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Abstract

We present tools for the analysis of Follow-The-Regularized-Leader (FTRL), Dual
Averaging, and Mirror Descent algorithms when the regularizer (equivalently, prox-
function or learning rate schedule) is chosen adaptively based on the data. Adap-
tivity can be used to prove regret bounds that hold on every round, and also allows
for data-dependent regret bounds as in AdaGrad-style algorithms (e.g., Online
Gradient Descent with adaptive per-coordinate learning rates). We present results
from a large number of prior works in a unified manner, using a modular and tight
analysis that isolates the key arguments in easily re-usable lemmas. This approach
strengthens previously known FTRL analysis techniques to produce bounds as
tight as those achieved by potential functions or primal-dual analysis. Further, we
prove a general and exact equivalence between adaptive Mirror Descent algorithms
and a corresponding FTRL update, which allows us to analyze Mirror Descent
algorithms in the same framework. The key to bridging the gap between Dual Av-
eraging and Mirror Descent algorithms lies in an analysis of the FTRL-Proximal
algorithm family. Our regret bounds are proved in the most general form, holding
for arbitrary norms and non-smooth regularizers with time-varying weight.

Keywords: online learning, online convex optimization, regret analysis, adaptive
algorithms, follow-the-regularized-leader, mirror descent, dual averaging

1. Introduction

We consider the problem of online convex optimization over a series of rounds t ∈
{1, 2, . . . }. On each round the algorithm selects a point (e.g., a predictor or an
action) xt ∈ Rn, and then an adversary selects a convex loss function ft, and the
algorithm suffers loss ft(xt). The goal is to minimize

RegretT (x∗, ft) ≡
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗), (1)
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Algorithm 1 General Template for Adaptive FTRL

Parameters: Scheme for selecting convex rt s.t. ∀x, rt(x) ≥ 0 for t = 0, 1, 2, . . .
x1 ← arg minx∈Rn r0(x)
for t = 1, 2, . . . do

Observe convex loss function ft : Rn → R ∪ {∞}
Incur loss ft(xt)
Choose incremental convex regularizer rt, possibly based on f1, . . . ft
Update

xt+1 ← arg min
x∈Rn

t∑
s=1

fs(x) +
t∑

s=0

rs(x)

end for

the difference between the algorithm’s loss and the loss of a fixed point x∗, potentially
chosen with full knowledge of the sequence of ft up through round T . When the
functions ft and round T are clear from the context we write Regret(x∗). The
“adversary” choosing the ft need not be malicious, for example the ft might be
drawn from a distribution. The name “online convex optimization” was introduced
by Zinkevich (2003), though the setting was introduced earlier by Gordon (1999).
When a particular set of comparators X is fixed in advance, one is often interested in
Regret(X ) ≡ supx∗∈X Regret(x∗); since X is often a norm ball, frequently we bound
Regret(x∗) by a function of ‖x∗‖.

Online algorithms with good regret bounds (that is, bounds that are sublinear in
T ) can be used for a wide variety of prediction and learning tasks (Cesa-Bianchi and
Lugosi, 2006; Shalev-Shwartz, 2012). The case of online logistic regression, where
one predicts the probability of a binary outcome, is typical. Here, on each round a
feature vector at ∈ Rn arrives, and we make a prediction pt = σ(at ·xt) ∈ (0, 1) using
the current model coefficients xt ∈ Rn, where σ(z) = 1/(1 + e−z). The adversary
then reveals the true outcome yt ∈ {0, 1}, and we measure loss with the negative
log-likelihood, `(pt, yt) = −yt log pt − (1 − yt) log(1 − pt). We encode this problem
as online convex optimization by taking ft(x) = `(σ(at · x), yt); these ft are in fact
convex. Linear Support Vector Machines (SVMs), linear regression, and many other
learning problems can be encoded in a similar manner; Shalev-Shwartz (2012) and
many of the other works cited here contain more details and examples.

We consider the family of Follow-The-Regularized-Leader (FTRL, or FoReL)
algorithms as shown in Algorithm 1 (Shalev-Shwartz, 2007; Shalev-Shwartz and
Singer, 2007; Rakhlin, 2008; McMahan and Streeter, 2010; McMahan, 2011). Shalev-
Shwartz (2012) and Hazan (2015) provide a comprehensive survey of analysis tech-
niques for non-adaptive members of this algorithm family, where the regularizer is
fixed for all rounds and chosen with knowledge of the horizon T . In this survey,
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we allow the regularizer to change adaptively. Given a sequence of incremental
regularization functions r0, r1, r2, . . . , we consider the algorithm that selects

x1 ∈ arg min
x∈Rn

r0(x)

xt+1 = arg min
x∈Rn

f1:t(x) + r0:t(x) for t = 1, 2, . . . , (2)

where we use the compressed summation notation f1:t(x) =
∑t

s=1 fs(x) (we also use
this notation for sums of scalars or vectors). The argmin in Eq. (2) is over all Rn,
but it is often necessary to constrain the selected points xt to a convex feasible set
X . This can be accomplished in our framework by including the indicator function
IX as a term in r0 (IX is a convex function defined by IX (x) = 0 for x ∈ X and
∞ otherwise); details are given in Section 2.4. The algorithms we consider are
adaptive in that each rt can be chosen based on f1, f2, . . . , ft. For convenience, we
define functions ht by

h0(x) = r0(x)

ht(x) = ft(x) + rt(x) for t = 1, 2, . . .

so xt+1 = arg minx h0:t(x). Generally we will assume the ft are convex, and the rt
are chosen so that r0:t (or h0:t) is strongly convex for all t, e.g., r0:t(x) = 1

2ηt
‖x‖22

(Sections 2.3 and 4.2 review important definitions and results from convex analysis).
FTRL algorithms generalize the Follow-The-Leader (FTL) approach (Hannan,

1957; Kalai and Vempala, 2005), which selects xt+1 = arg minx f1:t(x). FTL can
provide sublinear regret in the case of strongly convex functions (as we will show),
but for general convex functions additional regularization is needed.

Adaptive regularization can be used to construct practical algorithms that pro-
vide regret bounds that hold on all rounds T , rather than only on a single round T
which is chosen in advance. The framework is also particularly suitable for analyz-
ing AdaGrad-style algorithms that adapt their regularization or norms based on the
observed data, for example those of McMahan and Streeter (2010) and Duchi et al.
(2010a, 2011). This approach leads to regret bounds that depend on the actual ob-
served sequence of functions ft (usually via Oft(xt)), rather than purely worst-case
bounds. These tighter bounds translate to much better performance in practice, es-
pecially for high-dimensional but sparse problem (e.g., bag-of-words feature vectors).
Examples of such algorithms are analyzed in Sections 3.4 and 3.5.

We also study Mirror Descent algorithms, for example updates like

xt+1 = arg min
x∈X

Oft(xt) · x+ λ‖x‖1 +
1

2ηt
‖x− xt‖22

where ηt is an adaptive non-increasing learning rate. This update generalizes Online
Gradient Descent with a non-smooth regularization term; Mirror Descent also en-
compasses the use of an arbitrary Bregman divergence in place of the ‖ · ‖22 penalty
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above. We will discuss this family of algorithms at length in Section 6. In fact,
Mirror Descent algorithms can be expressed as particular members of the FTRL
family, though generally not the most natural ones. In particular, since the state
maintained by Mirror Descent is essentially only the current feasible point xt, we will
see that Mirror Descent algorithms are forced to linearize penalties like λ‖x‖1 from
previous rounds, while the more natural FTRL algorithms can keep these terms in
closed form, leading to practical advantages such as producing sparser models when
L1 regularization is used.

While we focus on online algorithms and regret bounds, the development of many
of the algorithms considered rests heavily on work in general convex optimization and
stochastic optimization. As a few starting points, we refer the reader to Nemirovsky
and Yudin (1983) and Nesterov (2004, 2007). Going the other way, the algorithms
presented here can be applied to batch optimization problems of the form

arg min
x∈Rn

F (x) where F (x) ≡
T∑
t=1

ft(x) (3)

by running the online algorithm for one or more passes over the set of ft and return-
ing a suitable point (usually the last xt or an average of past xt). Using online-to-
batch conversion techniques (e.g., Cesa-Bianchi et al. (2004), Shalev-Shwartz (2012,
Chapter 5)), one can convert the regret bounds given here to convergence bounds
for the batch problem. Many state-of-the-art algorithms for batch optimization over
very large datasets can be analyzed in this fashion.

Outline In Section 2, we elaborate on the family of algorithms encompassed by
the update of Eq. (2). We then state two regret bounds, Theorems 1 and 2, which
are flexible enough to cover many known results for general and strongly convex
functions; in Section 3 we use them to derive concrete bounds for many standard
online algorithms.

In Section 4 we break the analysis of adaptive FTRL algorithms into three main
components, which helps to modularize the arguments. In Section 4.1 we prove
the Strong FTRL Lemma which lets us express the regret through round T as
a regularization term on the comparator x∗, namely r0:T (x∗), plus a sum of per-
round stability terms. This reduces the problem of bounding regret to that of
bounding these per-round terms. In Section 4.2 we review some standard results
from convex analysis, and prove lemmas that make bounding the per-round terms
relatively straightforward. The general regret bounds are then proved in Section 4.3
as corollaries of these results.

Section 5 considers the special case of a composite objective, where for example
ft(x) = `t(x) + Ψ(x) with `t is a smooth loss on the t’th training example and Ψ is
a possibly non-smooth regularizer (e.g., Ψ(x) = ‖x‖1). Finally, Section 6 proves the
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Algorithm 2 General Template for Adaptive Linearized FTRL

Parameters: Scheme for selecting convex rt s.t. ∀x, rt(x) ≥ 0 for t = 0, 1, 2, . . .
z ← 0 ∈ Rn //Maintains g1:t

x1 ← arg minx∈Rn z · x+ r0(x)
for t = 1, 2, . . . do

Select xt, observe loss function ft, incur loss ft(xt)
Compute a subgradient gt ∈ ∂ft(xt)
Choose incremental convex regularizer rt, possibly based on g1, . . . , gt
z ← z + gt
xt+1 ← arg minx∈Rn z · x+ r0:t(x) //Often solved in closed form

end for

equivalence of an arbitrary adaptive Mirror Descent algorithm and a certain FTRL
algorithm, and uses this to prove regret bounds for Mirror Descent.

New Contributions The principal goal of this work is to provide a useful sur-
vey of central results in the analysis of adaptive algorithms for online convex opti-
mization; whenever possible we provide precise references to earlier results that we
re-prove or strengthen. Achieving this goal in a concise fashion requires some new
results, which we summarize here.

The FTRL style of analysis is both modular and intuitive, but in previous work
resulted in regret bounds that are not the tightest possible; we remedy this by
introducing the Strong FTRL Lemma in Section 4.1. This also relates the FTRL
analysis technique to the primal-dual style of analysis.

By analyzing both FTRL-Proximal algorithms (introduced in the next section)
and Dual Averaging algorithms in a unified manner, it is much easier to contrast
the strengths and weaknesses of each approach. This highlights a technical but
important “off-by-one” difference between the two families in the adaptive setting,
as well as an important difference when the algorithm is unconstrained (any xt ∈ Rn
is feasible).

Perhaps the most significant new contribution is given in Section 6, where we
show that Mirror Descent algorithms (including adaptive algorithms for composite
objectives) are in fact particular instances of the FTRL-Proximal algorithm schema,
and can be analyzed using the general tools developed for the analysis of FTRL.

2. The FTRL Algorithm Family and General Regret Bounds

We begin by considering two important dimensions in the space of FTRL algorithms.
First, the algorithm designer has significant flexibility in deciding whether the sum of
previous loss functions is optimized exactly as f1:t(x) in Eq. (2), or if the true losses
should be replaced by appropriate lower bounds, f̄1:t(x), for computational efficiency.
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Second, we consider whether the incremental regularizers rt are all minimized at a
fixed stationary point x1, or are chosen so they are minimized at the current xt.
After discussing these options, we state general regret bounds.

2.1 Linearization and the Optimization of Lower Bounds

In practice, it may be infeasible to solve the optimization problem of Eq. (2),
or even represent it as t becomes sufficiently large. A key point is that we can
derive a wide variety of first-order algorithms by linearizing the ft, and running
the algorithm on these linear functions. Algorithm 2 gives the general scheme.
For convex ft, let xt be defined as above, and let gt ∈ ∂ft(xt) be a subgradient
(e.g., gt = Oft(xt) for differentiable ft). Convexity implies for any comparator x∗,
ft(xt) − ft(x∗) ≤ gt · (xt − x∗). A key observation of Zinkevich (2003) is that if we
let f̄t(x) = gt · x, then for any algorithm the regret against the functions f̄t upper
bounds the regret against the original ft:

Regret(x∗, ft) ≤ Regret(x∗, f̄t).

Note we can construct the functions f̄t on the fly (after observing xt and ft) and
then present them to the algorithm.

Thus, rather than solving xt+1 = arg minx f1:t(x) + r0:t(x) on each round t,
we now solve xt+1 = arg minx g1:t · x + r0:t(x). Note that g1:t ∈ Rn, and we will
generally choose the rt so that r0:t(x) can also be represented in constant space.
Thus, we have at least ensured our storage requirements stay constant even as
t → ∞. Further, we will usually be able to choose rt so the optimization with
g1:t can be solved in closed form. For example, if we take r0:t(x) = 1

2η‖x‖
2
2 then we

can solve xt+1 = arg minx g1:t ·x+r0:t(x) in closed form, yielding xt+1 = −ηg1:t (that
is, this FTRL algorithm is exactly constant learning rate Online Gradient Descent).

However, we will usually state our results in terms of general ft, since one can
always simply take ft = f̄t when appropriate. In fact, an important aspect of our
analysis is that it does not depend on linearization; our regret bounds hold for the
the general update of Eq. (2) as well as applying to linearized variants.

More generally, we can run the algorithm on any f̄t that satisfy f̄t(xt)− f̄t(x∗) ≥
ft(xt) − ft(x∗) for all x∗ and have the regret bound achieved for the f̄ also apply
to the original f . This is generally accomplished by constructing a lower bound f̄t
that is tight at xt, that is f̄t(x) ≤ ft(x) for all x and further f̄t(xt) = ft(xt). A
tight linear lower bound is always possible for convex functions, but for example if
the ft are all strongly convex, better algorithms are possible by taking f̄t to be an
appropriate quadratic lower bound.

A more in-depth introduction to the linearization of convex function can be
found in Shalev-Shwartz (2012, Sec 2.4). We also note that the idea of replacing
the loss function on each round with an appropriate lower bound (“linearization of
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convex functions”) is distinct from the modeling decision to replace a non-convex
loss function (e.g., the zero-one loss for classification) with a convex upper bound
(e.g., the hinge loss). This “convexification by surrogate loss” approach is described
in detail by (Shalev-Shwartz, 2012, Sec 2.1).

2.2 Regularization in FTRL Algorithms

The term “regularization” can have multiple meanings, and so in this section we
clarify the different roles regularization plays in the present work.

We refer to the functions r0:t as regularization functions, with rt the incremental
increase in regularization on round t (we assume rt(x) ≥ 0). This is the regular-
ization in the name Follow-The-Regularized-Leader, and these rt terms should be
viewed as part of the algorithm itself—analogous (and in some cases exactly equiv-
alent) to the learning rate schedule in an Online Gradient Descent algorithm, for
example. The adaptive choice of these regularizers is the principle topic of the
current work. We study two main classes of regularizers:

• In FTRL-Centered algorithms, each rt (and hence r0:t) is minimized at a fixed
point, x1 = arg minx r0(x). An example is Dual Averaging (which also lin-
earizes the losses), where r0:t is called the prox-function (Nesterov, 2009).

• In FTRL-Proximal algorithms, each incremental regularization function rt is
minimized by xt, and we call such rt incremental proximal regularizers.

When we make neither a proximal nor centered assumption on the rt, we refer to
general FTRL algorithms. Theorem 1 (below) allows us to analyze regularization
choices that do not fall into either of these two categories, but the Centered and
Proximal cases cover the algorithms of practical interest.

There are a number of reasons we might wish to add additional regularization
terms to the objective function in the FTRL update. In many cases this is handled
immediately by our general theory by grouping the additional regularization terms
with either the ft or the rt. However, in some cases it will be advantageous to handle
this additional regularization more explicitly. We study this situation in detail in
Section 5.

2.3 General Regret Bounds

In this section we introduce two general regret bounds that can be used to analyze
many different adaptive online algorithms. First, we introduce some additional
notation and definitions.

Notation and Definitions An extended-value convex function ψ : Rn → R∪{∞}
satisfies

ψ(θx+ (1− θ)y) ≤ θψ(x) + (1− θ)ψ(y),
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for θ ∈ (0, 1), and the domain of ψ is the convex set domψ ≡ {x : ψ(x) <∞} (e.g.,
Boyd and Vandenberghe (2004, Sec. 3.1.2)); ψ is proper if ∃x ∈ Rn s.t. ψ(x) < +∞
and ∀x ∈ Rn, ψ(x) > −∞. We refer to extended-value proper convex functions as
simply “convex functions.”

We write ∂ψ(x) for the subdifferential of ψ at x; a subgradient g ∈ ∂ψ(x) satisfies

∀y ∈ Rn, ψ(y) ≥ ψ(x) + g · (y − x).

The subdifferential ∂ψ(x) for a convex ψ is always non-empty for x ∈ int (domψ),
and typically non-empty for any x ∈ domψ for the functions ψ considered in this
work; ∂ψ(x) is empty for x 6∈ domψ (Rockafellar, 1970, Thm. 23.2).

Working with extended convex functions lets us encode constraints seamlessly
by using IX , the indicator function on a convex set X ⊆ Rn given by

IX (x) =

{
0 x ∈ X
∞ otherwise ,

(4)

since IX is itself an extended convex function. Generally we assume X is a closed
convex set. This approach makes it convenient to write arg minx as shorthand for
arg minx∈Rn .

A function ψ : Rn → R ∪ {∞} is σ-strongly convex w.r.t. a norm ‖ · ‖ if for all
x, y ∈ Rn,

∀g ∈ ∂ψ(x), ψ(y) ≥ ψ(x) + g · (y − x) + σ
2 ‖y − x‖

2. (5)

If some ψ only satisfies Eq. (5) for x, y ∈ X for a convex set X , then the function
ψ′ = ψ + IX satisfies Eq. (5) for all x, y ∈ Rn, and so is strongly convex by our
definition. Thus, we can work with ψ′ without any need to explicitly refer to X .

The convex conjugate (or Fenchel conjugate) of an arbitrary function ψ : Rn →
R ∪ {∞} is

ψ?(g) ≡ sup
x
g · x− ψ(x). (6)

For a norm ‖ · ‖, the dual norm is given by

‖x‖? ≡ sup
y:‖y‖≤1

x · y.

It follows from this definition that for any x, y ∈ Rn, x·y ≤ ‖x‖‖y‖?, a generalization
of Hölder’s inequality. We make heavy use of norms ‖ ·‖(t) that change as a function
of the round t; the dual norm of ‖ · ‖(t) is ‖ · ‖(t),?.

Our basic assumptions correspond to the framework of Algorithm 1, which we
summarize together with a few technical conditions as follows:

Setting 1 We consider the algorithm that selects points according to Eq. (2) based
on convex rt that satisfy rt(x) ≥ 0 for t ∈ {0, 1, 2, . . . }, against a sequence of convex
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loss functions ft : Rn → R ∪ {∞}. Further, letting h0:t = r0:t + f1:t we assume
domh0:t is non-empty. Recalling xt = arg minx h0:t−1(x), we further assume ∂ft(xt)
is non-empty.

The minor technical assumptions made here do not rule out any practical applica-
tions. We can now introduce the theorems which will be our main focus. The first
will typically be applied to FTRL-Centered algorithms such as Dual Averaging:

Theorem 1 General FTRL Bound Consider Setting 1, and suppose the rt are
chosen such that h0:t + ft+1 = r0:t + f1:t+1 is 1-strongly-convex w.r.t. some norm
‖ · ‖(t). Then, for any x∗ ∈ Rn and for any T > 0,

RegretT (x∗) ≤ r0:T−1(x∗) +
1

2

T∑
t=1

‖gt‖2(t−1),?.

Our second theorem handles proximal regularizers:

Theorem 2 FTRL-Proximal Bound Consider Setting 1, and further suppose the
rt are chosen such that h0:t = r0:t+f1:t is 1-strongly-convex w.r.t. some norm ‖·‖(t),
and further the rt are proximal, that is xt is a minimizer of rt. Then, choosing any
gt ∈ ∂ft(xt) on each round, for any x∗ ∈ Rn and for any T > 0,

RegretT (x∗) ≤ r0:T (x∗) +
1

2

T∑
t=1

‖gt‖2(t),?.

We state these bounds in terms of strong convexity conditions on h0:t in order to
also cover the case where the ft are themselves strongly convex. In fact, if each ft
is strongly convex, then we can choose rt(x) = 0 for all t, and Theorems 1 and 2
produce identical bounds (and algorithms).1 When it is not known a priori whether
the loss functions ft are strongly convex, the rt can be chosen adaptively to add
only as much strong convexity as needed, following Bartlett et al. (2007). On the
other hand, when the ft are not strongly convex (e.g., linear), a sufficient condition
for both theorems is choosing the rt such that r0:t is 1-strongly-convex w.r.t. ‖ · ‖(t).

It is worth emphasizing the “off-by-one” difference between Theorems 1 and 2
in this case: we can choose rt based on gt, and when using proximal regularizers,
this lets us influence the norm we use to measure gt in the final bound (namely
the ‖gt‖2(t),? term); this is not possible using Theorem 1, since we have ‖gt‖2(t−1),?.
This makes constructing AdaGrad-style adaptive learning rate algorithms for FTRL-
Proximal easier (McMahan and Streeter, 2010), whereas with FTRL-Centered algo-
rithms one must start with slightly more regularization. We will see this in more
detail in Section 3.

1. To see this, note in Theorem 1 the norm in ‖gt‖(t−1),? is determined by the strong convexity of
f1:t, and in Theorem 2 the norm in ‖gt‖(t),? is again determined by the strong convexity of f1:t.
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Theorem 1 leads immediately to a bound for Dual Averaging algorithms (Nes-
terov, 2009), including the Regularized Dual Averaging (RDA) algorithm of Xiao
(2009), and its AdaGrad variant (Duchi et al., 2011) (in fact, this statement is equiv-
alent to Duchi et al. (2011, Prop. 2) when we assume the ft are not strongly convex).
As in these cases, Theorem 1 is usually applied to FTRL-Centered algorithms where
x1 (often the origin) is a global minimizer of r0:t for each t. The theorem does not
require this; however, such a condition is usually necessary to bound r0:T−1(x∗) and
hence Regret(x∗) in terms of ‖x∗‖.

Less general versions of these theorems often assume that each r0:t is αt-strongly-
convex with respect to a fixed norm ‖ · ‖. Our results include this as a special case,
see Section 3 and Lemma 3 in particular.

Non-Adaptive Algorithms These theorems can also be used to analyze non-
adaptive algorithms. If we choose r0(x) to be a fixed non-adaptive regularizer (per-
haps chosen with knowledge of T ) that is 1-strongly convex w.r.t. ‖ · ‖, and all
rt(x) = 0 for t ≥ 1, then we have ‖x‖(t),? = ‖x‖? for all t, and so both theorems
provide the identical statement

Regret(x∗) ≤ r0(x∗) +
1

2

T∑
t=1

‖gt‖2?. (7)

This matches Shalev-Shwartz (2012, Theorem 2.11), though we improve by a con-
stant factor due to the use of the Strong FTRL Lemma.

2.4 Incorporating a Feasible Set

We have introduced the FTRL update as an unconstrained optimization over x ∈
Rn. For many learning problems, where xt is a vector of model parameters, this
may be fine, but in other applications we need to enforce constraints. These could
correspond to budget constraints, structural constraints like ‖xt‖2 ≤ R or ‖xt‖1 ≤
R1, a constraint that xt is a flow on a graph, or that xt is a probability distribution.
In all of these cases, this amounts to the constraint that xt ∈ X where X is a
suitable convex feasible set. Further, for FTRL-Proximal algorithms a constraint
like ‖xt‖2 ≤ R is generally needed in order to bound r0:T (x∗); see Section 3.3.

Such constraints can be addressed immediately in our setting by adding the
additional regularizer IX to r0, based on the equivalence

arg min
x∈Rn

f1:t(x) + r0:t(x) + IX (x) = arg min
x∈X

f1:t(x) + r0:t(x).

Further, if r0:t satisfies the conditions of Theorem 1, then so does r0:t+IX . Similarly,
for Theorem 2, adding IX to r0 will generally still produce a scheme where rt has
xt as a minimizer, and so the theorem will still apply. We apply this technique to
specific algorithms in Section 3.
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Note that while the theorems still apply, the regret bounds change in an im-
portant way, since IX (x∗) now appears in the regret bound: that is, if Theorem 1
on functions r0, r1, . . . , gives a bound Regret(x∗) ≤ r0:T−1(x∗) + 1

2

∑T
t=1 ‖gt‖2(t−1),?,

then the version constrained to select from X by adding IX to r0 has regret bound

RegretT (x∗) ≤ IX (x∗) + r0:T−1(x∗) +
1

2

T∑
t=1

‖gt‖2(t−1),?.

This bound is vacuous for x∗ 6∈ X , but identical to the unconstrained bound for
x∗ ∈ X . This makes sense: one can show that any online algorithm constrained
to select xt ∈ X cannot in general hope to have sublinear regret against some
x∗ 6∈ X . Thus, if we believe some x∗ 6∈ X could perform very well, incorporating
the constraint xt ∈ X is a significant sacrifice that should only be made if external
considerations really require it.

3. Application to Specific Algorithms and Settings

Before proving these theorems, we apply them to a variety of specific algorithms.
We will use the following lemma, which collects some facts for the sequence of
incremental regularizers rt. These claims are immediate consequences of the relevant
definitions.

Lemma 3 Consider a sequence of rt as in Setting 1. Then, since rt(x) ≥ 0, we have
r0:t(x) ≥ r0:t−1(x), and so r?0:t(x) ≤ r?0:t−1(x), where r?0:t is the convex-conjugate of
r0:t. If each rt is σt-strongly convex w.r.t. a norm ‖ · ‖ for σt ≥ 0, then, r0:t is
σ0:t-strongly convex w.r.t. ‖ · ‖, or equivalently, is 1-strongly-convex w.r.t. ‖x‖(t) =
√
σ0:t‖x‖, which has dual norm ‖x‖(t),? = 1√

σ0:t
‖x‖.

For reasons that will become clear, it is natural to define a learning rate schedule ηt
to be the inverse of the cumulative strong convexity,

ηt =
1

σ0:t
.

In fact, in many cases it will be more natural to define the learning rate schedule,
and infer the sequence of σt,

σt =
1

ηt
− 1

ηt−1
,

with σ0 = 1
η0

.

For simplicity, in this section we assume the loss functions have already been
linearized, that is, ft(x) = gt ·x, unless otherwise stated. Figure 1 summarizes most
of the FTRL algorithms analyzed in this section.

11
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3.1 Constant Learning Rate Online Gradient Descent

As a warm-up, we first consider a non-adaptive algorithm, unconstrained constant
learning rate Online Gradient Descent, which selects x1 = 0 and thereafter

xt+1 = xt − ηgt, (8)

where the parameter η > 0 is the learning rate. Iterating this update, we see xt+1 =
−ηg1:t. There is a close connection between Online Gradient Descent and FTRL,
which we will use to analyze this algorithm. If we take FTRL with r0(x) = 1

2η‖x‖
2
2

and rt(x) = 0 for t ≥ 1, we have the update

xt+1 = arg min
x

g1:t · x+
1

2η
‖x‖22, (9)

which we can solve in closed form to see xt+1 = −ηg1:t as well. Applying either
Theorem 1 or 2 (recall they are equivalent when the regularizer is fixed) gives the
bound of Eq. (7), in this case

RegretT (x∗) ≤ 1

2η
‖x∗‖22 +

1

2

T∑
t=1

η‖gt‖22, (10)

using Lemma 3 for ‖x‖(t),? =
√
η‖x‖2. Suppose we are concerned with x∗ where

‖x∗‖2 ≤ R, the gt satisfy ‖gt‖2 ≤ G, and we want to minimize regret after T ′

rounds. Then, choosing η = R
G
√
T ′

minimizes Eq. (10) when T = T ′, and we have

RegretT (x∗) ≤ RG

2

√
T ′ +

RG

2

T√
T ′
,

or Regret(x∗) ≤ RG
√
T when T = T ′. However, this bound is only O(

√
T ) when

T = O(T ′). For T � T ′, or T � T ′ the bound is no longer interesting, and in fact
the algorithm will likely perform poorly. This deficiency can be addressed via the
“doubling trick”, where we double T ′ and restart the algorithm each time T grows
larger than T ′ (c.f., Shalev-Shwartz (2012, 2.3.1)). However, adaptively choosing
the learning rate without restarting will allow us to achieve better bounds than the
doubling trick (by a constant factor) with a more practically useful algorithm. We
do this in Sections 3.2 and 3.3 below.

Constant Learning Rate Online Gradient Descent with a Feasible Set
Above we assumed ‖x∗‖2 ≤ R, but there is no a priori bound on the magnitude
of the xt selected by the algorithm. Following the approach of Section 2.4, we can
incorporate a feasible set by taking r0(x) = 1

2η‖x‖
2
2 + IX (x), so the update becomes

xt+1 = arg min
x∈Rn

g1:t · x+
1

2η
‖x‖22 + IX (x) = arg min

x∈X
g1:t · x+

1

2η
‖x‖22. (11)

12
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Following Shalev-Shwartz (2012, Sec. 2.6), this update is equivalent to the two-step
update where we first solve the unconstrained problem and then project onto the
feasible set, namely

ut+1 = arg min
x∈Rn

g1:t · x+
1

2η
‖x‖22

xt+1 = ΠX (ut+1) where ΠX (u) ≡ arg min
x∈X

‖x− u‖2.

Many FTRL algorithms on feasible sets can in this way be interpreted as lazy-
projection algorithms, where we find (or maintain) the solution to the unconstrained
problem, and then project onto the feasible set when needed.

Theorem 1 can be used to analyze the constrained algorithm of Eq. (11) in
exactly the same way we analyzed Eq. (9): adding IX does not change the strong
convexity of the ‖x‖22 terms in the regularizer, and so the only difference is in the
r0:T (x∗) term. Instead of Eq. (10), we have

∀x∗ ∈ X , RegretT (x∗) ≤ 1

2η
‖x∗‖22 +

1

2

T∑
t=1

η‖gt‖22,

where we have chosen to use the explicit ∀x∗ ∈ X rather than the equivalent choice
of including IX (x∗) on the right-hand side.

Interestingly, the update of Eq. (11) is no longer equivalent to the standard pro-
jected Online Gradient Descent update xt+1 = ΠX (xt − ηgt); this issue is discussed
in the context of more general Mirror Descent updates in Appendix C.2. We will be
able to analyze this algorithm using techniques from Section 6.

3.2 Dual Averaging

Dual Averaging is an adaptive FTRL-Centered algorithm with linearized loss func-
tions; the adaptivity allows us to prove regret bounds that are O(

√
T ) for all T .

We choose rt(x) = σt
2 ‖x‖

2
2 for constants σt ≥ 0, so r0:t is 1-strongly-convex w.r.t.

the norm ‖x‖(t) =
√
σ0:t‖x‖2, which has dual norm ‖x‖(t),? = 1√

σ0:t
‖x‖2 =

√
ηt‖x‖2,

using Lemma 3. Plugging into Theorem 1 then gives

∀T, RegretT (x∗) ≤ 1

2ηT−1
‖x∗‖22 +

1

2

T∑
t=1

ηt−1‖gt‖22.

Suppose we know ‖gt‖2 ≤ G, and we consider x∗ where ‖x∗‖2 ≤ R. Then, with the
choice ηt = R√

2G
√
t+1

, using the inequality
∑T

t=1
1√
t
≤ 2
√
T , we arrive at

∀T, RegretT (x∗) ≤
√

2

2

(
R+

‖x∗‖22
R

)
G
√
T . (12)
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When in fact ‖x∗‖ ≤ R, we have Regret ≤
√

2RG
√
T , but the bound of Eq. (12) is

valid (and meaningful) for arbitrary x∗ ∈ Rn. Observe that on a particular round
T , this bound is a factor

√
2 worse than the bound of RG

√
T shown in Section 3.1

when the learning rate is tuned for exactly round T ; this is the (small) price we pay
for a bound that holds uniformly for all T .

As in the previous example, Dual Averaging can also be restricted to select
from a feasible set X by including IX in r0. Additional non-smooth regularization
can also be applied by adding the appropriate terms to r0 (or any of the rt); for
example, we can add an L1 and L2 penalty by adding the terms λ1‖x‖1 + λ2‖x‖22.
When in addition the ft are linearized, this produces the Regularized Dual Averaging
algorithm of Xiao (2009). Note that our result of

√
2RG

√
T improves on the bound of

2RG
√
T achieved by Xiao (2009, Cor. 2(a)). We consider the case of such additional

regularization terms in more detail in Section 5.

3.3 FTRL-Proximal

Suppose X ⊆ {x | ‖x‖2 ≤ R}, and we choose r0(x) = IX (x) and for t > 1, rt(x) =
σt
2 ‖x−xt‖

2
2. It is worth emphasizing that unlike in the previous examples, for FTRL-

Proximal the inclusion of the feasible set X is essential to proving regret bounds.
With this constraint we have r0:t(x

∗) ≤ σ1:t
2 (2R)2 for any x∗ ∈ X , since each xt ∈ X .

Without forcing xt ∈ X , however, the terms ‖x∗−xt‖22 in r0:t(x
∗) cannot be usefully

bounded.
With these choices, r0:t is 1-strongly-convex w.r.t. the norm ‖x‖(t) =

√
σ1:t‖x‖2,

which has dual norm ‖x‖(t),? = 1√
σ1:t
‖x‖2. Thus, applying Theorem 2, we have

∀x∗ ∈ X , Regret(x∗) ≤ 1

2ηT
(2R)2 +

1

2

T∑
t=1

ηt‖gt‖2, (13)

where again ηt = 1
σ1:t

. Choosing ηt =
√

2R
G
√
t

and assuming ‖x∗‖ ≤ R and ‖gt‖2 ≤ G,

Regret(x∗) ≤ 2
√

2RG
√
T . (14)

Note that we are a factor of 2 worse than the corresponding bound for Dual Averag-
ing. However, this is essentially an artifact of loosely bounding ‖x∗−xt‖22 by (2R)2,
whereas for Dual Averaging we can bound ‖x∗−0‖22 with R2. In practice one would
hope xt is closer to x∗ than 0, and so it is reasonable to believe that the FTRL-
Proximal bound will actually be tighter post-hoc in many cases. Empirical evidence
also suggests FTRL-Proximal can work better in practice (McMahan, 2011).

3.4 FTRL-Proximal with Diagonal Matrix Learning Rates

We now consider an AdaGrad FTRL-Proximal algorithm which is adaptive to the
observed sequence of gradients gt, improving on the previous result. For simplicity,
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first consider a one-dimensional problem. Let r0 = IX with X = [−R,R], and fix a
learning rate schedule for FTRL-Proximal where

ηt =

√
2R√∑t
s=1 g

2
s

for use in Eq. (13). This gives

Regret(x∗) ≤ 2
√

2R

√√√√ T∑
t=1

g2
t , (15)

where we have used the following lemma, which generalizes
∑T

t=1 1/
√
t ≤ 2

√
T :

Lemma 4 For any non-negative real numbers a1, a2, . . . , an,

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai .

For a proof see Auer et al. (2002) or Streeter and McMahan (2010, Lemma 1). The
bound of Eq. (15) gives us a fully adaptive version of Eq. (14): not only do we not
need to know T in advance, we also do not need to know a bound on the norms
of the gradients G. Rather, the bound is fully adaptive and we see, for example,
that the bound only depends on rounds t where the gradient is nonzero (as one
would hope). We do, however, require that R is chosen in advance; for algorithms
that avoid this, see Streeter and McMahan (2012); Orabona (2013); McMahan and
Abernethy (2013), and McMahan and Orabona (2014).

To arrive at an AdaGrad-style algorithm for n-dimensions we need only apply
the above technique on a per-coordinate basis, namely using learning rate

ηt,i =

√
2R∞√∑t
s=1 g

2
s,i

for coordinate i, where we assume X ⊆ [−R∞, R∞]n. Streeter and McMahan (2010)
take the per-coordinate approach directly; the more general approach here allows us
to handle arbitrary feasible sets and L1 or other non-smooth regularization.

We take r0 = IX , and for t ≥ 1 define rt(x) = 1
2‖Q

1
2
t (x − xt)‖22 where Qt =

diag
(
σt,i), the diagonal matrix with entries σt,i = η−1

t,i − η
−1
t−1,i. This Qt is positive

semi-definite, and for any such Qt, we have that r0:t is 1-strongly-convex w.r.t. the
norm ‖x‖(t) = ‖(Q1:t)

1
2x‖2, which has dual norm ‖g‖(t),? = ‖(Q1:t)

− 1
2 g‖2. Then,

plugging into Theorem 2 gives

Regret(x∗) ≤ r0:T (x∗) +
1

2

T∑
t=1

‖(Q1:t)
− 1

2 gt‖2.
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which improves on McMahan and Streeter (2010, Theorem 2) by a constant factor.

Essentially, this bound amounts to summing Eq. (15) across all n dimensions;
McMahan and Streeter (2010, Cor. 9) show this bound is at least as good (and
often better) than that of Eq. (14). Full matrix learning rates can be derived using
a matrix generalization of Lemma 4, e.g., Duchi et al. (2011, Lemma 10); however,
since this requires O(n2) space and potentially O(n2) time per round, in practice
these algorithms are often less useful than the diagonal varieties.

It is perhaps not immediately clear that the diagonal FTRL-Proximal algorithm
is easy and efficient to implement. However, taking the linear approximation to
ft, one can see h1:t(x) = g1:t · x + r1:t(x) is itself just a quadratic which can be
represented using two length n vectors, one to maintain the linear terms (g1:t plus
adjustment terms) and one to maintain

∑t
s=1 g

2
s,i, from which the diagonal entries

of Q1:t can be constructed. That is, the update simplifies to

xt+1 = arg min
x∈X

(g1:t − a1:t) · x+
n∑
i=1

1

2ηt,i
x2
i where at = σtxt.

This update can be solved in closed-form on a per-coordinate basis when X =
[−R∞, R∞]n. For a general feasible set, it is equivalent to a lazy-projection algorithm
that first solves for the unconstrained solution and then projects it onto X using
norm ‖(Q1:t)

1
2 · ‖ (see McMahan and Streeter (2010, Eq. 7)). Pseudo-code which

also incorporates L1 and L2 regularization is given in McMahan et al. (2013).

3.5 AdaGrad Dual Averaging

Similar ideas can be applied to Dual Averaging (where we center each rt at x1),
but one must use some care due to the “off-by-one” difference in the bounds. For
example, for the diagonal algorithm, it is necessary to choose per-coordinate learning
rates

ηt ≈
R√

G2 +
∑t

s=1 g
2
s

,

where |gt| ≤ G. Thus, we arrive at an algorithm that is almost (but not quite) fully
adaptive in the gradients, since a modest dependence on the initial guess G of the
maximum per-coordinate gradient remains in the bound. This offset appears, for
example, as the δI terms added to the learning rate matrix Ht in Figure 1 of Duchi
et al. (2011). We will see this issue again in Section 3.7.

3.6 Strongly Convex Functions

Suppose each loss function ft is 1-strongly-convex w.r.t. a norm ‖·‖, and let rt(x) = 0
for all t (that is, we use the Follow-The-Leader (FTL) algorithm). Define ‖x‖(t) =
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Non-Adaptive FTRL Algorithms (fixed regularizer r0, with rt(x) = 0 for t ≥ 1)

Constant Learning Rate Unprojected Online Gradient Descent

xt+1 = xt − ηgt

= arg min
x

g1:t · xt +
1

2η
‖x‖22

= −ηg1:t

Follow-The-Leader where the ft are 1-strongly-convex w.r.t. ‖ · ‖
xt+1 = arg min

x
f1:t(x)

Online Gradient Descent for strongly-convex functions

xt+1 = arg min
x

g1:t · x+
1

2

t∑
s=1

‖x− xs‖2 where gt ∈ ∂ft(xt)

= xt − ηtgt where ηt =
1

t

Adaptive FTRL-Centered Algorithms (rt chosen adaptively and minimized at x1)

Unconstrained Dual Averaging (adaptive to t)

xt+1 = arg min
x

g1:t · x+
1

2ηt
‖x‖22 where ηt =

R√
2G
√
t+ 1

= −ηtg1:t

FTRL with the entropic regularizer over the probability simplex ∆ (adaptive to gt)

xt+1 = arg min
x∈∆

g1:t · x+
1

2ηt

n∑
i=1

xi log xi where ηt =

√
log n√

G2
∞ +

∑t
s=1 ‖gs‖2∞

, or

xt+1,i =
exp(−ηtg1:t,i)∑n
i=1 exp(−ηtg1:t,i)

in closed form

Adaptive FTRL-Proximal Algorithms (rt chosen adaptively and minimized at xt)

FTRL-Proximal (adaptive to t) with σs = η−1
s − η−1

s−1

xt+1 = arg min
x∈X

g1:t · x+

t∑
s=1

σs
2
‖x− xs‖22 where ηt =

√
2R

G
√
t

AdaGrad FTRL-Proximal (adaptive to gt) with σs,i = η−1
s,i − η

−1
s−1,i.

xt+1 = arg min
x∈X

g1:t · x+

t∑
s=1

1

2

∥∥∥diag
(
σ

1
2
s,i

)
(x− xs)

∥∥∥2

2
where ηt,i =

√
2R√∑t
s=1 g

2
s,i

Figure 1: Example updates for algorithms in different branches of the FTRL family.
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√
t‖x‖, and observe h0:t(x) is 1-strongly-convex w.r.t. ‖ · ‖(t) (by Lemma 3). Then,

applying either Theorem 1 or 2 (recalling they coincide when all rt(x) = 0),

Regret(x∗) ≤ 1

2

T∑
t=1

‖gt‖2(t),? =
1

2

T∑
t=1

1

t
‖gt‖2 ≤

G2

2
(1 + log T ),

where we have used the inequality
∑T

t=1 1/t ≤ 1 + log T and assumed ‖gt‖ ≤ G.
This recovers, e.g., Kakade and Shalev-Shwartz (2008, Cor. 1) for the the exact
FTL algorithm. This algorithm requires optimizing over f1:t exactly, which may be
computationally prohibitive.

For a 1-strongly-convex ft with gt ∈ ∂ft(xt) we have by definition

ft(x) ≥ ft(xt) + gt · (x− xt) +
1

2
‖x− xt‖2︸ ︷︷ ︸

=f̄t

.

Thus, we can define a f̄t equal to the right-hand-side of the above inequality, so
f̄t(x) ≤ ft(x) and f̄t(xt) = ft(xt). The f̄t are also 1-strongly-convex w.r.t. ‖·‖, and so
running FTL on these functions produces an identical regret bound. Theorem 11 will
show that the update xt+1 = arg minx f̄1:t(x) is equivalent to the Online Gradient
Descent update

xt+1 = xt −
1

t
gt,

showing this update is essentially the Online Gradient Descent algorithm for strongly
convex functions given by Hazan et al. (2007).2

3.7 Adaptive Dual Averaging with the Entropic Regularizer

We consider problems where the algorithm selects a probability distribution (e.g.,
in order to sample an action from a discrete set of n choices), that is xt ∈ ∆n with

∆n =
{
x
∣∣ ∑n

i=1
xi = 1 and xi ≥ 0

}
.

We assume gradients are bounded so that ‖gt‖∞ ≤ G∞, which is natural for exam-
ple if each action has a cost in the range [−G∞, G∞], so gt · x gives the expected
cost of choosing an action from the distribution x. This is the classic problem of
prediction from expert advice (Vovk, 1990; Littlestone and Warmuth, 1994; Freund
and Schapire, 1995; Cesa-Bianchi and Lugosi, 2006).

2. Again, the constraint to select from a fixed feasible set X can be added easily in either case; how-
ever, the natural way to add the constraint to the FTRL expression produces a “lazy-projection”
algorithm, whereas adding the constraint to the Online Gradient Descent update produces a
“greedy-projection” algorithm. This issue is discussed in some depth in Appendix C.2.
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The previously introduced algorithms can be applied by enforcing the constraint
x ∈ ∆n by adding I∆n to r0, but to instantiate their bounds we can only bound
‖gt‖2 by

√
nG∞ in this case, leading to bounds like O(G∞

√
nT ). By using a more

appropriate regularizer, we can reduce the dependence on the dimension from
√
n

to
√

log n. In particular, we use the entropic regularizer,

H(x) = I∆(x) + log n+

n∑
i=1

xi log xi,

from which we define the following adaptive regularization schedule:

r0:t(x) =
1

ηt
H(x) where ηt =

√
log n√

G2
∞ +

∑t
s=1 ‖gs‖2∞

for t ≥ 0. Note that as in AdaGrad Dual Averaging, we make the learning rate
schedule ηt a function of the observed gt. The function H (and hence each r0:t) is
minimized by the uniform distribution x1 = (1/n, . . . , 1/n) where H(x) = 0, and so
these regularizers are centered at x1. Note also that h is maximized at the corners
of ∆n (e.g., x = (1, 0, . . . , 0)) where it has value log n.

The entropic regularizer H is 1-strongly-convex with respect to the L1 norm over
the probability simplex X (e.g., Shalev-Shwartz (2012, Ex 2.5)), and it follows that
r0:t is 1-strongly convex with respect to the norm ‖x‖(t) = 1√

ηt
‖x‖1, and ‖g‖2(t),? =

ηt‖g‖2∞. Then, applying Theorem 1, we have

Regret(x∗) ≤ r0:T−1(x∗) +
1

2

T∑
t=1

‖gt‖2(t−1),?

≤ log n

ηT−1
+

1

2

T∑
t=1

ηt−1‖gt‖2∞

≤ log n

ηT−1
+

√
log n

2

T∑
t=1

‖gt‖2∞√∑t
s=1 ‖gs‖2∞

since ∀t, ‖gt‖∞ ≤ G∞

≤ 2

√√√√(G2
∞ +

T−1∑
t=1

‖gt‖2∞

)
log n Lemma 4 and ‖gT ‖∞ ≤ G∞

≤ 2G∞
√
T log n.

The last line gives an adaptive (∀T ) version of Shalev-Shwartz (2012, Cor. 2.14 and
Cor 2.16), but the version of the bound in terms of ‖gt‖∞ may be much tighter if
there are many rounds where the maximum magnitude cost is much less than G∞.
For similar adaptive algorithms, see Stoltz (2005, Thm 2.3) and Stoltz (2011, Thm
1.4, Eq. (1.22)).
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4. A General Analysis Technique

In this section, we prove Theorems 1 and 2; the analysis techniques developed will
also be used in subsequent sections to analyze composite objectives and Mirror
Descent algorithms.

4.1 Inductive Lemmas

In this section we prove the following lemma that lets us analyze arbitrary FTRL-
style algorithms:

Lemma 5 (Strong FTRL Lemma) Let ft be a sequence of arbitrary (possibly
non-convex) loss functions, and let rt be arbitrary non-negative regularization func-
tions, such that xt+1 = arg minx h0:t(x) is well defined, where h0:t(x) ≡ f1:t(x) +
r0:t(x). Then, the algorithm that selects these xt achieves

Regret(x∗) ≤ r0:T (x∗) +
T∑
t=1

h0:t(xt)− h0:t(xt+1)− rt(xt). (16)

This lemma can be viewed as a stronger form of the more well-known standard
FTRL Lemma (see Kalai and Vempala (2005); Hazan (2008), Hazan (2010, Lemma
1), McMahan and Streeter (2010, Lemma 3), and Shalev-Shwartz (2012, Lemma
2.3)). The strong version has three main advantages over the standard version: 1) it
is essentially tight, which improves the final bounds by a constant factor, 2) it can be
used to analyze adaptive FTRL-Centered algorithms in addition to FTRL-Proximal,
and 3) it relates directly to the primal-dual style of analysis. For completeness, in
Appendix A we present the standard version of the lemma, along with the proof of
a bound analogous to Theorem 2 (but weaker by a constant factor).

The Strong FTRL Lemma bounds regret by the sum of two factors:

• Stability The terms in the sum over t measure how much better xt+1 is for
the cumulative objective function h0:t than the point actually selected, xt:
namely h0:t(xt)− h0:t(xt+1). These per-round terms can be seen as measuring
the stability of the algorithm, an online analog to the role of stability in the
stochastic setting (Bousquet and Elisseeff, 2002; Rakhlin et al., 2005; Shalev-
Shwartz et al., 2010).

• Regularization The term r0:T (x∗) quantifies how much regularization we
have added, measured at the comparator point x∗. This captures the intuitive
fact that if we could center our regularization at x∗ it should not increase
regret.

Adding strongly convex regularizers will increase stability (and hence decrease the
cost of the stability terms), at the expense of paying a larger regularization penalty
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r0:T (x∗). At the heart of the adaptive algorithms we study is the ability to dynam-
ically balance these two competing goals.

The following corollary relates the above statement to the primal-dual style of
analysis:

Corollary 6 Consider the same conditions as Lemma 5, and further suppose the
loss functions are linear, ft(x) = gt · xt. Then,

h0:t(xt)− h0:t(xt+1)− rt(xt) = r?0:t(−g1:t)− r?0:t−1(−g1:t−1) + gt · xt, (17)

which implies

Regret(x∗) ≤ r0:T (x∗) +
T∑
t=1

r?0:t(−g1:t)− r?0:t−1(−g1:t−1) + gt · xt.

We make a few remarks before proving these results at the end of this section.
Corollary 6 can easily be proved directly using the Fenchel-Young inequality. Our
statement directly matches the first claim of Orabona (2013, Lemma 1), and in
the non-adaptive case re-arrangement shows equivalence to Shalev-Shwartz (2007,
Lemma 1) and Shalev-Shwartz (2012, Lemma 2.20); see also Kakade et al. (2012,
Corollary 4). McMahan and Orabona (2014, Thm. 1) give a closely related duality
result for regret and reward, and discuss several interpretations for this result, in-
cluding the potential function view, the connection to Bregman divergences, and an
interpretation of r? as a benchmark target for reward.

Note, however, that Lemma 5 is strictly stronger than Corollary 6: it applies
to non-convex ft and rt. Further, even for convex ft, it can be more useful: for
example, we can directly analyze strongly convex ft with all rt(x) = 0 using the
first statement. Lemma 5 is also arguably simpler, in that it does not require the
introduction of convexity or the Fenchel conjugate. We now prove the Strong FTRL
Lemma:

Proof of Lemma 5 First, we bound a quantity that is essentially our regret if we
had used the FTL algorithm against the functions h1, . . . hT (for convenience, we

21



McMahan

include a −h0(x∗) term as well):

T∑
t=1

ht(xt)− h0:T (x∗)

=
T∑
t=1

(h0:t(xt)− h0:t−1(xt))− h0:T (x∗)

≤
T∑
t=1

(h0:t(xt)− h0:t−1(xt))− h0:T (xT+1) Since xT+1 minimizes h0:T

≤
T∑
t=1

(h0:t(xt)− h0:t(xt+1)),

where the last line follows by simply re-indexing the −h0:t terms and dropping the
the non-positive term −h0(x1) = −r0(x1) ≤ 0. Expanding the definition of h on the
left-hand-side of the above inequality gives

T∑
t=1

(ft(xt) + rt(xt))− f1:T (x∗)− r0:T (x∗) ≤
T∑
t=1

(h0:t(xt)− h0:t(xt+1)).

Re-arranging the inequality proves the lemma.

We remark it is possible to make Lemma 5 an equality if we include the term
h0:T (xT+1) − h0:T (x∗) on the RHS, since we can assume r0(x1) = 0 without loss of
generality. In this case, we do not need the assumption that xt+1 = arg minx h0:t(x),
and so the lemma applies to an arbitrary sequence of points x1, . . . , xT . On the
other hand, if one is actually interested in the performance of the Follow-The-Leader
(FTL) algorithm against the ht (e.g., if all the rt are uniformly zero), then running
the FTL algorithm and choosing x∗ = xT+1 is particularly natural.
Proof of Corollary 6 Using the definition of the Fenchel conjugate and of xt+1,

r?0:t(−g1:t) = max
x
−g1:t · x− r0:t(x) = −

(
min
x

g1:t · x+ r0:t(x)
)

= −h0:t(xt+1). (18)

Now, observe that

h0:t(xt)− rt(xt) = g1:t · xt + r0:t(xt)− rt(xt)
= g1:t−1 · xt + r0:t−1(xt) + gt · xt
= h0:t−1(xt) + gt · xt
= −r?0:t−1(−g1:t−1) + gt · xt,

where the last line uses Eq. (18) with t→ t−1. Combining this with Eq. (18) again
(−h0:t(xt+1) = r?0:t(−g1:t)) proves Eq. (17).
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4.2 Tools from Convex Analysis

Here we highlight a few key tools from convex analysis that will be used to bound
the per-round stability terms that appear in the Strong FTRL Lemma. For more
background on convex analysis, see Rockafellar (1970) and Shalev-Shwartz (2007,
2012). The next result generalizes arguments found in earlier proofs for FTRL
algorithms:

Lemma 7 Let φ1 : Rn → R∪{∞} be a convex function such that x1 = arg minx φ1(x)
exists. Let ψ be a convex function such that φ2(x) = φ1(x) +ψ(x) is strongly convex
w.r.t. norm ‖ · ‖. Let x2 = arg minx φ2(x). Then, for any b ∈ ∂ψ(x1), we have

‖x1 − x2‖ ≤ ‖b‖?, (19)

and for any x′,

φ2(x1)− φ2(x′) ≤ 1

2
‖b‖2?.

We defer the proofs of the results in this section to Appendix B. When φ1 and ψ are
quadratics (with ψ possibly linear) and the norm is the corresponding L2 norm, both
statements in the above lemma hold with equality. For the analysis of composite
updates (Section 5), it will be useful to split the change ψ in the objective function
φ into two components:

Corollary 8 Let φ1 : Rn → R∪{∞} be a convex function such that x1 = arg minx φ1(x)
exists. Let ψ and Ψ be convex functions such that φ2(x) = φ1(x) + ψ(x) + Ψ(x) is
strongly convex w.r.t. norm ‖·‖. Let x2 = arg minx φ2(x). Then, for any b ∈ ∂ψ(x1)
and any x′,

φ2(x1)− φ2(x′) ≤ 1

2
‖b‖2? + Ψ(x1)−Ψ(x2).

The concept of strong smoothness plays a key role in the proof of the above
lemma, and can also be used directly in the application of Corollary 6. A function
ψ is σ-strongly-smooth with respect to a norm ‖ · ‖ if it is differentiable and for all
x, y we have

ψ(y) ≤ ψ(x) + Oψ(x) · (y − x) + σ
2 ‖y − x‖

2. (20)

There is a fundamental duality between strongly convex and strongly smooth func-
tions:

Lemma 9 Let ψ be closed and convex. Then ψ is σ-strongly convex with respect to
the norm ‖ · ‖ if and only if ψ? is 1

σ -strongly smooth with respect to the dual norm
‖ · ‖?.

For the strong convexity implies strongly smooth direction see Shalev-Shwartz (2007,
Lemma 15), and for the other direction see Kakade et al. (2012, Theorem 3).
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4.3 Regret Bound Proofs

In this section, we prove Theorems 1 and 2 using Lemma 5. Stating these two
analyses in a common framework makes clear exactly where the “off-by-one” issue
arises for FTRL-Centered, and how assuming proximal rt resolves this issue. The
key tool is Lemma 7, though for comparison we also provide a proof of Theorem 1
for linearized functions from Corollary 6 directly using strong smoothness.

General FTRL including FTRL-Centered (Proof of Theorem 1) In order
to apply Lemma 5, we work to bound the stability terms in the sum in Eq. (16). Fix
a particular round t. For Lemma 7 take φ1(x) = h0:t−1(x) and φ2(x) = h0:t−1(x) +
ft(x), so xt = arg minx φ1(x), and by assumption φ2 is 1-strongly-convex w.r.t.
‖ · ‖(t−1). Then, applying Lemma 7 to φ2 (with x′ = xt+1), we have φ2(xt) −
φ2(xt+1) ≤ 1

2‖gt‖
2
(t−1),? for gt ∈ ∂ft(xt), and so

h0:t(xt)− h0:t(xt+1)− rt(xt) = φ2(xt) + rt(xt)− φ2(xt+1)− rt(xt+1)− rt(xt)

≤ 1

2
‖gt‖2(t−1),?

where we have used the assumption that rt(x) ≥ 0 to drop the −rt(xt+1) term. We
can now plug this bound into Lemma 5. However, we need to make one additional
observation: the choice of rT only impacts the bound by increasing r0:T (x∗). Fur-
ther, rT does not influence any of the points x1, . . . , xT selected by the algorithm.
Thus, for analysis purposes, we can take rT (x) = 0 without loss of generality, and
hence replace r0:T (x∗) with r0:T−1(x∗) in the final bound.

FTRL-Proximal (Proof of Theorem 2) The key is again to bound the stability
terms in the sum in Eq. (16). Fix a particular round t, and take φ1(x) = f1:t−1(x) +
r0:t(x) = h0:t(x)− ft(x). Since the rt are proximal (so xt is a global minimizer of rt)
we have xt = arg minx φ1(x), and xt+1 = arg minx φ1(x) + ft(x). Thus,

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤ h0:t(xt)− h0:t(xt+1) Since rt(x) ≥ 0

= φ1(xt) + ft(xt)− φ1(xt+1)− ft(xt+1)

≤ 1

2
‖gt‖2(t),?, (21)

where the last line follows by applying Lemma 7 to φ1 and φ2(x) = φ1(x) + ft(x) =
h0:t(x). Plugging into Lemma 5 completes the proof.

Primal-dual Analysis of General FTRL on Linearized Functions We give
an alternative proof of Theorem 1 for linear functions, ft(x) = gt ·x, using Eq. (17).
We remark that in this case xt = Or?1:t−1(−g1:t−1) (see Lemma 15 in Appendix B).
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By Lemma 9, r?1:t−1 is 1-strongly-smooth with respect to ‖ · ‖(t−1),?, and so

r?1:t−1(−g1:t) ≤ r?1:t−1(−g1:t−1)− xt · gt +
1

2
‖gt‖2(t−1),?, (22)

and we can bound the per-round terms in Eq. (17) by

r?1:t(−g1:t)− r?1:t−1(−g1:t−1) + xt · gt ≤ r?1:t(−g1:t)− r?1:t−1(−g1:t) +
1

2
‖gt‖2(t−1),?

≤ 1

2
‖gt‖2(t−1),?,

where we use Eq. (22) to bound −r?1:t−1(−g1:t−1) + xt · gt, and then used the fact
that r?1:t−1(−g1:t) ≥ r?1:t(−g1:t) from Lemma 3.

5. Additional Regularization Terms and Composite Objectives

In this section, we consider generalized FTRL algorithms where we introduce an
additional regularization term αtΨ(x) on each round, where Ψ is a convex function
taking on only non-negative values, and the weights αt ≥ 0 for t ≥ 1 are non-
increasing in t. We further assume Ψ and r0 are both minimized at x1, and w.l.o.g.
Ψ(x1) = 0 (as usual, additive constant terms do not impact regret). We generalize
our definition of ht to h0(x) = r0(x) and

ht(x) = gt · x+ αtΨ(x) + rt(x), (23)

so the FTRL update is

xt+1 = arg min
x

h0:t(x) = arg min
x

g1:t · x+ α1:tΨ(x) + r0:t(x). (24)

In applications, generally the gt·xt terms come from the linearization of a loss `t, that
is gt = ∂`t(xt). Here `t is for example a loss function measuring the prediction error
on the tth training example for a model parameterized by xt. (It is straightforward
to replace gt · x with `t(x) in this section, but for simplicity we assume linearization
has been applied).

The Ψ terms often encode a non-smooth regularizer, and might be added for
a variety of reasons. For example, the actual convex optimization problem we are
solving may itself contain regularization terms. This is perhaps most clear in the
case of applying an online algorithm to a batch problem as in Eq. (3). For example:

• An L2 penalty Ψ(x) = ‖x‖22 might be added in order to promote generalization
in a statistical setting, as in regularized empirical risk minimization.
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• An L1 penalty Ψ(x) = ‖x‖1 (as in the LASSO method) might be added to
encourage sparse solutions and improve generalization in the high-dimensional
setting (n� T ).

• An indicator function might be added by taking Ψ(x) = IX (x) to force x ∈ X
where X is a convex set of feasible solutions.

As discussed in Section 2.4, the case of Ψ = IX can be handled by our existing
results. However, for other choices of Ψ it is generally preferable to only apply
the linearization to the part of the objective where it is necessary computationally;
in the L1 case, given loss functions `t(x) + λ1‖x‖1, we might partially linearize
by taking f̄t(x) = gt · x + λ1‖x‖1, where gt ∈ ∂`t(xt). Recall that the primary
motivation for linearization was to reduce the computation and storage requirements
of the algorithm. Storing and optimizing over `1:t might be prohibitive; however, for
common choices of Ψ and rt, the optimization of Eq. (24) can be represented and
solved efficiently (often in closed form). Thus, it is advantageous to consider such a
composite representation.

Further, even in the case of a feasible set Ψ = IX , a careful consideration of if
and when Ψ is linearized is critical to understanding the connection between Mir-
ror Descent and FTRL. We will see that Mirror Descent always linearizes the past
penalties α1:t−1Ψ, while with FTRL it is possible to avoid this additional lineariza-
tion as in Eq. (24)—to make this distinction more clear, we will refer to the direct
application of Eq. (24) as the Native FTRL algorithm. For Ψ = IX this gives rise
to the distinction between “lazy-projection” and “greedy-projection” algorithms, as
discussed in Appendix C.2. And for Ψ(x) = ‖x‖1, this distinction makes Native
FTRL algorithms preferable to composite-objective Mirror Descent for generating
sparse models using L1 regularization (see Section 6.2).

There are two types of regret bounds we may wish to prove in this setting,
depending on whether we group the Ψ terms with the objective gt, or with the
regularizer rt. We discuss these below.

In the objective We may view the αtΨ(x) terms as part of the objective, in that
we desire a bound on regret against the functions fΨ

t (x) ≡ gt · x+ αtΨ(x), that is

Regret(x∗, fΨ) ≡
T∑
t=1

fΨ
t (xt)− fΨ

t (x∗).

This setting is studied by Xiao (2009) and Duchi et al. (2010b, 2011), though in
the less general setting where all αt = 1. We can directly apply Theorem 1 or
Theorem 2 to the fΨ in this case, but this gives us bounds that depend on terms

like ‖gt + g
(Ψ)
t ‖2(t),? where g

(Ψ)
t ∈ ∂(αtΨ)(xt); this is fine for Ψ = IX since we can

then always take g
(Ψ)
t = 0 since xt ∈ X , but for general Ψ this bound may be harder
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to interpret. Further, adding a fixed known penalty like Ψ should intuitively make
the problem no harder, and we would like to demonstrate this in our bounds.

In the regularizer We may wish to measure loss only against the functions
ft(x) = gt · x, that is,

Regret(x∗, gt) ≡
T∑
t=1

gt · xt − gt · x∗,

even though we include the terms αtΨ in the update of Eq. (24). This approach is
natural when we are only concerned with regret on the learning problem, ft(x) =
`t(x), but wish to add (for example) additional L1 regularization in order to produce
sparse models, as in McMahan et al. (2013).

In this case we can apply Theorem 1 to ft(x)← gt ·x and rt(x)← rt(x)+αtΨ(x),
noting that if the original r0:t is strongly convex w.r.t. ‖ · ‖(t), then r0:t +α1:tΨ is as
well, since Ψ is convex. However, if rt is proximal, rt + αtΨ generally will not be,
and so a modified result is needed in place of Theorem 2. The following theorem
provides this as well as a bound on Regret(x∗, fΨ).

Theorem 10 FTRL-Proximal Bounds for Composite Objectives Let Ψ be a
non-negative convex function minimized at x1 with Ψ(x1) = 0. Let αt ≥ 0 be a non-
increasing sequence of constants. Consider Setting 1, and define ht as in Eq. (23).
Suppose the rt are chosen such that h0:t is 1-strongly-convex w.r.t. some norm ‖·‖(t),
and further the rt are proximal, that is xt is a global minimizer of rt.

When we consider regret against fΨ
t (x) = gt · x+ αtΨ(x), we have

Regret(x∗, fΨ) ≤ r0:T (x∗) +
1

2

T∑
t=1

‖gt‖2(t),?. (25)

When we consider regret against only the functions ft(x) = gt · x, we have

Regret(x∗, gt) ≤ r0:T (x∗) + α1:TΨ(x∗) +
1

2

T∑
t=1

‖gt‖2(t),?. (26)

Proof The proof closely follows the proof of Theorem 2 in Section 4.3, with the
key difference that we use Corollary 8 in place of Lemma 7. We will use Lemma 5
to prove both claims. First, observe that the stability terms h0:t(xt) − h0:t(xt+1)
depend only on h, and so we can bound them in the same way in both cases.

Take φ1(x) = h0:t−1(x) + rt(x). Since the rt are proximal (so xt is a global
minimizer of rt) we have xt = arg minx φ1(x), and xt+1 = arg minx φ2(x) where
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φ2(x) = φ1(x) + gt · x + αtΨ(x) = h0:t(x). Then, using Corollary 8 lets us replace
Eq. (21) with

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤
1

2
‖gt‖2(t),? + αtΨ(xt)− αtΨ(xt+1).

To apply Lemma 5 we sum over t. Considering only the Ψ terms, we have

T∑
t=1

αtΨ(xt)− αtΨ(xt+1) = α1Ψ(x1)− αTΨ(xT+1) +
T∑
t=2

αtΨ(xt)− αt−1Ψ(xt) ≤ 0,

since Ψ(x) ≥ 0, αt ≤ αt−1, and Ψ(x1) = 0. Thus,

T∑
t=1

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤
1

2

T∑
t=1

‖gt‖2(t),?.

Using this with Lemma 5 applied to ft(x) ← gt · x + αtΨ(x) and rt ← rt proves
Eq. (25). For Eq. (26), we apply Lemma 5 taking ft(x) ← gt · x and rt(x) ←
αtΨ(x) + rt(x).

For FTRL-Centered algorithms, Theorem 1 immediately gives a bound for Regret(x∗, gt).
For the Regret(x∗, fΨ) case, we can prove a bound matching Theorem 1 using ar-
guments analogous to the above.

6. Mirror Descent, FTRL-Proximal, and Implicit Updates

Recall Section 3.1 showed the equivalence between constant learning rate Online
Gradient Descent and a fixed-regularizer FTRL algorithm. This equivalence is well-
known in the case where rt(x) = 0 for t ≥ 1, that is, there is a fixed stabilizing
regularizer r0 independent of t, and further we take X = Rn (e.g., Rakhlin (2008);
Hazan (2010); Shalev-Shwartz (2012)). Observe that in this case FTRL-Centered
and FTRL-Proximal coincide. In this section, we show how this equivalence extends
to adaptive regularizers (equivalently, adaptive learning rates) and composite ob-
jectives. This builds on the work of McMahan (2011), but we make some crucial
improvements in order to obtain an exact equivalence result for a much broader class
of Mirror Descent algorithms and then use this result to derive regret bounds.3

3. Subsequent to this work, Sra et al. (2016) analyzed AdaDelay, an adaptive stochastic gradient
descent algorithm that allows for potentially increasing learning rates, and Joulani et al. (2016)
provided a more general analysis of Mirror Descent algorithms with non-monotonic regularizers
in the online setting. Extending the FTRL view presented here to handle such algorithms is an
interesting direction for future work.
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Adaptive Mirror Descent Even in the non-adaptive case, Mirror Descent can
be expressed as a variety of different updates, some of which are equivalent but
some of which are not;4 in particular, the inclusion of the feasible set constraint
IX gives rise to distinct “lazy projection” vs “greedy projection” algorithms—this
issue is discussed in detail in Appendix C. To define the adaptive Mirror Descent
family of algorithms we first define the Bregman divergence with respect to a convex
differentiable function5 φ:

Bφ(u, v) = φ(u)−
(
φ(v) + Oφ(v) · (u− v)

)
.

The Bregman divergence is the difference at u between φ and φ’s first-order Taylor
expansion taken at v. For example, if we take φ(u) = ‖u‖2, then Bφ(u, v) = ‖u−v‖2.

An adaptive Mirror Descent algorithm is defined by a sequence of continuously
differentiable incremental regularizers r0, r1, . . . , chosen so r0:t is strongly convex.
From this, we define the time-indexed Bregman divergence Br0:t ,

Br0:t(u, v) = r0:t(u)−
(
r0:t(v) + Or0:t(v) · (u− v)

)
.

The adaptive Mirror Descent update is then given by

x̂1 = arg min
x

r0(x)

x̂t+1 = arg min
x

gt · x+ αtΨ(x) + Br0:t(x, x̂t). (27)

We use x̂ to distinguish this update from an FTRL update we will introduce shortly.
Building on the previous section, we allow the update to include an additional regu-
larization term αtΨ(x). As before, typically gt ·x should be viewed as a subgradient
approximation to a loss function `t; it will become clear that a key question is to
what extent Ψ is also linearized.

Mirror Descent algorithms were introduced in Nemirovsky and Yudin (1983) for
the optimization of a fixed non-smooth convex function, and generalized to Bregman
divergences by Beck and Teboulle (2003). Bounds for the online case appeared in
Warmuth and Jagota (1997); a general treatment in the online case for composite
objectives (with a non-adaptive learning rate) is given by Duchi et al. (2010b).
Following this existing literature, we might term the update of Eq. (27) Adaptive
Composite-Objective Online Mirror Descent; for simplicity we simply refer to Mirror
Descent in this work.

4. In particular, it is common to see updates written in terms of Or?(θ) for a strongly convex regu-
larizer r, based on the fact that Or?(−θ) = arg minx θ ·x+ r(x) (see Lemma 15 in Appendix B).

5. Certain properties of Bregman divergences require φ to be strictly convex, but it provides a
convenient notation to define Bφ(u, v) for any differentiable convex φ.
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Implicit updates For the moment, we neglect the Ψ terms and consider convex
per-round losses `t. While standard Online Gradient Descent (or Mirror Descent)
linearizes the `t to arrive at the update x̂t+1 = arg minx gt · xt +Br0:t(x, x̂t), we can
define the alternative update

x̂t+1 = arg min
x

`t(x) + Br0:t(x, x̂t), (28)

where we avoid linearizing the loss `t. This is often referred to as an implicit update,
since for general convex `t it is no longer possible to solve for x̂t+1 in closed form.
The implicit update was introduced by Kivinen and Warmuth (1997), and has more
recently been studied by Kulis and Bartlett (2010).

Again considering the Ψ terms, the Mirror Descent update of Eq. (27) can be
viewed as a partial implicit update: if the real loss per round is `t(x) + αtΨ(x),
we linearize the `t(x) term but not the Ψ(x) term, taking ft(x) = gt · x + αtΨ(x).
Generally this is done for computational reasons, as for common choices of Ψ such
as Ψ(x) = ‖x‖1 or Ψ(x) = IX (x), the update can still be solved in closed form (or
at least in a computationally efficient manner, e.g., by projection). However, while
αtΨ is handled without linearization, we shall see that echoes of the past α1:t−1Ψ
are encoded in a linearized fashion in the current state x̂t.

On terminology In the unprojected and non-adaptive case, the Mirror Descent
update x̂t+1 = arg minx gt · x + Br(x, x̂t) is equivalent to the FTRL update xt+1 =
arg minx g1:t · x + r(x) (see Appendix C). In fact, Shalev-Shwartz (2012, Sec. 2.6)
refers to this update (with linearized losses) explicitly as Mirror Descent.

In our view, the key property that distinguishes Mirror Descent from FTRL is
that for Mirror Descent, the state of the algorithm is exactly x̂t ∈ Rn, the current
feasible point. For FTRL on the other hand, the state is a different vector in Rn,
for example g1:t for Dual Averaging. The indirectness of the FTRL representation
makes it more flexible, since for example multiple values of g1:t can all map to the
same coefficient value xt.

6.1 Mirror Descent is an FTRL-Proximal Algorithm

We will show that the Mirror Descent update of Eq. (27) can be expressed as the
FTRL-Proximal update given in Figure 2. In particular, consider a Mirror Descent
algorithm defined by the choice of rt for t ≥ 0. Then, we define the FTRL-Proximal
update

xt+1 = arg min
x

g1:t · x+ g
(Ψ)
1:t−1 · x+ αtΨ(x) + rB0:t(x) (29)
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Mirror Descent

x̂t+1 = arg min
x

gt · x+ αtΨ(x) + Br0:t(x, x̂t) (27)

Mirror Descent as FTRL-Proximal

x̂t+1 = arg min
x

g1:t · x+ g
(Ψ)
1:t−1 · x+ αtΨ(x) + r0(x) +

t∑
s=1

Brs(x, xs)

= arg min
x

g1:t · x+ g
(Ψ)
1:t · x+ r0(x) +

t∑
s=1

Brs(x, xs)

where g(Ψ)
s is a suitable subgradient from ∂(αsΨ)(xs+1)

Figure 2: Mirror Descent as normally presented, and expressed as an equivalent
FTRL-Proximal update.

for an appropriate choice g
(Ψ)
t ∈ ∂(αtΨ)(xt+1) (given below), where rBt is an incre-

mental proximal regularizer defined in terms of rt, namely

rB0 (x) ≡ r0(x)

rBt (x) ≡ Brt(x, xt) = rt(x)−
(
rt(xt) + Ort(xt) · (x− xt)

)
for t ≥ 1.

Note that rBt is indeed minimized by xt and rBt (xt) = 0. We require g
(Ψ)
t ∈

∂(αtΨ)(xt+1) such that

g1:t + g
(Ψ)
1:t + OrB0:t(xt+1) = 0. (30)

The dependence of g
(Ψ)
t on xt+1 is not problematic, as g

(Ψ)
t is not necessary to

compute xt+1 using Eq. (29). To see (inductively) that we can always find a a g
(Ψ)
t

satisfying Eq. (30), note the subdifferential of the objective of Eq. (29) at x is

g1:t + g
(Ψ)
1:t−1 + ∂(αtΨ)(x) + OrB0:t(x). (31)

Since xt+1 is a minimizer, we know 0 is a subgradient, which implies there must

be a subgradient g
(Ψ)
t ∈ ∂(αtΨ)(xt+1) that satisfies Eq. (30). The fact we use a

subgradient of Ψ at xt+1 rather than xt is a consequence of the fact we are replicating
the behavior of a (partial) implicit update algorithm.

Finally, note the update

xt+1 = arg min
x

g1:t · x+ g
(Ψ)
1:t · x+ rB0:t(x) (32)
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is equivalent to Eq. (29), since Equations (30) and (31) imply 0 is in the subgradient
of the objective Eq. (29) at the xt+1 given by Eq. (32). This update is exactly an

FTRL-Proximal update on the functions ft(x) = (gt + g
(Ψ)
t ) · x.

With these definitions in place, we can now state and prove the main result of
this section, namely the equivalence of the two updates given in Figure 2:

Theorem 11 The Mirror Descent update of Eq. (27) and the FTRL-Proximal up-
date of Eq. (29) select identical points.

Proof The proof is by induction on the hypothesis that x̂t = xt. This holds trivially
for t = 1, so we proceed by assuming it holds for t.

First we consider the xt selected by the FTRL-Proximal algorithm of Eq. (29).

Since xt minimizes this objective, zero must be a subgradient at xt. Letting g
(r)
s =

Ors(xs) and noting OrBt (x) = Ort(x)−Ort(xt), we have g1:t−1+g
(Ψ)
1:t−1+Or0:t−1(xt)−

g
(r)
0:t−1 = 0 following Eq. (31). Since xt = x̂t by induction hypothesis, we can rear-

range and conclude

−Or0:t−1(x̂t) = g1:t−1 + g
(Ψ)
1:t−1 − g

(r)
0:t−1. (33)

For Mirror Descent, the gradient of the objective in Eq. (27) must be zero for x̂t+1,

and so there exists a ĝ
(Ψ)
t ∈ ∂(αtΨ)(x̂t+1) such that

0 = gt + ĝ
(Ψ)
t + Or0:t(x̂t+1)− Or0:t(x̂t)

= gt + ĝ
(Ψ)
t + Or0:t(x̂t+1)− Or0:t−1(x̂t)− g(r)

t IH and Ort(xt) = g
(r)
t

= gt + ĝ
(Ψ)
t + Or0:t(x̂t+1) + g1:t−1 + g

(Ψ)
1:t−1 − g

(r)
0:t−1 − g

(r)
t Using Eq. (33)

= g1:t + g
(Ψ)
1:t−1 + ĝ

(Ψ)
t + Or0:t(x̂t+1)− g(r)

0:t

= g1:t + g
(Ψ)
1:t−1 + ĝ

(Ψ)
t + OrB0:t(x̂t+1).

The last line implies zero is a subgradient of the objective of Eq. (29) at x̂t+1, and
so x̂t+1 is a minimizer. Since r0:t is strongly convex, this solution is unique and so
x̂t+1 = xt+1.

6.2 Comparing Mirror Descent to the Native FTRL-Proximal
Algorithm, and the Application to L1 Regularization

Since we can write Mirror Descent as a particular FTRL update, we can now do
a careful comparison to the direct application of Section 5 which gives the Native
FTRL-Proximal algorithm. These two algorithms are given in Figure 3, expressed
in a way that facilitates comparison.
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Mirror Descent

x̂t+1 = arg minx g1:t · x + g
(Ψ)
1:t−1 · x+ αtΨ(x) +rB0:t(x)

Native FTRL-Proximal
xt+1 = arg minx g1:t · x + α1:tΨ(x) +rB0:t(x)

(A) (B) (C)

Figure 3: Mirror Descent expressed as an FTRL-Proximal algorithm compared to
the Native FTRL-Proximal algorithm.

Both algorithms use a linear approximation to the loss functions `t, as seen in
column (A) of Figure 3, and the same proximal regularization terms (C). The key
difference is in how the non-smooth terms Ψ are handled: Mirror Descent approxi-

mates the past αsΨ(x) terms for s < t using a subgradient approximation g
(Ψ)
s · x,

keeping only the current αtΨ(x) term explicitly. In Native FTRL-Proximal, on the
other hand, we represent the full weight of the Ψ terms exactly as α1:tΨ(x). That
is, Mirror Descent is applying significantly more linearization than Native FTRL-
Proximal.

Why does this matter? As we will see in Section 6.3, there is no difference in the
regret bounds, even though intuitively avoiding unnecessary linearization should be
preferable. However, there can be a substantial practical differences for some choices
of Ψ. In particular, we focus on the common and practically important case of L1

regularization, where we take Ψ(x) = ‖x‖1. Such regularization terms are often used
to produce sparse solutions (xt where many xt,i = 0). Models with few non-zeros can
be stored, transmitted, and evaluated much more cheaply than the corresponding
dense models.

As discussed in McMahan (2011), it is precisely the explicit representation of
the full α1:t‖x‖1 terms that lets Native FTRL produce much sparser solutions when
compared with the composite-objective Mirror Descent update with L1 regulariza-
tion (equivalent to the FOBOS algorithm of Duchi and Singer (2009)). This argu-
ment also applies to Regularized Dual Averaging (RDA, a Native FTRL-Centered
algorithm); Xiao (2009) presents experiments showing the advantages of RDA for
producing sparse solutions. In the remainder of this section, we explore the appli-
cation to L1 regularization in more detail, in order to illustrate the effect of the
additional linearization of the ‖x‖1 terms used by Mirror Descent as compared to
the Native FTRL-Proximal algorithm.

Another way to understand this distinction is the previously mentioned difference
in how the two algorithms maintain state. Mirror Descent has exactly one way to
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represent a zero coefficient in the ith coordinate, namely x̂t,i = 0. The FTRL
representation is significantly more flexible, since many state values, say any g1:t,i ∈
[−λ, λ], can all correspond to a zero coefficient. This means that FTRL can represent
both “we have lots of evidence that xt,i should be zero” (as g1:t,i = 0 for example),
as well as “we think xt,i is zero right now, but the evidence is very weak” (as
g1:t,i = λ for example). This means there may be a memory cost for training FTRL,
as g1:t,i 6= 0 still needs to be stored when xt,i = 0, but the obtained models typically
provide much better sparsity-accuracy tradeoffs (McMahan, 2011; McMahan et al.,
2013).

This distinction is critical even in the non-adaptive case, and so we consider the
simplest possible setting: a fixed regularizer r0(x) = 1

2η‖x‖
2
2 (with rt(x) = 0 for

t ≥ 1), and αtΨ(x) = λ‖x‖1 for all t. The updates of Figure 3 then simplify to:

Mirror Descent

xt+1 = arg min
x

g1:t · x + g
(Ψ)
1:t−1 · x+ λ‖x‖1 +

1

2η
‖x‖22 (34)

Native FTRL

xt+1 = arg min
x

g1:t · x + tλ‖x‖1 +
1

2η
‖x‖22. (35)

The key point is the Native FTRL algorithm uses a much stronger explicit L1

penalty, α1:t = tλ instead of just αt = λ.

The closed-form update We can write the update of Eq. (34) as a standard
Mirror Descent update (that is, as an optimization over ft and a regularizer centered
at the current xt):

xt+1 = arg min
x

gt · x+ λ‖x‖1 +
1

2η
‖x− xt‖22

= arg min
x

(
gt −

xt
η

)
· x+ λ‖x‖1 +

1

2η
‖x‖22. (36)

The above update decomposes on a per-coordinate basis. Subgradient calculations
show that for constants a > 0, b ∈ R, and λ ≥ 0, we have

arg min
x∈R

b · x+ λ‖x‖1 +
a

2
‖x‖2 =

{
0 when |b| ≤ λ
− 1
a(b− sign(b)λ) otherwise.

(37)

Thus, we can simplify Eq. (36) to

xt+1 =


0 when |gt − xt

η | ≤ λ
xt − η(gt − λ) when gt − xt

η > λ (implying xt+1 < 0)

xt − η(gt + λ) otherwise (i.e., gt − xt
η < −λ and xt+1 > 0).
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Figure 4: The points selected by Native FTRL and Mirror Descent on the one-
dimensional example, using αtΨ(x) = 1

2‖x‖1. Native FTRL quickly con-
verges to x∗ = 0, but Mirror Descent oscillates indefinitely.

If we choose g
(Ψ)
t ∈ ∂λ‖xt+1‖1 as

g
(Ψ)
t =


−λ when xt+1 < 0

λ when xt+1 > 0

xt/η − gt when xt+1 = 0

,

then Eq. (30) is satisfied, and the update becomes

xt+1 = xt − η
(
gt + g

(Ψ)
t

)
in all cases, showing how the implicit update can be re-written in terms of a sub-
gradient update using an appropriate subgradient approximation at the next point.

A One-Dimensional Example To illustrate the practical significance of the
stronger explicit L1 penalty used by Native FTRL, we compare the updates of
Eq. (34) and Eq. (35) on a simple one-dimensional example. The gradients gt sat-
isfy ‖gt‖2 ≤ G, and we use a feasible set of radius R = 2G. Both algorithms use the
theory-recommended fixed learning rate η = R

G
√
T

= 2√
T

(see Section 3), against an

adaptive adversary that selects gradients gt as a function of xt:

gt =


−1

2(G+ λ) when t = 1

−G when t > 1 and xt ≤ 0

G when t > 1 and xt > 0 .

35



McMahan

Both algorithms select x1 = 0, and since g1 = −1
2(G + λ) both algorithms select

x2 = (G − λ)/
√
T . After this, however, their behavior diverges: Mirror Descent

will indefinitely oscillate between x2 and −x2 for any λ < G. On the other hand,
FTRL learns that x∗ = 0 is the optimal solution after a constant number of rounds,
selecting xt+1 = 0 for any t > G

2λ + 1
2 . The details of this example are worked out in

Appendix D

Figure 4 plots the points selected by the algorithms as a function of t, taking
G = 11, T = 16, and λ = 0.5. This example clearly demonstrates that, though
Mirror Descent and Native FTRL have the same regret bounds, Native FTRL is
much more likely to produce sparse solutions and can also incur less actual regret.

6.3 Analysis of Mirror Descent as FTRL-Proximal

Having established the equivalence between Mirror Descent and a particular FTRL-
Proximal update as given in Figure 2, we now use the general analysis techniques for
FTRL developed in this work to prove regret bounds for Mirror Descent algorithm.
This is accomplished by applying the Strong FTRL lemma to the FTRL-Proximal
expression for Mirror Descent.

First, we observe that in the non-composite case (i.e., all αt = 0), then all

g
(Ψ)
t = 0, and we can apply Theorem 2 directly to Eq. (29) for the loss functions
ft(x) = gt · x, which gives us

Regret(x∗, gt) ≤ rB0:T (x∗) +
1

2

T∑
t=1

‖gt‖2(t),? =
T∑
t=1

Brt(x∗, xt) +
1

2

T∑
t=1

‖gt‖2(t),?.

In the case of a composite-objective (nontrivial Ψ terms, including feasible set con-
straints such as IX ), we will arrive at the same bound, but must refine our analysis
somewhat to encompass the partial implicit update of Eq. (29). This is accomplished
in the following theorem:

Theorem 12 We consider the Mirror Descent update of Eq. (27) under the same
conditions as Theorem 10. When we consider regret against fΨ

t (x) = gt ·x+αtΨ(x),
we have

Regret(x∗, fΨ) ≤ rB0:T (x∗) +
1

2

T∑
t=1

‖gt‖2(t),?. (38)

When we consider regret against only the functions ft(x) = gt · x, we have

Regret(x∗, gt) ≤ rB0:T (x∗) + α1:TΨ(x∗) +
1

2

T∑
t=1

‖gt‖2(t),?. (39)
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The bound of Eq. (38) matches Duchi et al. (2011, Prop. 3),6 and also encom-
passes Theorem 2 of Duchi et al. (2010b).7

Proof First, by Theorem 11, this algorithm can equivalently be expressed as in
Eq. (32). To simplify bookkeeping, we define

f̄t(x) = gt · x+ Ψ̄t(x) where Ψ̄t(x) = αtΨ(xt+1) + g
(Ψ)
t · (x− xt+1),

Then, the update
xt+1 = arg min

x
f̄1:t(x) + rB0:t(x) (40)

is equivalent to Eq. (32), since the objectives differ only in constant terms. Note

Ψ̄t(xt+1) = αtΨ(xt+1) and ∀x, αtΨ(x) ≥ Ψ̄t(x), (41)

where the second claim uses the convexity of αtΨ.
Observe that Eq. (40) defines an FTRL-Proximal algorithm—we can imagine

the f̄t are computed by a black-box given ft which solves the optimization problem

of Eq. (29) in order to compute g
(Ψ)
t . Thus, we can apply the Strong FTRL Lemma

(Lemma 5). Again, the key is bounding the stability terms. Using ht(x) = f̄t(x) +
rBt (x), we have

T∑
t=1

h1:t(xt)− h1:t(xt+1)− rt(xt) ≤
T∑
t=1

1

2
‖gt‖2(t),? + Ψ̄t(xt)− Ψ̄t(xt+1),

using Corollary 8 as in Theorem 10.
We first consider regret against the functions fΨ

t (x) = gt · x + αtΨ(x). We can
apply Lemma 5 to the functions f̄t, yielding

Regret(x∗, f̄t) ≤ rB0:T (x∗) +

T∑
t=1

1

2
‖gt‖2(t),? + Ψ̄t(xt)− Ψ̄t(xt+1).

6. Mapping our notation to their notation, we have ft(x) = `t(x)+αtΨ(x)⇒ φt(x) = ft(x)+ϕ(x)
and r1:t(x) ⇒ 1

η
ψt(x). Dividing their Update (4) by η and using our notation, we arrive at

exactly the update of Eq. (27). We can take η = 1 in their bound w.l.o.g.. Then, using the fact
that ψt in their notation is r1:t in our notation, we have

Bψt+1(x∗, xt+1)− Bψt(x
∗, xt+1) = ψt+1(x∗)− (ψt+1(xt+1) + Oψt+1(xt+1) · (x− xt+1))

−
(
ψt(x

∗)− (ψt(xt+1) + Oψt(xt+1) · (x− xt+1))
)

= rt+1(x∗)−
(
rt+1(xt+1) + Ort+1(xt+1) · (x− xt+1)

)
= Brt+1(x∗, xt+1).

7. We can take their α = 1 and η = 1 w.l.o.g., and also assume our Ψ(x1) = 0. Their r is our Ψ,
and the implicitly take our αt = 1; their ψ is our r0 (with our r1, . . . , rT all uniformly zero).
Thus, their bound amounts (in our notation) to: Regret ≤ Br0(x∗, x1)+ 1

2

∑T
t=1 ‖gt‖

2
?, matching

exactly the bound of our Theorem 12 (noting rB0:t(x
∗) = Br0(x∗, x1) in this case).
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However, this does not immediately yield a bound on regret against the fΨ
t . While

f̄t(x
∗) ≤ fΨ

t (x∗), our actual loss fΨ
t (xt) could be larger than f̄t(xt). Thus, in order

to bound regret against fΨ
t , we must add terms fΨ

t (xt)− f̄t(xt) = αtΨ(xt)− Ψ̄t(xt).
This gives

Regret(x∗, fΨ
t ) ≤ Regret(x∗, f̄t) +

T∑
t=1

αtΨ(xt)− Ψ̄t(xt)

≤ rB0:T (x∗) +
T∑
t=1

1

2
‖gt‖2(t),? + Ψ̄t(xt)− Ψ̄t(xt+1) + αtΨ(xt)− Ψ̄t(xt)

= rB0:T (x∗) +
T∑
t=1

1

2
‖gt‖2(t),? + αtΨ(xt)− αtΨ(xt+1),

where the equality uses Ψ̄t(xt+1) = αtΨ(xt+1). Recalling
∑T

t=1 αtΨ(xt)−αtΨ(xt+1) ≤
0 from the proof of Theorem 10 completes the proof of Eq. (38).

For Eq. (39), applying Lemma 5 with rt ← Ψ̄t + rBt and ft(x)← gt · x yields

Regret(x∗, gt) ≤ rB0:T (x∗) + Ψ̄1:t(x
∗) +

T∑
t=1

1

2
‖gt‖2(t),? + Ψ̄t(xt)− Ψ̄t(xt+1).

Eq. (41) implies Ψ̄t(xt)− Ψ̄t(xt+1) ≤ αtΨ(xt)− αtΨ(xt+1), and so the sum of these
terms again vanishes. Finally, observing Ψ̄1:t(x

∗) ≤ α1:tΨ(x∗) completes the proof.

7. Conclusions

Using a general and modular analysis, we have presented a unified view of a wide
family of algorithms for online convex optimization that includes Dual Averaging,
Mirror Descent, FTRL, and FTRL-Proximal, recovering and sometimes improving
regret bounds from many earlier works. Our emphasis has been on the case of adap-
tive regularizers, but the results recover those for a fixed learning rate or regularizer
as well.
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Appendix A. The Standard FTRL Lemma

The following lemma is a well-known tool for the analysis of FTRL algorithms (see
Kalai and Vempala (2005); Hazan (2008), Hazan (2010, Lemma 1), and Shalev-
Shwartz (2012, Lemma 2.3)):

Lemma 13 (Standard FTRL Lemma) Let ft be a sequence of arbitrary (pos-
sibly non-convex) loss functions, and let rt be arbitrary non-negative regulariza-
tion functions, such that xt+1 = arg minx h0:t(x) is well defined (recall h0:t(x) =
f1:t(x) + r0:t(x)). Then, the algorithm that selects these xt achieves

Regret(x∗) ≤ r0:T (x∗) +

T∑
t=1

ft(xt)− ft(xt+1).

The proof of this lemma (e.g., McMahan and Streeter (2010, Lemma 3)) relies
on showing that if one could run the Be-The-Leader algorithm by selecting xt =
arg minx f1:t(x) (which requires peaking ahead at ft to choose xt), then the algo-
rithm’s regret is bounded above by zero.

However, as we see by comparing Theorem 2 and 14 (stated below), this analysis
loses a factor of 1/2 on one of the terms. The key is that being the leader is
actually strictly better than always using the post-hoc optimal point, a fact that is
not captured by the Standard FTRL Lemma. To prove the Strong FTRL Lemma,
rather than first analyzing the Be-The-Leader algorithm and showing it has no
regret, the key is to directly analyze the FTL algorithm (using a similar inductive
argument). The proofs are also similar in that in both the basic bound is proved
first for regret against the functions ht (equivalently, the regret for FTL without
regularization), and this bound is then applied to the regularized functions and
re-arranged to bound regret against the ft.

Using Lemma 13, we can prove the following weaker version of Theorem 2:

Theorem 14 Weak FTRL-Proximal Bound Consider Setting 1, and further
suppose the rt are chosen such that h0:t = r0:t + f1:t is 1-strongly-convex w.r.t. some
norm ‖ · ‖(t), and further the rt are proximal, that is xt is a global minimizer of rt.
Then, choosing any gt ∈ ∂ft(xt) on each round, for any x∗ ∈ Rn,

Regret(x∗) ≤ r0:T (x∗) +

T∑
t=1

‖gt‖2(t),?.

We prove Theorem 14 using strong smoothness via Lemma 7. An alternative
proof that uses strong convexity directly is also possible, closely following Shalev-
Shwartz (2012, Sec. 2.5.2).
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Proof of Theorem 14 Applying Lemma 13, it is sufficient to consider a fixed
t and upper bound ft(xt) − ft(xt+1). For this fixed t, define a helper function
φ1(x) = f1:t−1(x) + r0:t(x). Observe xt = arg minx φ1(x) since xt is a minimizer of
rt(x), and by definition of the update xt is a minimizer of f1:t−1(x) + r0:t−1(x). Let
φ2(x) = φ1(x) + ft(x) = h0:t(x), so φ2 is 1-strongly convex with respect to ‖ · ‖(t) by
assumption, and xt+1 = arg minx φ2(x). Then, we have

ft(xt)− ft(xt+1) ≤ gt · (xt − xt+1) Convexity of ft and gt ∈ ∂ft(xt)
≤ ‖gt‖(t),?‖xt − xt+1‖(t) Property of dual norms

≤ ‖gt‖(t),?‖gt‖(t),? = ‖gt‖2(t),?. Using Eq. (19) from Lemma 7

Interestingly, it appears difficult to achieve a tight (up to constant factors) anal-
ysis of non-proximal FTRL algorithms (e.g., FTRL-Centered algorithms like Dual
Averaging) using Lemma 13. The Strong FTRL Lemma, however, allowed us to
accomplish this.

Appendix B. Proofs For Section 4.2

We first state a standard technical result (see Shalev-Shwartz (2007, Lemma 15)):

Lemma 15 Let ψ be 1-strongly convex w.r.t. ‖ · ‖, so ψ? is 1-strongly smooth with
respect to ‖ · ‖?. Then,

‖Oψ?(z)− Oψ?(z′)‖ ≤ ‖z − z′‖?, (42)

and
arg min

x
g · x+ ψ(x) = Oψ?(−g). (43)

In order to prove Lemma 7, we first prove a somewhat easier result:

Lemma 16 Let φ1 : Rn → R be strongly convex w.r.t. norm ‖ · ‖, and let x1 =
arg minx φ1(x), and define φ2(x) = φ1(x)+b·x for b ∈ Rn. Letting x2 = arg minx φ2(x),
we have

φ2(x1)− φ2(x2) ≤ 1

2
‖b‖2?, and ‖x1 − x2‖ ≤ ‖b‖?.

Proof We have

−φ?1(0) = −max
x

0 · x− φ1(x) = min
x
φ1(x) = φ1(x1).

and similarly,

−φ?1(−b) = −max
x
−b · x− φ1(x) = min

x
b · x+ φ1(x) = b · x2 + φ1(x2).
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Since x1 = Oφ?1(0) and φ?1 is strongly-smooth (Lemma 9), Eq. (20) gives

φ?1(−b) ≤ φ?1(0) + x1 · (−b− 0) +
1

2
‖b‖2?.

Combining these facts, we have

φ1(x1) + b · x1 − φ1(x2)− b · x2 = −φ?1(0) + b · x1 + φ?1(−b)

≤ −φ?1(0) + b · x1 + φ?1(0) + x1 · (−b) +
1

2
‖b‖2?

=
1

2
‖b‖2?.

For the second part, observe Oφ?1(0) = x1, and Oφ?1(−b) = x2 and so ‖x1 − x2‖ ≤
‖b‖?, using both parts of Lemma 15.

Proof of Lemma 7 We are given that φ2(x) = φ1(x) + ψ(x) is 1-strongly convex
w.r.t. ‖ · ‖. The key trick is to construct an alternative φ′1 that is also 1-strongly
convex with respect to this same norm, but has x1 as a minimizer. Fortunately,
this is easily possible: define φ′1(x) = φ1(x) + ψ(x)− b · x, and note φ1 is 1-strongly
convex w.r.t. ‖ · ‖ since it differs from φ2 only by a linear function. Since b ∈ ∂ψ(x1)
it follows that 0 is in ∂(ψ(x) − b · x) at x = x1, and so x1 = arg minφ′1(x). Note
φ2(x) = φ′1(x) + b ·x. Applying Lemma 16 to φ′1 and φ2 completes the proof, noting
for any x′ we have φ2(x1)− φ2(x′) ≤ φ2(x1)− φ2(x2).

Proof of Corollary 8 Let x′2 = arg minx φ1(x) + ψ(x), so by Lemma 7, we have

φ1(x1) + ψ(x1)− φ1(x′2)− ψ(x′2) ≤ 1

2
‖b‖2?, (44)

Then, noting φ1(x′2) + ψ(x′2) ≤ φ1(x2) + ψ(x2) by definition, we have

φ2(x1)− φ2(x2) = φ1(x1) + ψ(x1) + Ψ(x1)− φ1(x2)− ψ(x2)−Ψ(x2)

≤ φ1(x1) + ψ(x1) + Ψ(x1)− φ1(x′2)− ψ(x′2)−Ψ(x2)

≤ 1

2
‖b‖2? + Ψ(x1)−Ψ(x2). Using Eq. (44).

Noting that φ2(x1)− φ2(x′) ≤ φ2(x1)− φ2(x2) for any x′ completes the proof.

Appendix C. Non-Adaptive Mirror Descent and Projection

Non-adaptive Mirror Descent algorithms have appeared in the literature in a variety
of forms, some equivalent and some not. In this section we briefly review these
connections. We first consider the unconstrained case, where the domain of the
convex functions is taken to be Rn, and there is no constraint that xt ∈ X .
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Explicit
θt+1 = θt − gt
xt+1 = OR?(θt+1)

θt+1 = OR(xt)− gt
xt+1 = OR?(θt+1)

Implicit xt+1 = arg min
x

gt · x+ BR(x, xt)

FTRL xt+1 = arg min
x

g1:t · x+R(x)

Figure 5: Four equivalent expressions for unconstrained Mirror Descent defined by
a strongly convex regularizer R. The top-right expression is from by Beck
and Teboulle (2003), while the top-left expression matches the presenta-
tion of Shalev-Shwartz (2012, Sec 2.6).

C.1 The Unconstrained Case

Figure 5 summarizes a set of equivalent expressions for the unconstrained non-
adaptive Mirror Descent algorithm. Here we assume R is a strongly-convex reg-
ularizer which is differentiable on Rn so that the corresponding Bregman divergence
BR is defined. Recall from Lemma 15,

OR?(−g) = arg min
x

g · x+R(x). (45)

We now prove that these updates are equivalent:

Theorem 17 The four updates in Figure 5 are equivalent.

Proof It is sufficient to prove three equivalences:

• The two explicit formulations are equivalent. For the right-hand version, we
have xt = OR?(θt) = arg minx−θt · x + R(x) using Eq. (45). The optimality
of xt for this minimization implies 0 = −θt + OR(xt), or OR(xt) = θt.

• Explicit ⇔ FTRL: Immediate from Eq. (45) and the fact that θt+1 = −g1:t.

• Implicit ⇔ FTRL: That is,

x̂t+1 = arg min
x

gt · x+ BR(x, x̂t) and (46)

xt+1 = arg min
x

g1:t · x+R(x) (47)

are equivalent. The proof is by induction on the hypothesis xt = x̂t. We must
have from Eq. (46) and the IH that gt + OR(x̂t+1) − OR(xt) = 0, and from
Eq. (47) applied to t− 1 we must have OR(xt) = −g1:t−1, and so OR(x̂t+1) =
−g1:t. Then, we have the gradient of the objective of Eq. (47) at x̂t+1 is
g1:t + OR(x̂t+1) = 0, and since the optimum of Eq. (47) is unique, we must
have x̂t+1 = xt+1. The same general technique is used to prove the more
general result for adaptive composite Mirror Descent in Theorem 11.
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C.2 The Constrained Case: Projection onto X

Even in the non-adaptive case (fixed R), the story is already more complicated when
we constrain the algorithm to select from a convex set X . For this section we take
R(x) = r(x) + IX (x) where r is continuously differentiable on dom IX = X .

In this setting, the two explicit algorithms given in the previous table are no
longer equivalent. Figure 6 gives the two resulting families of updates. The classic
Mirror Descent algorithm corresponds to the right-hand column, and follows the
presentation of Beck and Teboulle (2003). This algorithm can be expressed as a
greedy projection, and when r(x) = 1

2η‖x‖
2
2 gives a constant learning rate version

of the projected Online Gradient Descent algorithm of Zinkevich (2003). The Lazy
column corresponds for example to the “Online Gradient Descent with lazy projec-
tions” algorithm (Shalev-Shwartz, 2012, Cor. 2.16).

The relationship to these projection algorithms is made explicit by the last row
in the table. We define the projection operator onto X with respect to Bregman
divergence Br by

Πr
X (u) ≡ arg min

x∈X
Br(x, u).

Expanding the definition of the Bregman divergence, dropping terms independent of
x since they do not influence the arg min, and replacing the explicit x ∈ X constraint
with an IX term in the objective, we have the equivalent expression

Πr
X (u) = arg min

x
r(x)− Or(u) · x+ IX (x). (48)

The names Lazy and Greedy come from the manner in which the projection is
used. For Lazy-Projection, the state of the algorithm is simply g1:t which can be
updated without any need for projection; projection is applied lazily when we need
to calculate xt+1. For the Greedy-Projection algorithm on the other, the state of
the algorithm is essentially xt, and in particular ut+1 cannot be calculated without
knowledge of xt, the result of greedily applying projection on the previous round. If
the gt are really linear approximations to some ft, however, a projection is needed
on each round for both algorithms to produce xt so gt ∈ ∂ft(xt) can be computed.

Both the Lazy and Greedy families can be analyzed (including in the more
general adaptive case) using the techniques introduced in this paper. The Lazy
family corresponds to the Native FTRL update of Section 5, namely

xt+1 = arg min
x

g1:t · x+ IX (x) + r0:t(x),

which we encode as a single fixed non-smooth penalty Ψ = IX which arrives on the
first round: α1 = 1 and αt = 0 for t > 1.
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Lazy Greedy

Explicit
θt+1 = θt − gt
xt+1 = OR?(θt+1)

θt+1 = Or(xt)− gt
xt+1 = OR?(θt+1)

Implicit
xt+1 =

arg min
x

gt · x+ Br(x, xt) + IX (x)

FTRL xt+1 = arg min
x

g1:t · x+R(x)
xt+1 =

arg min
x

(
g1:t + g

(Ψ)
1:t−1

)
· x+R(x)

Projection
ut+1 = arg min

x
g1:t · x+ r(x)

xt+1 = Πr
X (ut+1)

ut+1 = arg min
u

gt · u+ Br(u, xt)

= Or?(Or(xt)− gt)
xt+1 = Πr

X (ut+1)

Figure 6: The Lazy and Greedy families of Mirror Descent algorithms, defined via
R(x) = r(x) + IX (x), where r is a differentiable strongly-convex regular-
izer. These families are not equivalent, but the different updates in each
column are equivalent.

The Greedy-Projection Mirror Descent algorithms, on the other hand, can be
thought of us receiving loss functions gt · x+ IX (x) on each round: that is, we have
αt = 1 for all t. This family is analyzed using the techniques from Section 6. In this
setting, embedding IX (x) inside R can be seen as a convenience for defining OR?,

OR?(−g) = arg min
x

g · x+ r(x) + IX (x). (49)

We have the following equivalence results:

Theorem 18 The Lazy-Explicit, Lazy-FTRL, and Lazy-Projection updates from the
left column of Figure 6 are equivalent.

Proof First, we show Lazy-Explicit is equivalent to Lazy-FTRL. Iterating the defi-
nition of θt+1 in the explicit version gives θt+1 = −g1:t, and so the second line in the
update becomes exactly xt+1 = arg minx g1:t · x+R(x).

Next, we show that Lazy-Projection is equivalent to the Lazy-Explicit update.
Optimality conditions for the minimization that defines ut+1 imply Or(ut+1) = −g1:t.
Then, the second equation in the Lazy-Projection update becomes

xt+1 = Πr
X (ut+1) = arg min

x
r(x)− Or(ut+1) · x+ IX (x) Using Eq. (48).

= arg min
x

g1:t · x+ r(x) + IX (x), Since Or(ut+1) = −g1:t.
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which is exactly the Lazy-FTRL update (recalling R(x) = r(x) + IX (x)).

Theorem 19 The Explicit, Implicit, FTRL, and Projected updates in the “Greedy”
column of Figure 6 are equivalent.

Proof We prove the result via the following chain of equivalences:

• Greedy-Explicit⇔ Greedy-Implicit (c.f. Beck and Teboulle (2003, Prop 3.2)).
We again use x̂ for the points selected by the implicit version,

x̂t+1 = arg min
x

gt · x+ Br(x, xt) + IX (x)

= arg min
x

gt · x+ r(x)− Or(xt) · x+ IX (x),

where we have dropped terms independent of x in the arg min. On the other
hand, plugging in the definition of θt+1, the explicit update is

xt+1 = arg min
x

−(Or(xt)− gt) · x+ r(x) + IX (x), (50)

which is equivalent.

• Greedy-Implicit⇔ Greedy-FTRL: This is a special case of Theorem 11, taking
r0 ← r + IX , rt(x) = rBt (x) = 0 for t ≥ 1, and αtΨ(x) = IX (x) for t ≥ 1.

• When IX = IX , Projection is equivalent to the Greedy-Explicit expression.
First, note we can re-write the Greedy-Projection update as

ut+1 = arg min
u

−(Or(xt)− gt) · u+ r(u)

xt+1 = arg min
x∈X

Br(x, ut+1).

Optimality conditions for the first expression imply Or(ut+1) = Or(xt) − gt.
Then, the second update becomes

xt+1 = Πr
X (ut+1)

= arg min
x

r(x)− Or(ut+1) · x+ IX (x) Using Eq. (48).

= arg min
x

r(x)− (Or(xt)− gt) · x+ IX (x), Since Or(ut+1) = Or(xt)− gt.

which is equivalent to the Greedy-Explicit update, e.g., Eq. (50).
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Appendix D. Details for the One-Dimensional L1 Example

In this section we provide details for the one-dimensional example presented in
Section 6.2. Suppose gradients gt satisfy ‖gt‖2 ≤ G, and we use a feasible set of
radius R = 2G, so the theory-recommended fixed learning rate is η = R

G
√
T

= 2√
T

(see Section 3).
We first consider the behavior of Mirror Descent: we construct the example so

that the algorithm oscillates between two points, x̂ and −x̂ (allowing the possibility
that x̂ = −x̂ = 0). Given alternating gradients of +G and −G, in such an oscillation
the distance one update takes us must be η(G− λ), assuming λ < G. Thus, we can
cause the algorithm to oscillate between x̂ = (G − λ)/

√
T and −x̂. We assume an

initial g1 = −1
2(G + λ), which gives us x2 = x̂ for both Mirror Descent and FTRL

when x1 = 0.
This construction implies that for any constant L1 penalty λ < G, Mirror Descent

will never learn the optimal solution x∗ = 0 (note that after the first round, we can
view the gt as being for example the subgradients of ft(x) = G‖x‖1). The points xt
selected by Mirror Descent, the gradients, and the subgradients of the L1 penalty
are given by the following table:

t 1 2 3 4 5 · · ·
gt g1 G −G G −G · · ·
xt 0 x̂ −x̂ x̂ −x̂ · · ·
g

(Ψ)
t λ −λ λ −λ λ · · ·

While we have worked from the standard Mirror Descent update, Eq. (36), it is
instructive to verify the FTRL-Proximal representation is indeed equivalent. For
example, using the values from the table, for x5 we have

x5 = arg min
x

g1:4 · x+ g
(Ψ)
1:3 · x+ λ‖x‖1 +

1

2η
‖x‖22

= arg min
x

(g1 +G) · x+ λ · x+ λ‖x‖1 +
1

2η
‖x‖22 = −G− λ√

T
= −x̂,

where we solve the argmin by applying Eq. (37) with b = g1 +G+ λ.
Now, contrast this with the FTRL update of Eq. (35); we can solve this update in

closed form using Eq. (37). First, note that FTRL will not oscillate in the same way,
unless λ = 0. We have that xt+1 = 0 whenever |g1:t| < tλ. Note that g1:t oscillates
between g1:t = g1 = −1

2(G + λ) on odd rounds t, and g1:t = g1 + G = 1
2G −

1
2λ

on even rounds. Since the magnitude of g1:t is larger on odd rounds, if we have
1
2(G+λ) ≤ tλ then xt+1 will always be zero; re-arranging, this amounts to λ ≥ G

2t−1 .
Thus, as with Mirror Descent, we need λ ≥ G to have x2 = 0 (plugging in t = 1)
but on subsequent rounds a much smaller λ is sufficient to produce sparsity. In the
extreme case, taking λ = G/(2T −1) is sufficient to ensure xT = 0, whereas we need
a λ value almost 2T times larger in order to get xT = 0 from Mirror Descent.
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