
Journal of Machine Learning Research 18 (2017) 1-46 Submitted 8/14; Revised 10/17; Published 11/17

Generalized Conditional Gradient for Sparse Estimation

Yaoliang Yu yaoliang.yu@uwaterloo.ca
School of Computer Science
University of Waterloo
Waterloo, ON, N2L 3G1, Canada

Xinhua Zhang zhangx@uic.edu
Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607

Dale Schuurmans daes@ualberta.ca

Department of Computing Science

University of Alberta

Edmonton, Alberta T6G 2E8, Canada

Editor: Koby Crammer

Abstract

Sparsity is an important modeling tool that expands the applicability of convex formula-
tions for data analysis, however it also creates significant challenges for efficient algorithm
design. In this paper we investigate the generalized conditional gradient (GCG) algorithm
for solving sparse optimization problems—demonstrating that, with some enhancements, it
can provide a more efficient alternative to current state of the art approaches. After study-
ing the convergence properties of GCG for general convex composite problems, we develop
efficient methods for evaluating polar operators, a subroutine that is required in each GCG
iteration. In particular, we show how the polar operator can be efficiently evaluated in
learning low-rank matrices, instantiated with detailed examples on matrix completion and
dictionary learning. A further improvement is achieved by interleaving GCG with fixed-
rank local subspace optimization. A series of experiments on matrix completion, multi-class
classification, and multi-view dictionary learning shows that the proposed method can sig-
nificantly reduce the training cost of current alternatives.

Keywords: generalized conditional gradient, frank-wolfe, dictionary learning, matrix
completion, multi-view learning, sparse estimation

1. Introduction

Sparsity is an important concept in high-dimensional statistics (Bühlmann and van de
Geer, 2011) and signal processing (Eldar and Kutyniok, 2012), which has led to important
application successes by reducing model complexity and improving interpretability of the
results. Although it is common to promote sparsity by adding appropriate regularizers, such
as the l1 norm, sparsity can also present itself in more sophisticated forms, such as group
sparsity (Yuan and Lin, 2006), graph sparsity (Kim and Xing, 2009; Jacob et al., 2009),
matrix rank sparsity (Candès and Recht, 2009), and other combinatorial sparsity patterns
(Obozinski and Bach, 2012). These recent notions of structured sparsity (Bach et al., 2012;

c©2017 Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/14-348.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v18/14-348.html

Yu, Zhang, and Schuurmans

Micchelli et al., 2013) have greatly enhanced the ability to model structural relationships
in data; however, they also create significant computational challenges.

A currently popular optimization scheme for training sparse models is accelerated prox-
imal gradient (APG) (Beck and Teboulle, 2009; Nesterov, 2013), which enjoys an optimal
rate of convergence among black-box first-order procedures (Nesterov, 2013). An advan-
tage of APG is that each iteration consists solely of computing a proximal update (PU),
which for simple regularizers can have a very low complexity. For example, under l1 norm
regularization each iterate of APG reduces to a soft-shrinkage operator that can be com-
puted in linear time, which partly explains its popularity for such problems. Unfortunately,
for matrix low-rank regularizers the PU soon becomes a computational bottleneck. For
example, the trace norm is often used to promote low rank solutions in matrix variable
problems such as matrix completion (Candès and Recht, 2009); but here the associated PU
requires a full singular value decomposition (SVD) of the gradient matrix on each iteration,
which prevents APG from being applied to large problems. Not only does the PU require
nontrivial computation for matrix regularizers, it also yields dense intermediate iterates.

To address the primary shortcomings with APG, we investigate the generalized condi-
tional gradient (GCG) strategy for sparse optimization, which has been motivated by the
promise of recent sparse approximation methods (Hazan, 2008; Clarkson, 2010). A special
case of GCG, known as the conditional gradient (CG), was originally proposed by Frank and
Wolfe (1956) and has received significant renewed interest (Bach, 2015; Clarkson, 2010; Fre-
und and Grigas, 2016; Hazan, 2008; Jaggi and Sulovsky, 2010; Jaggi, 2013; Shalev-Shwartz
et al., 2010; Tewari et al., 2011; Yuan and Yan, 2013). The key advantage of GCG for
sparse estimation is that it need only compute the polar of the regularizer in each iteration,
which sometimes admits a much more efficient update than the PU in APG. For example,
under trace norm regularization, GCG only requires the spectral norm of the gradient to
be computed in each iteration, which is an order of magnitude cheaper than evaluating
the full SVD as required by APG. Furthermore, the greedy nature of GCG affords explicit
control over the sparsity of intermediate iterates, which is not available in APG. Although
existing work on GCG has generally been restricted to constrained optimization (i.e. en-
forcing an upper bound on the sparsity-inducing regularizer), in this paper we consider the
more general regularized version of the problem. Despite their theoretical equivalence, the
regularized form allows more efficient local optimization to be interleaved with the primary
update, which provides a significant acceleration in practice.

This paper is divided into two major parts: first we present a general treatment of GCG
and establish its convergence properties for convex optimization in Section 3, with a special
focus on convex gauge regularizers; then we apply the method to important case studies to
demonstrate its effectiveness on large-scale, sparse estimation problems in Section 4, with
experiments presented in Section 5.

In particular, in the first part, after establishing notation and briefly discussing relevant
optimization schemes (Section 2), we present our first main contribution (Section 3): the
convergence properties of GCG for general convex composite optimization. The algorithm
is then specialized to convex gauge regularizers with refined analysis (Section 3.2). Indeed
we prove that, under standard assumptions, GCG converges to the global optimum at the
rate of O(1/t)—which is a significant improvement over previous bounds (Dudik et al.,
2012). Although the convergence rate for GCG remains inferior to that of APG, these two

2

Generalized Conditional Gradient for Sparse Estimation

algorithms demonstrate alternative trade-offs between the number of iterations required
and the per-step complexity. As shown in our experiments, GCG can be significantly faster
than APG in terms of overall computation time for large problems. The results in Section 3
are new.

Equipped with the technical results of GCG on convex optimization, the second part
of the paper then applies the algorithm to the important application of low rank learning
(Section 4). Since imposing a hard bound on matrix rank generally leads to an intractable
problem, in Section 4.2 we first present a generic relaxation strategy based on convex gauges
(Chandrasekaran et al., 2012; Tewari et al., 2011) that yields a convex program (Bach et al.,
2008; Bradley and Bagnell, 2009; Zhang et al., 2012). Conveniently, the resulting problem
can be easily optimized using the GCG algorithm from Section 3.2. To further reduce com-
putation time, we introduce in Section 4.3 an auxiliary fixed rank subspace optimization
within each iteration of GCG. Although similar hybrid approaches have been previously
suggested (Burer and Monteiro, 2005; Laue, 2012; Mishra et al., 2013), we propose an effi-
cient new alternative that, instead of locally optimizing a constrained fixed rank problem,
optimizes an unconstrained surrogate objective based on a variational representation of ma-
trix norms. This alternative strategy allows a far more efficient local optimization without
compromising GCG’s convergence properties. In Section 4.4 we show that the approach can
be applied to dictionary learning and matrix completion problems, as well as a non-trivial
multi-view form of dictionary learning (White et al., 2012).

Finally, in Section 5 we provide an extensive experimental evaluation that compares
the performance of GCG (augmented with interleaved local search) to state-of-the-art op-
timization strategies, across a range of problems, including matrix completion, multi-class
classification, and multi-view dictionary learning.

1.1 Extensions over Previously Published Work

Some of the results in this article have appeared in a preliminary form in two conference
papers (Zhang et al., 2012; White et al., 2012); however, several specific extensions have
been added in this paper, including:

• A more extensive and unified treatment of GCG in general Banach spaces.

• A more refined analysis of the convergence properties of GCG.

• A new application of GCG to multi-view dictionary learning.

• New experimental evaluations on larger data sets, including new results for matrix
completion and image multi-class classification.

• Open source Matlab code released at https://www.cs.uic.edu/~zhangx/GCG.

2. Preliminaries

We first establish some of the definitions and notation that will be used throughout the pa-
per, before providing a brief background on the relevant optimization methods that establish
a context for discussing GCG.

3

https://www.cs.uic.edu/~zhangx/GCG

Yu, Zhang, and Schuurmans

2.1 Notation and Definitions

Throughout this paper we assume that the underlying space, unless otherwise stated, is a
real Banach space B with norm ‖·‖; for example, B could be the Euclidean space Rd with
any norm. The dual space (the set of all real-valued continuous linear functions on B) is
denoted B∗ and is equipped with the dual norm ‖g‖◦ = sup{g(w) : ‖w‖ ≤ 1}. Note that
for a differentiable function f : B → R := R ∪ {∞}, its (Frechét) derivative ∇f is in the
dual space B∗.

We use bold lowercase letters to denote vectors, where the i-th component of a vector
w is denoted wi, while wt denotes some other vector. We use the shorthand 〈w,g〉 := g(w)
for any g ∈ B∗ and w ∈ B. We call a function f : B → R σ-strongly convex (w.r.t. the
norm ‖·‖) if there exists some σ ≥ 0 such that for all 0 ≤ λ ≤ 1 and w, z ∈ B,

f(λw + (1− λ)z) + 1
2σλ(1− λ) ‖w − z‖2 ≤ λf(w) + (1− λ)f(z). (1)

In the case where σ = 0 we simply say f is convex. A set C ⊆ B is called convex if for all
w, z ∈ C =⇒ λw + (1− λ)z ∈ C for all 0 ≤ λ ≤ 1. It follows from the definition that the
domain of a convex function f , denoted as dom f := {w : f(w) <∞}, is a convex set. The
function f is called proper if dom f 6= ∅, and closed if all sublevel sets {w : f(w) ≤ α} are
closed for all α ∈ R. The subdifferential of a convex function f : B → R at w is defined as
the set ∂f(w) = {g ∈ B∗ : f(z) ≥ f(w) + 〈z−w,g〉 , ∀z ∈ B}.

Key to our subsequent development is two particular functions associated with a nonempty
set in B: the indicator function

ιC(w) =

{
0, if w ∈ C
∞, otherwise

, (2)

and the gauge function

κ(w) = κA(w) := inf{ρ ≥ 0 : w ∈ ρA}, (3)

where ρA := {ρw : w ∈ A}, and the infimum is taken to be infinity over an empty set
(i.e. when the condition w ∈ ρA is not satisfied for any ρ ≥ 0). Intuitively, κ(w) is the
smallest rescaling of the set A to “barely” contain w; see Figure 1. Note that we always
have κ(0) = 0, and the gauge function is always positive homogeneous (i.e., κ(tw) = tκ(w)
for all t ≥ 0). Let B = Bκ := {w : κ(w) ≤ 1} denote the “unit ball” of κ, and then κB = κA.
Bκ is obviously intrinsic to κ, while different choices of A may yield the same gauge κA.
Clearly, the indicator function ιC is convex iff C is convex, while the gauge function κ is
convex iff its unit ball is convex. Moreover, the gauge κ is a semi-norm iff its unit ball
B is convex and symmetric (i.e. B = −B). Specifically, all semi-norms are convex gauge
functions.

In practice, it is natural to engineer κA from a general “atomic set” A, which does not
have to be convex (and can even be discrete) or contain the origin. Examples include the set
of permutation matrices (Chandrasekaran et al., 2012), and the set of xx> with ‖x‖2 = 1
and xi ≥ 0 for low-rank nonnegative matrix factorization (x> is the transpose of x). In this
paper, we will work only with convex closed gauge functions, for which a sufficient but not
necessary condition is that A is convex, closed, and containing the origin (an assumption

4

Generalized Conditional Gradient for Sparse Estimation

0
C

w

ρ

Figure 1: Defining a convex gauge via the Minkowski functional of a convex set C.

made by many textbooks). For practical flexibility, we intentionally avoid making the latter
assumptions in the first place, and the resulting technical complication is minimal.

A related function that underpins our algorithm is the polar of a gauge function κA,
defined for all g ∈ B∗ as

κ◦(g) = κ◦A(g) := inf{µ ≥ 0 : 〈w,g〉 ≤ µκ(w), ∀w ∈ B} (4)

= sup
w∈Bκ

〈w,g〉 = sup
w∈A∪{0}

〈w,g〉 . (5)

As the notation suggests, the polar of a norm (a bona fide convex gauge) is its dual norm.

Lastly, a differential function ` : B → R is said to be L-smooth (w.r.t. the norm ‖·‖) if
for all w, z ∈ B,

`(w) ≤ ˜̀
L(w; z) := `(z) + 〈w − z,∇`(z)〉+ L

2 ‖w − z‖2 , (6)

i.e., ` is upper bounded by the quadratic approximation around z. It is well-known that if
the gradient ∇` is L-Lipschitz continuous, i.e., ‖∇`(w)−∇`(z)‖◦ ≤ L‖w− z‖ for all w, z,
then ` is L-smooth. The converse is also true if ` is additionally convex. We will make
repeated use of this quadratic upper bound in our analysis below.

2.2 Composite Minimization Problem

Many machine learning problems, particularly those formulated in terms of regularized risk
minimization, can be formulated as:

inf
w∈B

F (w), such that F (w) := `(w) + f(w), (7)

where f is convex and ` is convex and continuously differentiable. Typically, ` is a loss func-
tion and f is a regularizer although their roles can be reversed in some common examples,
such as support vector machines and Lasso.

Due to the importance of this problem in machine learning, significant effort has been
devoted to designing efficient algorithms for solving (7). Standard methods are generally
based on computing an update sequence {wt} that converges to a global minimizer of F
when F is convex, or converges to a stationary point otherwise. For example, a popular

5

Yu, Zhang, and Schuurmans

example is the mirror descent (MD) algorithm (Beck and Teboulle, 2003), which takes an
arbitrary subgradient gt ∈ ∂F (wt) and successively updates by

wt+1 = arg min
w

{
〈w,gt〉+

1

2ηt
D(w,wt)

}
(8)

with a suitable step size ηt ≥ 0; here D(w, z) := d(w) − d(z) − 〈w − z,∇d(z)〉 denotes a
Bregman divergence induced by some differentiable 1-strongly convex function d : B → R.
Under mild assumptions, MD converges (in terms of the function value) at a rate of O(1/

√
t)

(Beck and Teboulle, 2003). However, this algorithm ignores the composite structure in (7)
and can be impractically slow for many applications.

Another widely used algorithm is the proximal gradient (PG) (e.g. Fukushima and Mine,
1981), also known as the forward-backward splitting procedure, which iteratively performs
the proximal update (PU)

wt+1 = arg min
w

{
〈w,∇`(wt)〉+ f(w) +

1

2ηt
D(w,wt)

}
. (9)

PU differs from MD updates in that it does not linearize the regularizer f . The downside is
that (9) is usually harder to solve than (8) for each iteration, with an upside that a faster
O(1/t) rate of convergence can be achieved (Tseng, 2010). This rate can be further improved
to O(1/t2) with the extrapolation variant known as accelerated proximal gradient (APG)
(Beck and Teboulle, 2009; Nesterov, 2013). In particular, suppose B = Rd, D(w, z) =
1
2 ‖w − z‖22, and f(w) = ‖w‖1, where the lp norm is defined as ‖w‖p := (

∑d
i=1 |wi|p)1/p

for p ≥ 1. Then PU recovers the soft-shrinkage operator, which plays an important role in
sparse estimation:

zt = wt − ηt∇`(wt), and wt+1 = (1− ηt/ |zt|)+ zt. (10)

Here the algebraic operations in the latter formula are performed componentwise. Sim-
ilarly, when B = Rm×n, D(W,Z) = 1

2 ‖W − Z‖
2
F (Frobenius norm) and f(W) = ‖W‖tr

(trace norm, i.e. sum of singular values), one recovers the matrix analogue of soft-shrinkage
used for matrix completion (Candès and Recht, 2009): here the same gradient update of
zt in (10) is applied, but the shrinkage operator on wt+1 in (10) is applied to the singu-
lar values of Zt while keeping the singular vectors intact. Unfortunately, such a PU can
become prohibitively expensive for large matrices, since it requires a full singular value
decomposition (SVD) at each iteration, at a cubic time cost. We will see in Section 3.2 that
an alternative algorithm only requires computing the dual of the trace norm (namely the
spectral norm ‖·‖sp, i.e. the greatest singular value), which requires only quadratic time
per iteration.

3. Generalized Conditional Gradient for Convex Optimization

In this section we present the generalized conditional gradient (GCG) algorithm, which has
recently been receiving renewed attention (Bredies and Lorenz, 2008; Hazan, 2008; Jaggi,
2013; Shalev-Shwartz et al., 2010; Yuan and Yan, 2013; Zhang et al., 2012). Our goal in
this section will be to develop efficient solution methods for (7), where f is convex and `

6

Generalized Conditional Gradient for Sparse Estimation

is convex and L-smooth (cf. (6)). In particular, we will refine our algorithms to convex
gauge regularized problems where special computational savings can be achieved through
its polar. These are clearly among the most important settings in practice, and after some
enhancements the algorithm and convergence guarantees we establish in this section will be
applied to dictionary learning in Section 4.

3.1 General Setting with Convex and Smooth `

We first develop the framework of the GCG algorithm and its analysis by focusing on general
convex functions f . Formally, we make the following assumption throughout this Section 3.

Assumption 1 ` is convex and L-smooth, and f is convex.

Protocol : To avoid unnecessary pathologies, we tacitly assume all functions considered in
this work are proper and closed.

To derive the optimization algorithm, first observe that given the above assumption,
F = `+ f is convex and so any w ∈ B is globally optimal for (7) if, and only if,

0 ∈ ∂F (w) = ∇`(w) + ∂f(w). (11)

Let f∗(g) := supw 〈w,g〉 − f(w) denote the Fenchel conjugate of f , and using the fact
that g ∈ ∂f(w) iff w ∈ ∂f∗(g) when f is closed (Borwein and Vanderwerff, 2010), one can
observe that the necessary and sufficient condition for w to be globally optimal can also be
expressed as

(11) ⇐⇒ w ∈ ∂f∗(−∇`(w)) ⇐⇒ w ∈ (1− η)w + η∂f∗(−∇`(w)), (12)

where η ∈ (0, 1). Then, by the definition of f∗, we have

d ∈ ∂f∗(−∇`(w)) ⇐⇒ d ∈ arg min
d
{〈d,∇`(w)〉+ f(d)} . (13)

Thus, the condition for a global minimum can be characterized by the fixed-point inclusion

w ∈ (1− η)w + ηd for some d ∈ arg min
d
{〈d,∇`(w)〉+ f(d)} . (14)

This particular fixed-point condition immediately suggests an update that provides the foun-
dation for the generalized conditional gradient algorithm (GCG) outlined in Algorithm 1.
Each iteration of this procedure involves linearizing the smooth loss `, solving the subprob-
lem (13), selecting a step size, taking a convex combination, then conducting some form
of local improvement. The GCG update based on (14) naturally generalizes the original
conditional gradient update, which was first studied by (Frank and Wolfe, 1956) for the
case when f = ιC for a polyhedral set C.

Note that the subproblem (13) shares some similarity with the proximal update (9):
both choose to leave the potentially nonsmooth function f intact, but here the smooth loss
` is replaced by its plain linearization rather than its linearization plus a (strictly convex)
proximal regularizer such as the quadratic upper bound ˜̀

L(·) in (6). Consequently, there
might be multiple solutions, in which case we simply adopt any one, or no solution (e.g.

7

Yu, Zhang, and Schuurmans

Algorithm 1 Generalized Conditional Gradient (GCG).

1: Initialize: w0 ∈ dom f .
2: for t = 0, 1, . . . do
3: Compute dt ∈ arg mind {〈d,gt〉+ f(d)}, where gt = ∇`(wt).
4: Choose step size ηt ∈ [0, 1] and perform update w̃t+1 = (1− ηt)wt + ηtdt.
5: wt+1 = Improve(w̃t+1, `, f) . Subroutine, see Definition 1
6: end for

divergence), in which case we will impose extra assumptions to ensure boundedness (details
below, especially Assumption 2 and Theorem 2).

An important component of Algorithm 1 is the final step, Improve, in Line 5, which is
particularly important in practice: it allows for heuristic local improvement to be conducted
on the iterates without sacrificing any theoretical convergence properties of the overall pro-
cedure (see Section 4.3). A precursor of Improve appeared in (Meyer, 1974, Algorithm 2).
Since Improve has access to both ` and f it can be very powerful in principle—we will con-
sider the following variants that have respective consequences for practice and subsequent
analysis.

Definition 1 The subroutine Improve in Algorithm 1 is called Null if for all t, wt+1 =
w̃t+1; Descent if F (wt+1) ≤ F (w̃t+1); Monotone if F (wt+1) ≤ F (wt); and Relaxed if

F (wt+1) ≤ ˜̀
L(w̃t+1; wt) + (1− ηt)f(wt) + ηtf(dt). (15)

Obviously, Relaxed can be easily morphed to further satisfy Descent and/or Monotone

by comparing F (wt+1) with F (w̃t+1) and/or F (wt), whereas Null and Descent must be
Relaxed (since ` is L-smooth).

Our main goal remains to establish that Algorithm 1 indeed converges to a global op-
timum under general conditions given in Assumption 1. In order to address the aforemen-
tioned issue of bounding dt, we next introduce one more assumption.

Assumption 2 The sequences {dt} and {wt} generated by the algorithm are bounded for
any choice of ηt ∈ [0, 1].

Although this assumption is more stringent, it can fortunately be achieved under various
conditions, which we summarize as follows. The proof is given in Appendix A.1.

Proposition 2 Let Assumption 1 hold. Then Assumption 2 is satisfied if any of the fol-
lowing holds.

(a) The subroutine Improve is Monotone; the sublevel set {w ∈ dom f : F (w) ≤ F (w0)} is
compact; and f is cofinite, i.e., its Fenchel conjugate f∗ has full domain.

(b) The subroutine Improve is Monotone; the sublevel set {w ∈ dom f : F (w) ≤ F (w0)} is
bounded; and f is super-coercive, i.e., lim‖w‖→∞ f(w)/ ‖w‖ → ∞.

(c) dom f is bounded.

8

Generalized Conditional Gradient for Sparse Estimation

In particular, under any of the conditions in Theorem 2, Line 3 of Algorithm 1 is well-
defined. Note that if B = Rd, then condition (a) is in fact equivalent to condition (b). On
the other hand, if f is a convex gauge, then none of the three conditions above holds, and
we will deal with this in Section 3.2.

Finally, for each w ∈ B we define a quantity, referred to as the duality gap, that will be
useful in understanding the convergence properties of GCG:

G(w) := F (w)− inf
d
{`(w) + 〈d−w,∇`(w)〉+ f(d)} (linearizing ` at w) (16)

= 〈w,∇`(w)〉+ f(w)− inf
d
{〈d,∇`(w)〉+ f(d)}

= 〈w,∇`(w)〉+ f(w) + f∗(−∇`(w)). (definition of Fenchel dual) (17)

Since f and ` are convex in Assumption 1, the duality gap provides an upper bound on the
suboptimality of any search point, as established in the following proposition.

Proposition 3 Let Assumption 1 hold. Then G(w) ≥ F (w)− infd F (d) ≥ 0 for all w ∈ B.
Furthermore, G(w) = 0 iff w is globally optimal, i.e. w satisfies the condition (11).

Proof As ` is convex, (16) implies G(w) ≥ F (w)−infd{`(d)+f(d)} = F (w)−infd F (d)≥0.
By the Fenchel-Young inequality, (17) implies G(w) = 0 iff w ∈ ∂f∗(−∇`(w)), i.e. (11)
holds.

Since G(wt) is an upper bound on the suboptimality of wt, the duality gap gives a natural
stopping criterion for (7) that can be easily computed in each iteration of Algorithm 1.

We are now ready for the first convergence result regarding Algorithm 1.

Theorem 4 Let Assumptions 1 and 2 hold. Also assume the subroutine is Relaxed, and
the subproblem (13) is solved up to some additive error εt ≥ 0. Then, for any w ∈ domF
and t ≥ 0, Algorithm 1 yields

F (wt+1) ≤ F (w) + πt(1− η0)(F (w0)− F (w)) +
t∑

s=0

πt
πs
η2s(εs/ηs + L

2 ‖ds −ws‖2), (18)

where πt :=
∏t
s=1(1− ηs) with π0 = 1. Furthermore, for all t ≥ k ≥ 0, the minimal duality

gap G̃tk := mink≤s≤t G(ws) satisfies

G̃tk ≤
1∑t
s=k ηs

[
F (wk)− F (wt+1) +

t∑
s=k

η2s

(
εs/ηs + L

2 ‖ds −ws‖2
)]

. (19)

From Theorem 4 we derive the following concrete rates of convergence.

Corollary 5 Under the same assumptions as Theorem 4, also let ηt = 2/(t+2), εt ≤ δηt/2
for some δ ≥ 0, and LF := supt L ‖dt −wt‖2. Then, for all t ≥ 1 and w, Algorithm 1
yields

F (wt) ≤ F (w) +
2(δ + LF)

t+ 3
, and G̃t1 ≤

3(δ + LF)

t ln 2
≤ 4.5(δ + LF)

t
. (20)

9

Yu, Zhang, and Schuurmans

The proofs of Theorem 4 and Theorem 5 can be found in Appendix A.2 and Ap-
pendix A.3 respectively. Note that the simple step size rule ηt = 2/(t+ 2) already leads to
an O(1/t) bound on the objective value attained. Of course, it is possible to use other step
size rules. For instance, both ηs = 1/(s+ 1) and the constant rule ηs = 1− (t+ 1)1/t lead
to an O(1+log t

t+1) rate; see (Freund and Grigas, 2016) for detailed calculations.

We emphasize that GCG with the open-loop step size rule ηt = 2/(t+2) requires neither
the Lipschitz constant L nor the norm ‖·‖ to be known. We can therefore freely adopt the
best choices for the problem at hand in the analysis. Note that, even though the rate does
not depend on the initial point w0 provided η0 = 1, by letting η0 6= 1 the bound can be
slightly improved (Freund and Grigas, 2016).

Remark 6 The observation that an O(1/t) rate can be obtained by an open-loop step size
rule such as ηt = O(1/t) appears to have been first made by Dunn and Harshbarger (1978).
The same rate can be achieved by the closed-loop step size rule where ηt is selected to
minimize `((1−ηt)wt+ηtdt) or its quadratic upper bound ˜̀((1−ηt)wt+ηtdt; wt) (Frank and
Wolfe, 1956; Levitin and Polyak, 1966; Dem’yanov and Rubinov, 1967). A similar rate on
the minimal duality gap was also given in (Clarkson, 2010), and extended by (Jaggi, 2013).
However, all these previous works focused on the special case where f = ιC for some compact
set C. Fukushima and Mine (1981) was the first to consider a general convex function
f (and possibly a nonconvex `), but they only established convergence for the algorithm.
Bredies and Lorenz (2008) proved the O(1/t) rate by using a closed-loop step size rule.
More recently, Bach (2015) considered the special case where f is strongly convex, and
identified the equivalence between GCG and MD, hence also establishing the O(1/t) rate for
this special case.

3.2 Improved Algorithm and Refined Analysis when f is a Convex Gauge

Although the results in Theorem 4 and Theorem 5 hold for general convex functions f ,
they require {dt} and {wt} to be bounded as in Assumption 2. Some sufficient conditions
were provided by Theorem 2. Unfortunately, these conditions cannot be satisfied by an
important class of regularizers in machine learning: norms, semi-norms, and more generally
convex gauge functions, cf. Section 2 for the detailed definition. Examples include the `p
norms (p ≥ 1), the total variation semi-norm, the trace norm for matrices, etc. Indeed,
the subproblem (13) in Line 3 of Algorithm 1 might diverge to −∞, leaving the update
undefined. In this subsection, we develop a specialized form of GCG that circumvents
this problem and exploits properties of convex gauges to significantly reduce computational
overhead. The resulting GCG formulation, which is one of our main contributions, will
be used to achieve efficient algorithms in important case studies in the second part of the
paper, such as matrix completion under trace norm regularization (Section 4.2.1 below).

In the literature, two main approaches have been used to bypass the unboundedness
in solving (13); unfortunately, both remain unsatisfactory in different ways. First, one
obvious way to restore boundedness to (13) is to reformulate the regularized problem (7) in
its equivalent constrained form

inf
w

`(w) s.t. f(w) ≤ ζ, (21)

10

Generalized Conditional Gradient for Sparse Estimation

where it is well-known that a correspondence between (7) and (21) can be achieved if the
constant ζ is chosen appropriately. In this case, Algorithm 1 can be directly applied as long
as (21) has a bounded domain. Much recent work in machine learning has investigated this
variant (Hazan, 2008; Jaggi and Sulovsky, 2010; Jaggi, 2013; Shalev-Shwartz et al., 2010;
Tewari et al., 2011; Yuan and Yan, 2013). However, finding the appropriate value of ζ is
costly in general, and often one cannot avoid considering the penalized formulation (e.g.
when it is nested in another problem). Furthermore, the constraints in (21) preclude the
application of many efficient local Improve techniques designed for unconstrained problems.

A second, alternative, approach is to square f , which ensures that it becomes super-
coercive (Bradley and Bagnell, 2009). However, this modification is somewhat arbitrary,
in the sense that super-coerciveness can be achieved by raising the norm to the pth power
for any p > 1 (when B = Rd). Moreover, the insertion of a local Improve step in such an
approach requires the regularizer f to be evaluated at all iterates, which is expensive for
applications such as matrix completion.

3.2.1 Generalized Convex Gauge Regularization

To address the issue of ensuring well defined iterates, while also reducing their cost, we
develop an alternative modification of GCG. The algorithm we develop also allows a mild
generalization of convex gauge regularization by introducing a composition with an increas-
ing convex function. In particular, let κ denote a convex gauge induced by a convex, closed
set C containing the origin (cf. (3)) and let h : R+ → R denote an increasing convex func-
tion over R+ := [0,∞]. Then regularizing by f(·) = h(κ(·)) yields the particular form of
(7) that we will address with this modified approach:

inf
w

`(w) + h(κ(w)). (22)

For the structured sparse regularizers typically considered in machine learning, the set C
used to construct the gauge function κ via (3) has additional structure that admits efficient
computation (Chandrasekaran et al., 2012). In particular, C is often constructed by taking
the convex hull of some compact set of “atoms” A specific to the problem; i.e., C = convA.
Such a structured formulation allows one to re-express the gauge as the “l1 norm” over an
appropriate “atomic decomposition.” In details:

κC(w) = inf

{
r∑
i=1

λi : w =
r∑
i=1

λiai,ai ∈ A, λi ≥ 0

}
(23)

κ◦C(g) = sup
w∈A∪{0}

〈w,g〉 . (24)

That is, if we decompose w as a conic combination of the “atoms” in A, then κ(w) is the
least l1 norm of the decomposition coefficients. Determining the convex gauge κC directly
from the set C is not always easy, and the following duality result may come into aid
(Rockafellar and Wets, 1998, p. 491):

C is closed convex and 0 ∈ C =⇒ κC = (κ◦C)
◦. (25)

Since A is compact, the polar κ◦C has full domain. Intuitively, κ◦ has a much simpler
form than κ if the structure of A is “simple.” In such cases, it is advantageous to design

11

Yu, Zhang, and Schuurmans

an optimization algorithm that circumvents evaluation of κ, by instead using κ◦ which is
generally far less expensive to evaluate. This will be the underpinning motivation of our
algorithm design.

3.2.2 Modified GCG Algorithm for Generalized Gauge Regularization

The key to the modified algorithm is to avoid the possibly unbounded solution to (13)
while also avoiding explicit evaluation of the gauge κ. First, to avoid unboundedness, we
adopt the technique of moving the regularizer to the constraint, as in (21), but rather than
applying the modification directly to (22) we only use it in the subproblem (13) via:

dt ∈ arg min
d:h(κ(d))≤ζ

〈d,∇`(wt)〉 . (26)

Then, to bypass the complication of dealing with h and the unknown bound ζ, we decompose
dt into its normalized direction at and scale θt (i.e., such that dt = atθt/ηt), determining
each separately. In particular, from this decomposition, the update from Line 4 of Algo-
rithm 1 can be equivalently expressed as

wt+1 = (1− ηt)wt + ηtdt = (1− ηt)wt + θtat, (27)

hence the modified algorithm need only work with at and θt directly.
Determining the direction. First, the normalized direction, at, can be recovered via

at ∈ arg min
a:κ(a)≤1

〈a,∇`(wt)〉 ⇐⇒ at ∈ arg min
a∈A∪{0}

〈a,∇`(wt)〉 (by (4)) (28)

⇐⇒ at ∈ arg max
a∈A∪{0}

〈a,−∇`(wt)〉 . (29)

Observe that (29) effectively involves computation of the polar κ◦(−∇`(w)) only, by (4).
Since this optimization might still be challenging, we further allow it to be solved only
approximately to within an additive error εt ≥ 0 and a multiplicative factor αt ∈ (0, 1]; that
is, by relaxing (28) the modified algorithm only requires an at ∈ A to be found that satisfies

〈at,∇`(wt)〉 ≤ αt
(
εt + min

a∈A∪{0}
〈a,∇`(wt)〉

)
= αt

(
εt − κ◦(−∇`(wt))

)
. (30)

Intuitively, this formulation computes the normalized direction that has (approximately)
the greatest negative “correlation” with the gradient ∇`, yielding the steepest local decrease
in `. Importantly, this formulation does not require evaluation of the gauge function κ.

Determining the scale. Next, to choose the scale θt, it is natural to consider minimizing
a simple upper bound on the objective that is obtained by replacing `(·) with its quadratic
upper approximation ˜̀

L(·; wt) given in (6):

min
θ≥0

˜̀
L((1− ηt)wt + θat; wt) + h(κ((1− ηt)wt + θat)). (31)

Unfortunately, κ still participates in (31), so a further approximation is required. Here is
where the decomposition of dt into at and θt is particularly advantageous. Observe that

h(κ((1−ηt)wt + θat)) ≤ h((1−ηt)κ(wt) + ηtκ(θat/ηt))

≤ (1−ηt)h(κ(wt)) + ηth(κ(θat/ηt)) (32)

≤ (1− ηt)h(κ(wt)) + ηth(θ/ηt)), (33)

12

Generalized Conditional Gradient for Sparse Estimation

Algorithm 2 GCG for positively homogeneous regularizers.

Require: The set A whose convex hull C defines the gauge κ.
1: Initialize w0 and ρ0 ≥ κ(w0).
2: for t = 0, 1, . . . do
3: Choose normalized direction at that satisfies (30).
4: Choose step size ηt ∈ [0, 1] and set the scaling θt ≥ 0 by (34)
5: w̃t+1 = (1− ηt)wt + θtat, and ρ̃t+1 = (1− ηt)ρt + θt
6: (wt+1, ρt+1) = Improve(w̃t+1, ρ̃t+1, `, f) . Subroutine, see Theorem 8
7: end for

where the first inequality follows from the convexity of κ and the fact that h is increasing,
the second inequality follows from the convexity of h, and (33) follows from the fact that
κ(at) ≤ 1 by construction (at ∈ A in (4)). Although κ still participates in (33) we can
now bypass evaluation of κ by maintaining a simple upper bound ρt ≥ κ(wt), yielding the
relaxed update

θt = arg min
θ≥0

{
˜̀
L((1− ηt)wt + θat; wt) + (1− ηt)h(ρt) + ηth(θ/ηt)

}
. (34)

Crucially, the upper bound ρt ≥ κ(wt) can be maintained by the simple update ρt+1 =
(1− ηt)ρt + θt, which is sufficient to ensure that ρt+1 upper bounds κ(wt+1):

ρt+1 = (1− ηt)ρt + θt ≥ (1− ηt)κ(wt) + θtκ(at) ≥ κ((1− ηt)wt + θtat) ≥ κ(wt+1). (35)

From these components we obtain the final modified procedure, Algorithm 2: a variant
of GCG (Algorithm 1) that avoids the potential unboundedness of the subproblem (13) by
replacing it with (30), while also completely avoiding explicit evaluation of the gauge κ.
The Improve subroutine can be adapted by mirroring Theorem 1.

Definition 7 The subroutine Improve in Algorithm 2 is called Null if for all t, wt+1 =
w̃t+1 and ρt+1 = ρ̃t+1. Provided that ρt+1 ≥ κ(wt+1), Improve is called Descent if
`(wt+1) + h(ρt+1) ≤ `(w̃t+1) + h(ρ̃t+1); Monotone if `(wt+1) + h(ρt+1) ≤ `(wt) + h(ρt);
and Relaxed if

`(wt+1) + h(ρt+1) ≤ ˜̀
L(w̃t+1; wt) + (1− ηt)h(ρt) + ηth(θt/ηt). (36)

Similar to Theorem 1, Relaxed can be easily morphed to further satisfy Descent and/or
Monotone by comparing (wt+1, ρt+1) with (w̃t+1, ρ̃t+1) and/or (wt, ρt) over `(w)+h(ρ). As
before Null and Descent are specializations of Relaxed.

For problems of the form (22), Algorithm 2 can provide significantly more efficient
updates than Algorithm 1. Despite the relaxations introduced in Algorithm 2 to achieve
faster iterates, the following theorem establishes that the procedure is still sound, preserving
essentially the same convergence guarantees as the more expensive Algorithm 1.

Theorem 8 Let h : R+ → R be an increasing convex function, κ be a convex gauge induced
by the convex hull of a compact atomic set A ∪ {0}, and ` be L-smooth and convex. Let
F = ` + h ◦ κ and assume Algorithm 2 generates a bounded sequence {wt}. Let αt > 0,

13

Yu, Zhang, and Schuurmans

0 ≤ ηt ≤ 1, and the subroutine Improve be Relaxed. Then for any w ∈ domF and t ≥ 0,
we have

F (wt+1) ≤ F (w) + πt(1− η0)
(
F (w0)− F (w)

)
+

t∑
s=0

πt
πs
η2s

((
ρεs + h(ρ/αs)− h(ρ)

)
/ηs + L

2

∥∥∥ ρ
αs

as −ws

∥∥∥2), (37)

where ρ := κ(w) and πt :=
∏t
s=1(1− ηs) with π0 = 1.

The proof is given in Appendix A.4. From this theorem, we obtain the following rate of
convergence by pursuing a similar argument as in the proof of Theorem 5.

Corollary 9 Under the same setting as in Theorem 8, let ηt = 2/(t + 2), εt ≤ δηt/2 for

some absolute constant δ > 0, αt = α > 0, ρ = κ(w), and LF := L supt
∥∥ ρ
αat −wt

∥∥2.
Then for all t ≥ 1 and w, we have

F (wt) ≤ F (w) +
2(ρδ + LF)

t+ 3
+ h(ρ/α)− h(ρ). (38)

Moreover, if ` ≥ 0 and h is the identity map, then

F (wt) ≤
1

α
F (w) +

2(ρδ + LF)

t+ 3
. (39)

Some remarks concerning this algorithm and its convergence properties are in order.

Remark 10 When αt = 1 for all t, and h is the indicator ι[0,ζ] for some ζ > 0, Theorem 9
implies the same convergence rate for the constrained problem (21), which immediately
recovers (some of) the more specialized results discussed in (Clarkson, 2010; Hazan, 2008;
Jaggi, 2013; Shalev-Shwartz et al., 2010; Tewari et al., 2011; Yuan and Yan, 2013). For
the special case where h is the identity map, a similar O(1/t) rate achieved by a similar
algorithm appeared in Harchaoui et al. (2015), whose workshop version appeared around
the same time as our conference version (Zhang et al., 2012). Harchaoui et al. (2015)
considered the slightly more restrictive setting where the convex gauge κ is the restriction
of a norm into a convex cone and they did not consider (multiplicative) approximate polar
computations. Their algorithm also needs to evaluate κ explicitly, while the key advantage of
our method is to avoid this expensive computation by an upper bound. On the other hand,
Harchaoui et al. (2015) investigated the memory based acceleration in (Holloway, 1974;
Meyer, 1974) while we develop in the next section a fixed-rank local improvement step.

Remark 11 The additional factor ρ in the above bounds is necessary because the approx-
imation in (30) is not invariant to scaling, requiring some compensation. Note also that
α ≤ 1, since the right-hand side of (30) must become negative as εt → 0. The result in (39)
states roughly that an α-approximate subroutine (for computing the polar of κ) leads to an
α-approximate “minimum”, also at the rate of O(1/t). This observation was independently
made in (Bach, 2013), where the multiplicative factor ρ is introduced to solve approximately
some matrix factorization problems. In a similar vein, Cheng et al. (2016) leveraged the
multiplicative guarantee to solve some tensor problems.

14

Generalized Conditional Gradient for Sparse Estimation

Remark 12 The assumption that {wt} is bounded can be satisfied easily, which in turn
ensures LF < ∞. The simplest way is to postulate that the sublevel set {w ∈ domF :
F (w) ≤ `(w0) + h(ρ0)} is bounded. In this case {wt} is trivially bounded if Monotone is
used. When Relaxed is used instead (which includes Null and Descent), we can strengthen
it into Monotone via the roll-back trick in Theorem 7. At first sight, the algorithm appears
to be stuck, but in fact the diminishing step size ηt will eventually lead to progresses as
guaranteed by Theorem 9. Computationally, keeping track of `(wt)+h(ρt) does not incur any
overhead. We will provide concrete values/bounds of LF for the case studies in Section 4.2
and Section 4.4.

Remark 13 The convergence results in Theorem 8 and Theorem 9 obviously hold when
Null or Descent is employed for Improve, because they are both specializations of Relaxed.
The update for θ in (34) requires knowledge of the Lipschitz constant L and the norm ‖·‖.
If the norm ‖·‖ is Hilbertian and h is the identity map, we have the formula

θt = 1
L‖at‖2

max {〈at, Lηtwt −∇`(wt)〉 − 1, 0} .

However, it is also easy to devise other scaling and step size updates that do not require the
knowledge of L or the norm ‖·‖, such as

(η∗t , θ
∗
t) ∈ arg min

1≥η≥0,θ≥0
`((1− η)wt + θat) + (1− η)h(ρt) + ηh(θ/η), (40)

followed by the Null step. Note that (40) is jointly convex in η and θ, since ηh(θ/η) is a
perspective function. Evidently this update can be treated as a Relaxed subroutine, since
for any (ηt, θt) chosen in step 4 of Algorithm 2, it follows that

`(wt+1) + h(ρt+1) ≤ `((1− η∗t)wt + θ∗t at) + (1− η∗t)h(ρt) + η∗t h(θ∗t /η
∗
t)

≤ `((1− ηt)wt + θtat) + (1− ηt)h(ρt) + ηth(θt/ηt) (by (40))

≤ ˜̀
L(w̃t+1; wt) + (1− ηt)h(ρt) + ηth(θt/ηt).

The upper bound ρt+1 ≥ κ(wt+1) can be verified in the same way as for (35); hence the
update (40) enjoys the same convergence guarantee as in Theorem 9.

Remark 14 An alternative workaround for solving (7) with gauge regularization would
be to impose an upper bound ζ ≥ κ(w) and consider minw:κ(w)≤ζ {`(w) + κ(w)}, while
dynamically adjusting ζ. A standard GCG approach, similar to (Harchaoui et al., 2015),
would then require solving

dt ∈ arg min
d:κ(d)≤ζ

{〈d,∇`(wt)〉+ κ(d)} (41)

as a subproblem, which can be as easy to solve as (30). If, however, one wished to include a
local improvement step Improve (which is essential in practice), it is not clear how to effi-
ciently maintain the constraint κ(w) ≤ ζ. Moreover, solving (41) up to some multiplicative
factor might not be as easy as (30).

15

Yu, Zhang, and Schuurmans

3.3 Additional Discussions and Related Work

In this section we discuss some further properties and extensions of the GCG algorithm.
Smoothing: The convergence rates we have established require the convex loss ` to be

L-smooth. Although this holds for a variety of losses such as the square and logistic loss, it
does not hold for the hinge loss used in support vector machines. However, one can always
approximate a nonsmooth (Lipschitz) loss by a smooth function (Nesterov, 2005) before
applying GCG, at the expense of getting a slower O(1/

√
t) rate of convergence.

Totally Corrective: As given, Algorithm 2 adds a single atom in each iteration, with
a conic combination between the new atom and the previous aggregate. We will refer to it
as vanilla GCG if Improve is further set to Null. If f = ιC for some compact and convex
set C, we simply call it vanilla CG for disambiguation. An even more aggressive scheme is
to re-optimize the coefficients of all (or a subset of) existing atoms in each iteration. Such
a procedure was first studied in (Meyer, 1974; Holloway, 1974), which is often known as
the “totally (or fully) corrective update” in the boosting literature and as the “restricted
simplicial decomposition” in optimization. More generally, for the convex gauge κ, each
iteration of a totally corrective procedure would involve solving

min
σ≥0

`

(∑
τ∈At

στbτ

)
+
∑
τ∈At

στ , (42)

where At is a set of atoms accumulated up to the t-th iteration. When f = ιC , the totally
corrective CG solves minσ `

(∑
τ∈At στbτ

)
over σ ≥ 0 and 1′σ = 1. As pointed out by

Holloway (1974), as long as {wt,at} ⊆ At, the totally corrective CG will converge at least
as fast as the vanilla CG. Much faster convergence is usually observed in practice, although
this advantage must be countered by the extra effort spent in solving (42) and alike, which
itself need not be trivial. In a finite dimensional setting, provided that the atoms are
linearly independent and some restricted strong convexity is present, it is possible to prove
that the totally corrective CG converges at a linear rate; see (Shalev-Shwartz et al., 2010;
Yuan and Yan, 2013). Recent work of Lacoste-Julien and Jaggi (2015) has further relaxed
the requirement of linear independence by making a weaker assumption that the number
of atoms is finite (i.e. the feasible region is a polytope).

GCG v.s. PG: The convergence rate established for GCG is on par with PG. When
f = ιC , Canon and Cullum (1968) showed that the rate of vanilla CG cannot be improved in
general even when ` is strongly convex.1 In this sense, vanilla GCG (which subsumes vanilla
CG) is slower than an “optimal” algorithm like APG. GCG’s advantage, however, is that
it only needs to solve a linear subproblem (13) in each iteration (i.e., computing the polar
κ◦), whereas APG (or PG) needs to compute the proximal update, which is a quadratic
problem for the least square prox-function. The two approaches are complementary in the
sense that the polar can be easier to compute in some cases, whereas in other cases the
proximal update can be computed analytically. An additional advantage GCG has over
APG, however, is its greedy sparse nature: Each iteration of GCG amounts to a single
atom, hence the number of atoms never exceeds the total number of iterations for GCG. By
contrast, APG can produce a dense update in each iteration, although in later stages the

1. Improvements in specific cases are still possible; see the next paragraph. Indeed the counter-example of
Canon and Cullum (1968) only applies when the solution lies at the boundary of a polyhedral set.

16

Generalized Conditional Gradient for Sparse Estimation

estimates may become sparser due to the shrinkage effect of the proximal update. Moreover,
GCG is “robust” with respect to α-approximate atom selection (cf. (39) in Theorem 9),
whereas similar results do not appear to be available for PG or APG when the proximal
update is computed up to a multiplicative factor.

Faster Rates: Faster rates of convergence for CG (with a closed-loop step size rule),
under the restriction f = ιC , have been considered by a number of works. Levitin and Polyak
(1966) first showed that if C is strongly convex and the gradient ∇` is bounded away from 0,
then a linear rate of convergence can be achieved by CG. Guélat and Marcotte (1986) showed
that if there is a minimizer in the interior of C, then again a linear rate of convergence can
be obtained. Wolfe (1970) proposed an away step modification of CG, and a variant of
it designed by Guélat and Marcotte (1986) attained linear rate of convergence when C is
polyhedral. The analysis was further improved into a global linear rate in (Lacoste-Julien
and Jaggi, 2015; Beck and Shtern, 2015). Dunn (1979) proved o(1/t) rate, linear rate and
finite convergence for CG, depending on how “continuous” the polar operation is. Lastly,
Garber and Hazan (2015) showed that for polytope C, a modification of CG achieves the
linear rate if ` is of quadratic growth (in particular, strongly convex), and Garber and Hazan
(2016) proved the O(1/t2) rate if ` is of quadratic growth and C is strongly convex. Note
that these faster rates are possible by putting restrictive assumptions on the constraint
set C (polyhedral or strongly convex). Interestingly, results on faster rates for general
convex functions f are scarce, although establishing it for GCG is conceivably not hard.
For example, in (Zhang et al., 2012) we proved a linear rate for the totally corrective GCG
when ` is strongly convex (in a slightly stronger sense), f is a convex gauge, and B = Rn.

4. Application to Low Rank Learning

As a first application of GCG, we consider the problem of optimizing low rank matrices;
a problem that forms the cornerstone of many machine learning tasks such as dictionary
learning and matrix completion. Since imposing a bound on matrix rank generally leads to
an intractable problem, much recent work has investigated approaches that relax the hard
rank constraint with carefully designed regularization penalties that indirectly encourage
low rank structure (Bach et al., 2008; Bradley and Bagnell, 2009). In Section 4.2 we first
formulate a generic convex relaxation scheme for low rank problems arising in matrix ap-
proximation tasks, including dictionary learning and matrix completion. Conveniently, the
modified GCG algorithm developed in Section 3.2, Algorithm 2, provides a general solution
method for the resulting problems. Next, in Section 4.3 we show how the local improvement
component of the modified GCG algorithm can be provided in this case by a procedure that
optimizes an unconstrained surrogate (instead of a constrained problem) to obtain greater
efficiency. This modification significantly improves the practical efficiency of GCG without
affecting its convergence properties. We illustrate these contributions by highlighting the
example of matrix completion under trace norm regularization, where the improved GCG
algorithm demonstrates state of the art performance. Finally, we demonstrate how the con-
vex relaxation can be generalized to handle latent multi-view models (White et al., 2012) in
Section 4.4, showing how the improved GCG algorithm can still be applied once the major
challenge of efficiently computing the polar κ◦ has been solved.

17

Yu, Zhang, and Schuurmans

4.1 Low Rank Learning Problems

Many machine learning tasks, such as dictionary learning and matrix completion, can be
formulated as seeking low rank matrix approximations of a given data matrix. In these
problems, one is presented with an n×m matrix X (perhaps only partially observed) where
each column corresponds to a training example and each row corresponds to a feature across
examples; the goal is to recover a low rank matrixW that approximates (the observed entries
of) X. To achieve this, we assume we are given a convex loss function `(W) := L(W,X)
that measures how well W approximates X.2 If we impose a hard bound, t, on the rank of
W , the core training problem can then be expressed as

inf
W :rank(W)≤t

`(W) = inf
U∈Rn×t

inf
V ∈Rt×m

`(UV). (43)

Unfortunately, this problem is not convex, and except for special cases (such as SVD) is
believed to be intractable.

The two forms of this problem that we will explicitly illustrate in this paper are dictio-
nary learning and matrix completion. First, for dictionary learning, the n×m data matrix
X is fully observed, the n× t matrix U is interpreted as a “dictionary” consisting of t basis
vectors, and the t × m matrix V is interpreted as the “coefficients” consisting of m code
vectors. For this problem, the dictionary and coefficient matrices need to be inferred si-
multaneously, in contrast to traditional signal approximation schemes where the dictionary
(e.g., the Fourier or a wavelet basis) is fixed a priori. Unfortunately, learning the dictionary
with the coefficients creates significant computational challenge since the formulation is no
longer jointly convex in the variables U and V , even when the loss ` is convex. Indeed, for
a fixed dictionary size t, the problem is known to be NP-hard (Vavasis, 2010) except for
very special cases (Yu and Schuurmans, 2011).

The second learning problem we illustrate is low rank matrix completion. Here, one
observes a small number of entries in X ∈ Rn×m and the task is to infer the remaining
entries. In this case, the optimization objective can be expressed as `(W) := L(P(W −X)),
where L is a reconstruction loss (such as Frobenius norm squared) and P : Rn×m → Rn×m

is a “mask” operator that simply fills the entries corresponding to unobserved indices in
X with zero. Various recommendation problems, such as the Netflix prize,3 can be cast
as matrix completion. Due to the ill-posed nature of the problem it is standard to assume
that the matrix X can be well approximated by a low rank reconstruction W . Unfortu-
nately, the rank function is not convex, hence hard to minimize in general. Conveniently,
both the dictionary learning and matrix completion problems are subsumed by the general
formulation we consider in (43).

4.2 General Convex Relaxation and Solution via GCG

To develop a convex relaxation of (43), we first consider the factored formulation expressed
in terms of U and V on the right hand side. Although it only involves an unconstrained
minimization which can be convenient, care is needed to handle the scale invariance intro-
duced by the factored form: since U can always be scaled and V counter-scaled to preserve

2. Note that the matrix W need not reconstruct the entries of X directly: a nonlinear transfer could be
interposed while maintaining convexity of `; for example, by using an appropriate Bregman divergence.

3. http://www.netflixprize.com//community/viewtopic.php?id=1537

18

http://www.netflixprize.com//community/viewtopic.php?id=1537

Generalized Conditional Gradient for Sparse Estimation

the product UV , some form of penalty or constraint is required to restore well-posedness. A
standard strategy is to constrain U , for which a particularly common choice is to constrain
its columns to have unit length; i.e. ‖U:i‖c ≤ 1 for all i, where U:i stands for the i-th column
of U , and c simply denotes some norm on the columns. In dictionary learning, for example,
this amounts to constraining the basis vectors in the dictionary U to lie within the unit ball
of ‖·‖c. Similar normalization can be used to represent the rows Vi:, with the magnitude
encoded by σi ≥ 0. In consequence, the unconstrained optimization over `(UV) in (43) can
be reformulated as

min
U∈Rn×t,V ∈Rt×m,σ∈Rt

`(U diag(σ)V), s.t. ‖U:i‖c ≤ 1, ‖Vi:‖r ≤ 1, and σi ≥ 0. (44)

Here σ := (σ1, σ2, . . . , σt)
>, and diag(σ) is a diagonal matrix with the i-th diagonal entry

being σi. The specific form of the row norm ‖·‖r provides additional flexibility in promoting
different structures; for example, the l1 norm leads to sparse solutions, the l2 norm yields
low rank solutions, and block structured norms generate group sparsity. The specific form
of the column norm ‖·‖c also has an effect, as discussed in Section 4.4 below.

Of course the problem remains non-convex. However, it has recently been observed
that a simple relaxation of the rank constraint in (43) allows a convex reformulation to
be achieved (Argyriou et al., 2008; Bach et al., 2008; Bradley and Bagnell, 2009; Zhang
et al., 2011). Observe that replacing the rank constraint with a regularization penalty on
the magnitude σi of each basis pair (U:i, Vi:) yields a relaxed form of (43):

inf
U :‖U:i‖c≤1

inf
V :‖Vi:‖r≤1

inf
σ:σi≥0

`(U diag(σ)V) + λ ‖σ‖1 , (45)

where the number of columns in U (and also the number of rows in V) is not restricted.
Similar to Lasso, the l1 norm on the “singular values” (combination weights) σ is used as a
penalty that serves as a convex proxy for rank. By the shrinkage effect of the l1 norm, many
σi will become zero, implying that the corresponding columns of U (and rows of V) can be
dropped. As a result, the rank of the solution—which is indeed unknown a priori—can be
chosen adaptively with the trade-off parameter λ ≥ 0.

Importantly, although the problem (45) is still not jointly convex in the factors U , V
and σ, it can be exactly reformulated as a convex optimization as long as ` is convex:

(45) = min
W

`(W) + λ inf

{∑
i

σi : σ ≥ 0,W =
∑
i

σiU:iVi:, ‖U:i‖c ≤ 1, ‖Vi:‖r ≤ 1

}
(46)

= min
W

`(W) + λ κ(W), (47)

where the gauge κ is defined by the following set A with uncountably many elements

A := {uv> : u ∈ Rn,v ∈ Rm, ‖u‖c ≤ 1, ‖v‖r ≤ 1}. (48)

The resulting convex formulation (47) has been observed, in various forms, by, e.g., Ar-
gyriou et al. (2008); Bach et al. (2008); Zhang et al. (2011); White et al. (2012). However
our derivation, first presented in (Zhang et al., 2012), provides a much simpler and flexible
view based on convex gauges, which also establishes a direct connection to the GCG method

19

Yu, Zhang, and Schuurmans

outlined in Section 3.2, yielding an efficient solution method with no additional effort. The
reformulation (47) reveals that the relaxed learning problem (45) is essentially considering a
rank-one decomposition of W , which generalizes the singular value decomposition. Further-
more it provides a clearer understanding of the computational properties of the regularizer
in (47) via its polar:

κ◦(G) = sup
A∈A

〈A,G〉 = sup
‖u‖c≤1,‖v‖r≤1

u>Gv (49)

= sup
‖v‖r≤1

‖Gv‖◦c = sup
‖u‖c≤1

∥∥∥G>u
∥∥∥◦
r
. (50)

Recall that for gauge regularized problems in the form (47), Algorithm 2 only requires
approximate computation of the polar (30) in Line 3; hence an efficient method for (ap-
proximately) solving (49) immediately yields an efficient implementation. However, this
simplicity must be countered by the fact that the polar is not always tractable, since it in-
volves maximizing a norm subject to a different norm constraint.4 Nevertheless, there exist
important cases where the polar can be efficiently evaluated, which we illustrate below.

The polar also allows one to gain insight into the structure of the original gauge regu-
larizer, since by duality κ = (κ◦)◦ yields an explicit formula for κ. For example, consider
the important special case where ‖·‖r = ‖·‖c = ‖·‖2. In this case, using (49) one can infer
that the polar κ◦(·) = ‖·‖sp is the spectral norm, and therefore the corresponding gauge
regularizer κ(·) = ‖·‖tr is the trace norm. In this way, the trace norm regularizer, which
is known to provide a convex relaxation of the matrix rank (Chandrasekaran et al., 2012),
can be viewed from the perspective of dictionary learning as an induced norm that arises
from a simple 2-norm constraint on the magnitude of the dictionary entries U:i and a simple
2-norm penalty on the magnitudes of the code vectors Vi:.

This convex relaxation strategy based on convex gauges is quite flexible and has been
recently studied for some structured sparse problems (Chandrasekaran et al., 2012; Tewari
et al., 2011; Zhang et al., 2012; Bach, 2013). Importantly, the generality of the column and
row norms in (45) proffer considerable flexibility to finely characterize the structures sought
by low rank learning methods. We will exploit this flexibility in Section 4.4 below to achieve
a novel extension of this framework to multi-view dictionary learning (White et al., 2012).

4.2.1 Application to Matrix Completion

We end this subsection with a brief illustration of how the framework can be applied to
matrix completion. Recall that in this case one is given a partially observed data matrix X,
and the goal is to find a low rank approximator W that minimizes the reconstruction error
on observed entries. In particular, consider the following standard specialization of (47):

min
W∈Rn×m

1

2 ‖P‖0
‖P(X −W)‖2F + λ ‖W‖tr , (51)

where, as noted above, P : Rn×m → Rn×m is the mask operator that fills entries where X
is unobserved with zero. ‖P‖0 is the number of observed entries. Surprisingly, Candès and

4. In this regard, the α-approximate polar oracle introduced in (30) and Theorem 9 might be useful,
although we shall not develop this idea further here. See the work of Bach (2013) for some applications
of this idea to matrix factorization and the work of Cheng et al. (2016) to tensor problems.

20

Generalized Conditional Gradient for Sparse Estimation

Recht (2009) have proved that, assuming X is (approximately) low-rank, the solution of
the convex relaxation (51) will recover the true matrix X with high probability, even when
only a small random portion of X is observed.

Note that, since (51) is a specialization of (47), the modified GCG algorithm, Algo-
rithm 2, can be immediately applied. Interestingly, such an approach contrasts with the
most popular algorithm favored in the current literature: PG (or its accelerated variant
APG; cf. Section 2). The two strategies, GCG versus PG, exhibit an interesting trade-off.
Each iteration of PG (or APG) involves solving the PU (9), which in this case requires a full
singular value decomposition (SVD) of the current approximant W . The modified GCG
method, Algorithm 2, by contrast, only requires the polar of the gradient matrix ∇`(W)
to be (approximately) computed in each iteration (i.e. dual of the trace norm; namely, the
spectral norm), which is an order of magnitude cheaper to evaluate than a full SVD (cubic
versus squared worst case time).5 On the other hand, GCG has a slower theoretical rate
than APG, O(1/t) versus O(1/t2), in terms of the number of iterations required to achieve
a given accuracy. Once the enhancements in the next section have been incorporated, our
experiments in Section 5.1 will demonstrate that GCG is far more efficient than APG for
solving the matrix completion problem (51) to tolerances used in practice.

Given the specific objective (51), we may derive a concrete bound on LF used in Theo-
rem 9. Obviously, the smoothness constant is L = 1/ ‖P‖0. Suppose we use Monotone

with W0 = 0. So all Wt (and the optimal W) need to satisfy λ ‖Wt‖tr ≤ C, where
C = ‖PX‖2F /(2 ‖P‖0). Due to the normalization, C can be considered a universal constant.
All matrices A ∈ A in (48) satisfy ‖A‖F ≤ 1. Obviously 1

n ‖Wt‖2tr ≤ ‖Wt‖2F ≤ ‖Wt‖2tr. So

LF ≤ 2L sup
t

{
ρ2

α2
‖At‖2F + ‖Wt‖2F

}
≤ 2L sup

t

{
ρ2

α2
+ ‖Wt‖2tr

}
≤ 2

‖P‖0

(
1

α2
+ 1

)
C2

λ2
. (52)

If λ needs to be less than 1
‖P‖0

, then the upper bound on LF will be O(‖P‖0). Notice that

under Monotone, the expression of LF in Theorem 5 is on par with the condition number
LfD

2
∗ in (Harchaoui et al., 2015, Theorem 3).

4.3 Fixed-rank Local Optimization

Although the modified GCG algorithm, Algorithm 2, can be readily applied to the refor-
mulated low rank learning problem (47), the sublinear rate of convergence established in
Theorem 9 is still too slow in practice. Nevertheless, an effective local improvement scheme
can be developed that satisfies the properties of a Relaxed subroutine in Algorithm 2,
which allows empirical convergence to be greatly accelerated. Recall that in Algorithm 2,
the intermediate iterate W̃t+1 is determined by a linear combination of the previous iter-
ate Wt and the newly added atom At (we changed the notation from w̃t+1 to W̃t+1 since

5. The per-iteration cost of computing the spectral norm can be further reduced for the sparse matrices
occuring naturally in matrix completion, since the gradient matrix in (51) contains at most k nonzero
elements for k equal to the number of observed entries in X. In such cases, an ε accurate estimate of the

squared spectral norm can be obtained inO
(
k log(n+m)√

ε

)
time (Jaggi, 2013; Kuczyński and Woźniakowski,

1992), offering a significant speed up over the general case. Although some speed ups might also be
possible when computing the SVD for sparse matrices, the gap between the computational cost for
evaluating the spectral norm versus the trace norm for sparse matrices remains significant.

21

Yu, Zhang, and Schuurmans

the optimization variables are now matrices). We will next demonstrate that W̃t+1 can be
further improved by solving a reformulated local problem, and then show how this can still
preserve the convergence guarantees of Algorithm 2.

The key reformulation relies on the following fact.

Proposition 15 The convex gauge κ induced by the set A in (48) can be re-expressed as

κ(W) = min

{
t∑
i=1

‖U:i‖c ‖Vi:‖r : UV = W

}
= min

{
1

2

t∑
i=1

(
‖U:i‖2c + ‖Vi:‖2r

)
: UV = W

}
,

for U ∈ Rn×t and V ∈ Rt×m, as long as t ≥ mn.

In Appendix B.1 we provide a direct proof that allows us to bound the number of
terms involved in the summation. The above lower bound mn on t may not be sharp. For
example, if ‖·‖r = ‖·‖c = ‖·‖2, then κ is the trace norm, where

∑t
i=1(‖U:i‖2c + ‖Vi:‖2r) is

simply ‖U‖2F+‖V ‖2F, the sum of the squared Frobenius norms; that is, Proposition 15 yields
the well-known variational form of the trace norm in this case (Srebro et al., 2005). Observe
that t in this case can be as low as the rank of W . Theorem 15 also appeared in (Bach
et al., 2008; Bach, 2013), although without the explicit bound t ≥ mn.

Based on Theorem 15, the objective in (47) can then be approximated at iteration t as

Ft+1(U, V) := `(UV) +
λ

2

t+1∑
i=1

(
‖U:i‖2c + ‖Vi:‖2r

)
. (53)

Our key intuition is to first factorize W̃t+1 into UinitVinit, and then find improvement to
(U, V) with respect to Ft+1 (not the original F). This results in Ut+1 and Vt+1 satisfying
Ft+1(Ut+1, Vt+1) ≤ Ft+1(Uinit, Vinit). Finally we restore the iterates based on Theorem 15

Wt+1 = Ut+1Vt+1 and ρt+1 =
1

2

t+1∑
i=1

(
‖(Ut+1):i‖2c + ‖(Vt+1)i:‖2r

)
. (54)

Using Ft+1 as a surrogate objective for local improvement is particularly advantageous
in computation, because the problem is now unconstrained and the gauge function has
been replaced by much simpler forms such as ‖U:i‖2c and ‖Vi:‖2r . This allows efficient uncon-
strained minimization routines (e.g. L-BFGS) to be applied directly, improving the quality
of the current iterate without increasing the size of the dictionary. Note however that (53)
is not jointly convex in (U, V) since the size t + 1 (the iteration counter) is fixed. When
t is sufficiently large, any local minimizer of (53) globally solves the original problem (47)
(Burer and Monteiro, 2005)6, but we locally reduce (53) in each iteration even for small t.

Once this modification is added to Algorithm 2 we obtain the final variant, Algorithm 3.
In this algorithm, Line 3 remains equivalent to before, and Line 4 adopts the slightly more
sophisticated update rule in (40), although one can also use (34) with ηt = 2

t+2 . Lines 5
to 8 collectively implement the Improve subroutine: Line 5 splits the iterate into two parts

6. The catch here is that seeking a local minimizer can still be highly non-trivial, sometimes it is even hard
to certify the local optimality.

22

Generalized Conditional Gradient for Sparse Estimation

Algorithm 3 GCG variant for low rank learning.

Require: The atomic set A.
1: Initialize W0 = 0, ρ0 = 0, U0 = V0 = Λ0 = ∅.
2: for t = 0, 1, . . . do
3: (ut,vt)← arg min

uv>∈A

〈
∇`(Wt),uv>

〉
4: (ηt, θt)← arg min

0≤η≤1,θ≥0
`((1− η)Wt + θ utv

>
t) + λ((1− η)ρt + θ)

5: Uinit ← (
√

1− ηtUt,
√
θtut), Vinit ← (

√
1− ηtV >t ,

√
θtvt)

>

6: (Ut+1, Vt+1)← Reduce(Ft+1, Uinit, Vinit) s.t. Ft+1(Ut+1, Vt+1) ≤ Ft+1(Uinit, Vinit)
e.g. find a local minimum of Ft+1 with U and V initialized to Uinit and Vinit resp.

7: Wt+1 ← Ut+1Vt+1 . Nominal as we only maintain (Ut, Vt) in practice
8: ρt+1 ← 1

2

∑t+1
i=1(‖(Ut+1):i‖2c + ‖(Vt+1)i:‖2r)

9: end for

Uinit and Vinit, while Line 6 further reduces the reformulated local objective (53) with the
designated initialization (e.g. by finding a local minimum). We referred to it as Reduce in
order to be distinct from Improve. The last two steps restore the GCG iterate by (54).

The only major challenge left for inserting a local optimization step in Algorithm 2 is
that the Relaxed condition (36) in Theorem 7 must be maintained. This is the condition
under which Algorithm 3 retains the O(1/t) rate of convergence established in Theorem 9.
Fortunately this holds true as stated in Theorem 16 and its proof is given in Appendix B.2.

Proposition 16 (Uinit, Vinit) in Line 5 is a factorization of the intermediate iterate W̃t+1 =
(1− ηt)Wt + θtutv

>
t . Let (Ut+1, Vt+1) improve upon it in the sense that Ft+1(Ut+1, Vt+1) ≤

Ft+1(Uinit, Vinit). Then the Wt+1 and ρt+1 recovered by (54) satisfy the Relaxed condition.

Although the Reduce subroutine is not guaranteed to achieve strict improvement in
every iteration, we observe in our experiments in Section 5 below that Algorithm 3 is
almost always significantly faster than the Null version of Algorithm 2. In other words,
local acceleration appears to make a big difference in practice.

Remark 17 Interleaving local improvement with a globally convergent procedure has been
considered by Mishra et al. (2013) and Laue (2012). In particular, Laue (2012) considered
the constrained problem (21), which unfortunately leads to considering a constrained min-
imization for local improvement that can be less efficient than the unconstrained approach
considered in (53). In addition, Laue (2012) used the original objective F directly in local
optimization. This leads to significant challenge when the regularizer κ is complicated such
as the trace norm, and we avoid this issue by using a smooth surrogate objective Ft+1.

Focusing on trace norm regularization only, Mishra et al. (2013) proposed a trust-region
procedure that locally minimizes the original objective on the Stiefel manifold and the positive
semidefinite cone, which unfortunately also requires constrained minimization and dynamic
maintenance of the singular value decomposition of a small matrix. The rate of convergence
of this procedure has not been analyzed.

Remark 18 We remark that local minimization of (53) constitutes the primary bottleneck
of Algorithm 3, consuming over 50% of the computation. Since (54) is the same objective

23

Yu, Zhang, and Schuurmans

considered by the standard fixed rank approach to matrix factorization, the overall perfor-
mance of Algorithm 3 can be substantially improved by leveraging the techniques that have
been developed for this specific objective. These improvements include system level opti-
mizations such as stochastic solvers on distributed, parallel and asynchronous infrastruc-
tures (Zhuang et al., 2013; Yun et al., 2014). In the experiments conducted in Section 5
below, we merely solve (54) using a generic L-BFGS solver to highlight the efficiency of
the GCG framework itself. Nevertheless, such a study leaves significant room for further
straightforward acceleration.

Remark 19 Much of our development in this section was inspired by the work of Bach
et al. (2008), who first demonstrated, although in a slightly less clear way, that the convex
relaxation in (47) is possible, but did not observe the computational connection to GCG. Our
contribution here is to present this result succinctly using the notion of convex gauges, con-
nect it naturally to the GCG algorithm we developed in Section 3, and propose an efficient
fixed-rank local improvement subroutine Reduce that does not affect theoretical convergence
guarantees. After our conference version (Zhang et al., 2012), Bach (2013) also indepen-
dently extended the previous work (Bach et al., 2008) using convex gauges, and discussed
a multiplicative approximate GCG variant similar to our Algorithm 2. However, the pos-
sibility to intervene fixed-rank local subroutines based on Theorem 15 with GCG, and its
practical computational consequences, were not observed in (Bach, 2013).

4.4 Multi-view Dictionary Learning

Finally, in this section we show how low rank learning can be generalized to a multi-view
setting where, once again, the modified GCG algorithm can efficiently provide optimal
solutions. The key challenge in this case is to develop column and row norms that can
capture the more complex problem structure.

Consider a two-view learning task where one is given m paired observations
{[

xj
yj

]}
consisting of an x-view and a y-view with lengths n1 and n2 respectively. The goal is to
infer a set of latent representations, hj (of dimension t < min(n1, n2)), and reconstruction
models parameterized by the matrices A and B, such that Ahj ≈ xj and Bhj ≈ yj for
all j. In particular, let X denote the n1 ×m matrix of x-view observations, Y the n2 ×m
matrix of y-view observations, and Z =

[
X
Y

]
the concatenated (n1 + n2)×m matrix. The

problem can then be expressed as recovering an (n1 + n2)× t matrix of model parameters,

C =
[
A
B

]
, and a t×m matrix of latent representations, H, such that Z ≈ CH.

The key assumption behind multi-view learning is that each of the two views, xj and yj ,
is conditionally independent given the shared latent representation, hj . Although multi-
view data can always be concatenated hence treated as a single view, explicitly representing
multiple views enables more accurate identification of the latent representation (as we will
see), when the conditional independence assumption holds. To better motivate this model,
it is enlightening to first reinterpret the classical formulation of multi-view dictionary learn-
ing, which is given by canonical correlation analysis (CCA). Typically, it is expressed as
the problem of projecting two views so that the correlation between them is maximized.
Assuming the data is centered (i.e. X1 = 0 and Y 1 = 0), the sample covariance of X
and Y is given by XX>/m and Y Y >/m respectively. CCA can then be expressed as an

24

Generalized Conditional Gradient for Sparse Estimation

optimization over matrix variables

max
U,V

tr(U>XY >V) s.t. U>XX>U = V >Y Y >V = I (55)

for U ∈ Rn1×t, V ∈ Rn2×t (De Bie et al., 2005). Here I is the identity matrix whose size is
clear from the context. Although this classical formulation (55) does not make the shared
latent representation explicit, CCA can be expressed by a generative model: given a latent
representation, hj , the observations xj = Ahj + εj and yj = Bhj + νj are generated by a
linear mapping plus independent zero mean Gaussian noise, ε ∼ N (0,Σx), ν ∼ N (0,Σy)
(Bach and Jordan, 2006). Interestingly, one can show that the classical CCA problem (55)
is equivalent to the following multi-view dictionary learning problem.

Proposition 20 (White et al. 2012, Proposition 1) Fix t, let

(A,B,H) = arg min
A:‖A:i‖2≤1

min
B:‖B:i‖2≤1

min
H

∥∥∥∥[(XX>)−1/2X

(Y Y >)−1/2Y

]
−
[
A
B

]
H

∥∥∥∥2
F

. (56)

Then U=(XX>)−
1
2A and V =(Y Y >)−

1
2B provide an optimal solution to (55).

Proposition 20 demonstrates how formulation (56) respects the conditional independence
of the separate views: given a latent representation hj , the reconstruction losses on the two
views, xj and yj , cannot influence each other, since the reconstruction models A and B
are individually constrained. By contrast, in single-view dictionary learning (i.e. principal

component analysis) A and B are concatenated in the larger variable C =
[
A
B

]
, where C

as a whole is constrained but A and B are not. A and B must then compete against each
other to acquire magnitude to explain their respective “views” given hj (i.e. conditional
independence is not enforced). Such sharing can be detrimental if the two views really are
conditionally independent given hj .

This matrix factorization viewpoint has recently allowed dictionary learning to be ex-
tended from the single-view setting to the multi-view setting (Jia et al., 2010). However,
despite its elegance, the computational tractability of CCA hinges on its restriction to
squared loss under a particular normalization, precluding other important losses. To com-
bat these limitations, we apply the same convex relaxation principle as in Section 4.2. In
particular, we reformulate (56) by first incorporating an arbitrary loss function ` that is
convex in its first argument, and then relaxing the rank constraint by replacing it with
the l1 norm of the “singular values”. This amounts to the following training problem that
extends (Jia et al., 2010):

min
A,B,H,σ

`

([
A
B

]
diag(σ)H;Z

)
+ λ ‖σ‖1 , s.t. ‖Hi:‖2 ≤ 1, σi ≥ 0,

[
A:i

B:i

]
∈ D ∀ i,

where D :=

{[
a
b

]
: ‖a‖2 ≤ β, ‖b‖2 ≤ γ

}
. (57)

The l2 norm on the rows of H is a regularizer that encourages the rows to become sparse,
hence reducing the size of the learned representation (Argyriou et al., 2008). Since the size
of the latent representation (the number of rows of H) is not fixed, our results in Section 4.2

25

Yu, Zhang, and Schuurmans

immediately allows the problem to be solved globally and efficiently for A, B and H. This
considerably improves the previous local solutions in (Jia et al., 2010) which fixed the latent
dimension and approached the non-convex problem by alternating block coordinate descent
between A, B and diag(σ)H.

Indeed, (57) fits exactly in the framework of (45), with ‖·‖r being the l2 norm and

‖c‖c = max

(
1

β
‖a‖2 ,

1

γ
‖b‖2

)
for c =

[
a
b

]
. (58)

Next we will show how to efficiently compute the polar operator (50) that underpins Algo-
rithm 3 in this multi-view model.

4.4.1 Efficient Polar Operator

The polar operator (50) for problem (57) turns out to admit an efficient but nontrivial
solution. For simplicity, we assume β = γ = 1 while the more general case can be dealt
with in exactly the same way. The proof of the following key theorem is in Appendix B.3.

Proposition 21 Let I1 := diag(
[
1
0

]
) and I2 := diag(

[
0
1

]
) be the identity matrices on

the subspaces spanned by x-view and y-view, respectively. For any µ > 0, denote Dµ =√
1 + µI1 +

√
1 + 1/µI2 as a diagonal scaling of the two identity matrices. Then, for the

row norm ‖·‖r = ‖·‖2 and column norm ‖·‖c defined as in (58), the corresponding polar
(49) is given by

κ◦(G) = min
µ≥0

‖DµG‖sp . (59)

Despite its variational form, the polar (59) can still be efficiently computed by consid-
ering its squared form and expanding:

‖DµG‖2sp =
∥∥∥G>DµDµG

∥∥∥
sp

=
∥∥∥G>[(1 + µ)I1 + (1 + 1/µ)I2

]
G
∥∥∥
sp
.

Clearly, the term inside the spectral norm ‖·‖sp is convex in µ on R+ while the spectral norm
is convex and increasing on the cone of positive semidefinite matrices, hence by the usual
rules of convex composition the left hand side above is a convex function of µ. Consequently
we can use a subgradient algorithm, or even golden section search, to find the optimal µ
in (59). Given an optimal µ, an optimal pair of “atoms” a and b can be recovered via the
KKT conditions; see Appendix B.4 for details. Thus, by using (59) Algorithm 3 is able
to solve the resulting optimization problem far more efficiently than the initial procedure
offered by White et al. (2012).

Similar to the case of matrix completion for single view in Section 4.2.1, the LF in
Theorem 5 for this multi-view setting can be bounded in exactly the same way as in (52).
The only difference is that instead of ‖W‖tr ≥ ‖W‖F, we now have κ(W) ≥ 1√

2
‖W‖F. To

see it, just set µ = 1 in (59), and we immediately obtain κ◦(G) ≤
√

2 ‖G‖sp. Dualizing both

sides leads to κ(W) ≥ 1√
2
‖W‖tr ≥ 1√

2
‖W‖F. Therefore we can proceed in analogy to (52):

LF ≤ 2L sup
t

{
ρ2

α2
‖At‖2F + ‖Wt‖2F

}
≤ 2L sup

t

{
2ρ2

α2
+ 2κ(Wt)

2

}
≤ 4

‖P‖0

(
1

α2
+1

)
C2

λ2
. (60)

26

Generalized Conditional Gradient for Sparse Estimation

4.4.2 A Modified Power Iteration

In practice, one can compute the polar (59) much more efficiently by deploying a heuristic
variant of the power iteration method, whose motivation arises from the KKT conditions in
the proof of Theorem 21 (see (76) in Appendix B.4). In particular, two normalized vectors
a and b are optimal for the polar (50) if and only if there exist nonnegative scalars µ1 and
µ2 such that [

µ1 a
µ2 b

]
= GG>

[
a
b

]
, and µ1I1 + µ2I2 � GG>. (61)

Here A � B asserts that A−B is positive semidefinite. Therefore, after randomly initializing
a and b with unit norm, it is natural to extend the power iteration method by repeating
the update: [

s
t

]
← GG>

[
a
b

]
, then

[
anew

bnew

]
←
[

1
‖s‖2

s
1
‖t‖2

t

]
.

This procedure usually converges to a solution where the Lagrange multipliers µ1 and µ2,
recovered from (61), satisfy (61) hence confirming their optimality. While we leave the
investigation of the theoretical guarantees of this power iteration heuristic for future work,
let us mention that it works very well in practice (as in the single view case) and when
the occasional failure occurs we revert to (59) and follow the recovery rule detailed in
Appendix B.4.

5. Experimental Evaluation

We evaluate the extended GCG approach developed above in three sparse learning prob-
lems: matrix completion, multi-class classification, and multi-view dictionary learning. All
algorithms were implemented in Matlab unless otherwise noted.7 All experiments were run
on a single core of a cluster housed at National ICT Australia with AMD 6-Core Opteron
4184 (2.8GHz, 3M L2/6M L3 Cache, 95W TDP, 64 GB memory).

5.1 Matrix Completion with Trace Norm Regularization

Our first set of experiments is on matrix completion (51), where the division by ‖P‖0 is
omitted to be consistent with existing solvers. Five data sets are used and their statistics are
given in Table 1. The data sets Yahoo252M (Dror et al., 2012) and Yahoo60M8 provide music
ratings, and the data sets Netflix (Dror et al., 2012), MovieLens1M, and MovieLens10M9 all
provide movie ratings. For MovieLens1M and Yahoo60M, we randomly sampled 75% ratings
as training data, using the rest for testing. The other three data sets came with training
and testing partition.

We compared the extended GCG approach (Algorithm 3) with three state-of-the-art
solvers for trace norm regularized objectives: MMBS10 (Mishra et al., 2013), DHM (Dudik

7. All code is available for download at https://www.cs.uic.edu/~zhangx/GCG.
8. Yahoo60M is the R1 data set at http://webscope.sandbox.yahoo.com/catalog.php?datatype=r.
9. Both MovieLens1M and MovieLens10M were downloaded from http://www.grouplens.org/datasets/

movielens.
10. Downloaded from http://www.montefiore.ulg.ac.be/~mishra/softwares/traceNorm.html.

27

https://www.cs.uic.edu/~zhangx/GCG
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://www.grouplens.org/datasets/movielens
http://www.grouplens.org/datasets/movielens
http://www.montefiore.ulg.ac.be/~mishra/softwares/traceNorm.html

Yu, Zhang, and Schuurmans

data set n (#user) m (#product) #train #test λ

MovieLens1M 6,040 3,952 750,070 250,024 50
MovieLens10M 71,567 65,133 9,301,174 698,599 100

Netflix 2,549,429 17,770 99,072,112 1,408,395 1
Yahoo60M 98,130 1,738,442 60,021,577 20,872,219 300
Yahoo252M 1,000,990 624,961 252,800,275 4,003,960 100

Table 1: Summary of the data sets used in matrix completion experiments. Here n is the
total number of users, m is the number of products (movies or music), #train and
#test are the number of ratings used for training and testing respectively.

et al., 2012), and JS (Jaggi and Sulovsky, 2010). The local optimization in GCG was
performed by L-BFGS with the maximum number of iteration set to 20.11 Traditional
solvers such as proximal methods (Toh and Yun, 2010; Pong et al., 2010) were not included
in this comparison because they are much slower.

MMBS is confined to trace norm regularized problems. At each iteration t, they solve

min
U∈Rn×t, B∈Rt×t, V ∈Rt×m

`(UBV) + λ tr(B), s.t. U>U = V V > = I, and B � 0. (62)

After obtaining a stationary point, the gradient of ` is computed, with its top left and
right singular vectors appended to U and V respectively, and repeat. Unfortunately, the
optimization in (62) is highly challenging on the Stiefel manifold, and their algorithm relies
on the directional Hessian which becomes rather complicated in computation for general `.
By contrast, the local surrogate (53) used in our approach is substantially easier to optimize.

DHM is a special case of GCG, with Improve instantiated with a line search procedure
(Dudik et al., 2012). The detail of line search is intricate, but in practice it is slower than
totally corrective updates (42) solved by L-BFGS. To further streamline the optimization
for (42), we buffered the quantities 〈P(utv

′
t),P(usv

′
s)〉 and 〈P(utv

′
t),P(X)〉, where (ut,vt)

is the result of polar operator at iteration t (Line 3 of Algorithm 3). This allowed the
objective (42) to be evaluated efficiently without having to compute matrix inner product.

JS was proposed for solving the constrained problem: minW `(W) s.t. ‖W‖tr ≤ ζ,
which makes it hard to directly compare with solvers for the penalized problem (51). As a
workaround, given λ we first found the optimal solution W ∗ for the penalized problem, and
then we set ζ = ‖W ∗‖tr. To solve the constrained problem, JS lifts it to an SDP by observing

that ‖W‖tr ≤ t
2 iff there exist symmetric matrices A and B such that Z :=

(
A W
W> B

)
� 0

and tr(A) + tr(B) = t. Then the objective `(W) can be rewritten in terms of Z, solved by
the conventional conditional gradient algorithm for constrained problems.

Figures 2 to 6 show how quickly the various algorithms drive the training objective
down, while also providing the root mean square error (RMSE) on test data (i.e. com-
paring the reconstructed matrix each iteration to the ground truth). JS is compara-
ble only on RMSE. The regularization constant λ, given in Table 1, was chosen from

11. Downloaded from http://www.cs.ubc.ca/~pcarbo/lbfgsb-for-matlab.html. Recall a suboptimal so-
lution is sufficient for the fixed-rank local optimization in Relaxed.

28

http://www.cs.ubc.ca/~pcarbo/lbfgsb-for-matlab.html

Generalized Conditional Gradient for Sparse Estimation

10
−1

10
0

10
1

10
25.6

5.8

6

6.2

x 10
5

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
−1

10
0

10
1

10
20.86

0.87

0.88

0.89

0.9

Running time (seconds)

T
es

t R
M

S
E

(b) Test RMSE vs CPU time

0 10 20 30 40 50 60 70 80
5.6

5.8

6

6.2

x 10
5

Number of iterations

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(c) Objective value vs #iteration

Figure 2: Matrix completion on MovieLens1M

10
1

10
2

10
3

10
4

5.8

6

6.2

6.4

6.6

6.8

7x 10
6

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
1

10
2

10
3

10
40.9

0.91

0.92

0.93

0.94

Running time (seconds)

T
es

t R
M

S
E

(b) Test RMSE vs CPU time

0 10 20 30 40 50 60 70 80

5.8

6

6.2

6.4

6.6

6.8

7x 10
6

Number of iterations
O

bj
ec

tiv
e

va
lu

e
(t

ra
in

in
g)

(c) Objective value vs #iteration

Figure 3: Matrix completion on MovieLens10M

{1, 10, 50, 100, 200, 300, 400, 500, 1000} to minimize the test RMSE. On the MovieLens1M

and MovieLens10M data sets, GCG and DHM exhibit similar efficiency in reducing the ob-
jective value with respect to CPU time (see Figure 2(a) and 3(a)). However, GCG achieves
comparable test RMSE an order of magnitude faster than DHM, as shown in Figure 2(b)
and 3(b). Interestingly, this discrepancy can be explained by investigating the rank of the
solution, i.e. the number of outer iterations taken. In Figure 2(c) and 3(c), DHM clearly
converges much more slowly in terms of the number of iterations, which is expected because
it does not re-optimize the basis at each iteration, unlike GCG and MMBS. Therefore, al-
though the overall computational cost for DHM appears on par with that for GCG, its
solution has a much higher rank, resulting in a much higher test RMSE in these cases.

MMBS takes nearly the same number of iterations as GCG to achieve the same objective
value (see Figure 2(c) and 3(c)). However, its local search at each iteration is conducted
on a constrained manifold, making it much more expensive than locally optimizing the
unconstrained smooth surrogate (53). As a result, the overall computational complexity of
MMBS is an order of magnitude greater than that of GCG, with respect to optimizing both
the objective value and the test RMSE.

The observed discrepancies between the relative efficiency of optimizing the objective
value and test RMSE becomes much smaller on the other three data sets, which are much
larger in size. In Figure 4 to 6, it is clear that GCG takes significantly less CPU time to

29

Yu, Zhang, and Schuurmans

10
3

10
40.5

1

1.5

2

2.5

3

3.5x 10
8

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
3

10
4

1

1.5

2

2.5

3

Running time (seconds)

T
es

t R
M

S
E

(b) Test RMSE vs CPU time

Figure 4: Matrix completion
on Netflix

10
2

10
3

10
4

1.5

2

2.5

x 10
8

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)
(a) Objective value vs CPU time

10
2

10
3

10
41

1.5

2

2.5

3

Running time (seconds)

T
es

t R
M

S
E

(b) Test RMSE vs CPU time

Figure 5: Matrix completion
on Yahoo100m

10
3

10
4

1

2

3

4

5x 10
11

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
3

10
4

20

30

40

50

60

70

Running time (seconds)

T
es

t R
M

S
E

(b) Test RMSE vs CPU time

Figure 6: Matrix completion
on Yahoo252m

optimize both criteria. The declining trend of the objective value has a similar shape to
that of the test RMSE. Here we observe that DHM is substantially slower than GCG and
MMBS, confirming the importance of optimizing the bases at the same time as optimizing
their weights. JS, which does not exploit the penalized form of the objective, is considerably
slower with respect to reducing the test RMSE.

5.2 Multi-class Classification with Trace Norm Regularization

Next we compared the four algorithms on multi-class classification problems also in the
context of trace norm regularization. Here the task is to predict the class membership
of input instances, xi ∈ Rn, where each instance is associated with a unique label yi ∈
{1, . . . , C}. In particular, we consider a standard linear classification model where each
class c is associated with a weight vector in Rn, stacked in a model matrix W ∈ Rn×C .
Then for each training example (xi, yi), the individual logistic loss L(W ; xi, yi) is given by

L(W ; xi, yi) = − log
exp(x′iW:,yi)∑C
c=1 exp(x′iW:c)

,

30

Generalized Conditional Gradient for Sparse Estimation

data set n C #train #test λ

Fungus10 4,096 10 10 per class 10 per class 10−2

Fungus134 4,096 134 50 per class 50 per class 10−3

k1024 131,072 50 50 per class 50 per class 10−3

Table 2: Summary of the data sets used in multi-class classification experiments. Here n
is the number of features, C is the number of classes, #train and #test are the
number of training and test images respectively.

and the complete loss is given by averaging over the training set, `(W) := 1
m

∑m
i=1 L(W ; xi, yi).

It is reasonable to assume that W has a low rank; i.e. the weight vector of all classes lie
in a low dimensional subspace (Akata et al., 2014), which motivates the introduction of a
trace norm regularizer on W , yielding a training problem in the form of (47).

We conducted experiments on three data sets extracted from the ImageNet repository
(Deng et al., 2009), with characteristics shown in Table 2 (Akata et al., 2014).12 k1024

is from the ILSVRC2011 benchmark, and Fungus10 and Fungus134 are from the Fungus
group. All images are represented by the Fisher descriptor.

As in the matrix completion case above, we again compared how fast the algorithms
reduced the objective value and test accuracy. Here the value of λ was chosen from
{10−4, 10−3, 10−2, 10−1} to maximize test accuracy. Figures 7 to 9 show that the models
produced by GCG achieve comparable (or better) training objectives and test accuracies in
far less time than MMBS, DHM and JS. Although DHM is often more efficient than GCG
early on, it is soon overtaken. This observation could be related to the diminishing return
of adding bases, as shown in Figure 7(c), 8(c), and 9(c), since the addition of the first few
bases yields a much steeper decrease in objective value than that achieved by later bases.
Hence, after the initial stage, the computational efficiency of a solver turns to be dominated
by better exploitation of the bases. That is, using added bases as an initialization for local
improvement (as in GCG) appears to be more effective than simply finding an optimal conic
combination of added bases (as in DHM).

Also notice from Figures 7(c), 8(c) and 9(c) that MMBS and GCG are almost identical in
terms of the number of iterations required to achieve a given objective value. However, the
manifold based local optimization employed by MMBS at each iteration makes its overall
computational time worse than that of DHM and JS. This is a different outcome from
the matrix completion experiments we saw earlier, and seems to suggest that the manifold
approach in MMBS is more effective for the least square loss than for the logistic loss.

5.3 Multi-view Dictionary Learning

Our third set of experiments focuses on optimizing the objective for the multi-view dictio-
nary learning model (57) presented in Section 4.4. Here we compared the GCG approach
outlined in Section 4.4 with a straightforward local solver that is based on block coordinate
descent (BCD), which alternates between: (a) fixing H and optimizing A and B (with norm

12. The three data sets were all downloaded from http://lear.inrialpes.fr/src/jsgd/.

31

http://lear.inrialpes.fr/src/jsgd/

Yu, Zhang, and Schuurmans

10
−1

10
0

10
1

10
21.2

1.4

1.6

1.8

2

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
−1

10
0

10
1

10
215

20

25

30

35

40

Running time (seconds)

T
es

t a
cc

ur
ac

y
(%

)
(b) Test accuracy vs CPU time

0 4 8 12 16
1.2

1.4

1.6

1.8

2

Number of iterations

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(c) Test accuracy vs #iteration

Figure 7: Multi-class classification on Fungus10

10
1

10
2

10
34.2

4.4

4.6

4.8

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
1

10
2

10
30

2

4

6

8

10

12

Running time (seconds)

T
es

t a
cc

ur
ac

y
(%

)

(b) Test accuracy vs CPU time

0 4 8 12 16 20
4.2

4.4

4.6

4.8

Number of iterations
O

bj
ec

tiv
e

va
lu

e
(t

ra
in

in
g)

(c) Objective value vs #iteration

Figure 8: Multi-class classification on Fungus134

10
2

10
3

10
4

2

2.5

3

3.5

4

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
2

10
3

10
45

10

15

20

25

30

35

Running time (seconds)

T
es

t a
cc

ur
ac

y
(%

)

(b) Test accuracy vs CPU time

0 10 20 30 40 50

2

2.5

3

3.5

4

Number of iterations

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(c) Objective value vs #iteration

Figure 9: Multi-class classification on k1024

ball constraints), then (b) fixing A and B and optimizing H (with nonsmooth regularizer).
Both steps were solved by FISTA (Beck and Teboulle, 2009), initialized with the solution
from the previous iteration. We tested several values of t, the dimensionality of the latent
subspace of the solution, in these experiments. The GCG approach used Algorithm 3 with
the local objective (53) instantiated by the norm expression in (58) and solved by L-BFGS
with max iteration set to 20. We initialized the U and V matrices with 20 columns and
rows respectively, each drawn i.i.d. from a uniform distribution on the unit sphere. Based

32

Generalized Conditional Gradient for Sparse Estimation

on the noise model we consider in these experiments, we started with a base loss ` set
to l1(Z,Z

∗) =
∑

ij |Zij − Z∗ij | where Z∗ is the true underlying matrix; however, following
(Becker et al., 2009, Eq 3.1), we smoothed this l1 loss by adding a quadratic prox-function
with strong convexity modulus 10−4. Under the resulting loss, the optimization over A and
B is decoupled given H. We terminated all algorithms after a maximum of running time
(3,600 seconds) is reached.

5.3.1 Synthetic Data

We first constructed experiments on a synthetic data set that fulfills the conditional in-
dependence assumption (57) of the multi-view model (as discussed in Section 4.4). Here
the x- and y-views have basis matrices A∗ ∈ Rn1×t∗ and B∗ ∈ Rn2×t∗ respectively, where
all columns of A∗ were drawn i.i.d. from the l2 sphere of radius β = 1, and all columns
of B∗ were drawn i.i.d. from the l2 sphere of radius γ = 5. We set n1 = 800, n2 = 1000,
and t∗ = 10 (so that the dictionary size is indeed small). The latent representation matrix
H∗ ∈ Rt∗×m has all elements drawn i.i.d. from the zero-mean unit-variance Gaussian distri-
bution. The number of training examples is set to m = 200, which is much lower than the
number of features n1 and n2. Then the clean versions of x-view and y-view were generated
by X∗ = A∗H∗ and Y ∗ = B∗H∗ respectively, while the noisy versions were obtained by
adding i.i.d. noise to 15% entries of X∗ and Y ∗ that were selected uniformly at random,
yielding X̂ and Ŷ respectively. The noise is uniformly distributed in [0, 10]. Given the noisy
observations, the denoising task is to find reconstructions X and Y for the two views, such
that the error ‖X−X̂‖2F+‖Y − Ŷ ‖2F is small. The composite training problem is formulated
in (57).

The results of comparing the modified GCG method with local optimization are pre-
sented in Figures 10 to 12, where the regularization parameter λ has been varied among
{80, 60, 40}. In each case, GCG optimizes the objective value significantly faster than BCD
for all values of t chosen for BCD. The differences between methods are even more evident
when considering the reconstruction error. In particular, although the local optimization
in GCG already achieves a low objective value in the first outer iteration (see Figure 10(a)
and 11(a)), the reconstruction error remains high, thus requiring further effort to reduce it.

When t = 10 which equals the true rank t∗ = 10, BCD is more likely to get stuck in
a poor local minimum when λ is large, for example as shown in Figure 10(a) for λ = 80.
This occurs because when optimizing H, the strong shrinkage in the proximal update stifles
major changes in H (and in A and B consequently). This problem is exacerbated when the
rank of the solution is overly restricted, leading to even worse local optima. On the other
hand, under-regularization does indeed cause overfitting in this case; for example, as shown
in Figure 12 for λ = 40. Interestingly, BCD gets trapped in local optima for all t, while
GCG eventually escapes suboptimal solutions and eventually finds a way to considerably
reduce the objective value. However, this simply creates a dramatic increase in the test
reconstruction error, a typical phenomenon of overfitting.

33

Yu, Zhang, and Schuurmans

10
1

10
2

10
32.8

3

3.2

3.4

x 10
5

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
1

10
2

10
30

50

100

150

Running time (seconds)

R
ec

on
st

ru
ct

io
n

E
rr

or

(b) Reconst. error vs CPU time

Figure 10: Denoising on
synthetic data
λ = 80

10
1

10
2

10
32.75

2.8

2.85

2.9

2.95x 10
5

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)
(a) Objective value vs CPU time

10
1

10
2

10
30

50

100

150

Running time (seconds)

R
ec

on
st

ru
ct

io
n

E
rr

or

(b) Reconst. error vs CPU time

Figure 11: Denoising on
synthetic data
λ = 60

10
0

10
1

10
2

10
32.4

2.6

2.8

3

3.2x 10
5

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
0

10
1

10
2

10
30

50

100

150

Running time (seconds)

R
ec

on
st

ru
ct

io
n

E
rr

or
(b) Reconst. error vs CPU time

Figure 12: Denoising on
synthetic data
λ = 40

5.3.2 Image Denoising

We then conducted multi-view dictionary learning experiments on natural image data. The
data set we considered is based on the Extended Yale Face Database B13 (Georghiades
et al., 2001). In particular, the data set we used consists of grey level face images of 28
human subjects, each with 9 poses and 64 lighting conditions. To construct the data set,
we set the x-view to a fixed lighting (+000E+00) and the y-view to a different fixed lighting
(+000E+20). We obtained paired views by randomly drawing a subject and a pose under the
two lighting conditions. The underlying assumption is that each lighting has its own set of
bases (A and B) and each (person, pose) pair has the same latent representation for the two
lighting conditions. All images were down-sampled to 50-by-50, meaning n1 = n2 = 2500,
and we randomly selected t = 50 pairs of (person, pose) for training. The x-view was
kept clean, while pixel errors were added to the y-view, randomly setting 10% of the pixel
values to 1. This noise model mimics natural phenomena such as occlusion and loss of pixel
information from image transfer. The goal is again to enable appropriate reconstruction of

13. Data downloaded from http://vision.ucsd.edu/content/extended-yale-face-database-b-b.

34

http://vision.ucsd.edu/content/extended-yale-face-database-b-b

Generalized Conditional Gradient for Sparse Estimation

10
0

10
1

10
2

10
32

4

6

8x 10
4

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
0

10
1

10
2

10
3300

600

900

1200

1500

1800

Running time (seconds)

R
ec

on
st

ru
ct

io
n

E
rr

or

(b) Reconst. error vs CPU time

Figure 13: Denoising on
face data with
λ = 40

10
0

10
1

10
2

10
32

4

6

8x 10
4

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)
(a) Objective value vs CPU time

10
0

10
1

10
2

10
3300

600

900

1200

1500

1800

Running time (seconds)

R
ec

on
st

ru
ct

io
n

E
rr

or

(b) Reconst. error vs CPU time

Figure 14: Denoising on
face data with
λ = 30

10
0

10
1

10
2

10
31.5

2

2.5

3

3.5

4x 10
4

Running time (seconds)

O
bj

ec
tiv

e
va

lu
e

(t
ra

in
in

g)

(a) Objective value vs CPU time

10
0

10
1

10
2

10
3300

600

900

1200

1500

1800

Running time (seconds)

R
ec

on
st

ru
ct

io
n

E
rr

or
(b) Reconst. error vs CPU time

Figure 15: Denoising on
face data with
λ = 20

a noisy image using other views. Naturally, we set β = γ = 1 since the data is in the [0, 1]
interval.

Figures 13 to 15 show the results comparing GCG with the local BCD for different
choices of t for BCD. Clearly the value of λ that yields the lowest reconstruction error is
40. However, here BCD simply gets stuck at the trivial local minimum H = 0, as shown in
Figure 13(a). This occurs because under the random initialization of A and B, the proximal
update simply sets H to 0 when the regularization is too strong. When λ is decreased to 30,
as shown in Figure 14(a), BCD can escape the trivial H = 0 solution for t = 100, but again
it becomes trapped in another local minimum that remains much worse than the globally
optimal solution found by GCG. When λ is further reduced to 20, the BCD algorithms
finally escape the trivial H = 0 point for all t, but still fail to find an acceptable solution.
Although GCG again converges to a much better global solution in terms of the objective
value, overfitting can still occur: in Figure 15(b) the reconstruction error of GCG increases
significantly after an initial decline.

35

Yu, Zhang, and Schuurmans

6. Conclusion

We have presented a unified treatment of the generalized conditional gradient (GCG) algo-
rithm that covers several useful extensions. After a thorough treatment of its convergence
properties, we illustrated how an extended form of GCG can efficiently handle a convex
gauge regularizer in particular. We illustrated the application of these GCG methods in
learning low rank matrices, instantiated with examples on matrix completion, dictionary
learning, and multi-view learning. In each case, we considered a generic convex relaxation
procedure and focused on the efficient computation of the polar operator—one of the key
steps to obtaining an efficient implementation of GCG. To further accelerate its conver-
gence, we interleaved the standard GCG update with a fixed rank subspace optimization,
which greatly improves performance in practice without affecting the theoretical conver-
gence properties. Extensive experiments on matrix completion, multi-class classification,
multi-view learning confirmed the superiority of the modified GCG approach in practice.

For future work, several interesting extensions are worth investigating. The current form
of GCG is inherently framed as a batch method, where each iteration requires gradient of the
loss to be computed over all training data. When the training data is large, it is preferable to
only use a random subset, or distribute the training data across several processors. Another
interesting direction is to interpolate between the polar operator and proximal updates; that
is, one could incorporate a mini-batch of atoms at each iteration. For example, for trace
norm regularization, one can consider adding k instead of just the 1 largest singular vectors.
It remains an open question whether such a “mini-batch” of atoms can provably accelerate
the overall optimization, but some recent work (Hsieh and Olsen, 2014) has demonstrated
promise in practice.

Acknowledgments

This research was supported by the Alberta Innovates Center for Machine Learning (AICML),
the Canada Research Chairs program, and NSERC. Most of this work was carried out when
Y Yu and X Zhang were with the University of Alberta and AICML. X Zhang would like to
thank the support of NICTA, where he worked as a researcher from Oct 2012 to Oct 2015
and conducted 50% of his work on this paper. We thank Csaba Szepesvári, the action editor,
and the reviewers at various stages of this work for the many constructive comments.

Appendix A. Proofs for Section 3

A.1 Proof of Theorem 2

Since ∇` is Lipschitz continuous, it must be uniformly continuous on bounded set.

(a): Let C be the closure of the sequence {wt}t. Due to the compactness assumption
on the sublevel set and the monotonicity of F (wt), C is compact. Moreover C ⊆ dom f
since for all cluster points, say w, of wt we have from the closedness of F that F (w) ≤
lim inf F (wtk) ≤ F (w0) < ∞. Since −∇` is continuous, −∇`(C) is a compact subset
of int(dom f∗), the interior of dom f∗. Note that f∗ is continuous on the interior of its
domain, therefore its subdifferential is locally bounded on −∇`(C), see e.g. (Borwein and

36

Generalized Conditional Gradient for Sparse Estimation

Vanderwerff, 2010, Proposition 4.1.26). A standard compactness argument then establishes
the boundedness of (∂f∗)(−∇`(C)). Thus {dt}t is bounded.

(b): Note first that the boundedness of {wt}t follows immediately from the boundedness
assumption on the sublevel set, thanks to the monotonic property of F (wt). Since ∇` is
uniformly continuous, the set {−∇`(wt)}t is again bounded. On the other hand, we know
from (Borwein and Vanderwerff, 2010, Theorem 4.4.13, Proposition 4.1.25) that f is super-
coercive iff ∂f∗ maps bounded sets into bounded sets. Therefore {dt}t is again bounded.

(c): This is clear.
Note that the convexity of ` is not used in this proof.

A.2 Proof of Theorem 4

Since ` is L-smooth, for the sequences {wt} and {dt} generated by Algorithm 1, and for all
η ∈ [0, 1], we have

`(wt + η(dt −wt)) ≤ `(wt) + η 〈dt −wt,∇`(wt)〉+ Lη2

2 ‖dt −wt‖2 . (63)

Since the subroutine is Relaxed and the subproblem (13) is solved up to some εt ≥ 0,

F (wt+1) ≤ `(wt) + ηt 〈dt −wt,∇`(wt)〉+
Lη2t
2 ‖dt −wt‖2 + (1− ηt)f(wt) + ηtf(dt)

≤ F (wt)− ηtG(wt) +
Lη2t
2 ‖dt −wt‖2 + ηtεt

= F (wt)− ηtG(wt) + η2t (εt/ηt + L
2 ‖dt −wt‖2).

Define ∆t := F (wt)− F (w) and Gt := G(wt). Thus

∆t+1 ≤ ∆t − ηtGt + η2t (εt/ηt + L
2 ‖dt −wt‖2), and ∆t ≤ Gt. (64)

Plug the latter into the former and expand:

∆t+1 ≤ πt(1− η0)∆0 +
t∑

s=0

πt
πs
η2s(εs/ηs + L

2 ‖ds −ws‖2). (65)

To prove the second claim, we have from (64) ηtGt ≤ ∆t−∆t+1 + η2t (εt/ηt + L
2 ‖dt −wt‖2).

Summing from k to t:(
min
k≤s≤t

Gs

) t∑
s=k

ηs ≤
t∑

s=k

ηsGs ≤ F (wk)− F (wt+1) +

t∑
s=k

η2s(εs/ηs + L
2 ‖ds −ws‖2).

Rearranging completes the proof.

A.3 Proof of Theorem 5

As ηt = 2
t+2 , we have η0 = 1 and πt = 2

(t+1)(t+2) . For the first claim (upper bound on F (wt))

all we need to verify is that, by induction, 1
(t+1)(t+2)

∑t
s=0

s+1
s+2 ≤ 1

t+4 . This is elementary.

We prove the second claim by a sequence of calculations similar to that in (Freund and
Grigas, 2016). First, using (19) and the bound on F (wt) in (20) with t = 1 and w = w2:

G̃1
1 ≤ 1

η1

(
F (w1)− F (w2) +

η21
2 (δ + LF)

)
≤ 3

2

(
1
2 (δ + LF) + 2

9 (δ + LF)
)

= 13
12 (δ + LF),

37

Yu, Zhang, and Schuurmans

proving the second claim on G̃t1 for t = 1, 2 (note that G̃2
1 ≤ G̃1

1 by definition). For t ≥ 3,
we consider k = t/2− 1 if t is even and k = (t+ 1)/2− 1 otherwise. Clearly k ≥ 1, hence

t∑
s=k

ηs = 2
t∑

s=k

1

s+ 2
≥ 2

∫ t

k−1

1

s+ 2
ds = 2 ln

t+ 2

k + 1
≥ 2 ln 2,

t∑
s=k

η2s/2 = 2
t∑

s=k

1

(s+ 2)2
≤ 2

∫ t+1

k

1

(s+ 2)2
ds = 2

(
1

k + 2
− 1

t+ 3

)
.

Using again (19), and the bound on F (wt) in (20) with t = k and w = wt+1:

G̃t1 ≤ G̃tk ≤
δ + LF
2 ln 2

(
2

k + 3
+

2

k + 2
− 2

t+ 3

)
≤ δ + LF

ln 2

(
2

t+ 2
+

1

t+ 3

)
≤ 3(δ + LF)

t ln 2
.

A.4 Proof of Theorem 8

A proof can be based on the simple observation that the objective value F ? satisfies

F ? := inf
w
{`(w) + f(w)} = inf

w,ρ:κ(w)≤ρ
`(w) + h(ρ). (66)

Note that if ρ were known, the theorem could have been proved as before. The key idea
behind the step size choice (34) is to ensure that Algorithm 2 performs almost the same as
if it knew the unknown but fixed constant ρ = κ(w) beforehand.

Consider an arbitrary w and let ρ = κ(w). We also use the shorthand F̂t := `(wt) +
h(ρt) ≥ `(wt) + f(wt) = F (wt). Then, the following chain of inequalities can be verified:

F̂t+1 := `(wt+1) + h(ρt+1)

≤ F̂t + 〈θtat − ηtwt,∇`(wt)〉+ L
2 ‖θtat − ηtwt‖2 − ηth(ρt) + ηth(θt/ηt)

≤ F̂t + ηt

〈
ρ
αt

at −wt,∇`(wt)
〉

+
Lη2t
2

∥∥∥ ρ
αt

at −wt

∥∥∥2 − ηth(ρt) + ηth(ρ/αt)

≤ F̂t + min
z:κ(z)≤ρ

ηt 〈z−wt,∇`(wt)〉+ ηtρεt +
Lη2t
2

∥∥∥ ρ
αt

at −wt

∥∥∥2 − ηth(ρt) + ηth(ρ/αt)

= F̂t + min
z:κ(z)≤ρ

ηt 〈z−wt,∇`(wt)〉 − ηth(ρt) + ηth(ρ)

+ η2t

(
L
2

∥∥∥ ρ
αt

at −wt

∥∥∥2 + (ρεt + h(ρ/αt)− h(ρ))/ηt︸ ︷︷ ︸
:=δt

)

= F̂t + η2t δt − ηt
[
〈wt,∇`(wt)〉+ h(ρt)− min

z:κ(z)≤ρ
〈z,∇`(wt)〉+ h(ρ)︸ ︷︷ ︸

:=Ĝ(wt)

]
,

where the first inequality is because the subroutine is Relaxed, the second inequality follows
from the minimality of θt in (34), and the third inequality is due to the choice of at in Line
3 of Algorithm 2.

38

Generalized Conditional Gradient for Sparse Estimation

Recall that ρ = κ(w). Moreover, due to the convexity of `,

Ĝ(wt) = 〈wt,∇`(wt)〉+ h(ρt)− min
z:κ(z)≤ρ

(
〈z,∇`(wt)〉+ h(ρ)

)
= h(ρt)− h(κ(w)) + max

z:κ(z)≤κ(w)
〈wt − z,∇`(wt)〉

≥ h(ρt)− h(κ(w)) + max
z:κ(z)≤κ(w)

`(wt)− `(z)

≥ F̂t − F (w).

Thus we have retrieved the recursion:

F̂t+1 − F (w) ≤ F̂t − F (w)− ηtĜ(wt) + η2t δt, and F̂t − F (w) ≤ Ĝ(wt).

Summing the indices as in the proof of Theorem 4 and noting that F (wt) ≤ F̂t for all t
completes the proof.

Appendix B. Proofs for Section 4

B.1 Proof of Theorem 15

The first equivalence in Theorem 15 is well-known since Grothendieck’s work on tensor
products of Banach spaces (where it is usually called the projective tensor norm). The
second equality follows directly from the arithmetic-geometric mean inequality.

We first note that the atomic set A in (48) is compact, so is its convex hull convA. It is
also easy to see that A is a connected set (by considering the continuous map (u,v) 7→ uv>).

By (4), κ(W) = inf
{
ρ ≥ 0 : W = ρ

∑
i
σiai, σi ≥ 0,

∑
i
σi = 1,ai ∈ A

}
(67)

= inf {ρ ≥ 0 : W ∈ ρ convA} .

Since convA is compact with 0 ∈ int(convA) we know the infimum above is attained.
Thus there exist ρ ≥ 0 and C ∈ convA so that W = ρC and κ(W) = ρ. Applying
Caratheodory’s theorem for connected sets (Rockafellar and Wets, 1998, Theorem 2.29)
we know C =

∑t
i=1 σiuiv

>
i for some σi ≥ 0,

∑
i σi = 1, uiv

>
i ∈ A and t ≤ mn. Let

U =
√
ρ [
√
σ1u1, . . . ,

√
σtut], and V =

√
ρ [
√
σ1v1, . . . ,

√
σtvt]

>. We then have W = UV

and κ(W) = ρ ≥ 1
2

∑t
i=1

(
‖U:i‖2c + ‖Vi:‖2r

)
, which proves one side of Theorem 15.

On the other hand, consider any U and V that satisfy

W = UV =
t∑

j=1

‖U:j‖c ‖Vj:‖r
t∑
i=1

‖U:i‖c ‖Vi:‖r∑t
j=1 ‖U:j‖c ‖Vj:‖r

U:i

‖U:i‖c
Vi:
‖Vi:‖r

,

assuming w.l.o.g. that ‖U:i‖c ‖Vi:‖r 6= 0 for all 1 ≤ i ≤ t. This, together with the definition
(67), gives the other half of the equality: κ(W) ≤∑t

i=1 ‖U:i‖c ‖Vi:‖r . The proof is completed

by making the elementary observation that
∑t

i=1 ‖U:i‖c ‖Vi:‖r ≤ 1
2

∑t
i=1

(
‖U:i‖2c + ‖Vi:‖2r

)
.

39

Yu, Zhang, and Schuurmans

B.2 Proof of Theorem 16

Since Uinit = (
√

1− ηtUt,
√
θtut) and Vinit = (

√
1− ηtV >t ,

√
θtvt)

>, it is obvious that W̃t+1 =
UinitVinit. Note ‖ut‖c ≤ 1 and ‖vt‖r ≤ 1. By construction

`(Wt+1) + λρt+1 = `(Ut+1Vt+1) +
λ

2

t+1∑
i=1

(
‖(Ut+1):i‖2c + ‖(Vt+1)i:‖2r

)
= Ft+1(Ut+1, Vt+1) ≤ Ft+1(Uinit, Vinit)

≤ `((1− ηt)UtVt + θtutv
>
t) + λθt + λ

(1− ηt)
2

t∑
i=1

(
‖(Ut):i‖2c + ‖(Vt)i:‖2r

)
= `((1− ηt)Wt + θtutv

>
t) + λ(1− ηt)ρt + λθt, (68)

where the inequality is by the definition of Uinit and Vinit, and the last equality is by the
definition of ρt in (54). In addition, κ(Wt+1) ≤ ρt+1 follows from (54) and Theorem 15.

B.3 Proof of Theorem 21

By (50), the square of the polar is

(κ◦(G))2 = max
{

c>ZZ>c : ‖a‖2 ≤ 1, ‖b‖2 ≤ 1
}
, where c =

[
a
b

]
. (69)

Since it maximizes a convex quadratic function over a convex set, there must be a maximizer
attained at an extreme point of the feasible region. Therefore the problem is equivalent to

(κ◦(G))2 = max
{

c>ZZ>c : ‖a‖2 = 1, ‖b‖2 = 1
}

(70)

= max
{

tr(SZZ>) : tr(SI1) = 1, tr(SI2) = 1, S � 0, rank(S) = 1
}
, (71)

where S = cc>. Key to this proof is the fact that the rank one constraint can be dropped
without breaking the equivalence. To see why, notice that without this rank constraint the
feasible region is the intersection of the positive semidefinite cone with two hyperplanes,
hence the rank of all its extreme points must be upper bounded by one (Pataki, 1998).
Furthermore the linearity of the objective implies that there must be a maximizing solution
attained at an extreme point of the feasible region. Therefore we can continue by

(κ◦(G))2 = max
{

tr(SZZ>) : tr(SI1) = 1, tr(SI2) = 1, S � 0
}

= max
S�0

min
µ1,µ2∈R

tr(SGG>)− µ1(tr(SI1)− 1)− µ2(tr(SI2)− 1)

= min
µ1,µ2∈R

max
S�0

tr(SGG>)− µ1(tr(SI1)− 1)− µ2(tr(SI2)− 1)

= min
{
µ1 + µ2 : µ1, µ2 ∈ R, GG> � µ1I1 + µ2I2

}
(72)

= min
{
µ1 + µ2 : µ1 ≥ 0, µ2 ≥ 0,

∥∥Dµ2/µ1G
∥∥2
sp
≤ µ1 + µ2

}
(73)

= min
{
‖DµG‖2sp : µ ≥ 0

}
, (74)

40

Generalized Conditional Gradient for Sparse Estimation

where the third equality is due to the Lagrangian duality, the fifth equality follows from
the equivalence

∥∥Dµ2/µ1G
∥∥2
sp
≤ µ1 + µ2 ⇐⇒ Dµ2/µ1GG

>Dµ2/µ1 � (µ1 + µ2)I ⇐⇒
GG> � (µ1 +µ2)D

−1
µ2/µ1

D−1µ2/µ1 = µ1I1 +µ2I2, and the last equality is obtained through the

re-parameterization µ = µ2/µ1, ν = µ1 + µ2 and the elimination of ν.

B.4 Solving the multi-view polar

Here we show how to efficiently compute the polar (dual norm) in the multi-view setting.
Let us first backtrack in (73), which produces the optimal µ1 and µ2 via

µ1 + µ2 = ‖DµG‖2sp , and
µ2
µ1

= µ. (75)

Then the KKT condition for the step from (72) to (73) can be written as

M � 0, Mc = 0, ‖a‖2 = ‖b‖2 = 1, where M := µ1I1 + µ2I2 −GG>. (76)

By duality, this is a sufficient and necessary condition for a and b to be the solution of the
polar operator. Given the optimal µ1 and µ2, the first condition M � 0 must have been
satisfied already. Let the null space of M be spanned by an orthonormal basis {q1, . . . ,qk}.
Then we can parameterize c as c = Qα where Q = [q1, . . . ,qk] =:

[
Q1

Q2

]
. By (76),

0 = ‖a‖22 − ‖b‖22 = α′
(
Q>1 Q1 −Q>2 Q2

)
α. (77)

Let PΣP> be the eigen-decomposition of Q>1 Q1−Q>2 Q2 with Σ being diagonal and P being
unitary. Let v = P>α. Then c = QPv and (77) simply becomes v>Σv = 0. In addition,
(76) also implies 2 = ‖c‖22 = v>P>Q>QPv = v>v. So finally the optimal solution to the
polar problem (70) can be completely characterized by{[

a
b

]
= QPv : v>Σv = 0, ‖v‖22 = 2

}
, (78)

which is simply a linear system after a straightforward change of variable. The major
computational cost for recovery is to find the null space of M , which can be achieved by
QR decomposition. The complexity of eigen-decomposition for Q>1 Q1 −Q>2 Q2 depends on
the dimension of the null space of M , which is usually low in practice.

References

Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. Good practice in
large-scale learning for image classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(3):507–520, 2014.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task fea-
ture learning. Machine Learning, 73(3):243–272, 2008.

Francis Bach. Convex relaxations of structured matrix factorizations. HAL:00861118, 2013.

41

Yu, Zhang, and Schuurmans

Francis Bach. Duality between subgradient and conditional gradient methods. SIAM Jour-
nal of Optimization, 25(1):115–129, 2015.

Francis Bach and Michael Jordan. A probabilistic interpretation of canonical correlation
analysis. Technical Report 688, Department of Statistics, University of California, Berke-
ley, 2006.

Francis Bach, Julien Mairal, and Jean Ponce. Convex sparse matrix factorizations.
arXiv:0812.1869v1, 2008.

Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Structured
sparsity through convex optimization. Statistical Science, 27(4):450–468, 2012.

Amir Beck and Shimrit Shtern. Linearly convergent away-step conditional gradient for
non-strongly convex functions, 2015.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31:167–175, 2003.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Stephen Becker, Jérôme Bobin, and Emmanuel J. Candès. NESTA: A fast and accurate
first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39,
2009.

Jonathan M. Borwein and John D. Vanderwerff. Convex Functions: Constructions, Char-
acterizations and Counterexamples. Cambridge University Press, 2010.

David M. Bradley and James Andrew Bagnell. Convex coding. In Conf. on Uncertainty in
Artificial Intelligence, 2009.

Kristian Bredies and Dirk A. Lorenz. Iterated hard shrinkage for minimization problems
with sparsity constraints. SIAM Journal on Scientific Computing, 30(2):657–683, 2008.

Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data. Springer,
2011.

Samuel Burer and Renato D C Monteiro. Local minima and convergence in low-rank
semidefinite programming. Mathematical Programming, 103(3):427–444, 2005.

Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics, 9:717–772, 2009.

Michael D. Canon and Clifton D. Cullum. A tight upper bound on the rate of convergence
of Frank-Wolfe algorithm. SIAM Journal on Control, 6:509–516, 1968.

Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S.Willsky. The convex
geometry of linear inverse problems. Foundations of Computational Mathematics, 12(6):
805–849, 2012.

42

Generalized Conditional Gradient for Sparse Estimation

H. Cheng, Y. Yu, X. Zhang, E. Xing, and D. Schuurmans. Scalable and sound low-rank
tensor learning. In Proc. Intl. Conf. on Artificial Intelligence and Statistics, 2016.

Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. ACM Transactions on Algorithms, 6(4):1–30, 2010.

Tij De Bie, Nello Cristianini, and Roman Rosipal. Eigenproblems in pattern recognition.
In Handbook of Geometric Computing, pages 129–170, 2005.

Vladimir Fedorovich Dem’yanov and Alexander M. Rubinov. The minimization of a smooth
convex functional on a convex set. SIAM Journal on Control, 5:280–294, 1967.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-fei. ImageNet: A large-
scale hierarchical image database. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2009.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The Yahoo! music
dataset and KDD-Cup’11. JMLR Workshop and Conference Proceedings: Proceedings of
KDD Cup 2011 Competition, 18:3–18, 2012.

Miroslav Dudik, Zaid Harchaoui, and Jerome Malick. Lifted coordinate descent for learn-
ing with trace-norm regularizations. In Proc. Intl. Conf. on Artificial Intelligence and
Statistics, 2012.

J. Dunn. Rates of convergence for conditional gradient algorithms near singular and non-
singular extremals. SIAM Journal on Control and Optimization, 17:187–211, 1979.

J. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step size rules.
Journal of Mathematical Analysis and Applications, 62:432–444, 1978.

Yonina C. Eldar and Gitta Kutyniok, editors. Compressed Sensing: Theory and Applica-
tions. Cambridge University Press, 2012.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956.

Robert Freund and Paul Grigas. New analysis and results for the Frank-Wolfe method.
Mathematical Programming, 155(1):199–230, 2016.

Masao Fukushima and Hisashi Mine. A generalized proximal point algorithm for certain
non-convex minimization problems. International Journal of Systems Science, 12(8):
989–1000, 1981.

Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe method over strongly-convex
sets. In Proc. Intl. Conf. on Machine Learning, 2015.

Dan Garber and Elad Hazan. A linearly convergent variant of the conditional gradient
algorithm under strong convexity, with applications to online and stochastic optimization.
SIAM Journal on Optimization, 26(3):1493–1528, 2016.

43

Yu, Zhang, and Schuurmans

Athinodoros S. Georghiades, Peter N. Belhumeur, and David J. Kriegman. From few to
many: Illumination cone models for face recognition under variable lighting and pose.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:643–660, 2001.

J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical Pro-
gramming, 35:110–119, 1986.

Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algorithms
for norm-regularized smooth convex optimization. Mathematical Programming, 152:75–
112, 2015.

Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin American
Conference on Theoretical Informatics, 2008.

Charles A. Holloway. An extension of the Frank and Wolfe method of feasible directions.
Mathematical Programming, 6(1):14–27, 1974.

Cho-Jui Hsieh and Peder A. Olsen. Nuclear norm minimization via active subspace selection.
In Proc. Intl. Conf. on Machine Learning, 2014.

Laurent Jacob, Guillaume Obozinski, and Jean P. Vert. Group lasso with overlap and graph
lasso. In Proc. Intl. Conf. on Machine Learning, 2009.

Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proc.
Intl. Conf. on Machine Learning, 2013.

Martin Jaggi and Marek Sulovsky. A simple algorithm for nuclear norm regularized prob-
lems. In Proc. Intl. Conf. on Machine Learning, 2010.

Yangqing Jia, Mathieu Salzmann, and Trevor Darrell. Factorized latent spaces with struc-
tured sparsity. In Advances in Neural Information Processing Systems, pages 982–990,
2010.

Seyoung Kim and Eric P. Xing. Statistical estimation of correlated genome associations to
a quantitative trait network. PLoS Genetics, 5(8):1–18, 2009.

Jacek Kuczyński and Henryk Woźniakowski. Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start. SIAM Journal on Matrix Analysis and
Applications, 13(4):1094–1122, 1992.

S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimiza-
tion variants. In Advances in Neural Information Processing Systems, 2015.

Sören Laue. A hybrid algorithm for convex semidefinite optimization. In Proc. Intl. Conf.
on Machine Learning, 2012.

Evgeny S. Levitin and Boris T. Polyak. Constrained minimization problems. USSR Com-
putational Mathematics and Mathematical Physics, 6(5):1–50, 1966.

Gerard Meyer. Accelerated Frank–Wolfe algorithms. SIAM Journal on Control, 12:655–655,
1974.

44

Generalized Conditional Gradient for Sparse Estimation

Charles A. Micchelli, Jean M. Morales, and Massimiliano Pontil. Regularizers for structured
sparsity. Advances in Computational Mathematics, 38(3):455–489, 2013.

Bamdev Mishra, Gilles Meyer, Francis Bach, and Rodolphe Sepulchre. Low-rank optimiza-
tion with trace norm penalty. SIAM Journal on Optimization, 23(4):2124–2149, 2013.

Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103(1):127–152, 2005.

Yurii Nesterov. Gradient methods for minimizing composite functions. Mathematical Pro-
gramming, Series B, 140:125–161, 2013.

Guillaume Obozinski and Francis Bach. Convex relaxation for combinatorial penalties.
Technical Report HAL 00694765, 2012.

Gabor Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Mathematics of Operations Research, 23(2):339–358, 1998.

Ting Kei Pong, Paul Tseng, Shuiwang Ji, and Jieping Ye. Trace norm regularization:
Reformulations, algorithms, and multi-task learning. SIAM Journal on Optimization, 20
(6):3465–3489, 2010.

Ralph Tyrell Rockafellar and Roger J-B Wets. Variational Analysis. Springer, 1998.

Shai Shalev-Shwartz, Nathan Srebro, and Tong Zhang. Trading accuracy for sparsity in
optimization problem with sparsity constraint. SIAM Journal on Optimization, 20(6):
2807–2832, 2010.

Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakkola. Maximum-margin matrix
factorization. In Advances in Neural Information Processing Systems, 2005.

Ambuj Tewari, Pradeep Ravikumar, and Inderjit S. Dhillon. Greedy algorithms for struc-
turally constrained high dimensional problems. In Advances in Neural Information Pro-
cessing Systems, 2011.

Kim-Chuan Toh and Sangwoon Yun. An accelerated proximal gradient algorithm for nuclear
norm regularized least squares problems. Pacific Journal of Optimization, 6:615–640,
2010.

Paul Tseng. Approximation accuracy, gradient methods, and error bound for structured
convex optimization. Mathematical Programming, Series B, 125:263–295, 2010.

Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal
on Optimization, 20(3):1364–1377, 2010.

Martha White, Yaoliang Yu, Xinhua Zhang, and Dale Schuurmans. Convex multi-view
subspace learning. In Advances in Neural Information Processing Systems, 2012.

P. Wolfe. Convergence theory in nonlinear programming. In Integer and Nonlinear Pro-
gramming. North-Holland, 1970.

45

Yu, Zhang, and Schuurmans

Yaoliang Yu and Dale Schuurmans. Rank/norm regularization with closed-form solutions:
Application to subspace clustering. In Conf. on Uncertainty in Artificial Intelligence,
2011.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of The Royal Statistical Society Series B, 68(1):49–67, 2006.

Xiaotong Yuan and Shuicheng Yan. Forward basis selection for pursuing sparse representa-
tions over a dictionary. IEEE Transactions on Pattern Analysis and Machine Intelligence,
35(12):3025–3036, 2013.

Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S V N Vishwanathan, and Inderjit Dhillon.
NOMAD: Nonlocking, stochastic multi-machine algorithm for asynchronous and decen-
tralized matrix completion. In Proc. Intl. Conf. on Very Large Data Bases, 2014.

Xinhua Zhang, Yaoliang Yu, Martha White, Ruitong Huang, and Dale Schuurmans. Convex
sparse coding, subspace learning, and semi-supervised extension. In Proc. Nat’l. Conf.
Artificial Intelligence, 2011.

Xinhua Zhang, Yaoliang Yu, and Dale Schuurmans. Accelerated training for matrix-norm
regularization: A boosting approach. In Advances in Neural Information Processing
Systems, 2012.

Yong Zhuang, Wei-Sheng Chin, Yu Juan, and Chih-Jen Lin. A fast parallel SGD for matrix
factorization in shared memory systems. In Proc. ACM Recommender System Conference,
2013.

46

	Introduction
	Extensions over Previously Published Work
	Preliminaries
	Notation and Definitions
	Composite Minimization Problem
	Generalized Conditional Gradient for Convex Optimization
	General Setting with Convex and Smooth
	Improved Algorithm and Refined Analysis when f is a Convex Gauge
	Generalized Convex Gauge Regularization
	Modified GCG Algorithm for Generalized Gauge Regularization

	Additional Discussions and Related Work

	Application to Low Rank Learning
	Low Rank Learning Problems
	General Convex Relaxation and Solution via GCG
	Application to Matrix Completion

	Fixed-rank Local Optimization
	Multi-view Dictionary Learning
	Efficient Polar Operator
	A Modified Power Iteration

	Experimental Evaluation
	Matrix Completion with Trace Norm Regularization
	Multi-class Classification with Trace Norm Regularization
	Multi-view Dictionary Learning
	Synthetic Data
	Image Denoising

	Conclusion

	Proofs for sec:gcg
	Proof of thm:gcgboundedness
	Proof of thm:gcgcgiant
	Proof of thm:gcgc
	Proof of thm:gcgpgiant
	Proofs for sec:dl
	Proof of thm:varational
	Proof of thm:localrelax
	Proof of thm:multipolar
	Solving the multi-view polar

