
Journal of Machine Learning Research 18 (2017) 1-35 Submitted 5/15; Revised 10/16; Published 8/17

Learning Partial Policies to Speedup MDP Tree Search
via Reduction to I.I.D. Learning

Jervis Pinto
JERVIS.PINTO@GMAIL.COM
School of EECS, Oregon State University, Corvallis OR 97331 USA

Alan Fern
AFERN@EECS.OREGONSTATE.EDU

School of EECS, Oregon State University, Corvallis OR 97331 USA

Editor: Michael Bowling

Abstract
A popular approach for online decision-making in large MDPs is time-bounded tree search. The
effectiveness of tree search, however, is largely influenced by the action branching factor, which
limits the search depth given a time bound. An obvious way to reduce action branching is to
consider only a subset of potentially good actions at each state as specified by a provided partial
policy. In this work, we consider offline learning of such partial policies with the goal of speeding
up search without significantly reducing decision-making quality. Our first contribution consists
of reducing the learning problem to set learning. We give a reduction-style analysis of three such
algorithms, each making different assumptions, which relates the set learning objectives to the
sub-optimality of search using the learned partial policies. Our second contribution is to describe
concrete implementations of the algorithms within the popular framework of Monte-Carlo tree
search. Finally, the third contribution is to evaluate the learning algorithms on two challenging
MDPs with large action branching factors. The results show that the learned partial policies can
significantly improve the anytime performance of Monte-Carlo tree search.

Keywords: online sequential decision-making, partial policy, partial policy learning, imitation
learning, Monte-Carlo tree search, reductions

1. Introduction

Online sequential decision-making involves selecting actions in order to optimize a long-term per-
formance objective while meeting practical decision-time constraints. In many environments, in-
cluding Chess, Go, computer networks, automobiles and aircraft, it is possible to obtain simulators
or learn an accurate model of the environment, whereas in others, no such simulator or model is
available. A common approach in both cases is to use learning techniques such as reinforcement
learning (RL) (Sutton and Barto, 1998) or imitation learning (Pomerleau, 1989; Sammut et al.,
1992) in order to learn reactive policies, which can be used to quickly map any state to an action.
While reactive policies support fast decision making, for many complex problems, it can be difficult
to represent and learn high-quality reactive policies. For example, in games such as Chess, Go, and
other complex problems, the best learned reactive policies are significantly outperformed by the best
approaches based on look-ahead search (Gelly and Silver, 2007; Veness et al., 2009; Silver et al.,
2016). As another example, recent work has shown that effective reactive policies can be learned

c©2017 Jervis Pinto, and Alan Fern.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v18/15-251.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/15-251.html

PINTO AND FERN

for playing a variety of Atari video games using both RL (Mnih et al., 2013) and imitation learning
(Guo et al., 2014). However, the performance of these reactive policies are easily outperformed or
equaled by a vanilla lookahead planning agent (Guo et al., 2014).

Faced with the choice of a planning agent versus a (model-free) learning agent, a practitioner
must consider two key factors. The first is the non-trivial expense of obtaining a simulator or learn-
ing a model. The second is that the planning agent requires significantly more time per decision.
That is, even when a simulator is available, the computational expense may not be practical for
certain applications, including real-time Atari game play.

This paper attempts to make progress in the region between fast reactive decision making and
slow lookahead search, when a simulator or model of the world is available. In particular, we study
algorithms for learning to improve the anytime performance of lookahead search, allowing for more
effective deliberative decisions to be made within practical time bounds. Lookahead tree search
constructs a finite-horizon lookahead tree using a (possibly stochastic) model or simulator in order
to estimate action values at the current state. A variety of algorithms are available for building
such trees, including instances of Monte-Carlo Tree Search (MCTS) such as UCT (Kocsis and
Szepesvári, 2006), Sparse Sampling (Kearns et al., 2002), and FSSS (Walsh et al., 2010), along with
model-based search approaches such as RTDP (Barto et al., 1995) and AO* (Blai and Hector, 2012).
However, under practical time constraints (e.g., one second per root decision), the performance of
these approaches strongly depends on the action branching factor. In non-trivial MDPs, the number
of possible actions at each state is often considerable, which greatly limits the feasible search depth.
An obvious way to address this problem is to provide prior knowledge for explicitly pruning bad
actions from consideration. In this paper, we consider the offline learning of such prior knowledge
in the form of partial policies 1.

A partial policy is a function that quickly returns an action subset for each state and can be
integrated into search by pruning away actions not included in the subsets. Thus, a partial policy
can significantly speedup search if it returns small action subsets, provided that the overhead for
applying the partial policy is small enough. If those subsets typically include high-quality actions,
then we might expect little decrease in decision-making quality. Although learning partial policies
to guide tree search is a natural idea, it has received surprisingly little attention, both in theory
and practice. In this paper we formalize this learning problem from the perspective of “speedup
learning”. We are provided with a distribution over search problems in the form of a root state
distribution and a search depth bound. The goal is to learn partial policies that significantly speedup
depth D search, while bounding the expected regret of selecting actions using the pruned search
versus the original search method that does not prune.

In order to solve this learning problem, there are at least two key choices that must be made:
1) Selecting a training distribution over states arising in lookahead trees, and 2) Selecting a loss
function that the partial policy is trained to minimize with respect to the chosen distribution. The
key contribution of our work is to consider a family of reduction-style algorithms that answer these
questions in different ways. In particular, we consider three algorithms that reduce partial pol-
icy learning to set learning problems, characterized by choices for (1) and (2). The set learning
problems are further reduced to cost-sensitive binary classification. Our main results bound the
sub-optimality of tree search using the learned partial policies in terms of the expected loss of the
supervised learning problems. Interestingly, these results for learning partial policies mirror similar

1. A preliminary version of this work appeared in UAI 2014 (Pinto and Fern, 2014).

2

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

reduction-style results for learning (complete) policies via imitation (Ross and Bagnell, 2010; Syed
and Schapire, 2010; Ross et al., 2011).

We empirically evaluate our algorithms in the context of learning partial policies to speedup
MCTS in two challenging domains with large action branching factors: 1) a real-time strategy
game, Galcon and 2) a classic dice game, Yahtzee. The results show that using the learned partial
policies to guide MCTS leads to significantly improved anytime performance in both domains.
Furthermore, we show that several other existing approaches for injecting knowledge into MCTS
are not as effective as using partial policies for action pruning and can often hurt search performance
rather than help.

2. Problem Setup

We consider sequential decision-making in the framework of Markov Decision Processes (MDPs).
An MDP is a tuple (S,A, P,R), where S is a finite set of states,A is a finite set of actions, P (s′|s, a)
is the transition probability of arriving at state s′ after executing action a in state s, and R(s, a) ∈
[0, 1] is the reward function giving the reward of taking action a in state s. In environments where
the reward is non-deterministic (but still stationary), R(s, a) is taken to be the expected value.
The typical goal in MDP planning and learning is to compute a policy for selecting an action in
any state, such that following the policy (approximately) maximizes some measure of long-term
expected reward. For example, two popular choices are maximizing the expected finite-horizon
total reward or expected infinite-horizon discounted reward.

In practice, regardless of the long-term reward measure, for large MDPs, the offline compu-
tation of high-quality policies over all environment states is impractical. In such cases, a popular
action-selection approach is online tree search, where at each encountered environment state, a time-
bounded search is carried out in order to estimate action values. Note that this approach requires
the availability of either an MDP model or a simulator in order to construct search trees. In this
paper, we assume that a model or simulator is available and that online tree search has been chosen
as the action selection mechanism. Next, we formally describe the paradigm of online tree search,
introduce the notion of partial policies for pruning tree search, and then formulate the problem of
offline learning of such partial policies.

2.1 Online Tree Search

Throughout this paper, we will focus on search that has a depth bound D. Doing so bounds the
length of future action sequences to be considered. Given a state s, we denote by T (s) the depth
D expectimax tree rooted at s. T (s) alternates between layers of state nodes and action nodes2,
labeled by states and actions respectively. The children of each state node are action nodes for each
action in A. The children of an action node a with parent labeled by s are all states s′ such that
P (s′|s, a) > 0. Figure 1(a) shows an example of a depth two expectimax tree. The depth of a state
node is the number of action nodes traversed from the root to reach it. Note that leaves of T (s) will
always be action nodes.

The optimal value of a state node s at depth d, denoted by V ∗d (s), is equal to the maximum value
of its child action nodes, which we denote by Q∗d(s, a) for child a. V ∗d (s) and Q∗d(s, a) are formally
defined next.

2. Also known as “chance” nodes in the context of expectimax trees.

3

PINTO AND FERN

(a) Unpruned expectimax tree T (s) with D = 2 (b) Pruning T with partial policy ψ gives Tψ
where a third of the actions have been pruned.

Figure 1: Unpruned and pruned expectimax trees with depth D = 2 for an MDP with |A| = 3
and two possible next states. The distributions over the transitions to the next state are
uniform. The numeric values are the optimal action values Q∗. Nodes for which no
value is shown have Q∗(s, a) = 0. Nodes marked with an asterisk indicate that the node
corresponds to the optimal action choice. In (b), pruning can change the value at the root
if nodes on the optimal paths are incorrectly pruned.

V ∗d (s) = max
a

Q∗d(s, a)

Q∗d(s, a) = R(s, a) if d = D − 1 (1)

= R(s, a) + Es′∼P (· | s,a)
[
V ∗d+1(s

′)
]

otherwise (2)

Equation 1 corresponds to leaf action nodes. In Equation 2, s′ ∼ P (·|s, a) ranges over the
children of a. Given these value functions, the optimal action policy for state s at depth d is

π∗d(s) = arg max
a

Q∗d(s, a)

Given an environment state s, online search algorithms such as UCT or RTDP attempt to com-
pletely or partially search the tree T (s) in order to approximate the root action values Q∗0(s, a) well
enough to identify the optimal action π∗0(s). It is important to note that optimality in our context is
with respect to the specified search depth D, which may be significantly smaller than the number
of actions that will be taken in the actual environment (e.g., the length of a full game). This is a
practical necessity that is often referred to as receding-horizon control. Here we simply assume that
an appropriate search depth D has been specified and our goal is to speedup planning within that
depth.

2.2 Search with a Partial Policy

One way to speedup depth D search is to prune actions from T (s). In particular, if a fixed fraction
σ of actions are removed from each state node, then the size of the tree would decrease by a factor
of (1− σ)D, potentially resulting in significant computational savings. In this paper, we will utilize
partial policies for pruning actions. A depth D (non-stationary) partial policy ψ is a sequence
(ψ0, . . . , ψD−1) where each ψd maps a state to an action subset. In this work, we focus exclusively
on non-stationary partial policies, rather than also considering stationary partial policies where ψi =
ψj for all i and j. One reason for this is that optimal solutions to depth-bounded search trees are

4

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

non-stationary in general. In addition, considering non-stationary policies allows for defining and
analyzing relatively simple training algorithms as described in section 3. In some applications,
however, where the planning depth is not known in advance, it may be desirable to learn stationary
partial policies. Extending our work to the stationary scenario is a point of future work, which we
expect can draw on ideas for learning stationary policies in imitation learning (Ross and Bagnell,
2010; Ross et al., 2011).

Given a partial policy ψ and root state s, we can define a pruned tree Tψ(s) that is identical
to T (s), except that each state s at depth d only has subtrees for actions in ψd(s), pruning away
subtrees for any child a /∈ ψd(s). The phrase “root state” is not to be confused with the starting
state of a sequential problem (e.g., the initial board in Chess). Rather, “root state” refers to any
state in which the search agent is required to act and must therefore place the state at the root of the
search tree. Figure 1(b) shows a pruned tree Tψ(s), where ψ prunes away one action at each state. It
is straightforward to incorporate ψ into a search algorithm by only expanding actions at state nodes
that are consistent with ψ.

We define the state and action values relative to Tψ(s) the same as before and let V ψ
d (s) and

Qψd (s, a) denote the depth d state and action value functions, as follows.

V ψ
d (s) = max

a∈ψd(s)
Qψd (s, a)

Qψd (s, a) = R(s, a) if d = D − 1

= R(s, a) + Es′∼P (· | s,a)

[
V ψ
d+1(s

′)
]

otherwise

We will denote the highest-valued, or greedy, root action of Tψ(s) as

πψ(s) = arg max
a∈ψ0(s)

Qψ0 (s, a)

This is the root action that a depth D search procedure would attempt to return in the context of
ψ. We say that a partial policy ψ subsumes a partial policy ψ′ if for each s and d, ψ′d(s) ⊆ ψd(s).
In this case, it is straightforward to show that for any s and d, V ψ′

d (s) ≤ V ψ
d (s). This is simply

because planning under ψ allows for strictly more action choices than planning under ψ′. Note that
a special case of partial policies is when |ψd(s)| = 1 for all s and d, which means that ψ defines a
traditional (complete) deterministic MDP policy. In this case, V ψ

d and Qψd represent the traditional
depth d state value and action value functions for policies. The second special case occurs at the
other extreme where ψd = A for all d. This corresponds to full-width search and we have V ∗ = V ψ

and Q∗ = Qψ.
Clearly, a partial policy can reduce the complexity of search by eliminating some actions. How-

ever, we are also concerned with the quality of decision-making using Tψ(s) versus T (s), which
we will quantify in terms of expected regret. The regret of selecting action a at state s relative to
T (s) is equal to V ∗0 (s) − Q∗0(s, a). Note that the regret of the optimal action π∗0(s) is zero. We
prefer partial policies that result in root decisions with small regret over the root state distribution
that we expect to encounter, while also supporting significant pruning. For this purpose, if µ0 is a
distribution over root states, we define the expected regret of ψ with respect to µ0 as

REG(µ0, ψ) = E
[
V ∗0 (s0)−Q∗0(s0, πψ(s0))

]
where s0 ∼ µ0 (3)

5

PINTO AND FERN

2.3 Learning Problem

We consider an offline learning setting where we are provided with a model or simulator of the MDP
in order to train a partial policy that will be used later for online decision-making. As an illustrative
example, consider the domain of Chess, where we wish to learn a partial policy for pruning the
search tree. Our approach is to use expensive search offline to play many full games of Chess and to
record the sequence of states encountered during those games. Each state encountered during actual
play is called a root state of a search tree. The collected root states and associated trees are then
used to learn a partial policy that can be used to speedup future online search.

More formally, the learning problem provides us with a distribution µ0 over root states (or a
representative sample from µ0) and a depth bound D. In our Chess example, µ0 would be a distri-
bution over the states encountered along games played using the expensive search. The intention is
for µ0 to be representative of the states that will be encountered during online use. In this work, we
are agnostic about how µ0 is defined for an application. A typical choice of µ0 is the distribution
of states encountered along trajectories of a receding-horizon controller that makes decisions based
on unpruned depth D search. We use this definition of µ0 in our experiments. This setup is closely
related to imitation learning (Syed and Schapire, 2010; Ross and Bagnell, 2010; Ross et al., 2011)
since we are essentially treating unpruned, expensive search as the expert to be imitated by a pruned
search. Other choices of the initial state distribution µ0 are the state distributions that arise from
more complex imitation learning algorithms such as DAGGER (Ross et al., 2011).

Given µ0 and D, our “speedup learning” goal is to learn a partial policy ψ with small expected
regret REG(µ0, ψ), while providing significant pruning. That is, we want to imitate the decisions
of depth D unpruned search via a much less expensive depth D pruned search. In general, there
will be a tradeoff between the potential speedup and expected regret. At one extreme, it is always
possible to achieve zero expected regret by selecting a partial policy that does not prune. At the other
extreme, we can remove the need for any search by learning a partial policy that always returns a
single action, which corresponds to a complete policy. However, for many complex MDPs, it can
be difficult to learn computationally efficient, or reactive, policies that achieve small regret. Rather,
it may be much easier to learn partial policies that prune away many, but not all actions, yet still
retain high-quality actions. While such partial policies lead to more search than a reactive policy,
the regret may be much less.

In practice, we seek a good tradeoff between the two extremes. The tradeoff between a reactive
policy versus a full depth D search-based policy is application-specific. Instead of specifying a par-
ticular trade-off point as our learning objective, we develop learning algorithms in the next section
that provide some ability to explore different points. In particular, the algorithms are associated
with regret bounds in terms of supervised learning objectives that measurably vary with different
amounts of pruning.

3. Learning Partial Policies

Given µ0 and D, we now develop reduction-style algorithms for learning partial policies. The
algorithms reduce partial policy learning to a sequence of D i.i.d. supervised set learning problems,
each producing one partial policy component ψd. Informally, a supervised set learning problem
is similar to a traditional classification problem, except that the learned functions (partial policies,
in this case) return sets of labels rather than a single label. In our work, labels will correspond
to actions and the designer will specify the size of the label/action sets that the learned function

6

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

should return. The quality of a learned set function will be evaluated in terms of a cost function that
provides a measure of whether a set returned by the function contains “good” labels/actions.

More formally, the set learning problem for partial policy component ψd will be characterized
by a pair (µd, Cd), where µd is a distribution over states, and Cd is a cost function that, for any state
s and action subset A′ ⊆ A assigns a prediction cost Cd(s,A′). The cost function is intended to
measure the quality of A′ with respect to including actions that are high quality for s. Typically, the
cost function will be a monotone decreasing set function of A′ with zero pruning having zero cost,
Cd(s,A) = 0. Note that a trivial solution to the learning problem, which achieves zero cost, would
be to learn a function that always returns the complete action setA. However, such solutions will be
avoided by having the designer specify the amount of pruning that they desire, or equivalently the
size of the action sets returned. Note that constraining the set to contain exactly one action would
correspond to learning complete policies.

We begin by assuming the availability of a set learning algorithm called SETLEARN that takes
three inputs, namely, a set of states drawn from µd, cost function Cd, and a pruning percentage
0 < σd < 1. The output of SETLEARN is a partial policy component ψd that returns action sets that
contain at most a fraction 1−σd of the available actions while attempting to minimize the expected
cost of ψd on µd. That is, the goal is to return a ψd that minimizes E [Cd(s, ψd(s))] for s ∼ µd. The
designer’s choice of pruning percentage σd (e.g., prune 75% of the actions in each state) is related to
the time constraints of the decision problem, with smaller time constraints requiring more pruning.

Given access to SETLEARN we first present our generic reduction algorithm for learning par-
tial policies in Algorithm 1. This algorithm template simply calls SETLEARN on a sequence of

Algorithm 1 A template for learning a partial policy ψ = (ψ0, . . . , ψD−1). The template is instan-
tiated by specifying the pairs of distributions and cost functions (µd, Cd) for d ∈ {0, . . . , D − 1}.
SETLEARN is a set learning algorithm that aims to minimize the expected cost of each ψd relative
to Cd and µd. σd is a pruning fraction such that SETLEARN returns at most 1 − σd actions. Each
partial policy ψd is a set function that maps states to action sets of size (1− σd)|A|.

1: procedure PARTIALPOLICYLEARNER({(µd, Cd)}, σd)
2: for d = 0, 1, . . . , D − 1 do
3: Sample a training set of states Sd from µd
4: ψd ← SETLEARN(Sd, Cd, σd)
5: end for
6: return ψ = (ψ0, ψ1, . . . , ψD−1)
7: end procedure

set learning problems and returns a list of the learned partial policies. In order to instantiate this
template, it is necessary to specify SETLEARN and the individual set learning problems (µd, Cd).
We defer details of our implementation of SETLEARN until section 4. Rather, we proceed with the
definition of our learning reductions. Each reduction is specified by a particular choice of (µd, Cd),
such that we can bound the expected regret of ψ (when used for search) by the expected (i.i.d.) costs
of the ψd returned by SETLEARN.

We begin with the state distributions µd. These are specified in terms of distributions induced
by (complete) policies. In particular, given a policy π, we let µd(π) denote the state distribution
produced by the following procedure: Draw an initial state from µ0, execute π for d steps and return
the final state. Since we have assumed an MDP model or simulator, it is straightforward to sample

7

PINTO AND FERN

from µd(π) for any provided π. Before proceeding, we state two simple lemmas that will be used
to prove our regret bounds.

Lemma 1 If a complete policy π is subsumed by partial policy ψ, then for any initial state distri-
bution µ0, REG(µ0, ψ) ≤ E [V ∗0 (s0)]− E [V π

0 (s0)], for s0 ∼ µ0.

Proof Since π is subsumed by ψ, we know that Qψ0 (s, πψ(s)) = V ψ
0 (s) ≥ V π

0 (s). Since for any
a, Q∗0(s, a) ≥ Qψ0 (s, a), we have for any state s, Q∗0(s, π

ψ(s)) ≥ V π
0 (s). The result follows by

negating each side of the inequality, followed by adding V ∗0 (s), and taking expectations.

Thus, we can bound the regret of a learned ψ if we can guarantee that it subsumes a policy whose ex-
pected value has bounded sub-optimality. Our three reduction algorithms, presented below, provide
different approaches for making such a guarantee.

The second lemma will be used to bound the sub-optimality of complete polices that are sub-
sumed by our learned partial policies, which then allows the application of Lemma 1. Versions of
this “performance difference lemma” have been used in prior work (Kakade and Langford, 2002;
Bagnell et al., 2003; Ross and Bagnell, 2014).

Lemma 2 For any two complete policies π and π′ and any initial state distribution µ0,

E
[
V π′
0 (s0)− V π

0 (s0)
]

=

D−1∑
d=0

E
[
V π′
d (sd)−Qπ

′
d (sd, π(sd))

]
,where sd ∼ µd(π0:d−1)

.

Proof Following a prior proof (Ross and Bagnell, 2014), define πd to be a policy that follows π
for d steps and then at step d + 1 switches to following π′ until the maximum depth D. Using the
observations that π0 = π′ and πD = π, we can derive the following.

E
[
V π′
0 (s0)− V π

0 (s0)
]

= E

[
D−1∑
d=0

V πd
0 (s0)− V πd+1

0 (s0)

]

=
D−1∑
d=0

E
[
V πd
0 (s0)− V πd+1

0 (s0)
]

=

D−1∑
d=0

E
[
V π′
d (sd)−Qπ

′
d (sd, π(sd))

]
,where sd ∼ µd(π0:d−1)

The first equality is simply a telescoping sum. The third equality follows due the fact that πd and
πd+1 both follow π for the first d steps, which yields the same distribution over sd.

We will use this lemma when the reference policy π′ is optimal, that is, π′ = π∗. Thus, the sub-
optimality of π can be bounded by accumulating the expected sub-optimality of its action choices
along trajectories generated by π. Next, we present our three reduction algorithms, which are sum-
marized in Table 1.

3.1 OPI : Optimal Partial Imitation

Perhaps the most straightforward idea for learning a partial policy is to attempt to find a partial
policy that is usually consistent with trajectories of the optimal policy π∗. That is, each ψd should

8

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

OPI
µd = µd(π

∗)
Cd(s, ψd(s)) = 0 if π∗d(s) ∈ ψd(s), otherwise 1

FT-OPI
µd = µd(ψ

+
0:d−1)

Cd(s, ψd(s)) = 0 if π∗d(s) ∈ ψd(s), otherwise 1

FT-QCM
µd = µd(ψ

∗)
Cd(s, ψd(s)) = Q(s, π∗d(s))−Q(s, ψ∗d(s))

Table 1: Instantiations for OPI, FT-OPI and FT-QCM in terms of the template in Algorithm 1. Note
that ψd is a partial policy while π∗d, ψ

+
d and ψ∗d are complete policies.

be learned so as to maximize the probability of containing actions selected by π∗d with respect to the
optimal state distribution µd(π∗). This approach is followed by our first algorithm called Optimal
Partial Imitation (OPI). In particular, Algorithm 1 is instantiated with µd = µd(π

∗) (noting that
µ0(π

∗) is equal to µ0 as specified by the learning problem) and Cd equal to zero-one cost. Here
Cd(s,A

′) = 0 if π∗d(s) ∈ A′ and Cd(s,A′) = 1 otherwise. Note that the expected cost of ψd in this
case is equal to the probability that ψd does not contain the optimal action. We refer to this as the
pruning error and denote it by

e∗d(ψ) = Pr
s∼µd(π∗)

(π∗d(s) /∈ ψd(s)) (4)

A naive implementation of OPI is straightforward. We can generate length D trajectories by
drawing an initial state from µ0 and then selecting actions (approximately) according to π∗d using
standard unpruned search. Defined like this, OPI has the nice property that it only requires the
ability to reliably compute actions of π∗d, rather than requiring that we also estimate action values
accurately. This allows us to exploit the fact that search algorithms such as UCT often quickly iden-
tify optimal actions, or sets of near-optimal actions, well before the action values have converged.
This is an important point since we will approximate π∗ using long, computationally expensive runs
of UCT, described in section 4.

Intuitively, if the expected cost e∗d is small for all d, then the regret of ψ should be bounded,
since the pruned search trees will generally contain optimal actions for state nodes. The following
proof clarifies this dependence. For the proof, given a partial policy ψ, it is useful to define a cor-
responding complete policy ψ+ such that ψ+

d (s) = π∗d(s) whenever π∗d(s) ∈ ψd(s) and otherwise
ψ+
d (s) is the lexicographically least action in ψd(s). Note that ψ+ is subsumed by ψ.

9

PINTO AND FERN

Theorem 3 For any initial state distribution µ0 and partial policy ψ, if for each d ∈ {0, . . . , D−1},
e∗d(ψ) ≤ ε, then REG(µ0, ψ) ≤ εD2.

Proof Given the assumption that e∗d(ψ) ≤ ε and that ψ+ selects the optimal action whenever ψ con-
tains it, we know that e∗d(ψ

+) ≤ ε for each d ∈ {0, . . . , D−1}. Given this constraint on ψ+, we can
apply Lemma 3 from (Syed and Schapire, 2010)3, which implies E[V ψ+

0 (s0)] ≥ E[V ∗0 (s0)]− εD2,
where s0 ∼ µ0. The result follows by combining this with Lemma 1.

This result mirrors work on reducing imitation learning to supervised classification (Ross and
Bagnell, 2010; Syed and Schapire, 2010), showing the same dependence on the planning horizon.
Borrowing again from imitation learning, it is straightforward to construct an example problem
where the above regret bound is shown to be tight. This result motivates a learning approach where
each ψd returned by SETLEARN attempts to maximize pruning (returns small action sets) while
maintaining a small expected cost.

3.2 FT-OPI : Forward Training OPI

OPI has a potential weakness, similar in nature to issues identified in prior work on imitation learn-
ing (Ross and Bagnell, 2010; Ross et al., 2011). In short, OPI does not train ψ to recover from its
own pruning mistakes. Consider a node n in the optimal subtree of a tree T (s0). Now suppose
that the learned ψ erroneously prunes the optimal child action of n. This means that the optimal
subtree under n will be pruned from Tψ(s), increasing the potential regret. Ideally, we would like
the pruned search in Tψ(s) to recover from the error gracefully and return an answer based on the
best remaining subtree under n. Unfortunately, the distribution used to train ψ by OPI was not nec-
essarily representative of this alternate subtree under n, since it was not an optimal subtree of T (s).
Thus, no guarantees about the pruning accuracy of ψ can be made under node n.

In imitation learning, this type of problem has been dealt with via “forward training” of non-
stationary policies (Ross et al., 2011). We employ a similar idea in the Forward Training OPI
(FT-OPI) algorithm. FT-OPI differs from OPI only in the state distributions used for training. The
key idea is to learn the partial policy components ψd in sequential order from d = 0 to d = D − 1.
Each ψd is trained on a distribution induced by ψ0:d−1 = (ψ0, . . . , ψd−1), which will account for
pruning errors made by ψ0:d−1. Specifically, recall that for a partial policy ψ, we defined ψ+ to
be a complete policy that selects the optimal action if it is consistent with ψ and otherwise the
lexicographically least action. The state distributions used to instantiate FT-OPI in Algorithm 1 are
µd = µd(ψ

+
0:d−1) and the cost function remains zero-one cost as for OPI. Thus, the expected cost of

ψd is e+d (ψ) = Prs∼µd(ψ+
0:d−1)

(π∗d(s) /∈ ψd(s)), which gives the probability of pruning the optimal

action with respect to the state distribution of ψ+
0:d−1.

Note that as for OPI, we only require the ability to compute π∗ in order to sample from µd(ψ
+
0:d−1).

In particular, note that when learning ψd, we have ψ0:d−1 available. Hence, we can sample a state
from µd by executing a trajectory of ψ+

0:d−1. Actions for ψ+
d can be selected by first computing π∗d

and selecting it if it is in ψd and otherwise selecting the lexicographically least action.
As shown for the forward training algorithm for imitation learning (Ross et al., 2011), we give

below an improved regret bound for FT-OPI under an assumption on the maximum sub-optimality

3. The main result of (Syed and Schapire, 2010) holds for stochastic policies and requires a more complicated analysis
that results in a looser bound. Lemma 3 is strong enough for deterministic policies.

10

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

of any action. The intuition is that if it is possible to discover high-quality subtrees, even under
sub-optimal action choices, then FT-OPI can learn on those trees and recover from errors.

Theorem 4 Assume that for any state s, depth d, and action a, we have V ∗d (s)−Q∗d(s, a) ≤ ∆. For
any initial state distribution µ0 and partial policy ψ, if for each d ∈ {0, . . . , D − 1}, e+d (ψ) ≤ ε,
then REG(µ0, ψ) ≤ ε∆D.

Proof We first bound the sub-optimality of ψ+. By applying Lemma 2 with π′ = π∗ and π = ψ′

we can infer

E
[
V ∗0 (s0)− V ψ+

0 (s0)
]

=
D−1∑
d=0

E
[
V ∗d (sd)−Q∗d(sd, ψ+(sd))

]
,where sd ∼ µd(ψ+

0:d−1). (5)

Since we have assumed that e+d (ψ) ≤ ε, we know that for each d the probability that ψ+ does not
select an optimal action for states sd ∼ µd(ψ

+
0:d−1) is no more than ε. In addition, by assumption,

the worst case regret of such erroneous action choices is bounded by ∆. Thus, each expectation
term of the right-hand-side of Equation 5 can be bounded by ε∆. Summing these D terms then
implies that

E
[
V ∗0 (s0)− V ψ+

0 (s0)
]
≤ ε∆D.

Since ψ+ is subsumed by ψ, we can apply Lemma 1 to yield the result.

This result implies that if ∆ is significantly smaller than D, then FT-OPI has the potential to out-
perform OPI given the same bound on zero-one cost. In the worst case ∆ = D and the bound will
equal to that of OPI.

3.3 FT-QCM: Forward Training Q-Cost Minimization

While FT-OPI addressed one potential problem with OPI, they are both based on zero-one cost,
which raises other potential issues. The primary weakness of zero-one cost is its inability to dis-
tinguish between large pruning errors and small pruning errors. It was for this reason that FT-OPI
required the assumption that all action values had sub-optimality bounded by ∆. However, in many
problems, including those in our experiments, that assumption is unrealistic, since there can be many
highly sub-optimal actions. For example, in Chess, some actions might lead to unavoidable defeat.
This motivates using a cost function that is sensitive to the sub-optimality of pruning decisions.

In addition, it can often be difficult to learn a ψ that has small zero-one cost while also providing
significant pruning. For example, in many domains, in some states there will often be many near-
optimal actions that are difficult to distinguish from the slightly better optimal action. In such cases,
achieving low zero-one cost may require producing large action sets. However, learning a ψ that
provides significant pruning while reliably retaining at least one near-optimal action may be easily
accomplished. This again motivates using a cost function that is sensitive to the sub-optimality
of pruning decisions, which is accomplished via our third algorithm, Forward Training Q-Cost
Minimization (FT-QCM)

The cost function of FT-QCM is the minimum sub-optimality, or Q-cost, over unpruned actions.
In particular, we use Cd(s,A′) = V ∗d (s)−maxa∈A′ Q

∗
d(s, a). Our state distribution will be defined

similarly to that of FT-OPI, only we will use a different reference policy. Given a partial policy ψ,
define a new complete policy ψ∗ = (ψ∗0, . . . , ψ

∗
D−1) where ψ∗d(s) = arg maxa∈ψd(s)Q

∗
d(s, a), so

11

PINTO AND FERN

that ψ∗ always selects the best unpruned action. We define the state distributions for FT-QCM as
the state distribution induced by ψ∗, i.e. µd = µd(ψ

∗
0:d−1). We will denote the expected Q-cost of

ψ at depth d to be ∆d(ψ) = E
[
V ∗d (sd)−maxa∈ψd(sd)Q

∗
d(sd, a)

]
, where sd ∼ µd(ψ∗0:d−1).

Unlike OPI and FT-OPI, this algorithm requires the ability to estimate action values of sub-
optimal actions in order to sample from µd. That is, sampling from µd requires generating trajecto-
ries of ψ∗d, which means we must be able to accurately detect the action in ψd(s) that has maximum
value, even if it is a sub-optimal action. The additional overhead for doing this during training de-
pends on the search algorithm being used. For many algorithms, near-optimal actions will tend to
receive more attention than clearly sub-optimal actions. In those cases, as long as ψd(s) includes
reasonably good actions, there may be little additional regret. We use long runs of UCT to approx-
imate ψ∗d and use UCT’s Q estimates in the cost function. The full implementation is described in
section 4.

There is a significant theoretical benefit to using expected Q-cost for learning compared to zero-
one cost. The following bound, which motivates the FT-QCM algorithm, shows that the dependence
on D decreases from worst-case quadratic (for OPI and FT-OPI) to linear.

Theorem 5 For any initial state distribution µ0 and partial policy ψ, if for each d ∈ {0, . . . , D−1},
∆d(ψ) ≤ ∆, then REG(µ0, ψ) ≤ ∆D.

Proof Applying Lemma 2 with π′ = π∗ and π = ψ∗ we get that

E
[
V ∗0 (s0)− V ψ∗

0 (s0)
]

=

D−1∑
d=0

E [V ∗d (sd)−Q∗d(sd, ψ∗(sd))] ,where sd ∼ µd(ψ∗0:d−1).

By our assumption that ∆d(ψ) ≤ ∆ for all d, we can combine this with the above to obtain

E
[
V ∗0 (s0)− V ψ∗

0 (s0)
]
≤ ∆D.

Since ψ∗ is subsumed by ψ we can apply Lemma 1 to get the result.

FT-QCM tries to minimize this regret bound by minimizing ∆d(ψ) via supervised learning at each
depth. As we will show in our experiments, it is possible to maintain small expected Q-cost with
significant pruning, while the same amount of pruning would result in a much larger zero-one cost.
When this is true, the benefits of FT-QCM over OPI and FT-OPI can be significant, which is shown
in our experiments.

4. Implementation Details

This section first describes the UCT algorithm, which is the base planner used in all the experiments.
We then describe the partial policy representation and the learning algorithm. Finally, we specify
how we generate the training data.

4.1 UCT

UCT (Kocsis and Szepesvári, 2006) is an online planning algorithm. Given the current state s, UCT
selects an action by building a sparse lookahead tree over the state space reachable from s. Thus,
s is at the root of the tree. Edges from s correspond to actions and their outcomes so that the tree

12

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

consists of alternating layers of state and action nodes. Finally, leaf nodes correspond to terminal
states. Each state node in the tree stores Q estimates for each of the available actions. During
search, the Q values are used to select the next action to be executed. The algorithm is anytime,
which means that a decision can be obtained by querying the root at any time. A common practice
is to run the algorithm for a fixed number of trajectories and then select the root action which has
the largest Q value.

UCT became famous for advancing the state-of-the-art in Computer Go (Gelly et al., 2006;
Gelly and Silver, 2007). Since then, however, many additional successful applications have been
reported, including but not limited to the IPCC planning competitions (Keller and Helmert, 2013),
general game playing (Méhat and Cazenave, 2010; Finnsson, 2012), Klondike Solitaire (Bjarnason
et al., 2009), tactical battles in real-time strategy games (Balla and Fern, 2009) and feature selection
(Gaudel and Sebag, 2010). See Browne et al. (2012) for a comprehensive survey.

The algorithm is unique in the way that it constructs the tree and estimates action values. Unlike
standard minimax search or sparse sampling (Kearns et al., 2002), which build depth-bounded trees
and apply evaluation functions at the leaves, UCT neither imposes a depth bound nor does it require
an evaluation function. Rather, UCT incrementally constructs a tree and updates action values by
carrying out a sequence of Monte-Carlo rollouts of entire trajectories from the root to the terminal
state. The key idea in UCT is to bias the rollout trajectories towards promising ones, indicated
by prior trajectories, while continuing to explore. The outcome is that the most promising parts
of the tree are grown first while still guaranteeing that an optimal decision will be made given
sufficient time and memory. Tree construction is incremental since each rollout introduces only a
small number of additional nodes to the tree, typically one state node and its immediate children
(action nodes).

There are two key algorithmic choices in UCT. The first is the policy used to conduct each roll-
out. We employ the popular method of random action selection which is simple, fast, and requires
no domain knowledge. The second choice is the method for updating the value estimates in the tree
in response to the outcome produced by the rollout. A commonly used technique requires that each
node store: a) the number of times the state (or action) node has been visited in previous rollouts
n(s) (or n(s, a)), b) the current estimate of each action value Q(s, a). Given this information at
each state node, UCT performs a rollout starting at the root state of the tree. If there exist actions
that have yet to be tried, then a random choice is made over these untried actions. Otherwise, when
all actions have been tried at least once, the algorithm selects the action that maximizes an upper
confidence bound given by

QUCB(s, a) = Q(s, a) + c

√
log n(s)

n(s, a)
(6)

where c is a positive constant that controls the exploration bonus. In practice, c is often tuned
separately on a per-domain basis. The selected action is then executed and the resulting state is
added to the tree if it is not already present. This action selection rule is based on the UCB rule (Auer
et al., 2002) for multi-armed bandits, which seeks to balance exploration and exploitation. The first
term Q(s, a) is large for actions with high Q value estimates (exploitation), while the second term
is large for actions that have been visited less often (exploration), relative to the number of visits to
the parent state. The exploration bonus decreases as the action is visited more often.

13

PINTO AND FERN

Having described a procedure to generate trajectories, we now describe the method used to
update the tree. After the trajectory reaches a terminal state and receives a reward R, the action
values and counts of each state along the trajectory are updated. In particular, for any state action
pair (s, a), the update rules are,

n(s)← n(s) + 1 (7)

n(s, a)← n(s, a) + 1 (8)

Q(s, a)← Q(s, a) +
1

n(s, a)
(R−Q(s, a)) (9)

The equation computes the average reward of rollout trajectories that pass through the node
(s, a). As previously mentioned, the algorithm is run for some fixed number of simulations before
selecting the best action at the root, typically, the action with the largest Q value, although selecting
the action with the most visits is also popular. This particular algorithm has two parameters, the
exploration constant c, and the number of rollout trajectories.

The above version is the most basic form of UCT, which has received a very large amount of
attention in the game-playing and planning community. See Browne et al. (2012) for a comprehen-
sive survey of the MCTS family of algorithms. We defer the discussion of the MCTS family and
relevant UCT variants to section 5. Next, we describe the partial policy representation and learning
framework used in our experiments.

4.2 Partial Policy Representation and Learning

We begin by reducing partial policy learning to set learning. As mentioned before, the designer
chooses a fixed fraction of actions to prune in each state. The pruning fraction σd can vary from 0
to 1, where σd = 1 indicates maximum pruning. The choice of σd allows the designer to tradeoff
the time constraints of the decision problem with the expected cost achievable by the SETLEARN

algorithm. In this work, we perform a post-hoc analysis of the expected cost of ψd for a range of
pruning values and select values of σd that yield reasonably small costs. In section 6, we give details
of the selections used in our experiments.

Once σd is fixed, we have induced a set learning problem. Next, we convert the set learning
problem to a ranking problem. That is, for states at depth d, we seek to learn a scoring function over
actions that will allow us to prune away the bottom σd fraction of actions. In this work, we use linear
ranking functions for their computational efficiency and simplicity, although non-linear approaches
(e.g., deep neural networks) may also be used. Formally, we have a n-dimensional weight vector
wd and a user-provided feature vector φ(s, a) over state-action pairs. The linear ranking function
fd(s, a) = wTd φ(s, a) allows us to define a total order over actions, breaking ties lexicographically.
Thus, wd along with the pruning fraction σd fully parameterizes the partial policy component ψd,
which is defined as the set of d(1− σd)× |A|e highest ranked actions.

Next, we specify how we implement the SETLEARN procedure. Each training set will consist
of pairs {(si, ci)}, where si is a state and ci is a vector that assigns a cost to each action. We first
describe the reduction to cost-sensitive binary classification and then specify the method by which
the training data is generated from long runs of UCT. For OPI and FT-OPI, the cost vector assigns 0
to the optimal action and 1 to all other actions. For FT-QCM, the ci give the Q-costs of each action,
obtained from the Q estimates during offline UCT. We learn the partial policy by first learning the

14

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

ranking function in a way that attempts to rank the optimal action as highly as possible and then
select an appropriate pruning fraction based on the learned ranker.

For rank learning, we follow a common approach of converting the problem to cost-sensitive
binary classification. In particular, for a given example (s, c) with optimal action a∗, we create a
cost-sensitive classification example for each action aj 6= a∗ of the form,

(s, c) −→ {(φ(s, a∗)− φ(s, aj) , c(a
∗)− c(aj)) | aj 6= a∗}

Learning a linear classifier for such an example will attempt to rank a∗ above aj according to
the cost difference. This produces m − 1 training examples for a state with m actions. We apply
an existing cost-sensitive learner (VW, (Langford, 2011)) to learn a weight vector based on the
pairwise data. The learning algorithm is standard binary classification with squared loss and L2

regularization, set to 0.01. We also randomly flip the ranking constraints with uniform probability
in order to balance the binary class labels. In VW format, each training example consists of a
cost, binary label, and feature difference vector. Finally, we experimented with other methods
of generating ranking constraints for the reduction from set learning to ranking (e.g., all pairs,
unpruned vs pruned). The simple technique described above performed best in this experimental
setup. Note that this implies that the training of fd is independent of σd.

4.3 Generating Training States

Each of our algorithms requires sampling training states from trajectories of particular policies.
OPI and FT-OPI require approximately computing π∗d. FT-QCM has the additional requirement
of approximating the action values for sub-optimal actions. Our implementation of this is to first
generate a set of trees using substantial search, which provides us with the required policy or action
values. We then sample trajectories from those trees.

More specifically, our learning algorithm is provided with a set of root states by using expensive
runs of UCT to select actions along complete trajectories, starting from a state drawn from the initial
state distribution of a domain. We let S0 denote the set of states encountered along these trajectories,
noting that we can view S0 as being drawn from the target distribution µ0. For each s0 ∈ S0, we
store the tree produced by UCT, noting that the resulting trees will typically have a large number
of nodes on the tree fringe that have been infrequently visited. Since such states are not useful for
learning, we select a depth boundD such that nodes at depth d < D have been sufficiently explored
and have meaningful action values. The trees are then pruned to depth D.

Given this set of depth D trees, we can now generate execution trajectories using the action
selection rule for each algorithm (Table 1) and the MDP simulator to sample subsequent states.
For example, OPI simply requires running trajectories through the trees based on selecting actions
according to the optimal action estimates at each tree node. The state at depth d along each trajectory
is added to the data set for training ψd. FT-QCM samples states for training ψd by generating length
d trajectories of ψ∗0:d−1.

Each such action selection requires referring to the estimated action values and returning the
highest-valued action that is not pruned. The final state on the trajectory is then added to the training
set for ψd. Note that since our approach assumes i.i.d. training sets for each ψd, we only sample
a single trajectory from each tree. However, our experiments indicate that multiple trajectories
can be sampled from the tree without significant performance loss (although the guarantee is lost).
Doing so allows many additional examples to be generated per tree, avoiding the need for additional
expensive tree construction.

15

PINTO AND FERN

Algorithm Action cost vector Sample trajectory

OPI [..., Ia∗=ai , ...] s0
π∗0(s0)−−−−→ s1

π∗1(s1)−−−−→ s2 ...

FT-OPI [..., Ia∗=ai , ...] s0
ψ+
0 (s0)−−−−→ s1

ψ+
1 (s1)−−−−→ s2 ...

FT-QCM [... , Q∗d(s, a
∗)−Q∗d(s, ai), ...] s0

ψ∗0(s0)−−−−→ s1
ψ∗1(s1)−−−−→ s2 ...

Figure 2: Training data generation and ranking reduction for each algorithm. Start by sampling
s0 from the same initial state distribution µ0. OPI uses the optimal policy at each depth
whereas FT-OPI and FT-QCM use the most recently learned complete policy (at depth
d − 1). OPI and FT-OPI use 0-1 costs. Only FT-QCM uses the Q cost function, which
turns out to be critical for good performance.

5. Related Work

While there is a large body of work on integrating learning and planning, we do not know of any
work on learning partial policies for speeding up online MDP planning.

There are a number of efforts that study model-based reinforcement learning (RL) for large
MDPs that utilize tree search methods for planning with the learned model. Examples include RL
using FSSS (Walsh et al., 2010), Monte-Carlo AIXI (Veness et al., 2011), and TEXPLORE (Hester
and Stone, 2013). However, these methods focus on model/simulator learning and do not attempt to
learn to speedup tree search, which is the focus of our work.

Work on learning search control knowledge in deterministic planning and games is more related.
One research direction has been on learning knowledge for STRIPS-style deterministic planners.
Examples of this approach are learning heuristics and policies for guiding best-first search (Yoon
et al., 2008) or state ranking functions (Xu et al., 2009). The problem of learning leaf evaluation
heuristics has also been studied in the context of deterministic real-time heuristic search (Bulitko
and Lee, 2006). As another example, evaluation functions for game tree search have been learned
from the “principle variations” of deep searches (Veness et al., 2009). A related body of work
involves iterative deepening heuristic search and its variants (Korf, 1985; Reinefeld and Marsland,
1994). Control knowledge is typically leveraged using heuristic scoring functions, transposition
tables and principal variations. These methods often improve search by using memory-intensive
control knowledge (e.g., hash tables) and incrementally expanding the search, but do not provide
theoretical guarantees. Nevertheless, the idea of progressive widening and iterative deepening is
extremely appealing and one that we intend to explore more in future work.

The idea of using deep UCT search to generate high-quality state-action training pairs has been
proposed recently (Guo et al., 2014). This work is intuitively similar to the work in this paper. The
high-quality training data is used to train a stationary reactive policy using a deep neural network
(DNN) policy. This is standard imitation learning, where the goal is to learn a reactive policy.
The resulting DNN policy performs very well on a number of ATARI games. However, even this
sophisticated reactive policy cannot outperform deep (but slower) UCT search. This work provides
examples of domains in which an advanced reactive controller is outperformed by sufficiently deep
lookahead tree search. Our work attempts to provide a rigorous middle ground between reactive
decision-making and expensive unpruned search.

16

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

There have been a number of efforts for utilizing domain-specific knowledge in order to im-
prove/speedup MCTS, many of which are covered in recent surveys (Browne et al., 2012; Gelly
et al., 2012). The two main methods involve progressive bias and progressive widening. The core
idea of progressive bias involves adding a quantity f(s, a) for guiding action selection during search.
f(s, a) may be hand-provided (Chaslot et al., 2007), or learned (Gelly and Silver, 2007; Sorg et al.,
2011). Generally, there are a number of parameters that dictate how strongly f(s, a) influences
search and how that influence decays as search progresses. In Sorg et al. (2011), control knowledge
is learned via policy-gradient techniques in the form of a reward function and used to guide MCTS
with the intention of better performance given a time budget. So far, however, the approach has
not been analyzed formally and has not been demonstrated on large MDPs. Experiments in small
MDPs have also not demonstrated improvement in terms of wall clock time over vanilla MCTS. The
second method, progressive widening, is more popular in problems with large or continuous action
spaces. The main idea here is to start the search with small action sets and introduce new actions as
search progresses (Couëtoux et al., 2011a,b). For example, one may add a new action (sometimes
called “unpruning”) when the number of visits to a state exceeds a heuristically chosen threshold.
Although progressive widening is intuitively appealing and clearly required for anytime search in
large action spaces, we were unable to find any existing method that leverages control knowledge
or works in a principled manner.

Finally, MCTS methods often utilize hand-coded or learned rollout policies (sometimes called
“default policies”) to improve anytime performance. A very well-known example is MoGo (Gelly
et al., 2006). While this approach has shown promise in specific domains such as Go, where the
policies can be highly engineered for efficiency, we have found that the large computational over-
head of a learned rollout policy makes its usage hard to justify. The key issue is that the use of
any learned rollout policy requires the evaluation of a feature vector at each state (or state-action
pair) encountered during the rollout. Rollouts are typically far longer than the depth of the search
tree, especially during the initial part of the sequential problem. This results in a massive number of
additional feature evaluations, far greater than the number of evaluations performed by the heuristic
bias methods discussed above which only require a feature evaluation once for every new action
node added to the tree. Thus, the use of learned rollout policies may cause orders of magnitude
fewer trajectories to be executed, compared to vanilla MCTS. In our experience, this can easily lead
to degraded performance per unit time. Furthermore, there is little formal understanding about how
to learn such rollout policies in principled ways, with straightforward approaches often yielding
decreased performance (Silver and Tesauro, 2009).

6. Experiments

We perform a large-scale empirical evaluation of the partial policy learning algorithms on two chal-
lenging MDP problems. The first, Galcon, is a variant of a popular real-time strategy game, while
the second is Yahtzee, a classic dice game. Both problems pose a serious challenge to MCTS al-
gorithms, for different reasons. However, in both domains, UCT, enhanced with learned partial
policies, is able to significantly improve real-time search performance over every baseline. The key
experimental findings are listed next.

1. The search performance of UCT using a partial policy learned by the FT-QCM algorithm, de-
noted as UCT(FT-QCM), is significantly better than that of FT-OPI and OPI in both domains.

17

PINTO AND FERN

2. UCT(FT-QCM) performs significantly better than vanilla UCT and other “informed” UCT
variants when the search budget is small. Given a larger search budget, UCT(FT-QCM) wins
in Galcon and achieves parity in Yahtzee.

3. The average regret of the pruning policies on a supervised dataset of states is strongly cor-
related with the search performance, which is in line with our formal results. FT-QCM has
significantly lower regret than FT-OPI and OPI.

4. The quality of the training data deteriorates quickly as depth d increases. Regret increases as
d increases.

5. It is critical to incorporate the computational cost of using control knowledge into the search
budget during evaluation. Ignoring the computational cost of knowledge can significantly
change the perceived relative performance of different algorithms.

6.1 Experimental Domains

Galcon: The first domain is a variant of a popular two-player real-time strategy game, illustrated in
Figure 3. The agent seeks to maximize its population by launching variable-sized population fleets
from one of the planets currently under its control. The intention may be to either reinforce planets
already controlled, attack an enemy planet, or capture an unclaimed planet. This produces a large
action space (O

(
|planets|2

)
), where an action is defined as the triple (source planet, destination

planet, fleet size). In our experiments, we use maps with 20 planets and three discrete levels of
fleet size (small, medium, large). This often leads to game states where the action space contains
hundreds of actions. The exact set of actions varies during the game as control over planets changes.
State transitions are typically deterministic, unless a battle occurs. During each battle, a unit is
randomly chosen from the two armies for termination. The battle ends when only one army remains.
The maximum length of a game is restricted to 90 moves.

The search complexity caused by the large action branching factor is exacerbated by the rela-
tively slow simulator and the length of the game. In this setting, UCT can only perform a small
number of rollouts even when the search budget is as large as eight seconds per move. In fact,
even at the largest search budgets, UCT only sparsely expands the tree beyond depths two or three.
Note, however, that the rollout component of UCT is run to the end of the game and hence provides
information well beyond these shallow depths. Finally, the second player or adversary is fixed to
be a UCT agent with a budget of one second per move. All evaluations are performed against this
fixed adversary. Note that at one second per decision, the fixed adversary effectively acts randomly,
especially during the initial part of the game. However, further increase in the adversary’s search
budget is impractical because of the significant computational cost of evaluating search agents in
this domain.

The agent’s performance can be measured in terms of the final population difference. This value
is zero when the game is tied, a large positive value when the agent wins convincingly and a negative
value when the agent is much weaker than the adversary. The rollout policy used is random unless
mentioned otherwise, while the exploration bias c is set to 0.75 in Galcon, after a brief grid search
showed that search performance was relatively invariant to the exploration bonus as long as the
parameter was set sufficiently high. The exploration bias was not optimized in favor of any of the
three algorithms presented in this paper and is kept constant.

18

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

Figure 3: A visualization of a Galcon game in progress. The agent must direct variable-sized fleets
to either reinforce planets under its control, take over enemy planets, or unoccupied ones.
The decision space is large, often involving hundreds of actions.

Yahtzee: The second domain is a classic dice game which consists of thirteen stages. In each
stage, the agent may roll any subset of the five dice at most twice, after which the player must
select one of the empty categories. A category, once selected, may not be reselected in later stages.
This produces a total of 39 decisions that must be made per game, where the last action trivially
assigns the only remaining category. The categories are divided into upper and lower categories
with each one scored differently. The lower categories roughly correspond to poker-style conditions
(“full house”, “three of a kind”, “straight”, etc.), while the upper categories seek to maximize the
individual dice faces (ones, twos, ..., sixes). A bonus of 35 points is awarded when the sum of the
upper category scores exceeds 63. This ensures that the player must very carefully assign categories
since the loss of the bonus has a large impact on the final score. The maximum score at the end of
any game is 375, which is very hard to achieve. The above implementation is the simplest version of
the game, restricted to a single “Yahtzee” (all five dice faces are identical). Our implementation for
the simulator will be made available upon request4. Figure 4 shows a summary of the rules of the
game. The UCT algorithm, including all parameter values, is identical to the one used in Galcon.

The trees generated by UCT differ significantly in the two domains. Compared to Galcon,
Yahtzee has a relatively small action branching factor, smaller time horizon and a fast simulator.
Furthermore, the available actions and the branching factor in Yahtzee decrease as categories are
filled, whereas in Galcon, the agent occupying more planets has a larger action set. Thus, we can
play many more games of Yahtzee per unit time compared to Galcon. However, Yahtzee poses a dif-
ficult challenge for MCTS algorithms due to the dice rolls which increase the state branching factor
and add variance to the Q value estimates. Consequently, even deep search with the UCT algorithm
is error-prone and struggles to improve performance with larger search budgets. As in Galcon, the
search quality of UCT degrades significantly at depths beyond two or three. Note, however, that

4. We are also in the process of open-sourcing the entire code base.

19

PINTO AND FERN

Figure 4: A typical scoring sheet for Yahtzee, consisting of five dice and 13 categories. In each
game, all 13 categories must be scored, one per stage. Each stage consists of at most
three dice rolls (original roll + two more controlled by the player). The objective is to
maximize the total score. The dice rolls increase the tree size and adds variance during
rollouts. Our simulator implements the variant where at most one “Yahtzee” (all five dice
faces are identical) can be recorded.

20

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

the performance degradation in Yahtzee is primarily caused by the transition stochasticity from the
dice rolls, although the action branching factor remains significant. As in Galcon, UCT rolls out
trajectories to the end of the game. Doing so provides information from states much deeper than the
depth of the tree.

Normalizing rewards

The final score is always non-negative for Yahtzee, but may be negative for Galcon if the agent loses
the game. In order to achieve a consistent comparison between the supervised metrics and search
performance, we perform a linear rescaling of the score so that the performance measure now lies in
the interval [0, 1]. In our experiments, we provide this measure as reward to the agent at the end of
each trajectory. That is, rewards are zero everywhere except in terminal state-action pairs. Note that
a reward above 0.5 indicates a win in Galcon. In Yahtzee, a reward value of 1.0 is the theoretical
upper limit achievable in the best possible outcome, which rarely occurs in practice. Furthermore,
even a small increase in the reward (e.g., 0.1) is a significant improvement in Yahtzee.

6.2 Partial Policy Learning Setup

We now describe the procedure used to generate training data for the three learning algorithms, OPI,
FT-OPI, and FT-QCM. Each algorithm is provided with root states generated by playing approxi-
mately 200 full games. In Galcon, UCT is allowed to search for 600 seconds per move, whereas
in Yahtzee, UCT is given 120 seconds per move. Each game results in a trajectory of states visited
during the game. All of those states across all games constitute the set of root states used for train-
ing as described in section 4. Despite the enormous search budget, depths beyond two or three are
sparsely expanded, due to the large state and action branching factors. We therefore set the search
depth bound (D) to 3 for learning, since the value estimates produced by UCT for deeper nodes are
often inaccurate. Thus, the learned partial policy has the form ψ = (ψ0, ψ1, ψ2). When UCT gen-
erates tree nodes at depths greater than D, we prune using ψ2. As previously mentioned, we do not
limit the rollouts of UCT to depth D. Rather, the rollouts proceed until terminal states, which pro-
vide a longer-term heuristic evaluation for tree nodes. However, we have confirmed experimentally
that such nodes are not visited frequently enough for pruning to have a significant impact.

As previously mentioned, we learn partial policies by learning linear scoring functions. This
requires us to compute state-action features φ(s, a) that capture salient attributes. We now describe
the features used in each domain.

Galcon features: The features are defined over the next state (or “afterstate”) produced by
simulating the action in the current state. The salient attributes of the next state for launch actions
include attributes of the source and destination planet like the planet size, its current population, the
growth rate, and the incoming enemy threat. All real-valued features are discretized into 100 bins,
using a one-hot encoding. For destination planets, the feature vector consists of the concatenation
of three one-hot sub-vectors, corresponding to whether the destination planet is occupied by the
current player, by the adversary, or unoccupied by either player. Note that exactly one of the three
sub-vectors is non-zero for a particular destination planet. For “do nothing” actions, we have a
single indicator feature. Finally, we also have a constant (bias) feature. This leads to a total feature
space of size 1602, but only a small number (typically nine) are active for a given state-action pair.
However, the computation of φ(s, a) is still slow due to the simulator call to obtain the next state.

21

PINTO AND FERN

Yahtzee features: The features for the current state-action pair are defined over the next state,
which is sampled by calling the simulator on the current state-action pair. The state-action feature
vector is specified using a sparse one-hot encoding, where each of the 13 categories has 100 features
assigned to it with one additional bias feature. The feature value for each unfilled category is a
measure of how “close” the dice are to achieving the maximum score for that category, discretized
into 100 bins. A perfect score returns a feature value of 1, whereas a category selection that does not
add to the game score returns a feature value of 0. However, “select” actions for the upper categories
that achieve binary outcomes (e.g., either a “full house” is achieved or not), are encoded using
binary indicator features. All “roll” actions use discretized features, encoding how close the roll
action brings the dice to a desired configuration. Note that there is large variance in the state-action
features due to the dice rolls. This variance may be reduced by sampling more states and averaging.
However, doing so would significantly increase the computational overhead of computing φ(s, a).

Evaluation metrics: We report the search budget in real-time (e.g., 4 seconds per move) instead
of the number of simulations. Each point on the anytime curve is the average of 1000 final game
scores, with 95% confidence intervals. This large-scale evaluation has massive computational cost
and requires access to a cluster. The use of time-based search budgets in a cluster environment
adds variance, requiring additional evaluations and averaging. However, an important result of the
following experiments is that the use of time to measure budgets is essential for a fair comparison
of “knowledge-injected” search algorithms.

6.3 Comparing OPI, FT-OPI, and FT-QCM

We learn ranking functions using each of the three learning algorithms, as described in section 4.2.
We obtain a set of partial policies by varying the pruning thresholds σd. Recall from section 4.2 that
our implementation of rank function learning does not depend on σd. The learned partial policies are
used to prune actions during search. Figure 5 shows the impact on search performance using UCT
as the fixed base search algorithm. The first row shows the results for a large amount of pruning
(σd = 0.90) while the second and third rows have progressively smaller pruning thresholds.

The first observation is that FT-QCM is clearly better than FT-OPI and OPI in both domains.
FT-OPI and OPI are only competitive with FT-QCM in Galcon if small pruning is applied (bottom
left). In Yahtzee, FT-QCM is significantly better even when the pruning is reduced to 50%.

Second, we observe that all search algorithms perform better as the search budget is increased.
However, the pruning thresholds significantly impact the performance gain across the anytime curve.
In Galcon, this impact is highlighted by the steep curves for σd = 0.5, compared to the relatively
flat curves for larger pruning thresholds. In Yahtzee, although performance appears to increase very
slowly, this small increase corresponds to a significant improvement in playing strength.

The clear superiority of FT-QCM merits further investigation. Recall that FT-QCM differs from
FT-OPI only in terms of the cost function. Given the near-identical performance of FT-OPI and
OPI, it seems that forward training is less relevant to performance. Therefore, we conclude that
the performance improvement comes from incorporating the Q-cost instead of zero-one cost. Next,
we analyze the learned partial policies to gain additional insight into the impact of Q-cost learning,
compared to zero-one cost and forward training.

22

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

−2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.45

0.50

0.55

0.60

0.65

0.70

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.90)
UCT(FT-OPI, 0.90)
UCT(OPI, 0.90)

(a) Galcon, σd = 0.90

−4 −3 −2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.90)
UCT(FT-OPI, 0.90)
UCT(OPI, 0.90)

(b) Yahtzee, σd = 0.90

−2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.45

0.50

0.55

0.60

0.65

0.70

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.75)
UCT(FT-OPI, 0.75)
UCT(OPI, 0.75)

(c) Galcon, σd = 0.75

−4 −3 −2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d
UCT(FT-QCM, 0.75)
UCT(FT-OPI, 0.75)
UCT(OPI, 0.75)

(d) Yahtzee, σd = 0.75

−2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.50)
UCT(FT-OPI, 0.50)
UCT(OPI, 0.50)

(e) Galcon, σd = 0.50

−4 −3 −2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.50)
UCT(FT-OPI, 0.50)
UCT(OPI, 0.50)

(f) Yahtzee, σd = 0.50

Figure 5: The search performance of UCT using partial policies learned by FT-QCM, FT-OPI, and
OPI as a function of the search budget. The results for Galcon are in the first column,
the results for Yahtzee in the second. Each row corresponds to a different set of pruning
thresholds. The top row shows the results of pruning 90% of the actions whereas the
bottom row prunes 50%. FT-QCM easily outperforms FT-OPI and OPI in five instances
and is tied in the sixth. As mentioned in section 6.1, the reward (bounded by [0, 1]) is a
linear function of the raw score, measured at the end of the game.

23

PINTO AND FERN

6.4 Relating search and regret

In order to better understand how search performance is related to the quality of the pruning policies,
we analyze the learned partial policies on a held-out dataset of trajectories. In particular, for each
linear partial policy, we compute its average pruning error and average regret as the level of pruning
is increased from none (σd = 0) to maximum (σd = 1.0). Recall the definition of pruning error from
Equation 4, which is the probability of ψ pruning away the optimal action (w.r.t. the expert policy).
The definition for regret is given in Equation 3. These supervised metrics are computed by averaging
over a held-out dataset of root states taken from at least one thousand trajectories. Figure 6 shows
these supervised metrics on Galcon for each of the three depths. The left column shows the average
regret while the right column is the average pruning error rate. The result of pruning randomly
is also shown since it corresponds to pruning with random action subsets. Figure 7 shows the
corresponding results for Yahtzee.

We start at the root, which is the first row in both figures. As expected, both regret and error
increase as more actions are pruned. The key result here is that FT-QCM has significantly lower
regret than FT-OPI and OPI for both domains. The lower regret is unsurprising given that FT-QCM
uses the regret-based cost function while FT-OPI and OPI use zero-one costs. However, FT-QCM
also demonstrates the least pruning error in both problems. Given that the same state distribution is
used at the root, this observation merits additional analysis.

There are two main reasons why FT-OPI and OPI do not learn good policies. First, the linear
policy space has very limited representational capacity. Second, the expert trajectories are noisy.
The poor quality of the policy space is highlighted by the spike in the regret at maximum pruning,
indicating that all three learners have difficulty imitating the expert. We also observe this at the end
of training, where the final 0-1 error rate remains high. The expert’s shortcomings lie in the difficulty
of the problems themselves. For instance, in Galcon, very few action nodes at depths d > 0 receive
sufficient visits. In Yahtzee, the stochasticity in dice rolls makes it very difficult to estimate action
values accurately. Furthermore, in states where many actions are qualitatively similar (e.g., roll
actions with nearly identical Q values), the expert’s choice of action is effectively random. This
adds noise to the training examples, which makes the imitation learning problem harder. However,
FT-QCM’s use of regret-based costs allows it to work well in Yahtzee at all depths, but only at the
root in Galcon. In Galcon, the expert deteriorates rapidly away from the root policy and the training
dataset becomes very noisy. Given the dominating performance of FT-QCM over OPI and FT-OPI,
we focus on FT-QCM for the remainder of the experiments.

6.5 Selecting σd

We will now describe a simple technique for selecting σd. Recall that a good pruning threshold must
“pay for itself”. That is, in order to justify the time spent evaluating knowledge, a sufficient number
of sub-optimal actions must be pruned so that the improvement produced is larger than what would
have been achieved by simply searching more. At one extreme, too much pruning incurs large
regret and little performance improvement with increasing search budgets. At the other extreme, if
insufficient actions are pruned, search performance may be worse than that of uninformed (vanilla)
search due to the additional overhead of computing state-action features.

The key to selecting good values lies in the supervised metrics discussed above, where the regret
and search graphs are correlated. Thus, one simple technique for selecting σd is to use the largest
value that has sufficiently small regret. For instance, in Galcon, regret is near-zero for σ0 < 0.75 and

24

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.000

0.005

0.010

0.015

0.020

0.025
R

eg
re

t(
µ

0
)

FT-QCM
FT-OPI
OPI
Random

(a) Galcon: Regret at the root (d=0)

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
er
ro
r)

FT-QCM
FT-OPI
OPI
Random

(b) Galcon: Pruning error rate at the root (d=0)

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.000

0.005

0.010

0.015

0.020

0.025

R
eg

re
t(
µ

0
)

FT-QCM, σ0 = 0.75

FT-OPI, σ0 = 0.75

OPI
Random

(c) Galcon: Regret at d=1

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
er
ro
r)

FT-QCM, σ0 = 0.75

FT-OPI, σ0 = 0.75

OPI
Random

(d) Galcon: Pruning error rate at d=1

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.000

0.005

0.010

0.015

0.020

0.025

R
eg

re
t(
µ

0
)

FT-QCM, σ0,1 = 0.75

FT-OPI, σ0,1 = 0.75

OPI
Random

(e) Galcon: Regret at d=2

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
er
ro
r)

FT-QCM, σ0,1 = 0.75

FT-OPI, σ0,1 = 0.75

OPI
Random

(f) Galcon: Pruning error rate at d=2

Figure 6: Average regret and pruning error for the learned partial policies ψd as a function of the
pruning ratio in Galcon. The metrics are evaluated with respect to a held-out test set of
states obtained from at least 1000 trajectories with root states sampled from µ0. FT-QCM
has the least error and regret at the root. At depths d > 0, performance degrades towards
random due to noisy training data.

25

PINTO AND FERN

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.000

0.005

0.010

0.015

0.020
R

eg
re

t(
µ

0
)

FT-QCM
FT-OPI
OPI
Random

(a) Yahtzee: Regret at the root (d=0)

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
er
ro
r)

FT-QCM
FT-OPI
OPI
Random

(b) Yahtzee: Pruning error rate at the root (d=0)

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.000

0.005

0.010

0.015

0.020

R
eg

re
t(
µ

0
)

FT-QCM, σ0 = 0.75

FT-OPI, σ0 = 0.75

OPI, σ0 = 0.75

Random

(c) Yahtzee: Regret at d=1

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
er
ro
r)

FT-QCM, σ0 = 0.75

FT-OPI, σ0 = 0.75

OPI, σ0 = 0.75

Random

(d) Yahtzee: Pruning error rate at d=1

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.000

0.005

0.010

0.015

0.020

R
eg

re
t(
µ

0
)

FT-QCM, σ0,1 = 0.75

FT-OPI, σ0,1 = 0.75

OPI
Random

(e) Yahtzee: Regret at d=2

0.0 0.2 0.4 0.6 0.8 1.0
Pruning Ratio (σ)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
er
ro
r)

FT-QCM, σ0,1 = 0.75

FT-OPI, σ0,1 = 0.75

OPI
Random

(f) Yahtzee: Pruning error rate at d=2

Figure 7: Average regret and pruning error for the learned partial policies ψd as a function of the
pruning ratio in Yahtzee. The metrics are evaluated with respect to a held-out test set of
states obtained from at least 1000 trajectories with root states sampled from µ0. At depths
d > 0, FT-QCM continues to perform better than FT-OPI and OPI due to the relatively
higher quality of training data at deeper states.

26

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

increases sharply thereafter. The regret is practically zero for Yahtzee until the pruning threshold
exceeds 0.5 and only seems to increase significantly around 0.75. For simplicity, we choose a
constant pruning threshold and set σd to 0.75 for every value of d. As we will see next, using
FT-QCM partial policies with σd = 0.75 results in large performance gains across the anytime
curve. A more computationally expensive method of selecting σd would require the evaluation of
the planning performance of a number of different pruning thresholds.

6.6 Comparing FT-QCM with baselines

We will now compare FT-QCM with other search-based and reactive agents. Most of the baselines
require control knowledge in the form of either a policy or a heuristic evaluation function. Since the
partial policy learned by FT-QCM at the root has the least regret, we will use it in every technique
5. We denote this partial policy as ψG and its linear scoring function as hG(s, a) = wTGφ(s, a).

Heuristic Bias (HB): Our first baseline is a popular technique for injecting a heuristic into the
MCTS framework. HB first adds a bias to an action node’s score and then slowly reduces it as
the node is visited more often. This has the effect of favoring high-scoring actions early on and
slowly switching to unbiased search for large budgets. This technique can be viewed as a form of
progressive widening (Chaslot et al., 2007) with biased action selection and encompasses a large
body of search variants. For example, one method uses the visit counts to explicitly control the
branching factor at each node (Couëtoux et al., 2011a). However, none of these methods come with
formal regret bounds and are agnostic to the choice of heuristic, if one is used. In our experiments,
we observed that search performance is extremely sensitive to the interaction between the reward
estimate, non-stationary exploration bonus, and the non-stationary bias term. In our domains, the
following heuristic worked better than the other variations considered.

q(s, a) = KhG(s, a) if na = 0

= QUCB(s, a) + (1− kn)KhG(s, a) na > 0

where K is a domain-specific constant and kn = n(s, a)/(n(s, a) + 1) is zero for an unvisited
action and increases towards one as the action is visited more. Thus, the exploration scaling term
(1 − kn) is maximum (one) initially and decreases towards zero with each subsequent visit. Next,
QUCB(s, a) is the UCB score of an action node from Equation 6, combining the Q estimate with an
exploration bonus for infrequently visited action nodes. The best values of K and the exploration
constant c were obtained through a computationally expensive grid search.

Informed Rollout (IR): Another popular technique for using knowledge in UCT involves us-
ing an “informed” rollout policy. The underlying idea is that a biased rollout policy can produce
more accurate state evaluations than uniform random action selection. Typically, this policy is hand-
engineered using expert knowledge (e.g., MoGo (Gelly et al., 2006)), but it can also be learned of-
fline using domain knowledge (Silver and Tesauro, 2009) or online in a domain-independent manner
(Finnsson and Björnsson, 2010). Here, we use a MoGo-like strategy of selecting randomly from the
partial policy ψG using a pruning ratio of 0.75. That is, at each state during a rollout from a leaf
node, an action is randomly sampled from the top 25% of the action set with respect to the scoring
function hG. From the experiments in section 6.4, we expect this policy to have very small regret.

5. We also tried regression and RL techniques to learn an evaluation function but none of the approaches worked as well
as FT-QCM.

27

PINTO AND FERN

However, “informed” rollout policies have significantly larger computational costs compared to ran-
dom action selection, since each rollout requires knowledge to be evaluated a very large number of
times. That is, the number of knowledge evaluations performed during policy rollouts is massive,
compared to the number of knowledge evaluations performed for tree nodes. We experimented with
other informed rollout policies, such as softmax as well as a complete policy that prunes all but one
action. However, none of these approaches were able to perform significantly better.

UCT with Random pruning (URP): A simple yet interesting baseline is the UCT algorithm
that prunes randomly. We use σd = 0.75 for consistency. URP avoids the cost of feature computa-
tion while simultaneously reducing the number of actions under consideration. URP is motivated by
the insight obtained in the previous section, where performance at small search budgets improved
with additional pruning. An important observation is that searching with random action subsets
corresponds to evaluating the search performance of a random partial policy which we analyzed in
Figure 6 and Figure 7.

Reactive policies: Finally, we consider policies that do not search. The first, “Greedy”, is sim-
ply arg maxa hG(s, a), acting greedily w.r.t. ψG. The second is a linear policy learned using the
SARSA(λ) RL algorithm (Barto et al., 1995) over the same features used to learn ψG. We exper-
imented with different values of λ, exploration and learning rates, and report the best settings for
each domain. For Galcon, we observe that learning is negligible after 8000 games with exploration
rate ε = 0.25, decay λ = 0.75, with a constant learning rate of 0.01. For Yahtzee, which has a much
faster simulator, we play 105 games using ε = 0.2, λ = 0.1, and the same constant learning rate of
0.01. In both cases, RL is run until improvement becomes negligible.

Results

Figure 8(a) and Figure 8(b) show the results for Galcon and Yahtzee, respectively. They constitute
the main experimental result of this paper. We discuss the results for each domain separately below.

Galcon: The key observation in Figure 8(a) is that FT-QCM injected into UCT significantly
outperforms all other baselines at small search budgets and moderately large search budgets. The
search budget is measured in real time. As the search budget increases, the FT-QCM injection
continues to show slow improvement, whereas uninformed UCT fails to match performance even
at eight seconds per move. We were unable to get HB and IR to perform well, which is surprising
given prior reports of successful applications of these methods. IR performs particularly poorly
and is worse than even the reactive policies (Greedy, SARSA). The main reason for IR’s poor
performance is the massive computational overhead of its “informed” rollouts. In Galcon, games
(and therefore rollouts) are long which means that computing features for every legal state-action
pair incurs significant computational cost. Random rollout policies are much faster in comparison
and provide non-trivial value estimates. However, we observe that IR appears to be improving
rapidly and may eventually outperform UCT, but only at unreasonably large search budgets (e.g.,
ten minutes per move).

In contrast, heuristic bias (HB) is relatively inexpensive since it must only be computed once
for each state added to the tree. That is, HB has the same overhead as partial policy injection, which
allows HB to perform better than IR. However, HB is unable to improve over uninformed UCT.
This is surprising since prior work has described search agents that successfully leverage HB. In
our experiments, we observe that HB is sensitive to the particular choice of bias decay. Getting
HB to work well across the anytime curve is challenging and time-consuming. Next, we consider

28

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

−2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.75)
UCT
HB
IR
URP
Greedy
RL

(a) Galcon, FT-QCM v baselines

−4 −3 −2 −1 0 1 2 3
Log2(Search Budget in seconds)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.75)
UCT
HB
IR
URP
Greedy
RL

(b) Yahtzee, FT-QCM v baselines

Figure 8: The key empirical result of this paper shows that the search performance of UCT injected
with FT-QCM significantly outperforms all other baselines at small budgets. At larger
budgets, it either continues to win or achieves parity.

uninformed UCT which has zero overhead. As suspected, UCT is near-random at small time scales,
getting outperformed by the variant that prunes randomly (URP). The difficulty of planning in large
action spaces is highlighted by the strong performance of URP, which is second only to FT-QCM
across the anytime curve. Finally, the reactive policies (Greedy, SARSA) perform reasonably well,
but are incapable of utilizing larger time budgets. Greedy, in particular, appears to perform as well
as UCT with a search budget of one second per move. This is much better than the policy learned

29

PINTO AND FERN

by the RL algorithm. Finally, at the smallest search budget, Greedy outperforms all other baselines
and is second only to FT-QCM.

Yahtzee: FT-QCM easily outperforms all baselines in this domain. However, compared to
Galcon, the baselines are far more competitive at larger time scales and a number of methods achieve
parity with FT-QCM. Vanilla UCT is particularly good and quickly matches FT-QCM as the search
budget is increased. However, it is important to note that despite pruning 75% of the actions,
FT-QCM is able to significantly outperform vanilla UCT (and other baselines) for small decision
times and does not lose to vanilla UCT at larger search budgets. This result also confirms that
small supervised regret (Figure 6) translates into good performance as demonstrated by the strong
performance of Greedy. However, as in Galcon, both reactive policies are outperformed by search-
based techniques given sufficient time.

HB and IR are uncompetitive in this domain. IR performs very poorly at first, for reasons
discussed previously. However, IR eventually overtakes all methods and the graph indicates that
performance may improve further, given additional time. However, HB is worse than UCT and
only manages to achieve parity at large time scales. The challenges of planning in Yahtzee are
clearly visible in the relatively flat anytime curves for each search variant and the high residual
variance, despite averaging over a thousand games. Given the relatively small action branching
factor compared to Galcon, it is notable that in Yahtzee, FT-QCM is able to perform significantly
better than all competing knowledge injections and reactive policies.

Finally, URP performs very poorly in Yahtzee, in contrast to its good performance in Galcon.
The underlying reason is the relatively small percentage of good actions in a typical Yahtzee state.
In Yahtzee, URP’s random pruning will often result in the elimination of all reasonable actions,
which decreases performance. In Galcon, this is less likely to occur since there are a much larger
fraction of good actions.

6.7 The cost of knowledge

Given that many successful applications of biased initialization methods like HB and biased rollout
methods like IR have exhibited improved search performance in the literature, we were surprised
when HB and IR failed to improve over vanilla MCTS in our domains. Much tuning was required
for HB to balance the effect of different score components. In contrast, it is relatively simple to
bias rollouts and the results indicate that state-of-the-art performance is achievable with IR if one is
prepared to search for very long periods of time.

The key issue seems to be the high computational cost of knowledge compared to conducting
additional search. In order to evaluate the true cost of knowledge in IR and HB, we switch to
measuring performance in terms of the number of simulated trajectories rather than wall-clock time.
This evaluation approach ignores the time-cost of applying either the evaluation heuristic or the
biased rollout policy. This reporting method has the advantage of being invariant to the architecture
and implementation and is widely used in the MCTS literature. Note that we cannot re-compute
these results by simply translating the time-based evaluations, since each rollout can take a variable
amount of time to finish. For example, rollouts from states at the start of a game take more time
compared to rollouts from near-terminal states. We therefore re-evaluate the agents, where each
search is now allowed to perform a fixed number of simulations from the root. The impact of
measuring search budgets using simulations instead of time is shown in Figure 9.

30

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

UCT(FT-QCM) continues to win easily at search budgets that are relatively small. However, as
the search budget increases, HB and IR now demonstrate better performance. At the largest search
budgets, HB outperforms UCT in Galcon and achieves parity in Yahtzee. IR eventually outperforms
all other variants in Yahtzee. This improvement is noteworthy, given that IR performed very poorly
in the time-based evaluation. These experiments show that using biased rollouts can improve search
performance but only at exorbitant and unpredictable runtimes, varying with the particular state at
the root of the tree. A broader observation is that it seems very important to correctly incorporate
the cost of knowledge when comparing different injections, which has not always been the case in
prior work on MCTS.

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
Log2(Search Budget in simulations)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d

UCT(FT-QCM, 0.75)
UCT
HB
IR

(a) Galcon, # of simulations

6 8 10 12 14 16
Log2(Search Budget in simulations)

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

E
pi

so
di

c
R

ew
ar

d
UCT(FT-QCM, 0.75)
UCT
HB
IR

(b) Yahtzee, # of simulations

Figure 9: The results of measuring search performance using the number of simulations, instead of
time. Doing so eliminates the computational cost of using control knowledge. IR (UCT
with biased rollouts) now appears to perform much better. However, UCT with FT-QCM
continues to perform the best across significant portions of the anytime curve.

7. Summary and Future Work

We have shown algorithms for offline learning of partial policies, which can be used to reduce the
action branching factor in time-bounded tree search. The algorithms leverage a reduction to i.i.d. su-
pervised learning and the expected regret is shown to be bounded. Experiments in two challenging
domains show significantly improved anytime performance in Monte-Carlo Tree Search.

There are a number of promising directions to explore next. The first improvement is to the base
learner for the set learning problems. Recent work has studied more principled approaches for such
set learning problems via a list learning approach (Dey et al., 2013; Ross et al., 2013). While the
simplicity of the ranking approach used in our work is appealing, more sophisticated approaches
may yield significant performance gains in certain cases. Importantly, a major benefit of studying
algorithms within a reduction framework is that we can easily incorporate any such improvements
to base learners without needing to change the overall algorithm.

Another important implementation detail that requires additional exploration is the use of non-
stationary partial policies. As mentioned previously, imitation learning algorithms, such as DAG-

31

PINTO AND FERN

GER (Ross et al., 2011), provide the same regret bounds as forward training using a stationary
policy, with data from different distributions combined into a single dataset. It is certainly appeal-
ing to have a single policy that shares data and parameters across depth instead of the depth-indexed
non-stationary partial policies considered here. However, one practical difficulty that arises in our
setting is that the training data extracted from long runs of UCT gets noisier with increasing depth.
Our initial attempts to mix data across depths led to poor performance. One way to control noise in
the supervised datasets, irrespective of depth, might be to run a separate, long UCT from any state
that is to be included in the dataset. It may be feasible to do so given sufficient computational re-
sources. The performance of stationary partial policies compared to non-stationary partial policies
is worth future consideration.

Next, we seek a method than can replace the fixed-width forward pruning with a theoretically
justified progressive widening method. Doing so would allow the search to smoothly transition from
reactive decision-making to full-width search at larger time scales. It would also eliminate the need
to specify σd upfront. Ideally, the pruning level should depend on the remaining search budget.
Such a time-aware search procedure has the potential to produce state-of-the-art anytime search
performance. We are unaware of any method that leverages control knowledge for performing
time-aware search on a per-decision basis in a principled manner.

We would like to use the learned control knowledge to improve the expert policy, which was
responsible for generating the deep trees used for training. The learned partial policy is only as good
as the expert, so improvements to the expert may produce large improvements in search quality,
particularly at small time scales. For instance, in Yahtzee, we observe that the expert makes serious,
irreversible mistakes (for example, in category assignment at the end of the rolls). Avoiding expert
mistakes seems crucial to further improvement. An iterative method, alternating between learning
control knowledge and using the learned information to improve the expert, is likely to produce good
results. However, FT-QCM can only obtain good value estimates for unpruned actions. Thus, it is
important to analyze the regret bounds and performance from training only on a subset of actions.

Finally, we are interested in exploring principled learning algorithms for other types of control
knowledge that can be shown to have guarantees similar to those in this paper. It can be argued
that a huge part of the success of MCTS methods is their flexibility to incorporate different forms
of knowledge, which are typically engineered for each application. Automating these processes in
a principled way seems to be an extremely promising direction for improving planning systems.

Acknowledgments

This work was supported by NSF grants IIS-1219258 and IIS-1619433. We also thank the editor
and anonymous reviewers for their detailed feedback and insights. In particular, the original version
of this work stated a much looser version of Theorem 5. The new version is based on reviewer
feedback.

References

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine Learning Journal, 47(2-3):235–256, 2002.

32

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

J Andrew Bagnell, Sham M Kakade, Jeff G Schneider, and Andrew Y Ng. Policy search by dynamic
programming. In Advances in neural information processing systems, page None, 2003.

Radha-Krishna Balla and Alan Fern. Uct for tactical assault planning in real-time strategy games.
In International Joint Conference on Artificial Intelligence, pages 40–45, 2009.

Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72(1):81–138, 1995.

Ronald Bjarnason, Alan Fern, and Prasad Tadepalli. Lower Bounding Klondike Solitaire with
Monte-Carlo Planning. In International Conference on Automated Planning and Scheduling,
2009.

Bonet Blai and Geffner Hector. Action Selection for MDPs: Anytime AO* Versus UCT. In AAAI
Conference on Artificial Intelligence, 2012.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A sur-
vey of monte carlo tree search methods. Computational Intelligence and AI in Games, IEEE
Transactions on, 4(1):1–43, 2012.

Vadim Bulitko and Greg Lee. Learning in Real-Time Search: A Unifying Framework. Journal of
Artificial Intelligence Research, 25:119–157, 2006.

Guillaume Chaslot, Mark Winands, Jaap H van den Herik, Jos Uiterwijk, and Bruno Bouzy. Pro-
gressive strategies for monte-carlo tree search. In Joint Conference on Information Sciences,
pages 655–661, 2007.

Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas Bon-
nard. Continuous upper confidence trees. In Learning and Intelligent Optimization, pages 433–
445. 2011a.

Adrien Couëtoux, Mario Milone, Matyas Brendel, Hassen Doghmen, Michele Sebag, Olivier Tey-
taud, et al. Continuous rapid action value estimates. In The 3rd Asian Conference on Machine
Learning, volume 20, pages 19–31. JMLR, 2011b.

Debadeepta Dey, Tian Yu Liu, Martial Hebert, and J Andrew Bagnell. Contextual sequence pre-
diction with application to control library optimization. Proceedings of robotics: Science and
systems VIII, 2013.

Hilmar Finnsson. Simulation-Based General Game Playing. PhD thesis, Reykjavik University,
2012.

Hilmar Finnsson and Yngvi Björnsson. Learning Simulation Control in General Game-Playing
Agents. In AAAI Conference on Artificial Intelligence, pages 954–959, 2010.

Romaric Gaudel and Michele Sebag. Feature selection as a one-player game. In International
Conference on Machine Learning, pages 359–366, 2010.

Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In International
Conference on Machine Learning, pages 273–280, 2007.

33

PINTO AND FERN

Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modification of UCT with patterns
in Monte-Carlo Go. Technical report, INRIA, 2006.

Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michele Sebag, David Silver, Csaba Szepesvári,
and Olivier Teytaud. The grand challenge of computer go: Monte carlo tree search and extensions.
Communications of the ACM, 55(3):106–113, 2012.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time atari game play
using offline monte-carlo tree search planning. In Advances in Neural Information Processing
Systems, 2014.

Todd Hester and Peter Stone. TEXPLORE: real-time sample-efficient reinforcement learning for
robots. Machine Learning Journal, 90(3):385–429, 2013.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
ICML, volume 2, pages 267–274, 2002.

Michael Kearns, Yishay Mansour, and Andrew Y Ng. A sparse sampling algorithm for near-optimal
planning in large Markov decision processes. Machine Learning Journal, 49(2-3):193–208, 2002.

Thomas Keller and Malte Helmert. Trial-based heuristic tree search for finite horizon mdps. In
International Conference on Automated Planning and Scheduling, 2013.

Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European Confer-
ence on Machine Learning, pages 282–293. 2006.

Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
intelligence, 27(1):97–109, 1985.

John Langford. Vowpal Wabbit. URL https://github. com/JohnLangford/vowpal wabbit/wiki, 2011.

Jean Méhat and Tristan Cazenave. Combining uct and nested monte carlo search for single-player
general game playing. Computational Intelligence and AI in Games, IEEE Transactions on, 2(4):
271–277, 2010.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Jervis Pinto and Alan Fern. Learning partial policies to speedup mdp tree search. In Conference on
Uncertainty in Artificial Intelligence, 2014.

D. Pomerleau. ALVINN: an autonomous land vehicle in a neural network. In Advances in Neural
Information Processing Systems, 1989.

Alexander Reinefeld and T. Anthony Marsland. Enhanced iterative-deepening search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16(7):701–710, 1994.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In International
Conference on Artificial Intelligence and Statistics, pages 661–668, 2010.

34

LEARNING PARTIAL POLICIES TO SPEEDUP MDP TREE SEARCH

Stephane Ross and J Andrew Bagnell. Reinforcement and imitation learning via interactive no-
regret learning. arXiv preprint arXiv:1406.5979, 2014.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In International Conference on Artificial Intelli-
gence and Statistics, pages 627–635, 2011.

Stephane Ross, Jiaji Zhou, Yisong Yue, Debadeepta Dey, and Drew Bagnell. Learning policies
for contextual submodular prediction. In Proceedings of The 30th International Conference on
Machine Learning, pages 1364–1372, 2013.

Claude Sammut, Scott Hurst, Dana Kedzier, and Donald Michie. Learning to fly. In International
Workshop on Machine Learning, 1992.

David Silver and Gerald Tesauro. Monte-Carlo simulation balancing. In International Conference
on Machine Learning, pages 945–952, 2009.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Optimal Rewards versus Leaf-Evaluation
Heuristics in Planning Agents. In AAAI Conference on Artificial Intelligence, 2011.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. Cam-
bridge Univ Press, 1998.

Umar Syed and Robert E Schapire. A Reduction from Apprenticeship Learning to Classification.
In Advances in Neural Information Processing Systems, pages 2253–2261, 2010.

Joel Veness, David Silver, Alan Blair, and William W Cohen. Bootstrapping from game tree search.
In Advances in Neural Information Processing Systems, pages 1937–1945, 2009.

Joel Veness, Kee Siong Ng, Marcus Hutter, William Uther, and David Silver. A Monte-Carlo AIXI
approximation. Journal of Artificial Intelligence Research, 40(1):95–142, 2011.

Thomas J Walsh, Sergiu Goschin, and Michael L Littman. Integrating Sample-Based Planning and
Model-Based Reinforcement Learning. In AAAI Conference on Artificial Intelligence, 2010.

Yuehua Xu, Alan Fern, and Sungwook Yoon. Learning linear ranking functions for beam search
with application to planning. The Journal of Machine Learning Research, 10:1571–1610, De-
cember 2009.

Sungwook Yoon, Alan Fern, and Robert Givan. Learning control knowledge for forward search
planning. The Journal of Machine Learning Research, 9:683–718, 2008.

35

	Introduction
	Problem Setup
	Online Tree Search
	Search with a Partial Policy
	Learning Problem

	Learning Partial Policies
	OPI : Optimal Partial Imitation
	FT-OPI : Forward Training OPI
	FT-QCM: Forward Training Q-Cost Minimization

	Implementation Details
	UCT
	Partial Policy Representation and Learning
	Generating Training States

	Related Work
	Experiments
	Experimental Domains
	Partial Policy Learning Setup
	Comparing OPI, FT-OPI, and FT-QCM
	Relating search and regret
	Selecting d
	Comparing FT-QCM with baselines
	The cost of knowledge

	Summary and Future Work

