the same,

label distributions with small ζ (corresponding to sparse graphs in the planted partition setting,
where D(ν‖µ)

D(µ‖ν) is small) are easier to solve. Note that these predictions are with respect to the MLE
weights. Both predictions are consistent with the empirical results given in Figures 2–5. The results
also indicate that the MLE weights outperform the other weights in the sparse settings. On the other
hand, in the dense case, we observe that the linear weights outperform the MLE weights by a small
margin. This empirical observation is consistent with the prediction given in Section 3.4.

To give an idea of the computation time involved, Figures 6 and 7 plot the average CPU time
needed to solve program (2) with Algorithm 1 on a typical quad-core desktop machine in Matlab.
A commonly observed trend is that the number of iterations needed to converge is usually small
when the problem is either too “hard” (p − q small) or too “easy” (p − q large). Note that we did
not attempt to optimize the algorithm in terms of speed. Improvement in the computational aspect
is certainly an interesting direction to explore.

We next examine the effect of varying cluster size K on the performance, with the total number
of nodes held fixed. Figures 8 and 9 show clustering results with various values of K for n = 400.
We choose a particular value of (p, q, s) that shows an interesting region. As expected, the success
rates improve when K grows. The results remain qualitatively similar for other values of p, q and s.

6.2.1 COMPARISON WITH SPECTRAL METHODS

Lelarge et al. (2013) proposed a labeled stochastic block model, which is a special case of our model
(cf. Section 1.1). In particular, their setup is restricted to only the two-cluster case, with balanced
cluster sizes (i.i.d. uniform cluster membership). They proposed a spectral method specially tailored
for this case. In this section, we compare our approach with theirs on the exact same setup that
they use. In this setup, each pairwise observation can be an edge/non-edge. Each edge can take
one of two possible labels. This is equivalent to a 3-label case in our setup. Figure 10 shows
the results in terms of the “overlap” (as used by Lelarge et al. (2013)), which is a measure of
how closely the resulting clusters match the ground truth. In Fig. 10, “convex” refers to results
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Figure 6: CPU time (sparse graph, n = 200)

q = 0.02, s = 0.5

cp
u 

tim
e 

(s
ec

on
ds

)

p - q

250

200

150

100

50

0
0.50.40.30.20.10

Figure 7: CPU time (sparse graph, n = 1000)
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Figure 8: Clustering sparse graph (n = 400)
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Figure 9: Clustering dense graph (n = 400)

based on Algorithm 1, where the final clustering is obtained by running K-means on the normalized
rows of the output matrix. “Spectral” refers to results based on the proposed spectral method by
Lelarge et al. (2013). We can observe that both approaches produce comparable results. Although
computationally more costly,13 our approach can handle a much wider range of problem setups, and
as shown in Section 6.5.1, can significantly outperform the spectral method in many cases.

13. We note that computationally the cost is typically dominated by the SVD operations, especially for large n. For
spectral clustering, only 1 SVD needs to be performed, whereas the ADMM solver performs 1 SVD per iteration.
The number of iterations may range from just a few to several hundreds, depending on the problem.

23



LIM, CHEN AND XU

n = 1000

O
ve

rla
p

epsilon

1

0.8

0.6

0.4

0.2

0
0.5

Convex (p=0.012,q=0.008)
Spectral (p=0.012,q=0.008)
Convex (p=0.006,q=0.004)
Spectral (p=0.006,q=0.004)
Convex (p=0.003,q=0.001)
Spectral (p=0.003,q=0.001)

0.40.30.20.10

Figure 10: Comparison with spectral method. p and q are within-cluster and between-cluster edge
probabilities, respectively. ε denotes the difference in within/between-cluster label dis-
tributions, where 0 is the smallest and 0.5 is the largest.

6.3 Gaussian Graphs and Inaccurate Weights

In this experiment, we evaluate real-valued labels drawn from Gaussian distributions. We also
evaluate the effect of using weights that deviate from the MLE weights. Figure 11 shows clustering
results on graphs with n = 200 and 8 equal-size clusters. The cross-cluster label distribution has
mean 0 and variance 1. The in-cluster label distribution has the same variance but with elevated
mean of µ = 2 (blue) and µ = 1.5 (red). Obviously, the case of µ = 2 is an easier problem. In
each case, we run Algorithm 1 using MLE weights that correspond to an in-cluster distribution with
mean µ + ∆ instead of µ. Figure 11 shows that clustering performance drops when the deviation
gets sufficiently large. Observe that negative ∆ (conservative weights) performs better—consistent
with Theorem 6. Figure 12 shows results based on the same settings, except that random noise is
added to the (true) MLE weight, where the noise is uniformly distributed within the range [−∆,∆].
We observe a gradual drop of performance with respect to ∆, as predicted by Theorem 7.

6.4 Clustering with Highly Certain Observations

We empirically test the prediction of Theorem 9 regarding highly certain observations. For partially
observed graphs with uncertain observations, the sufficient condition for recovery given by Corol-
lary 13 requires that the fraction of observed entries, s, grows linearly with n (ignoring logarithmic
term) if the other parameters p, q and K are held fixed. On the other hand, if all observed entries
are highly certain, Theorem 9 predicts that s needs to grow only logarithmically with respect to n.

We run two experiments, each with n = 600, 1200, 1800, 2400. In all cases, the cluster size K
is fixed at 150, and the labels are either “edge”, “no edge” or “unobserved”. In the first experiment
we consider uncertain observations, where each observed entry is equal to the corresponding entry
of Y ∗ with probability 0.7, and otherwise it is flipped. In the second experiment with highly certain
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observations, all observed entries are equal to Y ∗ with probability 1. In both experiments, we search
for the smallest fraction of observed entries needed to achieve a 90% full-recovery rate.

The results are shown in Figure 13. The plots indeed suggest a linear dependency on n for the
uncertain observations, but a sub-linear dependency on n for the highly certain case.
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Figure 13: Fraction of observed entries needed for 90% full-recovery rate. Left panel: uncertain
observations. Right panel: highly-certain observations.

6.5 Clustering Time-varying Graphs

We next investigate clustering performance on time-varying graphs. Figure 14 shows results based
on multiple independent snapshots of partially observed graphs. Each graph is generated according
to the planted partition model with partial observation (20% observed) as described in Section 4.2.1,
with uniform error rate q = 1 − p for all node pairs. We tested a wide range of error rates (q ∈
[0.006, 0.325]), and the horizontal axis tracks the corresponding KL divergence between µ and
ν. We used n = 200 with 8 equal-size clusters. As predicted by Corollary 14, the clustering
performance improves as the number of snapshots T grows.
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Figure 15 shows results for Markov label sequences. Here, we test a simple model with two
labels “interaction” and “no-interaction” (equivalent to “edge” and “no-edge”). For within-cluster
pairs, the probability of interaction is greater (i.e., equal to 0.5 + ε) in the next time-step if there
is no interaction in the current time-step, and vice versa. For inter-cluster pairs, the occurrence
of interaction/no-interaction is completely random (i.e., ε = 0) and therefore independent across
snapshots. In this setting, both the marginal and stationary distributions for µ and ν are identical in
every time step, and therefore at least two consecutive time steps are needed for informative cluster-
ing (cf. Section 4.4). The figure shows results for 200 nodes partitioned into 8 equal-size clusters,
with the horizontal axis tracking the average KL-divergence between the conditional distributions
(by varying ε). As predicted by Corollary 15, the performance improves as the number of snapshots
T increases.
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Figure 14: Independent snapshots
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Figure 15: Markov snapshots

6.5.1 COMPARISON WITH EVOLUTIONARY SPECTRAL CLUSTERING

In this section, we compare our approach with an existing approach in clustering time-varying
graphs based on evolutionary spectral clustering, as proposed by Chi et al. (2009). In particular,
to handle time-varying graphs, one can assign a weight to each time step and compute a weighted
average of the normalized graph Laplacian in each time step, then perform standard spectral clus-
tering using this averaged graph Laplacian. We use the same settings as in Figure 14, except that
we use the fully-observed case, to make sure that the comparison is fair.14 For our approach, the
final cluster assignments are obtained via running K-means on the normalized rows of the output
matrix of the convex program. For spectral clustering, the final cluster assignments are based on
K-means on the normalized rows of the top-K left singular vectors of the averaged graph Laplacian.
For reference, we also include the results based on simply running K-means on the normalized rows
of the averaged graph Laplacian. Figure 16 shows the results for T = 1, T = 2 and T = 3 in terms

14. Our method has extra advantage in the partially observed case, since it is generally unclear what weight to use
for spectral clustering in this case. We tested a few imputation scheme for spectral clustering but the results are
qualitatively the same.
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of full clusters recovery rate. Figure 17 shows the pairwise error rate, which is the fraction of all
node pairs that have been wrongly classified as either belonging to the same or different clusters.
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Figure 16: Comparison with evolutionary spectral clustering (full recovery rate)
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Figure 17: Comparison with evolutionary spectral clustering (pairwise error rate)

As expected, the overall performance improves as more snapshots are included. Among the
three approaches, ours performs the best in terms of clustering error rates, but at the expense of
higher computational cost relative to the other two.

6.6 Real-world Data Set

We consider three real-world data sets for which reliable ground truth is available. All three sets
involve interactions among different social groups, with different clustering structures and different
temporal granularity.

The Reality Mining data set (Eagle and Pentland, 2006) contains individuals from two main
groups, the MIT Media Lab and the Sloan Business School, which we use as the ground-truth clus-
ters. The data set records when two individuals interact, i.e., become proximal of each other or
make a phone call, over a 9-month period. We choose a window of 14 weeks (the Fall semester)
during which most individuals have non-empty interaction data. This sub-dataset consists of n =
85 individuals with 25 of them from Sloan and 60 from the Media Lab. We represent the data
as a time-varying graph with 14 snapshots (one per week), each with two observations Lt =
{“interact”, “no-interact”}: “interact” if a pair of individuals interact within the week, and “no-
interact” otherwise. Note that with T snapshorts, the full label set L = L1 × . . . × LT consists of
all possible binary sequences of length T .
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We compare three models on this data set: the Markov snapshot model in Section 4.4, the
independent snapshot model in Section 4.3, and a single snapshot approach (i.e., our approach
with T = 1) applied to a static graph generated by taking the union of all snapshots (i.e., two
individuals are connected if they interact during any of the 14 weeks). In each trial, the in/cross-
cluster label distributions are estimated from a fraction of randomly selected pairwise interaction
data. In particular, each parameter (i.e., the interaction probability and the transition kernel) is
estimated using the corresponding empirical frequency in the selected data, regularized by adding 1
to each count. We use the MLE weights in all instances. To ensure that a valid clustering is always
obtained, we run K-means on the normalized rows of the output matrix of Algorithm 1.

Figure 18 shows the results with respect to varying number of snapshots (left panel) and varying
number of training pairs used for parameter estimation (right panel). For comparison, we also
added result based on evolutionary spectral clustering (Chi et al., 2009). The vertical axis shows
the fraction of pairs whose cluster relationships are correctly identified. The accuracy generally
improves when more snapshots are used. However, the improvement with respect to T is lower than
expected, most likely due to the fact that the snapshots are not independent. The union model is
expected to improve with T for sparse graphs—due to increase in the KL-divergence between the
in/cross-cluster distributions. Overall, the Markov model managed to achieve higher accuracy than
both the union and independent model, though the best accuracy is achieved by the evolutionary
spectral clustering approach. Further inspection of the data suggests that the snapshots are non-
stationary in the sense that the earlier snapshots have rather different label distributions than the
later snapshots.
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Figure 18: Reality Mining data set. Left: Varying number of snapshots (50 training pairs). Right:
Varying number of training pairs (14 snapshots).

The next two data sets, Workplace and Primary-school, are from Genois et al. (2015) and Stehl
et al. (2011), respectively. The Workplace data involves human contacts among 92 employees in
an office building, where the ground truth clusters correspond to 5 different departments. We split
this data set (over 10 days) into 10 daily snapshots, each with a binary {“interact”, “no-interact”}
observation set. The Primary-school data involves contacts among 232 children in a primary school
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(teachers are omitted), where the ground truth clusters correspond to 10 different classes. We split
this data set (over 2 days) into 18 hourly snapshots, with the same binary observation per snapshot.

Figures 19 and 20 show the empirical results using the Markov snapshot, independent snapshot
and single snapshot models described above, as well as evolutionary spectral clustering. All 3
models achieve comparable clustering accuracy in the Workplace data set, while the union model
performs significantly worse in the Primary-school data set. The evolutionary spectral clustering
approach performs worse overall—with large variations across varying number of snapshots. We
believe that this is due to its sensitivity to the distribution of the top eigenvectors of the graph
Laplacian.
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Figure 19: Workplace data set. Left: Varying number of snapshots (40 training pairs). Right:
Varying number of training pairs (10 snapshots).
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Figure 20: Primary-school data set. Left: Varying number of snapshots (50 training pairs). Right:
Varying number of training pairs (18 snapshots).
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7. Proof of Theorems 2 and 9

In this section, we prove the general results in the two main theorems. Observe that Theorem 2 is
a special case of Theorem 9 with β = 10: if the weight function w is bounded, then there exists
some b∞ such that the set L∞ is empty, in which case we have w̃b ≡ w and the conditions (14)
and (15) in Theorem 9 reduce to (5) and (6) in Theorem 2. Therefore, it suffices to prove Theorem 9.

7.1 Notations

We need some additional notation to account for the bi-clustering setting. Recall that |N1| = n1

and N2 = n2, and set n = max{n1, n2}. For a node i ∈ N1, let Ci be the cluster that contains
node i and Ki = |Ci|. Similarly, C′j is the cluster that contains a node j in N2, and K ′j = |C′j |.
Each cluster Ci in N1 is associated with exactly one cluster C′j in N2, which is denoted by Ci ∼ C′j .
These notations are consistent with those for clusteirng, with the understanding that N1 = N2,
n1 = n2 = n, Ci = C′i and Ki = K ′i.

Let Ω = {(i, j) : Lij ∈ L∞} and R = {(i, j) : Y ∗ij = 1}. Let PΩ be the projection operator on
matrices such that

(PΩZ)ij =

{
Zij if (i, j) ∈ Ω,
0 otherwise.

The projections PR, PΩ∩R etc are defined similarly.
Let UΣV > be the rank-r SVD of Y ∗, where r is the number of groud-truth clusters and the rank

of Y ∗. Note that

(UU>)ij =

{ 1
Ki

if Ci = Cj ,
0 otherwise,

(26)

(V V >)ij =

{
1
K′i

if C′i = C′j ,
0 otherwise,

(27)

and

(UV >)ij =

{
1√
KiK′j

if Ci ∼ C′j ,

0 otherwise.
(28)

Define the projection operator

PTZ := UU>Z + ZV V > − UU>ZV V > (29)

and its complementary projection
PT⊥Z := Z − PTZ.

Denote by ‖ · ‖ the spectral norm (largest singular value) of a matrix. For any matrix X with
‖X‖ ≤ η0, the matrix UV > + η−1

0 PT⊥X is a subgradient of the nuclear norm ‖ · ‖∗ at Y ∗ (Recht
et al., 2010). It follows that for any feasible solution Y to the program (3), we have

0 ≥ ‖Y ‖∗ − ‖Y ∗‖∗ ≥ 〈UV > + η−1
0 PT⊥X,Y − Y

∗〉,

which implies
〈X,Y ∗ − Y 〉 ≥ 〈PTX − η0UV

>, Y ∗ − Y 〉. (30)
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7.2 Preliminary Lemmas

The proof of Theorem 9 builds on the following four lemmas. The first lemma gives a closed form
expression for the projected matrix PTZ.

Lemma 16 For any matrix Z and each index (i, j), we have

(PTZ)ij =
1

Ki

∑
k∈Ci

Zkj +
1

K ′j

∑
l∈C′j

Zil −
1

KiK ′j

∑
k∈Ci

∑
l∈C′j

Zkl. (31)

Proof The lemma is immediate by the definition (29) of the projection PT and the expressions (26)
and (27) for the matrices UU> and V V >.

Recall thatW is the weight matrix used in program (3). The second lemma controls the spectral
norm and the element magnitudes of the matrix PΩUV

>.

Lemma 17 Define

η1 := c1
β log n+

√
Ksµ(1− sµ)β log n

K
.

With probability at least 1− n−β the followings hold:

‖PΩUV
> − E[PΩUV

>]‖ ≤ η1 (32)

and for all i, j

|(PT (PΩUV
> − E[PΩUV

>]))ij | ≤

{
η1√
KiK′j

if Ci ∼ C′j
0 otherwise

(33)

Proof For the first inequality (32), consider PΩUV
> − E[PΩUV

>] as the sum of independent,
zero-mean random matrices:

PΩUV
> − E[PΩUV

>] =
∑

(i,j),Ci∼C′j

Xi,j ,

where, noting the expression (28), we define

Xi,j := PΩ

 1√
KiK ′j

(eie
>
j )

− EPΩ

 1√
KiK ′j

(eie
>
j )


with ei denoting the i-th standard basis vector. Note that

‖Xi,j‖ ≤
1

K
, ∀i, j,

and ∥∥∥∥∥∥
∑

(i,j),Ci∼C′j

EXi,jX
>
i,j

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑

(i,j),Ci∼C′j

sµ(1− sµ)

KiK ′j
(eie

>
i )

∥∥∥∥∥∥ ≤ sµ(1− sµ)

K
.
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Similarly we have
∥∥∥∑(i,j),Ci∼C′j

EX>i,jXi,j

∥∥∥ ≤ sµ(1−sµ)
K . By applying the matrix Bernstein inequal-

ity (Tropp, 2012), we obtain the desired inequality (32).
Turning to the inequality (33), let Z := PΩUV

> − E[PΩUV
>]. Note that each entry of Z is

an independent zero-mean random variable. From the expression (31), let ẑ be the first term of its
RHS, which is an average ofKi independent zero-mean random variables with |Zkj | ≤ 1√

KiK′j
and

Var(Zkj) =
sµ(1− sµ)

KiK ′j
.

By the standard Bernstein’s inequality, we obtain that |ẑ| ≤ η1√
KiK′j

with probability at least

1 − n−β−2. The same reasoning can be used to arrive at the same bound for the second and the
third RHS term of expression (31). Applying a union bound over all (i, j) we obtain the desired
inequality (33).

The next lemma is an analogue of Lemma 17 and controls the matrix PΩc∩RW .

Lemma 18 Define

η2 := c2

(
bβ log n+

√
nVarµ(w̃b)β log n

)
,

η3 := c3

(
bξβ log n+

√
nVarµ(w̃b)β log n

)
.

With probability at least 1− n−β the followings hold:

‖PΩc∩RW − E[PΩc∩RW ]‖ ≤ η2 (34)

and for all i, j

|(PT (PΩc∩RW − E[PΩc∩RW ]))ij | ≤

 min

{
η2
K ,

η3√
KiK′j

}
if Ci ∼ C′j ,

0 otherwise.
(35)

Proof This claim follows the same arguments as in the proof of Lemma 17.

The last lemma is again analogous to Lemma 17 and controls the matrix PΩc∩RcW .

Lemma 19 Define

η4 := c4

(
bβ log n+

√
nVarν(w̃b)β log n

)
,

η5 := c5
bβ log n+

√
KVarν(w̃b)β log n

K
.

With probability at least 1− n−β the followings hold:

‖PΩc∩RcW − E[PΩc∩RcW ]‖ ≤ η4 (36)

and for all i, j

|(PT (PΩc∩RcW − E[PΩc∩RcW ]))ij | ≤
{

0 if Ci ∼ C′j ,
η5 otherwise,

(37)
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Proof This claim follows the same arguments as in the proof of Lemma 17.

Remark 20 The
√

log n factors in the expressions of η2, η3 and η4 can be removed via a more
careful analysis, for example by using the results in Bandeira and van Handel (2016). We do not
delve into the details here.

7.3 Proof of Theorem 9

We are now ready to complete the proof of Theorem 9. We will show that with probability at least
1− n−β the following inequality holds for all Y 6= Y ∗ feasible to the program (3):

〈W,Y ∗ − Y 〉 > 0,

which implies that Y ∗ is the unique solution of program (3). Note that the feasible set of the
program (2) is a subset of the feasible set of the program (3) (but always contains Y ∗). This means
that whenever Y ∗ is the unique solution of the program (3), it is also the unique solution of the
program (2).

To proceed, we decompose 〈W,Y ∗ − Y 〉 as follows:

〈W,Y ∗ − Y 〉 = 〈PΩ∩RW,Y
∗ − Y 〉+ 〈PΩ∩RcW,Y

∗ − Y 〉+ 〈PΩc∩RW,Y
∗ − Y 〉

+ 〈PΩc∩RcW,Y
∗ − Y 〉.

(38)

We analyze separately the four terms on the RHS above.
For the first RHS term, note that by the assumption (12), all entries of the matrix PΩ∩RW are

positive with probability one. We therefore have

〈PΩ∩RW,Y
∗ − Y 〉

≥ b∞K〈PΩUV
>, Y ∗ − Y 〉

= b∞K
(
〈E[PΩUV

>], Y ∗ − Y 〉+ 〈PΩUV
> − E[PΩUV

>], Y ∗ − Y 〉
)

= b∞K
(
〈sµUV >, Y ∗ − Y 〉+ 〈PΩUV

> − E[PΩUV
>], Y ∗ − Y 〉

)
(a)

≥ b∞K
(
〈sµUV >, Y ∗ − Y 〉+ 〈PT (PΩUV

> − E[PΩUV
>])− η1UV

>, Y ∗ − Y 〉
)

(b)

≥ b∞K
(
〈sµUV >, Y ∗ − Y 〉+ 〈−2η1UV

>, Y ∗ − Y 〉
)

= b∞K(sµ − 2η1)〈UV >, Y ∗ − Y 〉,

where we apply the bounds (30) and (32) in the step (a), and the bound (33) in the step (b). Again
by assumption (12) we have 〈PΩ∩RW,Y

∗ − Y 〉 ≥ 0. We conclude that

〈PΩ∩RW,Y
∗ − Y 〉 ≥ max {0, b∞K(sµ − 2η1)} · 〈UV >, Y ∗ − Y 〉. (39)

For the second RHS term in (38), it follows immediately from the assumption (12) that

〈PΩ∩RcW,Y
∗ − Y 〉 ≥ 0. (40)
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Turning to the third RHS term in (38), we have

〈PΩc∩RW,Y
∗ − Y 〉

=〈E[PΩc∩RW ], Y ∗ − Y 〉+ 〈PΩc∩RW − E[PΩc∩RW ], Y ∗ − Y 〉
=〈(Eµw̃b)Y ∗, Y ∗ − Y 〉+ 〈PΩc∩RW − E[PΩc∩RW ], Y ∗ − Y 〉

(a)

≥〈(Eµw̃b)Y ∗, Y ∗ − Y 〉+ 〈PT (PΩc∩RW − E[PΩc∩RW ])− η2UV
>, Y ∗ − Y 〉

(b)

≥max

{(
Eµw̃b −

2η2

K

)
〈Y ∗, Y ∗ − Y 〉, (KEµw̃b − 2η3) 〈UV >, Y ∗ − Y 〉

}
, (41)

where we use the bounds (30) and (34) in the step (a), and the bound (35) in the step (b); also in (b)
we use the inequality 〈(Eµw̃b)Y ∗, Y ∗ − Y 〉 ≥ 〈(KEµw̃b)UV >, Y ∗ − Y 〉, which follows from the
assumption (13).

Finally, letting J denote the all one matrix, we can bound the last RHS term in (38) as

〈PΩc∩RcW,Y
∗ − Y 〉

= 〈E[PΩc∩RcW ], Y ∗ − Y 〉+ 〈PΩc∩RcW − E[PΩc∩RcW ], Y ∗ − Y 〉
= (−Eνw̃b)〈J − Y ∗, Y 〉+ 〈PΩc∩RcW − E[PΩc∩RcW ], Y ∗ − Y 〉
(a)

≥ (−Eνw̃b)〈J − Y ∗, Y 〉+ 〈PT (PΩc∩RcW − E[PΩc∩RcW ])− η4UV
>, Y ∗ − Y 〉

(b)

≥ (−Eνw̃b − η5)〈J − Y ∗, Y 〉 − 〈η4UV
>, Y ∗ − Y 〉, (42)

where we use the bounds (30) and (36) in the step (a), and the bound (37) in the step (b).
Applying the above inequalities (39), (40), (41) and (42) to the equation (38), we obtain that

〈W,Y ∗ − Y 〉 ≥max

{(
Eµw̃b −

2η2 + η4

K

)
〈Y ∗, Y ∗ − Y 〉,

(b∞K(sµ − 2η1) +KEµw̃b − 2η3 − η4) 〈UV >, Y ∗ − Y 〉

}
+ (−Eνw̃b − η5)〈J − Y ∗, Y 〉

= max

{(
Eµw̃b −

2η2 + η4

K

)
〈Y ∗, Y ∗ − Y 〉,

b∞K

(
sµ +

Eµw̃b
b∞

−
(

2η1 +
2η3 + η4

b∞K

))
〈UV >, Y ∗ − Y 〉

}
+ (−Eνw̃b − η5)〈J − Y ∗, Y 〉. (43)

We see that the condition (14) in the theorem statement ensures that −Eνw̃b− η5 > 0. On the other
hand, the condition (15) ensures that

Eµw̃b −
2η2 + η4

K
> 0,

whereas the condition (16) ensures that

sµ +
Eµw̃b
b∞

−
(

2η1 +
2η3 + η4

b∞K

)
> 0.
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Either of last two inequalities is sufficient to guarantee that the right hand side of the equation (43)
is strictly positive. This completes the proof of Theorem 9.

8. Conclusion

In this paper we presented a general framework for graph clustering by assuming that all pairwise
observations are in the form of labels. The algorithm involves solving a tractable convex optimiza-
tion problem with an appropriately weighted objection function based on the observed labels.

A key contribution of our theoretical results is in showing that the MLE weights are order-wise
optimal under a generalized version of the stochastic block model, thus providing a principled way
of assigning weights to the observed graph. Our main results also identify the relevant parameters
that are crucial to the successful recovery of the underlying clusters. These include the minimum
cluster size, the distance between the label distributions, as well as properties of the observations
such as the number of snapshots in a time-varying graph.

This framework recovers as special cases a broad range of existing results in graph clustering,
and in fact provides substantial improvement for many of them. Important features such as partial
observability and non-uniform uncertainties can be readily analyzed using our results, which pro-
vide new insights in many applications. Moreover, our framework is powerful enough to yield new
results on novel settings such as the clustering of time-varying graphs.

An interesting future direction is to extend the proposed approach to problems with more com-
plex structures such as overlapping clusters. Another important direction is to develop scalable
solution applicable to very large data sets, both in terms of storage and computational complexity.
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Appendix A. Proofs of Theorem 3 and Corollary 4

In this section, we prove Theorem 3 and Corollary 4 for using MLE weights.

A.1 Proof of Theorem 3

Throughout this subsection, w always means the MLE weight function wMLE. The proof is based
on several lemmas. The first lemma, proved in Section A.1.1 to follow, bounds the log-likelihood
ratios.

Lemma 21 Suppose that
∣∣∣log µ(l)

ν(l)

∣∣∣ ≤ b,∀l ∈ L. Then, for any l ∈ L,

∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣ ≤ (b+ 2)

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ .
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The second lemma, proved in Section A.1.2 to follow, controls the variance terms.

Lemma 22 Suppose that | log µ(l)
ν(l) | ≤ b,∀l ∈ L and D(ν‖µ) ≤ ζD(µ‖ν), then

Varνw ≤ 3(b+ 2)D(ν‖µ) (44)

and
max(Varµw,Varνw) ≤ (ζ + 1)(b+ 2)D(µ‖ν). (45)

The last lemma is a classical result in information theory. The lemma bounds the KL divergence
D(µ‖ν) and D(ν‖µ) in terms of the triangle discrimination between µ and ν.

Lemma 23 (Topsoe 2000) The following holds for any distributions µ and ν, assuming that µ and
ν are absolutely continuous with each other and with respect to a base measure λ:

min{D(µ‖ν), D(ν‖µ)} ≥ 1

2

∫
L

(µ(l)− ν(l))2

µ(l) + ν(l)
dλ.

We are now ready to prove Theorem 3. To this end, we verify that the conditions (5) and (6) in
Theorem 2 are satisfied under the assumption of Theorem 3. Note that

−Eνw = −
∫
L

log
µ(l)

ν(l)
dν = D(ν‖µ).

Combining the assumption (7) in Theorem 3 with the previous bound (44), the first condition (5) in
Theorem 2 is satisfied as follows:

b log n

K
+

√
K log n

√
Varνw

K
≤ (b+ 2) log n

K
+

√
log n

K

√
3(b+ 2)D(ν‖µ)

≤ cD(ν‖µ) + c′
√
D(ν‖µ)

√
D(ν‖µ)

≤ c′′D(ν‖µ) = −c′′Eνw.

Turning to the condition (6), we note that Eµw = D(µ‖ν). Combining the assumption (8) in
Theorem 3 with the previous bound (45) in a similar manner establishes the condition (6).

Finally, the last sentence in the statement of Theorem 3 is a special case of the following more
general result, which is useful later in the proof of Theorem 5.

Lemma 24 Suppose that
∣∣∣log µ(l)

ν(l)

∣∣∣ ≤ b,∀l ∈ L. Then we have

D(ν‖µ) +D(µ‖ν) ≤ (b+ 2)

∫
L

(ν(l)− µ(l))2

ν(l) + µ(l)
dλ

and
1

2b+ 3
≤ D(ν‖µ)

D(µ‖ν)
≤ 2b+ 3.
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Proof We have

D(ν‖µ)

D(µ‖ν)
+ 1 =

D(ν‖µ) +D(µ‖ν)

D(µ‖ν)

=

∫
L(ν(l)− µ(l)) log ν(l)

µ(l) dλ

D(µ‖ν)

(a)

≤
(b+ 2)

∫
L

(ν(l)−µ(l))2

ν(l)+µ(l) dλ

D(µ‖ν)
,

where we use Lemma 21 in the inequality (a). This proves the first equation in the lemma. Bound-
ing the right side of (a) using Lemma 23, we prove the upper bound in the second equation of the
lemma. The lower bound in the second equation follows from switching the roles of µ and ν.

A.1.1 PROOF OF LEMMA 21

Consider the function g(p) = log 1−p
p for p ∈ [ 1

eb+1
, 0.5]. By the convexity of g(p) in this range we

can linearly upper-bound it and show that log 1−p
p ≤ b

(
eb+1
eb−1

)
(1− 2p). Taking p = ν

µ+ν , we then
have∣∣∣log

µ

ν

∣∣∣ =

∣∣∣∣log
1− p
p

∣∣∣∣ ≤ b(eb + 1

eb − 1

)
|1− 2p| = b

(
eb + 1

eb − 1

) ∣∣∣∣µ− νµ+ ν

∣∣∣∣ ≤ (b+ 2)

∣∣∣∣µ− νµ+ ν

∣∣∣∣ .
A.1.2 PROOF OF LEMMA 22

We need a version of the Padé approximation for logarithms:

log
1

x
≥ (1− x)(5 + x)

2 + 4x
, ∀x > 0,

which follows from that fact that the function g(x) = log 1
x −

(1−x)(5+x)
2+4x has a unique minimum

g(1) = 0. Using this inequality, we obtain that

3

∫
L

log
ν(l)

µ(l)
dν −

∫
L

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ ∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣ dν = 2

∫
L

2µ(l) + ν(l)

µ(l) + ν(l)
log

ν(l)

µ(l)
dν

≥ 2

∫
L

2µ(l) + ν(l)

µ(l) + ν(l)

(1− µ(l)
ν(l) )(5 + µ(l)

ν(l) )

2 + 4µ(l)
ν(l)

dν

=

∫
L

(ν(l)− µ(l))(5ν(l) + µ(l))

µ(l) + ν(l)
dλ

= −4 + 8

∫
L

µ(l)2

µ(l) + ν(l)
dλ

(a)

≥ 0,
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where the last inequality (a) follows from the fact that
∫
L

µ(l)2

µ(l)+ν(l) dλ ≥ 1
2 . The first inequality (44)

in the lemma then follows from

Varνw ≤ Eνw2

=

∫
L

(
log

µ(l)

ν(l)

)2

dν

(a)

≤ (b+ 2)

∫
L

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ ∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣ dν

(b)

≤ 3(b+ 2)

∫
L

log
ν(l)

µ(l)
dν

= 3(b+ 2)D(ν‖µ),

where the step (a) follows from Lemma 21 and the step (b) follows from the inequality above.

For the second inequality (45), again by using Lemma 21 we obtain that

max(Varµw,Varνw) ≤ Eµw2 + Eνw2

=

∫
L

(µ(l) + ν(l))

(
log

µ(l)

ν(l)

)2

dλ

≤ (b+ 2)

∫
L

(µ(l) + ν(l))

∣∣∣∣µ(l)− ν(l)

µ(l) + ν(l)

∣∣∣∣ ∣∣∣∣log
µ(l)

ν(l)

∣∣∣∣ dλ

= (b+ 2)
(
D(µ‖ν) +D(ν‖µ)

)
≤ (ζ + 1)(b+ 2)D(µ‖ν).

A.2 Proof of Corollary 4

The corollary follows immediately from Theorem 3, by lower bounding the left hand sides of the
equations (7) and (8) using Lemma 23.

Appendix B. Proof of Theorem 5

In this section, we prove the converse result in Theorem 5. We use a standard technique of con-
verting a statistical estimation problem to multiple hypothesis testing—in particular, we shall apply
Theorem 2.5 of Tsybakov (2009). We will consider the standard clustering case where Y ∗ is sym-
metric. Set M = n and let θ0 ∈ {0, 1}n×n be a fixed cluster matrix corresponding to two equal
sized clusters. For k = 1, . . . , M2 , let θk be the cluster matrix of a new clustering by swapping
the 1st member of cluster 1 with the k-th member of cluster 2. Likewise, for k = M

2 + 1, . . . ,M ,
θk is obtained by swapping the 2nd member of cluster 1 with the k-th member of cluster 2. Let
L0, L1, . . . , LM be the random label matrices generated by the corresponding clustering.
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Since the label of each pair (i, j) is generated independently, we have:

D(Lj‖L0) =
∑
i<j

D(Lkij‖L0
ij)

(a)
= (n− 2)D(µ‖ν) + (n− 2)D(ν‖µ)

(b)

≤ (n− 2)(b+ 2)

∫
L

(ν(l)− µ(l))2

ν(l) + µ(l)
dλ

(c)

≤ (c′ + 2)c log n;

here in step (a) we use the fact that due to the membership swap, exactly n − 2 intra-cluster pairs
in θ0 become inter-cluster pairs in θj and vise-versa, step (b) follows from the first equation in
Lemma 24, and step (c) holds due to the assumption (10) of the theorem and that b is bounded by a
universal constant.

The result then follows from taking c sufficiently small and applying Theorem 2.5 of Tsybakov
(2009).

Appendix C. Proof of Theorem 6

In this section we prove the monotonicity property in Theorem 6. Let E = {l ∈ L : µ̄(l) ≥ ν̄(l)}
and Ec = L \ E. Since (µ, ν) is strictly more divergent than (µ̄, ν̄), we have that for all l ∈ E,
µ(l) ≥ µ̄(l) ≥ ν̄(l) ≥ ν(l) and for all l ∈ Ec, ν(l) ≥ ν̄(l) > µ̄(l) ≥ µ(l).

Suppose that the label matrix L is generated using the following two-stage procedure:

1. First, generate a matrix L̄ from (µ̄, ν̄). Set L← L̄.

2. Second:

• For each (i, j) where Y ∗ij = 0, if Lij ∈ E, then with probability 1− ν(Lij)
ν̄(Lij)

, set Lij ← l

where l is drawn from the set Ec with distribution ν(l)−ν̄(l)∫
l′∈Ec ν(l′)−ν̄(l′) dλ(l′)

. Let Ω− be the
set of all such entries, i.e. where Lij has switched from E to Ec.

• For each (i, j) where Y ∗ij = 1, if Lij ∈ Ec, then with probability 1− µ(Lij)
µ̄(Lij)

, set Lij ← l

where l is drawn from the set E with distribution µ(l)−µ̄(l)∫
l′∈E µ(l′)−µ̄(l′) dλ(l′)

. Let Ω+ be the
set of all such entries, i.e. where Lij has switched from Ec to E.

It is straightforward to verify that the resulting distribution of L is identical to that generated by the
pair (µ, ν).

Consider the program (3) with L̄ as input, and let W̄ be the corresponding MLE weights. Since
the pair (µ̄, ν̄) satisfies the condition of Theorem 3, we have that with probability at least 1− n−10,
the matrix Y ∗ is the unique optimal solution and hence satisfies 〈W̄ , Y ∗〉 > 〈W̄ , Y 〉 for any feasible
solution Y 6= Y ∗. Now, consider the program (3) with L as the input, using the corresponding MLE
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weights W based on (µ̄, ν̄). We have that for any feasible Y 6= Y ∗,

〈W,Y ∗〉 − 〈W̄ , Y ∗〉 =
∑

(i,j)∈Ω+

(Wij − W̄ij)Y
∗
ij

≥
∑

(i,j)∈Ω+

(Wij − W̄ij)Yij

≥
∑

(i,j)∈Ω−

(Wij − W̄ij)Yij +
∑

(i,j)∈Ω+

(Wij − W̄ij)Yij

= 〈W,Y 〉 − 〈W̄ , Y 〉,

which implies that

〈W,Y ∗〉 − 〈W,Y 〉 ≥ 〈W̄ , Y ∗〉 − 〈W̄ , Y 〉 > 0.

Therefor, Y ∗ is still the unique optimal solution.

Appendix D. Proof of Theorem 7

In this section, we prove Theorem 7 for using inaccurate weights. Our strategy is to apply Theo-
rem 2. To avoid confusion we use b′ and c′ to denote the constants b and c in Theorem 2.

To show that the condition (5) in Theorem 2 is satisfied, we upper bound its right hand side as
follows:

c′
b′ log n+

√
K log n

√
Varνw

K

(a)

≤ c′b′(1− γ)2

cα2(b+ 2)
D(ν‖µ) +

√
3c′2α2(b+ 2)D(ν‖µ)

log n

K

≤ c′(1− γ)2

cα
D(ν‖µ) +

√
3c′2(1− γ)2

c
D(ν‖µ)2

(b)

≤ (1− γ)D(ν‖µ)

(c)

≤ D(ν‖µ)−∆ν

= −Eνw,

where in step (a) we use Varνw ≤ α2Varνw
MLE due to the condition |w| ≤ α| log µ

ν | and apply
the bound (44), step (b) holds by choosing an appropriately large c, and in step (c) we use the
assumption |∆ν | ≤ γD(ν‖µ) in the statement Theorem 7.

We can use similar arguments, using the bound (45) instead of (44), to prove that the condi-
tion (6) in Theorem 2 is satisfied. Theorem 7 then follows from applying Theorem 2.

Appendix E. Proof of Corollary 10

In this section, we prove Corollary 10 for clustering Gaussian graphs. Ideally we would like apply
Theorem 3 as we are using the MLE weight. A minor technical difficulty is that the boundedness
condition |wMLE(Lij)| ≤ b is not satisfied as the Gaussian entries of L are unbounded. To overcome
this we use a standard truncation argument.
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Without loss of generality assume that u = 0. Define a truncated version w̃ for the weight
function wMLE by

w̃(l) =

{
0, if |l| > c′

√
log n or l =?,

l − (ū+ u)/2, if |l| < c′
√

log n,

where c′ > 4c0 is a universal constant to be chosen later. With the goal of applying Theorem 2 to this
weight function, we verify that the conditions of the theorem are satisfied. By the assumption ū ≤
u+ c0

√
log n = c0

√
log n, the weight function w̃ satisfies w̃(l) ≤ b = (c′ + c0)

√
log n,∀l ∈ L, so

the boundedness condition holds. We next verify the condition (6). Letting φ(x) = (2π)−1/2e−x
2/2

be the density function of the standard normal, we note that

Eµw̃ =

∫
l:|l|<c′

√
logn

wMLE(l) dµ =

∫
L
wMLE(l) dµ−

∫
l:|l|>c′

√
logn or l=?

wMLE(l) dµ

=
sū

2
− s

∫
|l|>c′

√
logn

(l − ū/2)φ(l − ū) dl

≥ sū

2
− s

∫
|l|>c′

√
logn

(|l|+ ū/2)φ(l − ū) dl

≥ sū

2
− 4s

∫ +∞

c′
√

logn/2
lφ(l) dl︸ ︷︷ ︸

T

,

where the last inequality follows from the fact that ū ≤ c0
√

log n < c′
√

logn
4 . We control the term T

as

T = (2π)−
1
2

∫ +∞

c′
√

logn/2
xe−x

2/2 dx
(a)

≤ (2π)−
1
2

∫ +∞

c′
√

logn/2
e−(x−1/2)2/2 dx

(b)

≤ 1

n2

(c)

≤ ū

16
,

where the step (a) follows from x ≤ ex−1/2, (b) follows from the standard Gaussian tail bound
1−Φ(t) ≤ e−t2/2 and the fact that c′ is sufficiently large, and (c) follows from the assumption (18)
of Corollary 10. It follows that Eµw̃ ≥ sū

4 . On the other hand, since w̃ is a truncated version of
wMLE, we have

max{Varµw̃,Varνw̃} ≤ max{Varµw
MLE,Varνw

MLE} ≤ s(ū2 + 1) ≤ 2c2
0s log n.

Combining the above bounds, it is easy to check that the condition (6) of Theorem 2 is satisfied
under the assumption (18) of Corollary 10. Similar lines of arguments establish the condition (5) of
Theorem 2. This theorem therefore guarantees that the program (2) with the weight function w = w̃
recovers the true cluster matrix Y ∗ with probability at least 1− n−10.

Now, by choosing the constant c′ to be sufficiently large and using the Gaussian tail bound and
the union bound, we are guaranteed that with probability at least 1 − n−10, w̃(Lij) = wMLE(Lij)
for all (i, j). In the intersection of the above two events (which occurs with probability at least
1− 2n−10), the program (2) with the weight function w̃ is identical to that with the weight function
wMLE, both of which recover the true Y ∗. The same holds for the program (3).
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Appendix F. Proof of Corollary 15

In this section we prove Corollary 15 for clustering with Markov snapshots. The MLE weight in
this case is given by

wMLE(L̄ij) =
1

T
log

µ0(L
(1)
ij )µ(L

(2)
ij |L

(1)
ij ) . . . µ(L

(T )
ij |L

(T−1)
ij )

ν0(L
(1)
ij )ν(L

(2)
ij |L

(1)
ij ) . . . ν(L

(T )
ij |L

(T−1)
ij )

=
1

T
log

µ0(L
(1)
ij )

ν0(L
(1)
ij )

+
1

T

T∑
t=2

log
µ(L

(t)
ij |L

(t−1)
ij )

ν(L
(t)
ij |L

(t−1)
ij )

.

In the sequel, we will focus on an in-cluster pair (i, j) with label distribution µ and drop the subscript
ij in Lij . The same analysis holds for the cross-cluster pair (i, j).

It is convenient to consider an auxiliary Markov chain X1, . . . XT where each state is character-
ized by a label pair Xt = (L(t−1), L(t)) for t > 1, and X1 = L(1). We define the function f on the
domain of Xt such that

f(L) = log
µ0(L)

ν0(L)
and f(L,L′) = log

µ(L′|L)

ν(L′|L)
.

We therefore have

wMLE(L̄) =
1

T

T∑
t=1

f(Xt).

It is straightforward to show that

Eµ(f(X1)) = D(µ0‖ν0) and Eµ(f(Xt)) = Eµ0Dl(µ‖ν) for t > 1,

whence
Eµ(wMLE) =

1

T
D(µ0‖ν0) +

(
1− 1

T

)
Eµ0Dl(µ‖ν). (46)

The rest of the proof concerns bounding Varµ(wMLE). Following the proof of Lemma 22, the
variance of f(Xt) can be bounded by

Varµ(f(X1)) ≤ 3(b+ 2)D(µ0‖ν0) and Varµ(f(Xt)) ≤ 3(b+ 2)Eµ0Dl(µ‖ν) (t > 1).

We now bound the covariance Covµ(f(Xt), f(Xt+τ+1)) for t ≥ 2 and τ ≥ 0:

Covµ(f(Xt), f(Xt+τ+1))

=Eµ

[
log

µ(L(t)|L(t−1))

ν(L(t)|L(t−1))
log

µ(L(t+τ+1)|L(t+τ))

ν(L(t+τ+1)|L(t+τ))

]
− Eµ0Dl(µ‖ν)2

=
∑
L(t−1)

µ0(L(t−1))
∑
L(t)

µ(L(t)|L(t−1)) log
µ(L(t)|L(t−1))

ν(L(t)|L(t−1))

∑
L(t+τ)

Prµ(L(t+τ)|L(t))DL(t+τ)(µ‖ν)

− Eµ0Dl(µ‖ν)2

(a)

≤
∑
L(t−1)

µ0(L(t−1))
∑
L(t)

µ(L(t)|L(t−1))

∣∣∣∣∣log
µ(L(t)|L(t−1))

ν(L(t)|L(t−1))

∣∣∣∣∣ ∑
L(t+τ)

κφτDL(t+τ)(µ‖ν)

≤ κφτ

minl µ0(l)
bEµ0Dl(µ‖ν),
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where in the step (a) we use the geometric ergodicity assumption of µ, i.e.,

|Prµ(L(t+τ)|L(t))− µ0(L(t+τ))| ≤ κφτ .

The same bound also applies to the case t = 1. Note that the covariance bound is independent of t
and only dependent on τ .

We proceed to bound Varµ(wMLE) as follows:

Varµ(wMLE) =
1

T 2

T∑
t=1

Varµ(f(Xt)) +
2

T 2

T−1∑
t=1

T∑
t′=t+1

Covµ(f(Xt), f(Xt′))

≤ 1

T 2

T∑
t=1

Varµ(f(Xt)) +
2

T

T−2∑
τ=0

T − 1− τ
T

κφτ

minl µ0(l)
bEµ0Dl(µ‖ν)

≤ 3(b+ 2)

T

(
1

T
D(µ0‖ν0) +

T − 1

T
Eµ0Dl(µ‖ν)

)
+

2κ

(1− φ) minl µ0(l)
b
Eµ0Dl(µ‖ν)

T

≤ c(b+ 2)Φ

T

(
1

T
D(µ0‖ν0) +

T − 1

T
Eµ0Dl(µ‖ν)

)
. (47)

With the above bounds (46) and (47), we complete the proof of Corollary 15 by applying The-
orem 2.

Appendix G. Example of Markov Chain with Explicit Bound on Φ

The snapshots in the Markov model are not independent. Therefore, given T snapshots we do not
expect a T -fold increase in the information as in the independent snapshot model. In the conditions
given in Corollary 15, this penalty is characterized by the parameter Φ defined in Section 4.4. To
provide a sense of what values it may take, we now derive an explicit bound for a simple class of
2-state sequences (i.e., |L| = 2).

As in Section F, we first focus on an in-cluster pair (i, j) with label distribution µ, and drop the
subscript ij in Lij . Suppose the transition matrix for the distribution µ is[

1− p0 p0

p1 1− p1

]
,

where 0 < p0, p1 < 1. If we identify the label set L with {edge, non-edge}, then p0 can be thought
of as the probability that an edge “flips” into a non-edge, and p1 as the probability that a non-edge
flips into an edge. Let ρ := 1 − p0 − p1. By eigen-decomposition we can show that the transition
matrix after t transitions is [

p1
p0+p1

(
1 + p0

p1
ρt
)

p0
p0+p1

(1− ρt)
p1

p0+p1

(
1− ρt

) p0
p0+p1

(1 + p1
p0
ρt)

]
,

and the stationary distribution on the two states, written as a vector, is given by

µ0 =

[
p1

p0 + p1

p0

p0 + p1

]
.
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This Markov chain of the observed sequence of an in-cluster pair satisfies the inequality

|Prµ(L(1+t)|L(1))− µ0(L(1+t))| ≤ |ρ|t

for all integer t ≥ 1.
Now suppose that the cross-cluster distribution ν is of a similar form as µ, i.e., has the transition

matrix [
1− p′0 p′0
p′1 1− p′1

]
,

for some p′0 and p′1. By similar arguments, ν has the stationary distribution ν0 = [p′1/(p
′
0 +

p′1), p′0/(p
′
0 + p′1)], and satisfies |Prν(L(1+t)|L(1))− ν0(L(1+t))| ≤ |ρ′|t, where ρ′ := 1− p′0 − p′1.

Therefore, the geometric ergodicity condition in (23) of Section 4.4 holds with parameters κ = 1
and φ = max{|ρ|, |ρ′|}. The parameter Φ, having the value

Φ =
1(

1−max{|ρ|, |ρ′|}
)

min
{

p0
p0+p1

, p1
p0+p1

,
p′0

p′0+p′1
,

p′1
p′0+p′1

}
is a constant independent of the parameters n,K, T etc.

The value of Φ determines how much new information is contained in a new snapshot. For
example, suppose that p1 = p0 ∈ (0, 1

2 ] and p′1 = p′0 ∈ (0, 1
2 ], in which case the stationary

distributions µ0 = ν0 = [1
2

1
2 ] are fixed, and hence

Φ =
1

min{p0, p′0}
.

The value of Φ is large when the flipping probabilities p0, and p′0 are close to zero. In this case
the next snapshot is almost always the same as the current snapshot, hence providing little extra
information. On the other hand, if these probabilities are closer to 1

2 , say p0 = p1 = 1
2 and

p′0 = p′1 = 1
4 , then Φ = 4 is small. In this case the snapshots have more independence and thus the

next snapshot provides fresh information.
Also note that in the above case, the marginal distributions of in- and cross- cluster pairs are

the same: µ0 = ν0 = [1
2

1
2 ]. In this case, information about the clustering only comes from the

“flipping” pattern in the snapshots. For example, if p0 = p1 = 1
2 and p′0 = p′1 = 1

4 , then in a
long sequence of snapshots, the fractions of “edge” and “non-edge” labels in a in-cluster pair and a
cross-cluster pair are both close to 50%, but we will see more flippings on pairs in the same cluster.
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