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Abstract
Latent Dirichlet Allocation (LDA) is a well known topic model that is often used to make inference
regarding the properties of collections of text documents. LDA is a hierarchical Bayesian model,
and involves a prior distribution on a set of latent topic variables. The prior is indexed by certain
hyperparameters, and even though these have a large impact on inference, they are usually chosen
either in an ad-hoc manner, or by applying an algorithm whose theoretical basis has not been
firmly established. We present a method, based on a combination of Markov chain Monte Carlo
and importance sampling, for estimating the maximum likelihood estimate of the hyperparameters.
The method may be viewed as a computational scheme for implementation of an empirical Bayes
analysis. It comes with theoretical guarantees, and a key feature of our approach is that we provide
theoretically-valid error margins for our estimates. Experiments on both synthetic and real data
show good performance of our methodology.
Keywords: Empirical Bayes inference, latent Dirichlet allocation, Markov chain Monte Carlo,
model selection, topic modelling.

1. Introduction

Latent Dirichlet Allocation (LDA, Blei et al. 2003) is a model that is used to describe high-dimen-
sional sparse count data represented by feature counts. Although the model can be applied to many
different kinds of data, for example collections of annotated images and social networks, for the
sake of concreteness, here we focus on data consisting of a collection of documents. Suppose we
have a corpus of documents, say a collection of news articles, and these span several different topics,
such as sports, medicine, politics, etc. We imagine that for each word in each document, there is a
latent (i.e. unobserved) variable indicating a topic from which that word is drawn. There are several
goals, but two principal ones are to recover an interpretable set of topics, and to make inference on
the latent topic variables for each document.

To describe the LDA model, we first set up some terminology and notation. There is a vocab-
ulary V of V words; typically, this is taken to be the union of all the words in all the documents
of the corpus, after removing stop (i.e. uninformative) words. (Throughout, we use “word” to refer
to either an actual word, or to a phrase, such as “heart attack”; LDA has implementations that deal
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with each of these.) There are D documents in the corpus, and for d = 1, . . . , D, document d has
nd words, wd1, . . . , wdnd . The order of the words is considered uninformative, and so is neglected.
Each word is represented as an index vector of dimension V with a 1 at the sth element, where
s denotes the term selected from the vocabulary. Thus, document d is represented by the matrix
wd = (wd1, . . . , wdnd) and the corpus is represented by the list w = (w1, . . . ,wD). The number
of topics, K, is finite and known. By definition, a topic is a distribution over V , i.e. a point in the
simplex SV = {a ∈ RV : a1, . . . , aV ≥ 0,

∑V
j=1 aj = 1}. For d = 1, . . . , D, for each word wdi,

zdi is an index vector of dimension K which represents the latent variable that denotes the topic
from which wdi is drawn. The distribution of zd1, . . . , zdnd will depend on a document-specific
variable θd which indicates a distribution on the topics for document d.

We will use DirL(a1, . . . , aL) to denote the finite-dimensional Dirichlet distribution on the sim-
plex SL. Also, we will use MultL(b1, . . . , bL) to denote the multinomial distribution with number
of trials equal to 1 and probability vector (b1, . . . , bL). We will form a K × V matrix β, whose
tth row is the tth topic (how β is formed will be described shortly). Thus, β will consist of vec-
tors β1, . . . , βK , all lying in SV . The LDA model is indexed by hyperparameters η ∈ (0,∞) and
α ∈ (0,∞)K . It is represented graphically in Figure 1, and described formally by the following
hierarchical model:

1. βt
iid∼ DirV (η, . . . , η), t = 1, . . . ,K.

2. θd
iid∼ DirK(α), d = 1, . . . , D, and the θd’s are independent of the βt’s.

3. Given θ1, . . . , θD, zdi
iid∼ MultK(θd), i = 1, . . . , nd, d = 1, . . . , D, and the D matrices

(z11, . . . , z1n1), . . . , (zD1, . . . , zDnD) are independent.

4. Given β and the zdi’s, the wdi’s are independently drawn from the row of β indicated by zdi, i =
1, . . . , nd, d = 1, . . . , D.

From the description of the model, we see that there is a latent topic variable for every word that
appears in the corpus. Thus it is possible that a document spans several topics. Also, because β
is chosen once, at the top of the hierarchy, it is shared among the D documents. Thus the model
encourages different documents to share the same topics, and moreover, all the documents in the
corpus share a single set of topics defined by β.

wdizdiθd

α βtη

i = 1, . . . , nd

d = 1, . . . , D

t = 1, . . . ,K Figure 1: Graphical model representation for
LDA. Nodes denote random vari-
ables, shaded nodes denote observed
variables, edges denote conditional
dependencies, and plates denote repli-
cated processes.

Let θ = (θ1, . . . , θD), zd = (zd1, . . . , zdnd) for d = 1, . . . , D, z = (z1, . . . ,zD), and let
ψ = (β,θ, z). The model is indexed by the hyperparameter vector h = (η,α) ∈ (0,∞)K+1. For
any given h, lines 1–3 induce a prior distribution on ψ, which we will denote by νh. Line 4 gives
the likelihood. The words w are observed, and we are interested in νh,w, the posterior distribution
of ψ given w corresponding to νh. In step 2 it is common to take the distribution of the θd’s to
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be a symmetric Dirichlet, although arbitrary Dirichlets are sometimes used. Our model allows for
arbitrary Dirichlets, for the sake of generality, but in all our examples we use symmetric Dirichlets
because a high-dimensional hyperparameter can cause serious problems. We return to this point at
the end of Section 2.1.

The hyperparameter vector h is not random, and must be selected in advance. It has a strong
effect on the distribution of the parameters of the model. For example, when η is large, the topics
tend to be probability vectors which spread their mass evenly among many words in the vocabulary,
whereas when η is small, the topics tend to put most of their mass on only a few words. Also, in
the special case where α = (α, . . . , α), so that DirK(α) is a symmetric Dirichlet indexed by the
single parameter α, when α is large, each document tends to involve many different topics; on the
other hand, in the limiting case where α→ 0, each document involves a single topic, and this topic
is randomly chosen from the set of all topics.

The preceding paragraph is about the effect of h on the prior distribution of the parameters. We
may think about the role of h on statistical inference by considering posterior distributions. Let g be
a function of the parameterψ. For example, g(ψ) might be the indicator of the event ‖θi−θj‖ ≤ ε,
where i and j are the indices of two particular documents, ε is some user-specified small number,
and ‖ · ‖ denotes ordinary Euclidean distance in RK . In this case, the value of g(ψ) gives a way
of determining whether the topics for documents i and j are nearly the same (g(ψ) = 1), or not
(g(ψ) = 0). Of interest then is the posterior probability νh,w(‖θi − θj‖ ≤ ε), which is given by
the integral

∫
g(ψ) dνh,w(ψ). In another example, the function g might be taken to measure the

distance between two topics of interest. In Section 2.4 we demonstrate empirically that the posterior
expectation given by the integral

∫
g(ψ) dνh,w(ψ) can vary considerably with h.

To summarize: the hyperparameter h can have a strong effect not only on the prior distribution
of the parameters in the model, but also on their posterior distribution; therefore it is important
to choose it carefully. Yet in spite of the very widespread use of LDA, there is no method for
choosing the hyperparameter that has a firm theoretical basis. In the literature, h is sometimes
selected in some ad-hoc or arbitrary manner. A principled way of selecting it is via maximum
likelihood: we let mw(h) denote the marginal likelihood of the data as a function of h, and use
ĥ = arg maxhmw(h) which is, by definition, the empirical Bayes choice of h. We will write
m(h) instead of mw(h) unless we need to emphasize the dependence on w. Unfortunately, the
function m(h) is analytically intractable: m(h) is the likelihood of the data with all latent variables
integrated or summed out, and from the hierarchical nature of the model, we see that m(h) is a
very large sum, because we are summing over all possible values of z. Blei et al. (2003) propose
estimating arg maxhm(h) via a combination of the EM algorithm and “variational inference” (VI-
EM). Very briefly, w is viewed as “observed data,” and ψ is viewed as “missing data.” Because
the “complete data likelihood” ph(ψ,w) is available, the EM algorithm is a natural candidate for
estimating arg maxhm(h), since m(h) is the “incomplete data likelihood.” But the E-step in the
algorithm is infeasible because it requires calculating an expectation with respect to the intractable
distribution νh,w. Blei et al. (2003) substitute an approximation to this expectation. Unfortunately,
because there are no useful bounds on the approximation, and because the approximation is used
at every iteration of the algorithm, there are no results regarding the theoretical properties of this
method. Wallach (2006) (see also Wallach (2008)) proposed a “Gibbs-EM” algorithm, in which the
E-step is approximated by a Markov chain Monte Carlo estimate. This method can perform well
empirically but, as for the VI-EM algorithm, its theoretical validity has not been established. The
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advantages and disadvantages of these two approximations to the EM algorithm are discussed in
Section 5.1.

Wallach et al. (2009) give an overview of a class of methods for estimating a combination of
some parameter components and some hyperparameter components and, in principle, these pro-
cedures could be adapted to the problem of estimating h. The methods they present differ from
EM-based approaches in two fundamental respects: (1) they work with an objective function which
is not the marginal likelihood function m(h), but rather a measure of the “predictive performance
of the LDA model indexed by h,” and (2) evaluation of their objective function at hyperparameter
value h requires running a Markov chain, and this has to be done “for each value of h” before doing
the maximization of the objective function, which can impose a heavy computational burden. This
paper is discussed further in Section 5.

Another approach for dealing with the problem of having to make a choice of the hyperparame-
ter vector is the fully Bayes approach, in which we simply put a prior on the hyperparameter vector,
that is, add one layer to the hierarchical model. For example, we can either put a flat prior on each
component of the hyperparameter, or put a gamma prior instead. While this approach can be useful,
there are reasons why one may want to avoid it. On the one hand, if we put a flat prior then one
problem is that we are effectively skewing the results towards large values of the hyperparameter
components. A more serious problem is that the posterior may be improper. In this case, insidi-
ously, if we use Gibbs sampling to estimate the posterior, it is possible that all conditionals needed
to implement the sampler are proper; but Hobert and Casella (1996) have shown that the Gibbs
sampler output may not give a clue that there is a problem. On the other hand, if we use a gamma
prior, then at least in the case of a symmetric Dirichlet on the θd’s, we have not made things any
easier: we have to specify four gamma hyperparameters. Another reason to avoid the fully Bayes
approach is that, in broad terms, the general interest in empirical Bayes methods arises in part from
a desire to select a specific value of the hyperparameter vector because this gives a model that is
more parsimonious and interpretable. This point is discussed more fully (in a general context) in
George and Foster (2000) and Robert (2001, Chapter 7).

In the present paper we show that while it is not possible to compute m(h) itself, it is neverthe-
less possible, with a single MCMC run, to estimate the entire function m(h) up to a multiplicative
constant. Before proceeding, we note that if c is a constant, then the information regarding h given
by the two functions m(h) and cm(h) is the same: the same value of h maximizes both functions,
and the second derivative matrices of the logarithm of these two functions are identical. In particu-
lar, the Hessians of the logarithm of these two functions at the maximum (i.e. the observed Fisher
information) are the same and, therefore, the standard point estimates and confidence regions based
on m(h) and cm(h) are identical. Let g be a function of ψ and let I(h) =

∫
g(ψ) dνh,w(ψ) denote

the posterior expectation of g(ψ). We also show that it is possible to estimate the entire function
I(h) with a single MCMC run.

As we will see in Section 2, our approach for estimating m(h) up to a single multiplicative
constant and I(h) has two requirements: (i) we need a formula for the ratio νh1(ψ)/νh2(ψ) for any
two hyperparameter values h1 and h2, and (ii) for any hyperparameter value h, we need an ergodic
Markov chain whose invariant distribution is the posterior νh,w. This paper is organized as follows.
In Section 2 we explain our method for estimating the function m(h) up to a single multiplicative
constant (and hence its argmax) and for estimating the family of posterior expectations {I(h), h ∈
H}; and we also explain how to form error margins for our estimates, paying particular attention
to theoretical underpinnings. Additionally, we provide the formula for the ratio νh1(ψ)/νh2(ψ).
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In Section 3 we consider synthetic data sets generated from a simple model in which h is low
dimensional and known, and we show that our method correctly estimates the true value of h. In
Section 4 we describe two Markov chains which satisfy requirement (ii) above. In Section 5 we
compare, both theoretically and empirically, the various methods of estimating the maximizer of
the marginal likelihood function, in terms of accuracy. Then we compare the various choices of
the hyperparameter that are used in the literature—those that are ad-hoc and those that estimate
the maximizer of the marginal likelihood function—through a standard criterion that is used to
evaluate topic models, and we show that our method performs favorably. In Section 6 we make
some concluding remarks, and the Appendix contains some of the technical material that is needed
in the paper.

2. Estimation of the Marginal Likelihood up to a Multiplicative Constant and
Estimation of Posterior Expectations

This section consists of four parts. In Section 2.1 we show how the marginal likelihood function
can be estimated (up to a constant) with a single MCMC run. Section 2.2 concerns estimation of the
posterior expectation of a function g of the parameter ψ, given by the integral

∫
g(ψ) dνh,w(ψ),

and which depends on h. We show how the entire family of posterior expectations {I(h), h ∈ H}
can be estimated with a single MCMC run. In Section 2.3 we explain that the simple estimates
given in Sections 2.1 and 2.2 can have large variances, and we present estimates which are far more
reliable. In Section 2.4 we illustrate our methodology on a corpus created from Wikipedia.

Let H = (0,∞)K+1 be the hyperparameter space. For any h ∈ H, νh and νh,w are prior and
posterior distributions, respectively, of the vector ψ = (β,θ, z), for which some components are
continuous and some are discrete. We will use `w(ψ) to denote the likelihood function (which is
given by line 4 of the LDA model).

2.1 Estimation of the Marginal Likelihood up to a Multiplicative Constant

Note that m(h) is the normalizing constant in the statement “the posterior is proportional to the
likelihood times the prior,” i.e.

νh,w(ψ) =
`w(ψ)νh(ψ)

m(h)
.

Now suppose that we have a method for constructing a Markov chain on ψ whose invariant distri-
bution is νh,w and which is ergodic. Two Markov chains which satisfy these criteria are discussed
in later in this section. Let h∗ ∈ H be fixed but arbitrary, and let ψ1,ψ2, . . . be an ergodic Markov
chain with invariant distribution νh∗,w. For any h ∈ H, as n→∞ we have

1

n

n∑
i=1

νh(ψi)

νh∗(ψi)

a.s.−−→
∫

νh(ψ)

νh∗(ψ)
dνh∗,w(ψ)

=
m(h)

m(h∗)

∫
`w(ψ)νh(ψ)/m(h)

`w(ψ)νh∗(ψ)/m(h∗)
dνh∗,w(ψ)

=
m(h)

m(h∗)

∫
νh,w(ψ)

νh∗,w(ψ)
dνh∗,w(ψ)

=
m(h)

m(h∗)
.

(2.1)
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The almost sure convergence statement in (2.1) follows from ergodicity of the chain. (There is a
slight abuse of notation in (2.1) in that we have used νh∗,w to denote a probability measure when we
write dνh∗,w, whereas in the integrand, νh, νh∗ , and νh∗,w refer to probability densities.) The signifi-
cance of (2.1) is that this result shows that we can estimate the entire family {m(h)/m(h∗), h ∈ H}
with a single Markov chain run. Since m(h∗) is a constant, the remarks made in Section 1 apply,
and we can estimate arg maxhm(h). The usefulness of (2.1) stems from the fact that the average
on the left side involves only the priors, so we effectively bypass having to deal with the posterior
distributions.

The development in (2.1) is not new (although we do not know who first noticed it), and the esti-
mate on the left side of (2.1) is not the one we will ultimately use (cf. Section 2.3); we present (2.1)
primarily for motivation. Note that (2.1) is generic, i.e. it is not specific to the LDA model: it is
potentially valid for any Bayesian model for which we have a data vector w, a corresponding like-
lihood function `w(ψ), and parameter vector ψ having prior νh, with hyperparameter h ∈ H. We
now discuss carefully the scope of its applicability. In order to be able to use (2.1) to obtain valid
estimators of the family m(h)/m(h∗), h ∈ H, we need the following.

C1 A closed-form expression for the ratio of densities νh(ψ)/νh∗(ψ) for some fixed h∗ ∈ H.

C2 A method for generating an ergodic Markov chain with invariant distribution νh∗,w.

We need C1 in order to write down the estimators, and we need C2 for the estimators to be valid.

For notational convenience, let Bn(h) = (1/n)
∑n

i=1[νh(ψi)/νh∗(ψi)], and define B(h) =
m(h)/m(h∗). In order to use (2.1) to obtain a valid estimator, together with a confidence interval
(confidence set, if dim(h) > 1) for arg maxhm(h), we need in addition the following.

C3 A result that says that the convergence in the first line of (2.1) is uniform in h.

C4 A result that says that if Gn(h) is the centered and scaled version of the estimate on the left
side of (2.1) given by Gn(h) = n1/2(Bn(h) − B(h)), then Gn(·) converges in distribution to
a Gaussian process indexed by h.

We now explain these last two conditions. Generally speaking, for real-valued functions fn and
f defined on H, the pointwise convergence condition fn(h) → f(h) for each h ∈ H does not
imply that arg maxh fn(h) → arg maxh f(h). Indeed, counterexamples are easy to construct,
and in Section A.2 of the Appendix we provide a simple one. In order to be able to conclude
that arg maxh fn(h) → arg maxh f(h), which is a global condition, we need the convergence
of fn to f to be uniform (this is discussed rigorously in Section A.2 of the Appendix). Hence
we need C3. Regarding confidence intervals (or sets) for arg maxh f(h), we note that Bn(h) is
simply an average, and so under suitable regularity conditions, it satisfies a central limit theorem
(CLT). However, we are not interested in a central limit theorem for Bn(h), but rather in a CLT for
arg maxhBn(h). In this regard, C4 is a “uniform in h CLT” that is necessary to obtain a CLT of

the form n1/2(arg maxhBn(h) − arg maxhB(h))
d→ N (0,Σ) for some positive definite matrix

Σ, which is what is needed to form confidence sets for arg maxhB(h). Again, this is discussed
rigorously in Section A.2 of the Appendix.
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We now discuss Conditions C1–C4. Condition C1 is satisfied by the LDA model, and in Sec-
tion A.1 of the Appendix we show that the ratio of densities νh/νh∗ is given by

νh(ψ)

νh∗(ψ)
=

[
D∏
d=1

(
Γ
(∑K

j=1 αj
)∏K

j=1 Γ(αj)

∏K
j=1 Γ(α∗j )

Γ
(∑K

j=1 α
∗
j

) K∏
j=1

θ
αj−α∗j
dj

)][
K∏
j=1

(
Γ(V η)

Γ(η)V
Γ(η∗)V

Γ(V η∗)

V∏
t=1

βη−η
∗

jt

)]
,

(2.2)
where h∗ = (η∗,α∗).

There are many extensions and variants of the LDA model described in Section 1—too many to
even list them all here—and versions of (2.2) can be obtained for these models. This has to be done
separately for each case. The features of the LDA model that make it possible to obtain a ratio of
densities formula are that it is a hierarchical model, and at every stage the distributions are explicitly
finite dimensional. For other models, a ratio of densities formula is obtainable routinely as long as
these features exist: when they do, we have a closed-form expression for the prior distribution
νh(ψ), and hence a closed-form expression for the ratio νh(ψ)/νh∗(ψ).

Unfortunately, a ratio of densities formula is not always available. A prominent example is
the “Hierarchical Dirichlet Processes” model introduced in Teh et al. (2006), which effectively
allows infinitely many topics but with finitely many realized in any given document. Very briefly,
in this model, for word i in document d, there is an unobserved topic ψdi. The latent topic vector
ψd = (ψd1, . . . , ψdnd) has a complicated joint distribution with strength of dependence governed by
a hyperparameter h1 (the precision parameter of the Dirichlet process in the middle of the hierarchy),
and the D vectors ψ1, . . . ,ψD also have a complicated dependence structure, with strength of
dependence governed by a hyperparameter h2 (the precision parameter of the Dirichlet process
at the top of the hierarchy). The parameter vector for the model is ψ = (ψ1, . . . ,ψD) and the
hyperparameter is h = (h1, h2). Unfortunately, the joint (prior) distribution of ψ is not available in
closed form, and our efforts to obtain a formula for νh(ψ)/νh∗(ψ) have been fruitless.

Regarding Condition C2, we note that Griffiths and Steyvers have developed a “collapsed Gibbs
sampler” (CGS) which runs over the vector z. The invariant distribution of the CGS is the con-
ditional distribution of z given w. The CGS cannot be used directly, because to apply (2.1) we
need a Markov chain on the triple (β,θ, z), whose invariant distribution is νh∗,w. In Section 4
we obtain the conditional distribution of (β,θ) given z and w, and we show how to sample from
this distribution. Therefore, given a Markov chain z(1), . . . ,z(n) generated via the CGS, we can
form triples (z(1),β(1),θ(1)), . . . , (z(n),β(n),θ(n)), and it is easy to see that this sequence forms
a Markov chain with invariant distribution νh∗,w. We will refer to this Markov chain as the Aug-
mented Collapsed Gibbs Sampler, and use the acronym ACGS. In Section 4 we show that the ACGS
is not only geometrically ergodic, but actually is uniformly ergodic. We also show how to sample
from the conditional distribution of z given (β,θ) and w. This enables us to construct a two-cycle
Gibbs sampler which runs on the pair (z, (β,θ)). We will refer to this chain as the Grouped Gibbs
Sampler, and use the acronym GGS. Either the ACGS or the GGS may be used, and we see that
Condition C2 is satisfied for the LDA model.

The theorem below pertains to the LDA model and states that for this model, arg maxhBn(h)
converges to arg maxhm(h) almost surely, and that arg maxhBn(h) satisfies a CLT. The theorem
also gives a procedure for constructing confidence sets for arg maxhm(h). The result is explicit.
Therefore, given a desired level of precision, we can determine the Markov chain length needed to
estimate arg maxhm(h) with that level of precision. The proof of the theorem is in Section A.2
of the Appendix. The theorem is valid under some natural and mild regularity conditions which
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are given in the Appendix. (We have relegated the regularity conditions and a discussion of their
significance to the Appendix in order to avoid making the present section too technical.) Let p be
the dimension of h. So p = 2 if we take the distribution of the θd’s to be a symmetric Dirichlet, and
p = K + 1 if we allow this distribution to be an arbitrary Dirichlet.

Theorem 1 Let ψ1, ψ2, . . . be generated according to the Augmented Collapsed Gibbs Sampling
algorithm described above, let Bn(h) be the estimate on the left side of (2.1), and assume that
Conditions A1–A6 in Section A.2 of the Appendix hold. Then:

1. arg maxhBn(h)
a.s.−−→ arg maxhm(h).

2. n1/2
(
arg maxhBn(h)− arg maxhm(h)

) d→ Np(0,Σ) for some positive definite matrix Σ.

3. Let Σ̂n be the estimate of Σ obtained by the method of batching described in Section A.2 of the
Appendix. Then Σ̂n

a.s.−−→ Σ, and in particular Σ̂n is invertible for large n. Consequently, the
ellipse E given by

E =
{
h : (arg maxuBn(u)− h)>Σ̂−1n (arg maxuBn(u)− h) ≤ χ2

p,.95/n
}

is an asymptotic 95% confidence set for arg maxhm(h). Here, χ2
p,.95 denotes the .95 quantile of

the chi-square distribution with p degrees of freedom.

Remark 2 The mathematical development in the proof requires a stipulation (Condition A5) which
says that the distinguished point h∗ is not quite arbitrary: if we specify H = [η(L), η(U)] ×
[α

(L)
1 , α

(U)
1 ]× · · · × [α

(L)
K , α

(U)
K ], then h∗ must satisfy

η∗ < 2η(L) and α∗j < 2α
(L)
j , j = 1, . . . ,K. (2.3)

(Condition (2.3) is replaced by the obvious simpler analogue in the case of symmetric Dirichlets.)
Thus, Condition A5 provides guidelines regarding the user-selected value of h∗.

Remark 3 Part 3 suggests that one should not use arbitrary Dirichlets whenK is large. The ellipse
is centered at arg maxuBn(u) and the lengths of its principal axes are governed by the term χ2

p,.95.
When p = K + 1 and K is large, χ2

K+1,.95 is on the order of K + 1, and the confidence set for the
empirical Bayes estimate of h is then huge. In other words, when we use an arbitrary Dirichlet, our
estimates are very inaccurate.

Actually, the problem that arises when dim(h) = K is not limited to our Monte Carlo scheme
for estimating arg maxhm(h). There is a fundamental problem, which has to do with the fact that
there is not enough information in the corpus to estimate a high-dimensional h. Suppose we view
the D documents as being drawn from some idealized population generated according to the LDA
model indexed by h0. Leaving aside computational issues, suppose we are able to calculate ĥ =
arg maxhm(h), the maximum likelihood estimate of h0, to infinite accuracy. Standard asymptotics

giveD1/2(ĥ−h0)
d→ Np(0,Ω−1) asD →∞, where Ω is the Fisher information matrix. Therefore,

a 95% confidence set for h0 is given by the ellipse
{
h : (ĥ−h)>Ω(ĥ−h) ≤ χ2

K+1,.95/D
}

, and we
see that for high-dimensional h, D must be very large for us to be able to accurately estimate h0.
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2.2 Estimation of the Family of Posterior Expectations

Let g be a function of ψ, and let I(h) =
∫
g(ψ) dνh,w(ψ) be the posterior expectation of g(ψ)

when the prior is νh. Suppose that we are interested in estimating I(h) for all h ∈ H. Proceeding
as we did for estimation of the family of ratios {m(h)/m(h∗), h ∈ H}, let h∗ ∈ H be fixed
but arbitrary, and let ψ1,ψ2, . . . be an ergodic Markov chain with invariant distribution νh∗,w. To
estimate

∫
g(ψ) dνh,w(ψ), the obvious approach is to write∫

g(ψ) dνh,w(ψ) =

∫
g(ψ)

νh,w(ψ)

νh∗,w(ψ)
dνh∗,w(ψ) (2.4)

and then use the importance sampling estimate (1/n)
∑n

i=1 g(ψi)[νh,w(ψi)/νh∗,w(ψi)]. This will
not work because we do not know the normalizing constants for νh,w and νh∗,w. This difficulty is
handled by rewriting

∫
g(ψ) dνh,w(ψ), via (2.4), as∫

g(ψ)
`w(ψ)νh(ψ)/m(h)

`w(ψ)νh∗(ψ)/m(h∗)
dνh∗,w(ψ) =

m(h∗)

m(h)

∫
g(ψ)

νh(ψ)

νh∗(ψ)
dνh∗,w(ψ)

=

m(h∗)
m(h)

∫
g(ψ) νh(ψ)

νh∗ (ψ) dνh∗,w(ψ)

m(h∗)
m(h)

∫ νh(ψ)
νh∗ (ψ) dνh∗,w(ψ)

(2.5a)

=

∫
g(ψ) νh(ψ)

νh∗ (ψ) dνh∗,w(ψ)∫ νh(ψ)
νh∗ (ψ) dνh∗,w(ψ)

, (2.5b)

where in (2.5a) we have used the fact that the integral in the denominator is just 1, in order to cancel
the unknown constantm(h∗)/m(h) in (2.5b). The idea to express

∫
g(ψ) dνh,w(ψ) in this way was

proposed in a different context by Hastings (1970). Expression (2.5b) is the ratio of two integrals
with respect to νh∗,w, each of which may be estimated from the sequence ψ1,ψ2, . . . ,ψn. We may
estimate the numerator and the denominator by

1

n

n∑
i=1

g(ψi)[νh(ψi)/νh∗(ψi)] and
1

n

n∑
i=1

[νh(ψi)/νh∗(ψi)]

respectively. Thus, if we let

w
(h)
i =

νh(ψi)/νh∗(ψi)∑n
e=1[νh(ψe)/νh∗(ψe)]

,

then these are weights, and we see that the desired integral may be estimated by the weighted
average

Î(h) =

n∑
i=1

g(ψi)w
(h)
i . (2.6)

The significance of this development is that it shows that with a single Markov chain run, we can
estimate the entire family of posterior expectations {I(h), h ∈ H}. As was the case for the estimate
on the left side of (2.1), the estimate (2.6) is remarkable in its simplicity. To compute it, we need to
know only the ratio of the priors, and not the posteriors.

9
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2.3 Serial Tempering

Unfortunately, (2.6) suffers a serious defect: unless h is close to h∗, νh can be nearly singular with
respect to νh∗ over the region where the ψi’s are likely to be, resulting in a very unstable estimate.
A similar remark applies to the estimate on the left side of (2.1). In other words, there is effectively
a “radius” around h∗ within which one can safely move. To state the problem more explicitly: there
does not exist a single h∗ for which the ratios νh(ψ)/νh∗(ψ) have small variance simultaneously
for all h ∈ H. One way of dealing with this problem is to select J fixed points h1, . . . , hJ ∈ H
that “cover” H in the sense that for every h ∈ H, νh is “close to” at least one of νh1 , . . . , νhJ .
We then replace νh∗ in the denominator by (1/J)

∑J
j=1 bjνhj , for some suitable choice of positive

constants b1, . . . , bJ . Operating intuitively, we say that for any h ∈ H, because there exists at least
one j for which νh is close to νhj , the variance of νh(ψ)/[(1/J)

∑J
j=1 bjνhj (ψ)] is small; hence the

variance of νh(ψ)/[(1/J)
∑J

j=1 bjνhj (ψ)] is small simultaneously for all h ∈ H. Whereas for the
estimates (2.1) and (2.6) we need a Markov chain with invariant distribution is νh∗,w, in the present
situation we need a Markov chain whose invariant distribution is the mixture (1/J)

∑J
j=1 νhj ,w.

This approach may be implemented by a methodology called serial tempering (Marinari and Parisi
(1992); Geyer and Thompson (1995)), originally developed for the purpose of improving mixing
rates of certain Markov chains that are used to simulate physical systems in statistical mechanics.
However, it can be used for a very different purpose, namely to increase the range of values over
which importance sampling estimates have small variance. We now summarize this methodology,
in the present context, and show how it can be used to produce estimates that are stable over a wide
range of h values. Our explanations are detailed, because the material is not trivial and because
we wish to deal with estimates of both marginal likelihood and posterior expectations. The reader
who is not interested in the detailed explanations can skip the rest of this subsection with no loss
regarding understanding the rest of the material in this paper, and simply regard serial tempering as
a black box that produces estimates of the marginal likelihood (up to a constant) and of posterior
expectations (cf. (2.1) and (2.6)) that are stable over a wide h-region.

To simplify the discussion, suppose that in line 2 of the LDA model we take α = (α, . . . , α),
i.e. DirK(α) is a symmetric Dirichlet, so thatH is effectively two-dimensional, and suppose that we
takeH to be a bounded set of the formH = [ηL, ηU ]× [αL, αU ]. Our goal is to generate a Markov
chain with invariant distribution (1/J)

∑J
j=1 νhj ,w. The updates will sample different components

of this mixture, with jumps from one component to another. We now describe this carefully. Let
Ψ denote the state space for ψ. Recall that ψ has some continuous components and some discrete
components. To proceed rigorously, we will take νh and νh,w to all be densities with respect to a
measure µ on Ψ. Define L = {1, . . . , J}, and for j ∈ L, suppose that Φj is a Markov transition
function on Ψ with invariant distribution equal to the posterior νhj ,w. On occasion we will write νj
instead of νhj . This notation is somewhat inconsistent, but we use it in order to avoid having double
and triple subscripts. We have νh,w = `w νh/m(h) and νhj ,w = `w νj/m(hj), j = 1, . . . , J .

Serial tempering involves considering the state space L × Ψ, and forming the family of distri-
butions {Pζ , ζ ∈ RJ} on L ×Ψ with densities

pζ(j,ψ) ∝ `w(ψ)νj(ψ)/ζj . (2.7)

(To be pedantic, these are densities with respect to µ× σ, where σ is counting measure on L.) The
vector ζ is a tuning parameter, which we discuss shortly. For any value of ζ, by standard methods
involving the Metropolis-Hastings algorithm, we can generate a Markov chain having invariant dis-

10
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tribution equal to (2.7). If we take ζj = am(hj) for j = 1, . . . , J , where a is an arbitrary constant,
then the ψ-marginal of pζ is exactly (1/J)

∑J
j=1 νhj ,w, so we can generate a Markov chain with

the desired invariant distribution. Unfortunately, the values m(h1), . . . ,m(hJ) are unknown (our
objective is precisely to estimate them). It will turn out that for any value of ζ, a Markov chain with
invariant distribution (2.7) enables us to estimate the vector (m(h1), . . . ,m(hj)) up to a constant,
and the closer ζ is to a constant multiple of (m(h1), . . . ,m(hj)), the better is our estimate. This
gives rise to a natural iterative procedure for estimating (m(h1), . . . ,m(hj)). We now give the
details.

Let Γ(j, ·) be a Markov transition function on L. In our context, we would typically take Γ(j, ·)
to be the uniform distribution on Nj , where Nj is a set consisting of the indices of the hl’s which
are close to hj . Serial tempering is a Markov chain on L ×Ψ which can be viewed as a two-block
Metropolis-Hastings (i.e. Metropolis-within-Gibbs) algorithm, and is run as follows. Suppose that
the current state of the chain is (Li−1,ψi−1).

• A new value j ∼ Γ(Li−1, ·) is proposed. We set Li = j with the Metropolis probability

ρ = min

{
1,

Γ(j, Li−1)

Γ(Li−1, j)

νj(ψi−1)/ζj
νLi−1(ψi−1)/ζLi−1

}
, (2.8)

and with the remaining probability we set Li = Li−1.

• Generate ψi ∼ ΦLi(ψi−1, ·).

By standard arguments, the density (2.7) is an invariant density for the serial tempering chain. A
key observation is that the ψ-marginal density of pζ is

fζ(ψ) = (1/cζ)
J∑
j=1

`w(ψ)νj(ψ)/ζj , where cζ =
J∑
j=1

m(hj)/ζj . (2.9)

Suppose that (L1,ψ1), (L2,ψ2), . . . is a serial tempering chain. To estimate m(h), consider

M̂ζ(h) =
1

n

n∑
i=1

νh(ψi)

(1/J)
∑J

j=1 νj(ψi)/ζj
. (2.10)

Note that this estimate depends only on the ψ-part of the chain. Assuming that we have established
that the chain is ergodic, we have

M̂ζ(h)
a.s.−−→

∫
νh(ψ)

(1/J)
∑J

j=1 νj(ψ)/ζj

∑J
j=1 `w(ψ)νj(ψ)/ζj

cζ
dµ(ψ)

=

∫
`w(ψ)νh(ψ)

cζ/J
dµ(ψ)

=
m(h)

cζ/J
.

(2.11)

This means that for any ζ, the family
{
M̂ζ(h), h ∈ H

}
can be used to estimate the family

{m(h), h ∈ H}, up to a single multiplicative constant.

11
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To estimate the family of integrals
{∫

g(ψ) dνh,w(ψ), h ∈ H
}

, we proceed as follows. Let

Ûζ(h) =
1

n

n∑
i=1

g(ψi)νh(ψi)

(1/J)
∑J

j=1 νj(ψi)/ζj
. (2.12)

By ergodicity we have

Ûζ(h)
a.s.−−→

∫
g(ψ)νh(ψ)

(1/J)
∑J

j=1 νj(ψ)/ζj

∑J
j=1 `w(ψ)νj(ψ)/ζj

cζ
dµ(ψ)

=

∫
`w(ψ)g(ψ)νh(ψ)

cζ/J
dµ(ψ)

=
m(h)

cζ/J

∫
g(ψ) dνh,w(ψ).

(2.13)

Combining the convergence statements (2.13) and (2.11), we see that

Îst
ζ (h) :=

Ûζ(h)

M̂ζ(h)

a.s.−−→
∫
g(ψ) dνh,w(ψ). (2.14)

Suppose that for some constant a, we have

(ζ1, . . . , ζJ) = a(m(h1), . . . ,m(hJ)). (2.15)

Then cζ = J/a, and as noted earlier, fζ(ψ) = (1/J)
∑J

j=1 νhj ,w(ψ), i.e. the ψ-marginal of pζ
(see (2.9)) gives equal weight to each of the component distributions in the mixture. (Express-
ing this slightly differently, if (2.15) is true, then the invariant density (2.7) becomes pζ(j,ψ) =
(1/J)νhj ,w(ψ), so the L-marginal distribution of pζ gives mass (1/J) to each point in L.) There-
fore, for large n, the proportions of time spent in the J components of the mixture are about
the same, a feature which is essential if serial tempering is to work well. In practice, we can-
not arrange for (2.15) to be true, because m(h1), . . . ,m(hJ) are unknown. However, the vector
(m(h1), . . . ,m(hJ)) may be estimated (up to a multiplicative constant) iteratively as follows. If the
current value is ζ(t), then set(

ζ
(t+1)
1 , . . . , ζ

(t+1)
J

)
=
(
M̂ζ(t)(h1), . . . , M̂ζ(t)(hJ)

)
. (2.16)

From the convergence result (2.11), we get M̂ζ(t)(hj)
a.s.−−→ m(hj)/aζ(t) , where aζ(t) is a constant,

i.e. (2.15) is nearly satisfied by
(
ζ
(t+1)
1 , . . . , ζ

(t+1)
J

)
. To determine the number of iterations needed,

at each iteration we record the proportions of time spent in the J different components of the mix-
ture, i.e. the vector

(
(1/n)

∑n
i=1 I(Li = 1), . . . , (1/n)

∑n
i=1 I(Li = J)

)
, and we stop the iteration

when this vector is nearly uniform. In all our examples, three or four iterations were sufficient.
Pseudocode is given in Algorithm 1.

To sum up, we estimate the family of marginal likelihoods (up to a constant) and the family of
posterior expectations as follows. First, we obtain the vector of tuning parameters ζ via the iterative
scheme given by (2.16). To estimate the family of marginal likelihoods (up to a constant) we use

12
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Algorithm 1: Serial tempering. See the discussion in Sec. 2.3 and Appendices A.1 and 4.
Data: Observed words w
Result: A Markov chain on L ×Ψ

1 specify h1, . . . , hJ ∈ H;
2 initialize ζ(1)1 , . . . , ζ

(1)
J ;

3 initialize ψ0 = (β(0),θ(0), z(0)), L0;
4 compute count statistics ndk and mdkv, for d = 1, . . . , D, k = 1, . . . ,K, v = 1, . . . , V ;
5 for tuning iteration t = 1, . . . do
6 for MCMC iteration i = 1, . . . do

// The Metropolis-Hastings update
// Set Li via the probability ρ given by (2.8)

7 propose index j ∼ Γ(Li−1, ·);
8 sample U ∼ Uniform(0, 1);
9 if U < ρ then

10 set Li = j;
11 else
12 set Li = Li−1;

// Generate ψi = (β(i),θ(i), z(i)) ∼ ΦLi
(ψi−1, ·)

13 for document d = 1, . . . , D do
14 for word wdr, r = 1, . . . , nd do
15 sample topic index z(i)dr via the CGS (Griffiths and Steyvers, 2004);
16 update count statistics ndk and mdkv according to z(i)dr and wdr;

17 for topic k = 1, . . . ,K do
18 sample topic β(i)k via (4.5);
19 for document d = 1, . . . , D do
20 sample the distribution on topics θ(i)d via (4.5);

// Update tuning parameters ζ1, . . . , ζJ

21 compute the estimates M̂ζ(t)(h1), . . . , M̂ζ(t)(hJ) via (2.10) using ψi and ζ(t)1 , . . . , ζ
(t)
J ;

22 set
(
ζ
(t+1)
1 , . . . , ζ

(t+1)
J

)
=
(
M̂ζ(t)(h1), . . . , M̂ζ(t)(hJ)

)
;

M̂ζ(h) defined in (2.10), and to estimate the family of posterior expectations we use Îst
ζ (h) =

Ûζ(h)
/
M̂ζ(h) (see (2.12) and (2.10)).

We point out that it is possible to estimate the family of marginal likelihoods (up to a constant)
by

M̃ζ(h) =
1

n

n∑
i=1

νh(ψi)

νLi(ψi)/ζLi
. (2.17)
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Note that M̃ζ(h) uses the sequence of pairs (L1,ψ1), (L2,ψ2), . . ., and not just the sequence
ψ1,ψ2, . . .. To see why (2.17) is a valid estimator, observe that by ergodicity we have

M̃ζ(h)
a.s.−−→

∫∫
νh(ψ)

νL(ψ)/ζL
·
[

1

cζ
`w(ψ)νL(ψ)/ζL

]
dµ(ψ) dσ(L)

=

∫∫
m(h)

cζ
νh,w(ψ) dµ(ψ) dσ(L)

= J
m(h)

cζ
.

(2.18)

(Note that the limit in (2.18) is the same as the limit in (2.11).) Similarly, we may estimate the
integral

∫
g(ψ) dνh,w(ψ) by the ratio

Ĩst
ζ (h) =

n∑
i=1

g(ψi)νh(ψi)

νLi(ψi)/ζLi

/ n∑
i=1

νh(ψi)

νLi(ψi)/ζLi
.

The estimate Ĩst
ζ (h) is also based on the pairs (L1,ψ1), (L2,ψ2), . . ., and it is easy to show that

Ĩst
ζ (h)

a.s.−−→
∫
g(ψ) dνh,w(ψ).

The estimates M̃ζ(h) and Ĩst
ζ (h) are the ones that are used by Marinari and Parisi (1992) and

Geyer and Thompson (1995), but M̂ζ(h) and Îst
ζ (h) appear to significantly outperform M̃ζ(h) and

Ĩst
ζ (h) in terms of accuracy. We demonstrate this in Section 2.4.

Remark 4 Theorem 1 continues to be true when we use the serial tempering chain, as opposed to
the simple ACGS. The needed changes are that in the statement of the theorem Bn is replaced with
M̂ζ , and Condition A5 is replaced by the following. If h(1), . . . , h(J) are the grid points used in
running the serial tempering chain, then the stipulation on h∗ given by (2.3) is satisfied by h(j) for
at least one index j. See the proof of Theorem 1 in the Appendix.

Globally-Valid Confidence Bands for {I(h), h ∈ H} Based on Serial Tempering Here we
explain how to form confidence bands for the family {I(h), h ∈ H} based on {Îst

ζ (h), h ∈ H}.
Our arguments are informal, and we focus primarily on the algorithm for constructing the bands.
The proof that the method works is given in Section A.3 of the Appendix. We will write Î instead
of Îst

ζ to lighten the notation. Suppose that suph∈H n
1/2|Î(h)− I(h)| has a limiting distribution as

n → ∞ (in the Appendix we explain why such a result is true), and suppose that we know the .95
quantile of this distribution, i.e. we know the value c.95 such that

P

(
sup
h∈H

n1/2|Î(h)− I(h)| ≤ c.95
)

= .95. (2.19)

In this case we may rewrite (2.19) as

P
(
Î(h)− c.95/n1/2 ≤ I(h) ≤ Î(h) + c.95/n

1/2 for all h ∈ H
)

= .95,

meaning that the band Î(h)± c.95/n1/2 is a globally-valid confidence band for {I(h), h ∈ H}. (In
contrast, for a pointwise band (L(h), U(h)), h ∈ H, we can only make the statement P

(
L(h) ≤

14
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I(h) ≤ U(h)
)

= .95 for each h ∈ H, and we cannot make any statement regarding simultaneous
coverage.)

The difficulty is in obtaining c.95, and we now show how this quantity can be estimated through
the method of batching, which is described as follows. The sequence ψ1, . . . ,ψn is broken up into
J consecutive pieces of equal lengths called batches. For j = 1, . . . , J , let Îj(h) be the estimate of
I(h) produced by batch j. Now the Îj(h)’s are each formed from a sample of size n/J . Informally,
if n is large and n/J is also large, then for j = 1, . . . , J , suph∈H(n/J)1/2|Îj(h) − I(h)| and
suph∈H n

1/2|Î(h) − I(h)| have approximately the same distribution. Therefore, to estimate c.95,
we let Sj = suph∈H(n/J)1/2|Îj(h) − I(h)|, and as our estimate of c.95 we use the 95th percentile
of the sequence S1, . . . , SJ . Unfortunately, the Sj’s are not available, because they involve I(h),
which is unknown. So instead we use Sj = suph∈H(n/J)1/2|Îj(h) − Î(h)|, in which we have
substituted Î(h) for I(h). To conclude, let S[1] ≤ S[2] ≤ · · · ≤ S[J ] denote the ordered values of
the sequence S1, . . . ,SJ . We estimate c.95 via S[.95J ], and our 95% globally-valid confidence band
for {I(h), h ∈ H} is

{
Î(h)±S[.95J ]/n1/2, h ∈ H

}
. In the Appendix we show that the probability

that the entire function {I(h), h ∈ H} lies inside the band converges to .95 as n → ∞. There are
conditions on J : we need that J → ∞ and n/J → ∞; a good choice is J = n1/2. The Markov
chain length n should be chosen such that the band is acceptably narrow.

Iterative Scheme for Choosing the Grid The performance of serial tempering depends crucially
on the choice of grid points h1, . . . , hJ , and it is essential that arg maxhm(h) be close to at least
one of the grid points, for the reason discussed at the beginning of this section. This creates a
circular problem: the ideal grid is one that is centered or nearly centered at arg maxhm(h), but
arg maxhm(h) is unknown. The problem is compounded by the fact that the grid has to be “tight,”
i.e. the points h1, . . . , hJ need to be close together. This is because when the corpus is large, if hj
and hj′ are not close, then for j 6= j′, νhj and νhj′ are nearly singular (each is a product of a large
number of terms—see (2.2)). In the serial tempering chain, this near singularity causes the proposal
j ∼ Γ(Li−1, ·) (see (2.8)) to have high probability of being rejected, and the chain does not mix
well. To deal with this problem, we use an iterative scheme which proceeds as follows. We initialize
the experiment with a fixed h(0) (for example h(0) = (1, 1)) and a subgrid that “covers” h(0) (for
example a subgrid with convex hull equal to [1/2, 2]× [1/2, 2]). We then subsample a small set of
documents from the corpus and run the serial tempering chain to find the estimate of the maximizer
of the marginal likelihood for the subsampled corpus, using the current grid setting. We iterate: at
iteration t, we set h(t) to be the estimate of the maximizer obtained from the previous iteration, and
select a subgrid that covers h(t). As the iteration number t increases, the grid is made more narrow,
and the number of subsampled documents is increased. This scheme works because in the early
iterations the number of documents is small, so the near-singularity problem does not arise, and we
can use a wide grid. In our experience, decreasing the dimensions of the α- and η-grids by 10%
and increasing the number of subsampled documents by 10% at each iteration works well. It is very
interesting to note that convergence may occur before the subsample size is equal to the number
of documents in the corpus, in which case there is no need to ever deal with the entire corpus, and
in fact this is typically what happens, unless the corpus is small. (By “convergence” we mean that
h(t) is nearly the same as the values from the previous iterations.) Of course, for small corpora the
near-singularity problem does not arise, and the iterative scheme can be skipped entirely.

To illustrate the scheme, we generated a corpus according to the LDA model with D = 105,
K = 50, V = 500, nd = 80 for all d, and htrue = (η, α) = (.8, .2), and ran the scheme using
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Markov chains of length n = 50,000 and grids of size J = 100. As will be clear shortly, our results
would have been identical if D had been any number bigger than 105. Figure 2 shows the marginal
likelihood surfaces as the iterations progress. At iteration 1, the α-value of the maximizer is outside
the convex hull of the grid, and at the second iteration, the grid is centered at that point. Figure 3
gives precise information on the number of subsampled documents (left panel), and the lower and
upper endpoints of the α- and η-values used in the grids, as the iterations progress (right panel).
The right panel also gives α- and η-values of the estimate of the argmax as the iterations progress.
As can be seen from Figure 3, the scheme has effectively converged after about 18 iterations, and at
convergence the number of subsampled documents is only 200.
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Figure 2: Values of M̂(h) for iterations 1, 2, 4, 8, 12, 18 using a synthetic corpus generated accord-
ing to the LDA model with K = 20, nd = 100 for each d, V = 100, and htrue = (.8, .2).

Serial tempering is a method for enhancing the simple estimator (2.1) which works well when
dim(h) is low. The method does not scale well when dim(h) increases. In Section 6 we discuss
this issue and present an idea on a different way to enhance (2.1) when h is high dimensional.

2.4 Illustration on a Wikipedia Corpus

In Section 1 we mentioned that the hyperparameter h has a strong effect on the prior distribution of
the parameters in the model. Here we show empirically that it has a strong impact on the posterior
distribution, and hence on inference based on this posterior distribution. To this end, we considered
a corpus of articles from Wikipedia, constructed as follows. When a Wikipedia article is created, it
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Figure 3: Iterations in the serial tempering scheme used on the synthetic corpus in Figure 2: left
panel gives the number of documents subsampled at each iteration; right panel gives the
specifications for the grid at each iteration.

is typically tagged to one or more categories, one of which is the “primary category.” The corpus
consists of 8 documents from the category Leopardus, 8 from the category Lynx, and 7 from Prion-
ailurus. There are 303 words in the vocabulary, and the total number of words in the corpus is 7788.
We took K = 3, so implicitly we envisage a topic being induced by each of the three categories.
The corpus is quite small, but it is challenging to analyze because the topics are very close to each
other, so in the posterior distribution there is a great deal of uncertainty regarding the latent topic
indicator variables, and this is why we chose this data set. (In our analysis of this corpus, we treat
the articles as unlabeled, i.e. we act as if for each article we don’t know the category from which
the article is taken.) As mentioned in Section 1, two quantities of interest are the posterior proba-
bility that the topic indicator variables for documents i and j are close, i.e. νh,w(‖θi − θj‖ ≤ ε),
and the posterior expectation of the distance between topics i and j, which is given by the integral∫
‖βi − βj‖ dνh,w(ψ). Figure 4 gives plots of estimates of these posterior probabilities and expec-

tations, as h varies, together with 95% globally-valid confidence sets. The plots clearly show that
these posterior probabilities and expectations vary considerably with h.

Each plot was constructed from a serial tempering chain, using the methodology described
in Section 2.3. Details regarding the chain and the plots are as follows. We took the sequence
h1, . . . , hJ to consist of an 11 × 20 grid of 220 evenly-spaced values over the region (η, α) ∈
[.6, 1.1] × [.15, 1.1]. For each hyperparameter value hj (j = 1, . . . , 220), we took Φj to be the
Markov transition function of the Augmented Collapsed Gibbs Sampler alluded to earlier and de-
scribed in detail in Section 4 (in all our experiments we used the Augmented Collapsed Gibbs
Sampler, but the Grouped Gibbs Sampler gives results which are very similar). We took the Markov
transition function K(j, ·) on L = {1, . . . , 220} to be the uniform distribution on Nj where Nj is
the subset of L consisting of the indices of the hl’s that are neighbors of the point hj . (An interior
point has eight neighbors, an edge point has five, and a corner point has three.)1

1. Software for implementation of our algorithms as well as datasets we use are available as an R package at https:
//github.com/clintpgeorge/ldamcmc
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Figure 4: Variability of posterior probabilities and expectations for the Cats corpus from Wikipedia.
Left panel: estimate of the posterior probability that documents 7 and 8 have essentially
the same topics, in the sense that ‖θ7 − θ8‖ ≤ .07, as h varies. Right panel: estimate of
the posterior expectation of the (Euclidean, i.e. L2) distance between topics 1 and 2 as h
varies.

In Section 2.3, we stated that M̂ζ(h) and Îst
ζ (h) appear to significantly outperform M̃ζ(h) and

Ĩst
ζ (h) in terms of accuracy. We now provide some evidence for this, and we will deal with the

estimates of I(h) (a comparison of M̂ζ(h) and M̃ζ(h) is given in George (2015)). We considered the
Wikipedia Cats corpus described above, and we took I(h) = νh,w(‖θ7−θ8‖ ≤ .07). We calculated
Îst
ζ (h) twice, using two different seeds, and also calculated Ĩst

ζ (h) twice, using two different seeds,
in every case using the same h-range that was used in Figure 4. The four surfaces were constructed
via four independent serial tempering experiments, each involving two iterations (each of length
50,000 after a short burn-in period) to form the tuning parameter ζ, which was given initial value
ζ(0) =

(
ζ
(0)
1 , . . . , ζ

(0)
220

)
= (1, . . . , 1), and one final iteration (of length 100,000) to form the estimate

of I(h). Figure 5(a) shows the two estimates Îst
ζ (h), and Figure 5(b) shows the two estimates Ĩst

ζ (h).
The figures show that the two independent estimates Îst

ζ (h) are close to each other, whereas the two
independent estimates Ĩst

ζ (h) are not.

Although the variability of Îst
ζ (h) is significantly smaller than that of Ĩst

ζ (h), the figures perhaps
don’t show this very clearly because a visual comparison of two surfaces is not easy. Therefore, we
extracted two one-dimensional slices from each panel in Figure 5, which we used to create Figure 6.
The figure shows the values of the two versions of Îst

ζ (η, α) and the two versions of Ĩst
ζ (η, α) when

η is fixed at .70 (two left panels); and it shows these plots when η is fixed at 1.00 (two right panels).
The superiority of Îst

ζ over Ĩst
ζ is striking. We mention that, ostensibly, M̂ζ(h) and Îst

ζ (h) require

more computation, but the quantities (1/J)
∑J

j=1 νj(ψi)/ζj , i = 1, . . . , n are calculated once, and
stored. Doing this essentially eliminates the increased computing cost.
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Figure 5: Comparison of the variability of Îst
ζ and Ĩst

ζ . Left panel shows two independent estimates
of I(η, α) = νh,w(‖θ7 − θ8‖ ≤ .07) using Îst

ζ (η, α). Right panel uses Ĩst
ζ instead of Îst

ζ .

3. Empirical Assessment of the Estimator of the Argmax

Consider the LDA model with a given hyperparameter value, which we will denote by htrue, and
suppose we carry out steps 1–4 of the model, where in the final step we generate the corpus w.
The maximum likelihood estimate of h is ĥ = arg maxhm(h) and, as we mentioned earlier, for
any constant a, known or unknown, arg maxhm(h) = arg maxh am(h). As noted earlier, the
family

{
M̂ζ(h), h ∈ H

}
, where M̂ζ(h) is given by (2.10), may be used to estimate the family

{m(h), h ∈ H} up to a multiplicative constant. So we may use arg maxh M̂ζ(h) to estimate ĥ.
Recall that Bn(h) is the estimate of m(h)/m(h∗) given by the left side of equation (2.1). In

theory, arg maxhBn(h) can also be used. However, as we pointed out earlier, Bn(h) is stable
only for h close to h∗—a similar remark applies to Î(h)—and unless the region of hyperparameter
values of interest is small, we would not use Bn(h) and Î(h), and we would use estimates based
on serial tempering instead. We have included the derivations of Bn(h) and Î(h) primarily for
motivation, as these makes it easier to understand the development of the serial tempering estimates.
In Section 2.4 we presented an experiment which strongly suggested that Îst

ζ (h) is significantly
better than Ĩst

ζ (h) in terms of variance. George (2015) gives experimental evidence that, analogously,

M̂ζ(h) is significantly better than M̃ζ(h). Therefore, for the rest of this paper, we use only M̂ζ(h)

and Îst
ζ (h).

Here we present the results of some experiments which demonstrate good performance of ˆ̂h :=
arg maxh M̂ζ(h) as an estimate of htrue. We took α = (α, . . . , α), i.e. DirK(α) is a symmetric
Dirichlet, so that the hyperparameter in the model reduces to h = (η, α) ∈ (0,∞)2. Our experiment
is set up as follows: the vocabulary size is V = 40, the number of documents is D = 400, the
document lengths are nd = 80, d = 1, . . . , D, and the number of topics is K = 8. We used four
settings for the hyperparameter under which we generate the model: htrue is taken to be (.25, .25),
(.25, 4), (4, .25), and (4, 4). We estimated the marginal likelihood surfaces (up to a constant) on an
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Figure 6: Two one-dimensional views of the plots in Figure 5. Each of the top two panels shows
two independent estimates of I(η, α), using Îst

ζ (η, α). For the left panel, η = 0.70, and
for the right panel, η = 1.00. The bottom two panels use Ĩst

ζ instead of Îst
ζ . The plots

show that the variability of Îst
ζ is much smaller than that of Ĩst

ζ .

evenly-spaced 50 × 50 grid of 2500 values using M̂ζ(h) calculated from a serial tempering chain
implemented as follows. The size of the subgrid was taken to be 11 × 11 = 121, and we used ten
iterations of the iterative scheme described in Section 2.3 to form the final subgrid. The subgrid
for each of the four corpora is shown in the first section of the supplementary document George
and Doss. For each hyperparameter value hj (j = 1, . . . , 121), we took Φj to be the Markov
transition function of the Augmented Collapsed Gibbs sampler. We took the Markov transition
function K(j, ·) on L = {1, . . . , 121} to be the uniform distribution on Nj where Nj is the subset
of L consisting of the indices of the hl’s that are neighbors of the point hj . We obtained the value
ζfinal via three iterations of the scheme given by (2.16), in which we ran the serial tempering chain
in each tuning iteration for 100,000 iterations after a short burn-in period, and we initialized ζ(0) =(
ζ
(0)
1 , . . . , ζ

(0)
121

)
= (1, . . . , 1). Using ζfinal, we ran the final serial tempering chain for the same

number of iterations as in the tuning stage.

Figure 7 gives plots of the estimates M̂ζ(h) and also of their Monte Carlo standard errors
(MCSE) for the four specifications of htrue. We computed these standard error estimates using
the method of batch means, which is implemented in the R package mcmcse (Flegal et al., 2016);
they are valid pointwise, as opposed to globally, over the h-region of interest. They indicate that
the accuracy of M̂ζ(·) is adequate over the entire h-range for each of the four cases of htrue. (We
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produced error margins that are valid locally, as opposed to globally, because it is of interest to see
the regions where the variability is high.) In the supplementary document George and Doss we
show plots of the occupancy times for the 121 components of the mixture distribution. For each of
the four values of htrue, these occupancy times are close to uniform, indicating adequate mixing. We
note that arg maxh M̂ζ(h) can be obtained through a grid search from the plots in Figure 7, which
is what we did in this particular illustration, but in practice these plots don’t need to be generated,
and arg maxh M̂ζ(h) can be found very quickly through standard optimization algorithms such as
those that work through gradient-based approaches (which are very easy to implement here, since
dim(h) is only 2). These algorithms take very little time because they require calculation of M̂ζ(·)
for only a few values of h. For the case where dim(h) is large, we mention in particular Bergstra
and Bengio (2012), who argue that random search is more efficient than grid search when only a
few components of h matter. As can be seen from the figure, arg maxh M̂ζ(h) provides fairly good
estimates of htrue. This experiment involves modest sample sizes; when we increase the number of
documents, the surfaces become more peaked, and ˆ̂h is closer to htrue (experiments not shown).

George (2015) shows that estimates based on M̃ζ also provide good estimates of htrue, and he
compares the M̃ζ and the M̂ζ estimates. From his comparison, we can conclude that the extent
of the superiority of the estimates based on M̂ζ is about the same on the synthetic corpora of the
present section as in the real data illustration of Section 2.4.

4. Construction of Two Markov Chains with Invariant Distribution νh∗,w

In order to develop Markov chains on ψ = (β,θ, z) whose invariant distribution is the posterior
νh,w, we first express the posterior in a convenient form. We start with the familiar formula

νh,w(ψ) ∝ `w(ψ)νh(ψ), (4.1)

where the likelihood `w(ψ) = p
(h)
w |z,θ,β(w | z,θ,β) is given by line 4 of the LDA model statement.

For d = 1, . . . , D and j = 1, . . . ,K, let Sdj = {i : 1 ≤ i ≤ nd and zdij = 1}, which is the set of
indices of all words in document d whose latent topic variable is j. With this notation, from line 4
of the model statement we have

p
(h)
w |z,θ,β(w | z,θ,β) =

D∏
d=1

nd∏
i=1

∏
j:zdij=1

V∏
t=1

βwditjt =
D∏
d=1

K∏
j=1

V∏
t=1

∏
i∈Sdj

βwditjt

=

D∏
d=1

K∏
j=1

V∏
t=1

β

∑
i∈Sdj

wdit

jt =

D∏
d=1

K∏
j=1

V∏
t=1

β
mdjt
jt ,

(4.2)

where mdjt =
∑

i∈Sdj wdit counts the number of words in document d for which the latent topic
is j and the index of the word in the vocabulary is t. Recalling the definition of ndj given just
before (A.1), and noting that

∑
i∈Sdj wdit =

∑nd
i=1 zdijwdit, we see that

mdjt =

nd∑
i=1

zdijwdit and
V∑
t=1

mdjt = ndj . (4.3)
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Figure 7: M̂ζ(h) and MCSE of M̂ζ(h) for four values of htrue. In each case, ˆ̂
h is close to htrue.
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Plugging the likelihood (4.2) and the prior (A.1) into (4.1), and absorbing Dirichlet normalizing
constants into an overall constant of proportionality, we have

νh,w(ψ) ∝

[
D∏
d=1

K∏
j=1

V∏
t=1

β
mdjt
jt

][
D∏
d=1

K∏
j=1

θ
ndj
dj

][
D∏
d=1

K∏
j=1

θ
αj−1
dj

][
K∏
j=1

V∏
t=1

βη−1jt

]
. (4.4)

The expression for νh,w(ψ) above also appears in the unpublished report Fuentes et al. (2011).

The Conditional Distributions of (β, θ) Given z and of z Given (β, θ)

All distributions below are conditional distributions given w, which is fixed, and henceforth this
conditioning is suppressed in the notation. Note that in (4.4), the terms mdjt and ndj depend on z.
By inspection of (4.4), we see that given z,

θ1, . . . , θD and β1, . . . , βK are all independent,

θd ∼ DirK
(
nd1 + α1, . . . , ndK + αK

)
,

βj ∼ DirV
(∑D

d=1mdj1 + η, . . . ,
∑D

d=1mdjV + η
)
.

(4.5)

From (4.4) we also see that

p
(h)
z |θ,β(z |θ,β) ∝

D∏
d=1

K∏
j=1

([
V∏
t=1

β
mdjt
jt

]
θ
ndj
dj

)

=
D∏
d=1

nd∏
i=1

K∏
j=1

[
V∏
t=1

β
zdijwdit
jt θ

zdijwdit
dj

]
(4.6)

=

D∏
d=1

nd∏
i=1

K∏
j=1

[
V∏
t=1

(
βjtθdj

)wdit]zdij , (4.7)

where (4.6) follows from (4.3). Let pdij =
∏V
t=1

(
βjtθdj

)wdit . By inspection of (4.7) we see
immediately that given (θ,β),

z11, . . . , z1n1 , z21, . . . , z2n2 , . . . , zD1, . . . , zDnD are all independent,

zdi ∼ MultK(pdi1, . . . , pdiK).
(4.8)

The conditional distribution of (β,θ) given by (4.5) can be used, in conjunction with the CGS
of Griffiths and Steyvers (2004), to create a Markov chain on ψ whose invariant distribution is
νh,w: if z(1), z(2), . . . is the CGS, then for l = 1, 2, . . ., we generate (β(l),θ(l)) from p

(h)
θ,β |z(· |z(l))

given by (4.5) and form (z(l),β(l),θ(l))—this is what we have called the Augmented CGS. The
CGS is uniformly ergodic (Theorem 1 of Chen and Doss (2017)) and an easy argument shows that
the resulting ACGS is therefore also uniformly ergodic (and in fact, the rate of convergence of the
ACGS is exactly the same as that of the CGS; see Diaconis et al. (2008, Lemma 2.4)).

The two conditionals (4.5) and (4.8) also enable a direct construction of a two-cycle Gibbs
sampler that runs on the pair (z, (β,θ))—this is what we have called the Grouped Gibbs Sampler.
This Gibbs sampler has the very attractive feature that it can be parallelized: From (4.5), we see that

23



GEORGE AND DOSS

given z and w, the θd’s and βt’s are all independent, so can be updated simultaneously by different
processors; and from (4.8), we see that given (β,θ) andw, all the components of z are independent,
so can also be updated simultaneously by different processors. This scheme was noted earlier by
Newman et al. (2009), who dismissed it on the grounds that the Collapsed Gibbs Sampler has
superior mixing properties because, according to Liu et al. (1994), collapsing improves the mixing
rate. However, the theorem from Liu et al. (1994) that Newman et al. (2009) are citing does not
apply to the present situation. To be specific, Liu et al. (1994) consider a Gibbs sampling situation
involving three variables X , Y , and Z. They show that a Gibbs sampler on the pair (X,Y ) (with
Z integrated out), which they call a collapsed Gibbs sampler, is superior to a Gibbs sampler on the
triple (X,Y, Z). But for the LDA model, the CGS on z = (z11, . . . , z1n1 , . . . , zD1, . . . , zDnD) is
not a collapsed version of the Gibbs sampler that runs on the pair

(
z, (β,θ)

)
in any sense, so which

of the two Gibbs samplers is superior in terms of mixing rate is an open question. George (2015)
compared the mixing rates for various parameters empirically, and found that the mixing rate for
the CGS is faster, but not much faster. A paper based on George (2015) that studies this Grouped
Gibbs Sampler, including its mixing rate and computational complexity, is under preparation (Doss
and George, 2017).

5. Evaluation: Choice of Estimator of argmaxhm(h) and Resulting Model Fit

The maximizer of the marginal likelihood, ĥ = arg maxhm(h), may be estimated via the MCMC
scheme described in the present paper, or by some version of the EM algorithm (VI-EM or Gibbs-
EM). Our main goal in this section is two-fold. (1) We show empirically that neither the VI-EM
nor the Gibbs-EM method provides estimates of ĥ that are as accurate as ours, and we briefly
discuss why theoretically neither VI-EM nor Gibbs-EM, at least in its current implementation, can
be expected to work correctly. We also compare VI-EM to Gibbs-EM in terms of accuracy, which
to the best of our knowledge has not been done before, and compare VI-EM, Gibbs-EM, and our
estimator in terms of speed. This is done in Section 5.1. (2) We consider some of the default
choices of h used in the literature that use ad-hoc (i.e. non-principled) criteria. We look at model fit
and show empirically that when we use any of the three estimates of ĥ (VI-EM, Gibbs-EM, or our
serial tempering method), model fit is better than if we use any of the ad-hoc choices. This is done
in Section 5.2.

5.1 Comparison of Methods for Estimating argmaxhm(h)

For uniformity of notation, let ˆ̂hST, ˆ̂hVEM, and ˆ̂hGEM be the estimates of ĥ formed from serial tem-
pering MCMC, VI-EM, and Gibbs-EM, respectively, and recall that ˆ̂hST = ˆ̂h = arg maxh M̂ζ(h).

VI-EM The estimate ˆ̂hVEM proposed by Blei et al. (2003) is obtained as follows. If h(k) is the
current value of h, the E-step of the EM algorithm is to calculate Eh(k)

(
log(ph(ψ,w))

)
, where

ph(ψ,w) is the joint distribution of (ψ,w) under the LDA model indexed by h, and the subscript
to the expectation indicates that the expectation is taken with respect to νh(k),w. This step is infea-
sible because νh(k),w is analytically intractable. We consider {qφ, φ ∈ Φ}, a (finite-dimensional)
parametric family of analytically tractable distributions on ψ, and within this family, we find the
distribution, say qφ∗ , which is “closest” to νh(k),w. LetQ(h) be the expected value of log(ph(ψ,w))
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with respect to qφ∗ . We view Q(h) as a proxy for Eh(k)
(
log(ph(ψ,w))

)
, and the M-step is then to

maximize Q(h) with respect to h, to produce h(k+1). The maximization is done analytically.
The implementation of the EM algorithm through variational inference methods outlined above

describes what Blei et al. (2003) do conceptually, but not exactly. Actually, Blei et al. (2003) apply
VI-EM to a model that is different from ours. In that model, β is viewed as a fixed but unknown
parameter, to be estimated, and the latent variable is ϑ = (θ, z). Thus, the observed and missing
data are, respectively,w and ϑ, and the marginal likelihood is a function of two variables, h and β.
Abstractly speaking, the description of VI-EM given above is exactly the same. We implemented
VI-EM to the version of the LDA model considered in this paper, by modifying the Blei et al.
(2003) code. While VI-EM can handle very large corpora with many topics, there are no theoretical
results regarding convergence of the sequence h(k) to arg maxhm(h), and VI-EM has the following
problems: it may have poor performance if the approximation of νh(k),w by qφ∗ is not good; and if
the likelihood surface is multimodal, as in Figure 7(e), then it can fail to find the global maximum
(as is the case for all EM-type algorithms and also gradient-based approaches).

Gibbs-EM Monte Carlo EM (MC-EM), in which the E-step is replaced by a Monte Carlo estimate,
dates back to Wei and Tanner (1990), and was introduced to the machine learning community in
Andrieu et al. (2003). As mentioned earlier, since an error is introduced at every iteration, there is
no reason to expect that the algorithm will converge at all, let alone to the true maximizer of the
likelihood. In fact, Wei and Tanner (1990) recognized this problem and suggested that the Markov
chain length be increased at every iteration of the EM algorithm. We will let mk denote the MC
length at the kth iteration. Convergence of MC-EM (of which the Gibbs-EM algorithm of Wallach
(2008) is a special case) is a nontrivial issue. It was studied by Fort and Moulines (2003), who
showed that a minimal condition is that mk →∞ at the rate of ka, for some a > 1. However, they
do not give guidelines for choosing a. Other conditions imposed in Fort and Moulines (2003) are
fairly stringent, and it is not clear whether they are satisfied in the LDA model. In the current imple-
mentation of Gibbs-EM (Wallach, 2006), the latent variable is taken to be z (because the standard
Markov chain used to estimate posterior distributions in this model is the CGS). At the kth itera-
tion, a Markov chain z1, . . . ,zmk with invariant distribution equal to the posterior distribution of z
given w is generated, and the function G(h) = (1/mk)

∑mk
i=1 log(ph(zi,w)) must be maximized.

This is done by solving the equation ∇G(h) = 0 using fixed-point iteration, and because ∇G(h)
is computationally intractable, an approximation (Minka, 2003) is used (in effect, a lower bound to
G(h) is found, and the lower bound is what is maximized). This approximation introduces a second
potential problem for Gibbs-EM. A third potential problem is that, as for VI-EM, the iterations may
get stuck near a local maximum when the likelihood surface is multimodal.

To evaluate the performance of the VI-EM, Gibbs-EM, and serial tempering MCMC methods of
estimating ĥ, we generated small synthetic corpora according to the LDA model with the following
specifications: the true hyperparameter value is h = (η, α) = (.8, .2), the vocabulary size is V =
20, the number of words in each document is nd = 80, the number of topics is K = 4 and
8, and the number of documents is D = 20, 40, and 100, for a total of 6 specifications. For
each specification, we formed ˆ̂hST, ˆ̂hVEM, and ˆ̂hGEM. For ˆ̂hGEM, we used the algorithm given in
Wallach (2006), in which the Markov chain is the CGS. We took the number of cycles of the Gibbs
sampler to be 10,000—this is considerably greater than the default value of 20 in the MALLET
package (McCallum, 2002); and we formed 10 independent estimates, using 10 different initial
values. Likewise, for VI-EM we formed 10 estimates using 10 different initial values. For the
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serial tempering estimate, our principal goal was to form a confidence set for ĥ, and we did this
as follows. We ran 10 independent serial tempering chains, for which the sequence h1, . . . , hJ
consisted of a 7 × 9 grid of 63 values over the region (η, α) ∈ [.6, .9] × [.1, .3] (this region was
obtained from a small number of iterations of the iterative scheme described in Section 2.3), and the
rest of the specifications were the same as those described in the experiments of Section 2.4; each
chain was run for 100,000 iterations. Let ˆ̂h

[`]
ST be the estimate of ĥ formed from serial tempering

chain `, for ` = 1, . . . , 10. According to Theorem 1 in Section 2.1 and Remark 4 in Section 2.3,
the independent variables ˆ̂h

[1]
ST, . . . ,

ˆ̂h
[10]
ST are approximately bivariate normally distributed with mean

vector ĥ. Therefore, they can be used to form a 95% confidence ellipse for ĥ, based on Hotelling’s
T 2 distribution (this ellipse is simply the two-dimensional analogue of the standard t-interval, which
is based on the t-distribution). The confidence set could also have been formed from a single long
chain, using the method described in Theorem 1; the two methods use about the same computational
resources. Figure 8 shows the results, and we make two general observations.

1. From the plots in rows 1 and 3 (plots (a), (b), (c), (g), (h), and (i)), we see that the VI-EM
method does not perform well: in each of the 6 cases, the estimates are far from the true value,
arg maxhm(h), and also strongly depend on the starting values. We created plots (d), (e), (f),
(j), (k), and (l), which are zoomed-in versions of plots (a), (b), (c), (g) (h), (i), respectively; these
magnify a region which contains the serial tempering estimate and associated confidence ellipse.
We see that while the plots in rows 1 and 3 show that the Gibbs-EM estimates greatly outperform
the VI-EM estimates (they are both closer to the true value and less dependent on the starting
value), the zoomed-in plots in rows 2 and 4 show that the Gibbs-EM points are far from being
inside the 95% confidence ellipse. We carried out some experiments in which we followed the
recommendations in Fort and Moulines (2003) to increase the number of cycles in the Gibbs
sampling inner loop. Specifically, we tookm1 = 27 and doubled the length of the Gibbs sampler
run with every iteration, i.e. we took mn = 2(6+n), n = 1, . . . , 20. Unfortunately, this did
not give significant improvement. The Gibbs-EM estimates were never close to being inside
the ellipse, The problem could be with our rate of increase, or that Gibbs-EM simply does not
produce consistent estimates, or with the implementation of the maximization step (which uses
an approximation).

2. Both Gibbs-EM and VI-EM improve as the number of documents, D, increases. A possible
explanation of this is that as D increases, generally speaking the EM algorithm converges faster
because the likelihood surface becomes more peaked. Of course, the larger the value of D, the
weaker is the effect of the choice of h—this is the Bernstein-von Mises Theorem (see Freedman
(1999) and the references therein), which loosely speaking states that as D → ∞, the data
swamp the prior.

To assess the computational burden, we computed ˆ̂hVEM, ˆ̂hGEM, and ˆ̂hST for the six corpora we
considered. For ˆ̂hVEM, each run consisted of 100 EM iterations and in each EM iteration there were
100 variational inference iterations. For ˆ̂hGEM, each run consisted of 50 EM iterations and in each
EM iteration the CGS was run for 11,000 cycles, of which the first 1000 were deleted as burn-in.
For ˆ̂hST, each run consisted of 2 tuning iterations with a chain length of 51,000 cycles, and a final
iteration with a chain length of 101,000 cycles; and in each case, the first 1000 cycles were deleted
as burn-in. Our experiments were conducted through the R programming language, using Rcpp, on
a 3.70GHz quad core Intel Xeon Processor E5-1630V3. Table 1 gives the results. From the table,
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Figure 8: Plots of estimates of ĥ for the 6 corpora described in text. Points marked × are estimates
formed by Gibbs-EM, points marked + are estimates formed by VI-EM. A point marked
• is the average of 10 independent estimates of ĥ formed via ST chains, and the ellipse
is a 95% confidence set for ĥ formed from the 10 estimates. The three plots in row 2 are
zoomed-in versions of the three plots in row 1, magnifying a region which contains the
ST estimate, so the ellipse becomes visible. Similarly, the plots in row 4 are zoomed-in
versions of the plots in row 3.
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we see that the time for ˆ̂hST is about seven times the time for ˆ̂hGEM, and the time for ˆ̂hGEM is about
55 times the time for ˆ̂hVEM. These numbers are not as extreme as they look, because for both ˆ̂hGEM

and ˆ̂hST we could have gotten comparable results with much smaller chain lengths.

K D Time for ˆ̂hVEM Time for ˆ̂hGEM Time for ˆ̂hST

8 100 .34 11.64 90.55
8 40 .12 6.08 45.87
8 20 .04 2.96 31.35
4 100 .19 10.73 49.75
4 40 .08 4.88 25.71
4 20 .04 2.23 16.72

Table 1: Length of time, in minutes, it takes to compute the VI-EM, Gibbs-EM, and serial temper-
ing estimates of ĥ for six corpora.

5.2 Comparison of Model Fit: Empirical Bayes Choice vs. Ad-Hoc Choices of the
Hyperparameter

In the literature, the following choices for h = (η, α) have been presented: hDG = (0.1, 50/K),
used in Griffiths and Steyvers (2004); hDA = (0.1, 0.1), used in Asuncion et al. (2009); and hDR =
(1/K, 1/K), used in the Gensim topic modelling package (Řehůřek and Sojka, 2010), a well-
known package used in the topic modelling community. These choices are ad-hoc, and not based
on any particular principle.

Criterion for Model Fit The criterion we use is a score that is inversely related to the so-called
“perplexity” score which is sometimes used in the machine learning literature. When applied to
the LDA context, the score is obtained as follows. For d = 1, . . . , D, let w(−d) denote the corpus
consisting of all the documents except for document d. To evaluate a given model (in our case the
LDA model indexed by a given h), in essence we see how well the model based on w(−d) predicts
document d, the held-out document. We do this for d = 1, . . . , D, and take the geometric mean
(Wallach et al., 2009). We formalize this as follows. The predictive likelihood of h for the held-out
document is

Ld(h) =

∫
`wd(ψ) dνh,w(−d)(ψ), (5.1)

where `wd(ψ) is the likelihood of ψ for the held-out document d, and νh,w(−d) is the posterior

distribution of ψ given w(−d). We form the score S(h) =
[∏D

d=1 Ld(h)
]1/D. Two different values

of hyperparameter h are compared via their scores. Conceptually, it is easy to estimate Ld(h) by
direct Monte Carlo: let ψ1,ψ2, . . . be an ergodic Markov chain with invariant distribution νh,w(−d) .
We then approximate the integral by (1/n)

∑n
i=1 `wd(ψi). Care needs to be exercised, however,

because in (5.1), the variable ψ in the term `wd(ψ) has a dimension that is different than that of the
variable ψ in the rest of the integral. Chen (2015) gives a careful description of an MCMC scheme
for estimating the integral in (5.1).
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Real Datasets Here we compare the fit of LDA models based on various choices of the hyperpa-
rameter, on several corpora of real documents. We created two sets of document corpora, one from
the 20Newsgroups dataset2, and the other from the English Wikipedia. The 20Newsgroups dataset
is commonly used in the machine learning literature for experiments on applications of text clas-
sification and clustering algorithms. It contains approximately 20,000 articles that are partitioned
relatively evenly across 20 different newsgroups or categories. We created the second set of corpora
from web articles downloaded from the English Wikipedia, with the help of the MediaWiki API3.

We created the 20Newsgroups corpora as follows. We formed five subsets of the 20Newsgroups
dataset, which we call C-1–C-5, with the feature that the articles within the subsets are increasingly
difficult to distinguish: for corpus C-1 the topics for the different articles are very different, and for
corpus C-5 the topics for the different articles are similar. For each article, we took its true topic
label to be the newsgroup to which the article is assigned. Thus, for corpora C-1–C-5, it becomes
increasingly difficult to place the articles into the correct newsgroup. We built corpus C-1 from a
random subset of articles from the 20Newsgroups categories Medicine, Christianity, and Baseball;
these three categories are highly unrelated and easily recognizable from article texts. We built cor-
pus C-2 from a random subset of articles from the categories Automobiles, Motorcycles, Baseball,
and Hockey (all four of these categories are classified under the super-category Recreation in the
20Newsgroups dataset), and we built corpus C-3 from a random subset of articles from the cate-
gories Cryptography, Electronics, Medicine, and Space (all four of these categories are classified
under the super-category Science in the 20Newsgroups dataset). Compared to the categories in cor-
pus C-1, the categories in corpora C-2 and C-3 are moderately related. Lastly, we created corpus
C-4 using articles under the categories Autos and Motorcycles, and corpus C-5 using articles un-
der the categories PC Hardware and Mac Hardware. In corpora C-4 and C-5, the corresponding
categories are closely related to each other and hard to distinguish from article texts.

We created the Wikipedia corpora as follows. When a Wikipedia article is created, it is typically
tagged to one or more categories, one of which is the “primary category.” For each article, we
took its true topic label to be the primary category label for the article. We created corpus C-6
from a subset of the Wikipedia articles under the categories Leopardus, Lynx, and Prionailurus
and corpus C-7 from a subset of the Wikipedia articles under the categories Acinonyx, Leopardus,
Prionailurus, and Puma. All the categories of corpora C-6 and C-7 are part of the Wikipedia super-
category Felines. We created corpus C-8 from a subset of the Wikipedia articles under the categories
Coyotes, Jackals, and Wolves. All three categories of corpus C-8 are under the Wikipedia super-
category Canis. Finally, we created corpus C-9 from a subset of the Wikipedia articles under the
categories Eagles, Falco (genus), Falconry, Falcons, Harriers, Hawks, Kites, and Owls. All eight
categories of corpus C-9 are subcategories of the Wikipedia category Birds of Prey. For each of
the four Wikipedia corpora that we created, the categories of the articles are closely related to each
other, and fairly hard to distinguish from article texts.

Table 2 gives some information on the nine corpora we created. In the table, the column la-
beled V gives the vocabulary size for each corpus, the column labeled N gives the total number
of words for each corpus, and the column labeled Categories gives newsgroup categories for each
20Newsgroup corpus, and Wikipedia categories for each Wikipedia corpus. The numbers shown
in parentheses next to the category names are the number of documents associated with the corre-

2. http://qwone.com/˜jason/20Newsgroups
3. http://www.mediawiki.org/wiki/API:Query
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sponding categories. For each corpus, we took the number of topics K to be equal to the number of
categories for the corpus.

Corpus Categories V N

C-1 sci.med (50), soc.religion.christian (50), rec.sport.baseball (50) 807 12,092
C-2 rec.autos (50), rec.motorcycles (50), rec.sport.baseball (50), 1,061 16,579

rec.sport.hockey (50)
C-3 sci.crypt (50), sci.electronics (50), sci.med (50), sci.space (50) 1,033 15,828
C-4 rec.autos (50), rec.motorcycles (50) 488 6,602
C-5 comp.sys.ibm.pc.hardware (50), comp.sys.mac.hardware (50) 502 7,454

C-6 Leopardus (8), Lynx (8), Prionailurus (7) 303 7,788
C-7 Acinonyx (6), Leopardus (8), Prionailurus (7), Puma (8) 622 12,831
C-8 Coyotes (7), Jackals (7), Wolves (8) 447 9,212
C-9 Eagles (62), Falco (genus) (45), Falconry (52), Falcons (10), 1,369 116,135

Harriers (21), Hawks (16), Kites (22), Owls (76)

Table 2: Corpora created from the 20Newsgroups dataset and the Wikipedia pages.

Comparison of Model Fit We now compare the performance of the LDA models indexed by ˆ̂hST,
ˆ̂hGEM, ˆ̂hVEM, hDR, hDA, and hDG for corpora C-1–C-9, using the estimate of the score S(h), which
we denote by Ŝ(h), described in the beginning of this subsection. Details regarding how ˆ̂hST was
computed and regarding its accuracy are given in the supplementary document George and Doss.
The actual values of ˆ̂hST, ˆ̂hGEM, and ˆ̂hVEM, are also given in George and Doss.

To compute Ŝ(h) for a corpus, for every held-out document, we used Chen’s (2015) method
with a full Gibbs sampling chain of length 2,000, after discarding a short burn-in period. Table 3
gives the ratios Ŝ(h)/Ŝ(ˆ̂hST), where h is ˆ̂hGEM, ˆ̂hVEM, hDR, hDA, and hDG, for all nine corpora.
From the table, we make three main observations: (1) Any of the estimates of ĥ are better than any
of the ad-hoc choices, uniformly, and by wide margins. (2) Within the estimates of ĥ, ST does better
than either GEM or VEM on the whole, although not in every case, and when it is outperformed, it
is not by much. (3) As a general pattern, the lack of fit of the models indexed by the ad-hoc choices
of h is worse for the Wikipedia corpora than for the 20Newsgroups corpora. The Wikipedia corpora
may be considered “difficult,” in the sense that for these corpora the articles are very similar, and
thus hard to distinguish from article texts. On the other hand, within the group of estimates of ĥ, it is
not clear what are the characteristics of a corpus which affect the fit—there may be factors, beyond
similarity of the documents, that are relevant.

Implementation Details To compute M̂ζ(h), we implemented the serial tempering scheme de-
scribed in Section 2 as follows. The size of the subgrid was taken to be 7 × 13 = 91, and we
used six iterations of the iterative scheme described in Section 2.3 to form the final subgrid, using
Markov chains of length 10,000. For the run using the final subgrid, we used three iterations of the
scheme given by (2.16) to obtain ζfinal, with a Markov chain length of 50,000 per iteration (after
a short burn-in period). The final run, using ζfinal, also used a Markov chain length of 50,000. To
estimate the standard error of M̂ζ(h), we used the method of batch means, which is implemented by
the R package mcmcse in Flegal et al. (2016). Diagnostics that establish that the serial tempering
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Corpus ˆ̂hGEM
ˆ̂hVEM hDR hDA hDG

C-1 6.78× 10−01 4.83× 10−01 3.54× 10−01 1.11× 10+00 8.24× 10−04

C-2 5.11× 10−01 8.19× 10−01 5.23× 10−01 2.52× 10−02 7.21× 10−05

C-3 9.86× 10−01 5.58× 10−01 2.98× 10−01 1.41× 10−01 1.33× 10−02

C-4 8.21× 10−01 7.71× 10−01 3.48× 10−01 1.22× 10−01 6.66× 10−02

C-5 9.98× 10−01 1.62× 10+00 4.58× 10−01 1.61× 10−01 9.36× 10−02

C-6 2.48× 10+00 1.12× 10+01 7.31× 10−03 5.71× 10−06 6.57× 10−08

C-7 4.39× 10−01 7.82× 10+00 5.34× 10−03 1.51× 10−10 1.89× 10−14

C-8 2.04× 10+00 6.40× 10−01 9.90× 10−04 1.77× 10−09 3.29× 10−12

C-9 1.04× 10+00 1.75× 10−02 2.17× 10−02 7.04× 10−03 5.56× 10−09

Table 3: Ratios of the estimates of the fit criterion S(h) to estimate of S(
ˆ̂
hST) for five choices of h,

for all nine corpora. A small number indicates a lack of fit, thus a poor choice of h, and by
this criterion, all ad-hoc choices perform poorly.

chain mixes adequately are given in the supplementary document George and Doss. Table 4 gives
the time it took to compute ˆ̂hVEM, ˆ̂hGEM, and ˆ̂hST, for three of the real corpora used in this section.

Corpus K ˆ̂hVEM
ˆ̂hGEM

ˆ̂hST

C-2 4 0.18 7.72 409.75
C-4 2 0.10 3.78 195.90
C-9 8 1.20 59.12 287.97

Table 4: Execution times, in minutes, for three corpora, on a 3.70GHz quad core Intel Xeon Pro-
cessor E5-1630V3.

It is natural to ask why it has not been noted before that VI-EM and Gibbs-EM sometimes
perform poorly. Evaluations have been typically done through a model fit criterion such as the
one we used in this subsection, and to the best of our knowledge the literature has not given an
assessment of how close ˆ̂hVEM and ˆ̂hGEM are to htrue for corpora generated from an LDA model
indexed by htrue, as is done in Section 5.1.

6. Discussion

Inference from LDA depends heavily on the choice of hyperparameters used to fit the model. To
estimate the hyperparameters, we view the analytically intractable ĥ = arg maxhm(h), which is a
function of the document corpus itself, as the gold standard, and we have developed a methodology
for estimating ĥ. The basis for our approach is a stable method, based on a single serial tempering
Markov chain, for estimating the entire marginal likelihood function m(h) (up to a constant). For
a given function of the parameters of the model, essentially the same method enables us to esti-
mate the entire family of posterior expectations of the parameters as the hyperparameter varies, and
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this feature enables us to carry out an analysis of sensitivity of our inference with respect to the
hyperparameters.

Hyperparameter selection is a simple form of model selection and we note that, generally speak-
ing, in carrying out model selection there are two competing goals. One goal is to select the correct
model, and the other goal is to select the model that “provides the best inference.” These two goals
are not the same. The second goal is particularly relevant when the document corpus is a real data
set, i.e. the corpus is not necessarily generated from the LDA model, and we use LDA as a conve-
nient model through which to make inference. Selection of the hyperparameter via maximization
of the marginal likelihood is akin to maximum likelihood estimation and, as such, should have the
standard properties of maximum likelihood estimates. We will avoid giving a technical explana-
tion of this last fact, and instead state it informally as follows: for a corpus generated according to
the LDA model indexed by htrue, if the corpus is large, then ĥ is close to htrue. So the empirical
Bayes method achieves the first goal by its very nature, and we have verified this empirically in
Section 3. The evaluation in Section 5 shows (at least empirically) that the empirical Bayes method
also accomplishes the second goal.

A Fully Bayes Approach to Empirical Bayes Inference For serial tempering to work, it is necessary
for the grid points h1, . . . , hJ to coverH. Unfortunately, when dim(H) is large, the value of J that
is needed is huge, and the approach breaks down. Here we discuss an entirely different method.
Although there is no inherent limitation on dim(H) for the method to work, we view it as useful
for the case where dim(H) is moderate: we re-iterate our caution stated in Remark 3 of Section 2.1
that it is not advisable to use a high-dimensional h.

SupposeH is a bounded hyper-rectangle. We put a uniform distribution onH, denoted u(h), and
in this fully-Bayes situation the parameter is now (β,θ, z, h). The marginal posterior distribution
of h is then π(h) ∝ mw(h)u(h) ∝ mw(h), and we see that arg maxhmw(h) = arg maxh π(h).
Suppose that (β(1),θ(1), z(1), h(1)), . . . , (β(n),θ(n), z(n), h(n)) is a Markov chain whose invari-
ant distribution is the posterior distribution of (β,θ, z, h) given w [see Wallach (2008)]. From
the marginal sequence h(1), . . . , h(n) we may estimate π(h) via a multivariate density estimator,
and hence arg maxh π(h). Call this estimate h̄. We then use (2.1), with h̄ as the value of h∗,
to estimate mw(h) in a small neighborhood of h̄, which is all that we need in order to estimate
arg maxhmw(h). In effect, h̄ is an initial coarse estimate of arg maxhmw(h), and (2.1) is then
used to fine-tune it. We hope to develop this idea fully in future work.
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Appendix

A.1 A Likelihood Ratio Formula for the Parameters in the LDA Model

To obtain the ratio of densities formula (2.2), we note that from the hierarchical nature of the LDA
model we have

νh(ψ) = νh(β,θ, z) = p
(h)
z |θ,β(z |θ,β) p

(h)
θ (θ) p

(h)
β (β)

in self-explanatory notation, where p(h)z |θ,β, p(h)θ , and p(h)β are given by lines 3, 2, and 1, respectively,
of the LDA model. Let ndj =

∑nd
i=1 zdij , i.e. ndj is the number of words in document d that are

assigned to topic j. Using the Dirichlet and multinomial distributions specified in lines 1–3 of the
model, we obtain

νh(ψ) =

[
D∏
d=1

K∏
j=1

θ
ndj
dj

][
D∏
d=1

(
Γ
(∑K

j=1 αj
)∏K

j=1 Γ(αj)

K∏
j=1

θ
αj−1
dj

)][
K∏
j=1

(
Γ(V η)

Γ(η)V

V∏
t=1

βη−1jt

)]
. (A.1)

We now apply (A.1) to νh and νh∗ and obtain (2.2).

A.2 Proof of Theorem 1

The convergence in (2.1) holds for each fixed h;

0 1/n 2/n 0.9 1
0

1
fn
f

Figure 9: Non-convergence of the argmax.

however, arg maxhBn(h) depends on the function
Bn(·). Before proving Theorem 1 we provide an
example to show that if fn and f are real-valued
functions, then convergence of fn to f pointwise
does not imply convergence of arg maxh fn(h) to
arg maxh f(h). In our example, the domain of the
functions is the interval [0, 1], and the functions are
displayed in Figure 9. The functions fn and f are
identical on the interval [2/n, 1]. Clearly fn(h)→ f(h) for each h ∈ [0, 1], but arg maxh fn(h) =
1/n while arg maxh f(h) = .9.

Theorem 1 refers to the regularity conditions below.

A1 The hyperparameter spaceH is compact.

A2 The maximizer of m(·) is unique (thus it makes sense to talk about arg maxhm(h)).

A3 The maximizer of m(·) is inH.

A4 For each n, the maximizer of Bn(·) is unique (thus we can talk about arg maxhBn(·)).

A5 The point h∗ = (η∗,α∗) satisfies 2η − η∗ > 0 and 2αj − α∗j > 0, j = 1, . . . ,K for all
h = (η,α) ∈ H.

A6 The marginal likelihood function m(·) is twice continuously differentiable inH, and the p× p
Hessian matrix∇2

hm(arg maxhm(h)) is nonsingular.

Proof of Part 1 Note the following:

• In Section 4 we showed that the ACGS is uniformly ergodic. So in particular, it is Harris ergodic.
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• The LDA model is an exponential family with parameter (η, α) (Section 3.3 of Wainwright and
Jordan (2008)).

• In their Remark 1, Doss and Park (2018) show that if {νh, h ∈ Ω} is an exponential family,
where Ω is the natural parameter space, and if H is a compact subset of the interior of Ω, then∫

suph∈H(νh/νh∗) dνh∗,w < ∞. (In empirical process theory, finiteness of this integral is the
main condition that is needed to obtain uniformity in the Law of Large Numbers.)

• In the context of the present situation, Theorem 3 of Doss and Park (2018) states that under
Harris ergodicity of the sequence ψ1,ψ2, . . . and finiteness of

∫
suph∈H(νh/νh∗) dνh∗,w, the

convergence in (2.1) is uniform onH, i.e. Condition C3 of Section 2.1 holds.

• Suppose that fn, n = 1, 2, . . . and f are real-valued functions defined on a compact subset X of
Euclidean space. Suppose further that f is continuous and that each of fn, n = 1, 2, . . . and f
has a unique maximizer. Under these conditions, uniform convergence of fn to f on X implies
arg maxx∈X fn(x) → arg maxx∈X f(x). Verification of this fact is routine. A detailed proof is
given in Lemma 1 of Doss and Park (2018).

Combining these facts, we see that under A1–A4, arg maxhBn(h)→ arg maxhm(h) with proba-
bility one (Assumptions A5 and A6 are not needed for Part 1 of the theorem.) �

Proof of Part 2 Theorem 4 of Doss and Park (2018) asserts the asymptotic normality stated in
Part 2 of Theorem 1 under A1–A4 and A6, the condition

for every h ∈ H there exists ε > 0 such that
∫
‖∇h(νh/νh∗)‖2+ε dνh∗,w <∞, (A.2)

where ‖ · ‖ is the Euclidean norm in Rp, and the condition that the Markov chain used is geo-
metrically ergodic. Using standard calculus, we can check that if 2η − η∗ > 0 and 2αj − α∗j >
0, j = 1, . . . ,K, then for sufficiently small ε the integral in (A.2) is finite. Thus, Condition A5
implies (A.2). As mentioned in the proof of Part 1 of the theorem, the ACGS is uniformly ergodic;
so in particular, it is geometrically ergodic. Thus, we have established the asymptotic normality
stated in Part 2 of the theorem under A1–A6. �

Proof of Part 3 The variance matrix Σ in Part 2 is analytically intractable, but fortunately is easy
to estimate via the method of batching, as follows. For j = 1, . . . , J , let h[j] be the estimate of the
argmax produced from batch j, and let h[ ] be the estimate of the argmax produced from the entire
sequence. The batch-based estimate is Σ̂n = (n/J)

{
[1/(J − 1)]

∑J
j=1

(
h[j] − h[ ]

)(
h[j] − h[ ]

)>}.
(The quantity inside the braces is essentially the sample covariance matrix of h[1], . . . , h[J ], except
that we use h[ ] instead of the average of h[1], . . . , h[J ] as the centering value; and the term n/J
is the number of samples per batch.) Estimates of the covariance matrix based on batching are
consistent under very general conditions which include that J → ∞ as n → ∞. The literature
recommends taking J = n1/2; see Flegal et al. (2008) and also Jones et al. (2006). Invertibility of
Σ̂n for large n follows from positive definiteness of Σ and the convergence Σ̂n

a.s.−−→ Σ; in fact we
have Σ̂−1n

a.s.−−→ Σ−1. Therefore, applying Part 2, we get

n1/2
(
arg max

h
Bn(h)− arg max

h
m(h)

)
Σ̂−1n n1/2

(
arg max

h
Bn(h)− arg max

h
m(h)

)> d→ χ2
p,

which establishes the statement regarding the ellipse. �
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Proof of Theorem 1 for the Serial Tempering Chain The main change in the proof is that the
requirement (A.2) is replaced with

for every h ∈ H there exists ε > 0 such that
∫
‖∇h(νh/νζ)‖2+ε dfζ <∞, (A.3)

where νζ = (1/J)
∑J

j=1 νj(ψi)/ζj , and fζ is given by (2.9). It is easy to see that (A.3) is satisfied
if the stipulation on h∗ given by (2.3) holds for h(j) for at least one index j. �

A.3 Proof of Validity of the Confidence Band for {I(h), h ∈ H}

In addition to assuming that J →∞ and n/J →∞, we will need the following conditions:

A7 The stipulation on h∗ given by (2.3) holds for h(j) for at least one index j.

A8 The function g satisfies the moment condition

for every h ∈ H there exists ε > 0 such that
∫ (

g
νh
νζ

)2+ε

dfζ <∞.

Note that A8 is automatically satisfied if A7 holds and g is bounded (for example if g is an indicator
function, as in Section 2.4). In the following, we will assume Conditions A1, A7, and A8.

The heart of the proof is the assertion that suph∈H n
1/2
∣∣Îst
ζ (h)−I(h)

∣∣ has a limiting distribution
as n→∞, and we show this in three steps:

1. We observe that for each h, n1/2
(
Îst
ζ (h)− I(h)

)
has an asymptotic normal distribution.

2. We show that more can be said, and that the stochastic process
{
n1/2

(
Îst
ζ (h) − I(h)

)
, h ∈ H

}
converges in distribution to a mean-zero Gaussian process indexed by h.

3. We conclude from Step 2 that suph∈H n
1/2
∣∣Îst
ζ (h)− I(h)

∣∣ has a limiting distribution as n→∞.

We now provide the details.

1. Note that Îst
ζ (h), defined in (2.14), is a ratio of M̂ζ(h) and Ûζ(h), which are given by (2.10)

and (2.12), respectively. Each of these is an average of a function of ψ1, . . . ,ψn, so we have a
bivariate central limit theorem, as follows. For economy of notation, let U (h)

i be the summands
in (2.12) and let M (h)

i be the summands in (2.10). We have

n1/2


1

n

n∑
i=1

U
(h)
i − m(h)

cζ/J

∫
g dνh,w

1

n

n∑
i=1

M
(h)
i − m(h)

cζ/J

 d→ N2(0,Σh),

where Σh is a covariance matrix. (If the ψ’s were an iid sequence, then Σh would be simply
the covariance matrix of the pair (U

(h)
1 ,M

(h)
1 ); however, in the present situation, Σh is the more

complicated covariance matrix that arises in the Markov chain central limit theorem.) Therefore,
by the delta method applied to the function ϕ : R2 → R defined by ϕ(u,m) = u/m, we have

n1/2

(∑n
i=1 U

(h)
i∑n

i=1M
(h)
i

−
∫
g dνh,w

)
d→ N

(
0, (∇ϕ)>Σh∇ϕ

)
, (A.4)
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where the gradient∇ϕ is evaluated at
(
(1/n)

∑n
i=1 U

(h)
i , (1/n)

∑n
i=1M

(h)
i

)
. Now note that the

quantity to the left of the “ d→” sign in (A.4) is precisely n1/2
(
Îst
ζ (h)− I(h)

)
.

2. To extend convergence in distribution for each fixed h to convergence as a stochastic process,
we use Part 4 of Theorem 6 of Doss and Park (2018). Because we assume Conditions A1, A7,
and A8 and because the distributions of the latent parameters in the LDA model form an ex-
ponential family, the regularity conditions for that theorem are satisfied, and we conclude that
n1/2

(
Îst
ζ (·) − I(·)

) d→ G(·), where G(·) is a mean-zero Gaussian process indexed by h. Here,
convergence in distribution takes place in C(H), the space of continuous real-valued functions
defined onH, endowed with the sup-norm topology.

3. The map T : C(H)→ [0, 1] defined by T (f) = suph∈H |f(h)| is continuous, so from Step 2 we

conclude that suph∈H n
1/2
∣∣Îst
ζ (h)− I(h)

∣∣ d→ suph∈H |G(h)|.

Substitution of the Sj’s for the Sj’s is valid under the assumption that J → ∞, convergence in
probability of S[.95J ] to c.95 is a consequence of the condition n/J → ∞, and the validity of the
bands now follows. The literature’s recommendation of J = n1/2 is made in the different context of
estimating the variance of an average, not for forming globally-valid confidence bands; nevertheless,
in our experience this choice works well also in the present situation.
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