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Abstract

This paper presents direct settings and rigorous solutions of the main Statistical Inference
problems. It shows that rigorous solutions require solving multidimensional Fredholm in-
tegral equations of the first kind in the situation where not only the right-hand side of
the equation is an approximation, but the operator in the equation is also defined ap-
proximately. Using Stefanuyk-Vapnik theory for solving such ill-posed operator equations,
constructive methods of empirical inference are introduced. These methods are based on a
new concept called V -matrix. This matrix captures geometric properties of the observation
data that are ignored by classical statistical methods.
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1. Basic Concepts of Classical Statistics

In the next several sections, we describe main concepts of Statistics. We first outline these
concepts for the one-dimensional case and then generalize them for the multidimensional
case.

1.1 Cumulative Distribution Function

The basic concept of Theoretical Statistics and Probability Theory is the so-called Cumulative
Distribution Function (CDF)

F (x) = P{X ≤ x}.

This function defines the probability of the random variable X not exceeding x. Different
CDFs describe different statistical environments, so CDF (defining the probability measure)
is the main characteristic of the random events. In this paper, we consider the important
case when F (x) is a continuous function.
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1.2 General Problems of Probability Theory and Statistics

The general problem of Probability Theory can be defined as follows:

Given a cumulative distribution function F (x), describe outcomes of random experi-
ments for a given theoretical model.

The general problem of Statistics can be defined as follows:

Given iid observations of outcomes of the same random experiments, estimate the
statistical model that defines these observations.

In Section 2, we discuss several main problems of Statistics. Next, we consider the basic
one: estimation of CDF.

1.3 Empirical Cumulative Distribution Functions

In order to estimate CDF, one introduces the so-called Empirical Cumulative Distribution
function (ECDF) constructed for iid observations obtained according to F (x):

X1, ..., X`.

The ECDF function has the form

F`(x) =
1

`

∑̀
i=1

θ(x−Xi),

where θ(x−Xi) is the step-function

θ(x−Xi) =

{
1, if x ≥ Xi,
0, if x < Xi.

Classical statistical theory is based on convergence of ECDF converges to CDF when the
number ` of observations increases.

1.4 The Glivenko-Cantelli Theorem and Kolmogorov Type Bounds

In 1933, the following theorem was proven (Glivenko-Cantelli theorem).

Theorem. Empirical cumulative distribution functions converge uniformly to the true
cumulative distribution function:

lim
`→∞

P{sup
x
|F (x)− F`(x)| ≥ ε} = 0, ∀ε > 0.

In 1933, Kolmogorov derived asymptotical exact rate of convergence of ECDF to CDF for
continuous functions F (x):

lim
`→∞

P{
√
` sup

x
|F (x)− F`(x)| ≥ ε} = 2

∞∑
k=1

(−1)k−1 exp{−2ε2k2}. (1)

1684



V -Matrix Method of Solving Statistical Inference Problems

Later, Dvoretzky, Kiefer, Wolfowitz, and Massart showed the existence of exponential
type of bounds for any `:

P{sup
x
|F (x)− F`(x)| ≥ ε} ≤ 2 exp{−2ε2`}. (2)

Bound (2) is defined by the first term of the right-hand side of Kolmogorov asymptotic
equality (1).

Glivenko-Cantelli theorem and bounds (1), (2) can be considered as a foundation of
statistical science since they claim that:

1. It is possible to estimate the true statistical distribution from iid data.

2. The ECDF strongly converges to the true CDF, and this convergence is fast.

1.5 Generalization to Multidimensional Case

Let us generalize the main concepts described above to the multidimensional case. We start
with CDF.

Joint cumulative distribution function. For the multivariate random variable
x = (x1, ..., xd), the joint cumulative distribution function F (x), x ∈ Rd is defined by
the function

F (x) = P{X1 ≤ x1, ..., Xd ≤ xd}. (3)

As in the one-dimensional case, the main problem of Statistics is as follows: estimate
CDF, as defined in (3), based on random multivariate iid observations

X1, ..., X`, Xi ∈ Rd, i = 1, . . . , `..

In order to solve this problem, one uses the same idea of empirical distribution function

F`(x) =
1

`

∑̀
i=1

θ(x−Xi),

where x = (x1, ..., xd) ∈ Rd, Xi = (X1
i , ..., X

d
i ) ∈ Rd and

θ(x−Xi) =
d∏

k=1

θ(xk −Xk
i ).

Note that

F (x) = Euθ(x− u) =

∫
θ(x− u)dF (u),

and the generalized (for the multidimensional case) Glivenko-Cantelli theorem has the form

lim
`→∞

P

{
sup
x

∣∣∣∣∣Euθ(x− u)− 1

`

∑̀
i=1

θ(x−Xi)

∣∣∣∣∣ ≥ ε
}

= 0.

This equation describes the uniform convergence of the empirical risks to their expectation
over vectors u ∈ Rd for the parametric set of multidimensional step functions θ(x−u) (here
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x, u ∈ Rd, and x is a vector of parameters). Since VC dimension of this set of functions
is equal1 to one, according to the VC theory (Vapnik and Chervonenkis, 1974), (Vapnik,
1995), (Vapnik, 1998), the corresponding rate of convergence is bounded as follows:

P

{
sup
x

∣∣∣∣∣Euθ(x− u)− 1

`

∑̀
i=1

θ(x−Xi)

∣∣∣∣∣ ≥ ε
}
≤ exp

{
−
(
ε2 − ln `

`

)
`

}
. (4)

According to this bound, for sufficiently large values of `, the convergence of ECDF to the
actual CDF does not depend on the dimensionality of the space. This fact has important
consequences for Applied Statistics.

2. Main Problems of Statistical Inference

The main target of statistical inference theory is estimation (from the data) of specific
models of random events, namely:

1. conditional probability function;

2. conditional density function;

3. regression function;

4. density ratio function.

2.1 Conditional Density, Conditional Probability, Regression, and Density
Ratio Functions

Let F (x) be a cumulative distribution function of random variable x. We call non-negative
function p(x) the probability density function if∫ x

−∞
p(x∗)dx∗ = F (x).

Similarly, let F (x, y) be the joint probability distribution function of variables x and y. We
call non-negative p(x, y) the joint probability density function of two variables x and y if∫ y

−∞

∫ x

−∞
p(x∗, y∗)dx∗dy∗ = F (x, y).

1. Let p(x, y) and p(x) be probability density functions for pairs (x, y) and vectors x.
Suppose that p(x) > 0. The function

p(y|x) =
p(x, y)

p(x)

is called the Conditional Density Function. It defines, for any fixed x = x0, the probability
density function p(y|x = x0) of random value y ∈ R1. The estimation of the conditional
density function from data

(y1, X1), ..., (y`, X`) (5)

1. Since the set of d-dimensional parametric (with respect to parameter x) functions θ(x− u) can shatter,
at most, one vector.
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is the most difficult problem in our list of statistical inference problems.

2. Along with estimation of the conditional density function, the important problem is
to estimate the so-called Conditional Probability Function. Let variable y be discrete, say,
y ∈ {0, 1}. The function defined by the ratio

p(y = 1|x) =
p(x, y = 1)

p(x)
, p(x) > 0

is called Conditional Probability Function. For any given vector x = x0, this function defines
the probability that y is equal to one; correspondingly, p(y = 0|x = x0) = 1− p(y = 1|x =
x0). The problem is to estimate the conditional probability function, given data (5) where
y ∈ {0, 1}.

3. As mentioned above, estimation of the conditional density function is a difficult prob-
lem; a much easier problem is the problem of estimating the so-called Regression Function
(conditional expectation of the variable y):

r(x) =

∫
yp(y|x)dy,

which defines expected value y ∈ R1 for a given vector x.

4. In this paper, we also consider a problem, which is important for applications:
estimating the ratio of two probability densities (Sugiyama et al., 2012). Let pnum(x) and
pden(x) > 0 be two different density functions (subscripts num and den correspond to
numerator and denominator of the density ratio). Our goal is to estimate the function

R(x) =
pnum(x)

pden(x)

given iid data

X1, ..., X`den ,

distributed according to pden(x), and iid data

X ′1, ..., X
′
`num ,

distributed according to pnum(x).

In the next sections, we introduce direct settings for these four statistical inference
problems.

2.2 Direct Constructive Setting for Conditional Density Estimation

By definition, conditional density p(y|x) is the ratio of two densities

p(y|x) =
p(x, y)

p(x)
, p(x) > 0 (6)

or, equivalently,

p(y|x)p(x) = p(x, y).
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This expression leads to the following equivalent one:∫ ∫
θ(y − y′)θ(x− x′)f(x′, y′)dF (x′)dy′ = F (x, y), (7)

where f(x, y) = p(y|x), function F (x) is the cumulative distribution function of x and
F (x, y) is the joint cumulative distribution function of x and y.

Therefore, our setting of the condition density estimation problem is as follows:

Find the solution of integral equation (7) in the set of nonnegative functions f(x, y) =
p(y|x) when the cumulative probability distribution functions F (x, y) and F (x) are
unknown but iid data

(y1, X1), ..., (y`, X`)

are given.

In order to solve this problem, we use empirical estimates

F`(x, y) =
1

`

∑̀
i=1

θ(y − yi)θ(x−Xi), (8)

F`(x) =
1

`

∑̀
i=1

θ(x−Xi) (9)

of the unknown cumulative distribution functions F (x, y) and F (x). Therefore, we have
to solve an integral equation where not only its right-hand side is defined approximately
(F`(x, y) instead of F (x, y)), but also the data-based approximation

A`f(x, y) =

∫ ∫
θ(y − y′)θ(x− x′)f(x′, y′)dy′dF`(x

′)

is used instead of the exact integral operator

Af(x, y) =

∫ ∫
θ(y − y′)θ(x− x′)f(x′, y′)dy′dF (u′).

Taking into account (9), our goal is thus to find the solution of approximately defined
equation ∑̀

i=1

θ(x−Xi)

∫ y

−∞
f(Xi, y

′)dy′ ≈ 1

`

∑̀
i=1

θ(y − yi)θ(x−Xi). (10)

Taking into account definition (6), we have∫ ∞
−∞

p(y|x)dy = 1, ∀x ∈ X .

Therefore, the solution of equation (10) has to satisfy the constraint f(x, y) ≥ 0 and the
constraint ∫ ∞

−∞
f(y′, x)dy′ = 1, ∀x ∈ X .

We call this setting the direct constructive setting since it is based on direct definition
of conditional density function (7) and uses theoretically justified approximations (8), (9)
of unknown functions.
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2.3 Direct Constructive Setting for Conditional Probability Estimation

The problem of estimation of the conditional probability function can be considered analo-
gously to the conditional density estimation problem. The conditional probability is defined
as

p(y = 1|x) =
p(x, y = 1)

p(x)
, p(x) > 0 (11)

or, equivalently,

p(y = 1|x)p(x) = p(x, y = 1).

We can rewrite it as ∫
θ(x− x′)f(x′)dF (x′) = F (x, y = 1), (12)

where f(x) = p(y = 1|x) and F (x, y = 1) = P{X ≤ x, y = 1}.
Therefore, the problem of estimating the conditional probability is formulated as follows.

In the set of bounded functions 0 ≤ f(x) ≤ 1, find the solution of equation (12) if
cumulative distribution functions F (x) and F (x, y = 1) are unknown but iid data

(y1, X1), ..., (y`, X`), y ∈ {0, 1}, x ∈ X ,

generated according to F (x, y), are given.

As before, instead of unknown cumulative distribution functions we use their empirical
approximations

F`(x) =
1

`

∑̀
i=1

θ(x−Xi), (13)

F`(x, y = 1) = p`F`(x|y = 1) =
1

`

∑̀
i=1

yiθ(x−Xi), (14)

where p` is the ratio of the number of examples with y = 1 to the total number ` of the
observations.

Therefore, one has to solve integral equation (12) with approximately defined right-hand
side (13) and approximately defined operator (14):

A`f(x) =
1

`

∑̀
i=1

θ(x−Xi)f(Xi).

Since the probability takes values between 0 and 1, our solution has to satisfy the bounds

0 ≤ f(x) ≤ 1, ∀x ∈ X .

Also, definition (11) implies that∫
f(x)dF (x) = p(y = 1),

where p(y = 1) is the probability of y = 1.
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2.4 Direct Constructive Setting for Regression Estimation

By definition, regression is the conditional mathematical expectation

r(x) =

∫
yp(y|x)dy =

∫
y
p(x, y)

p(x)
dy.

This can be rewritten in the form

r(x)p(x) =

∫
yp(x, y)dy. (15)

From (15), one obtains the equivalent equation∫
θ(x− x′)r(x′)dF (x′) =

∫
θ(x− x′)

∫
ydF (x′, y′). (16)

Therefore, the direct constructive setting of regression estimation problem is as follows:
In a given set of functions r(x), find the solution of integral equation (16) if cumulative

probability distribution functions F (x, y) and F (x) are unknown but iid data (5) are given.
As before, instead of these functions, we use their empirical estimates. That is, we

construct the approximation

A`r(x) =
1

`

∑̀
i=1

θ(x−Xi)r(Xi)

instead of the actual operator in (16), and the approximation of the right-hand side

F`(x) =
1

`

∑̀
j=1

yjθ(x−Xj)

instead of the actual right-hand side in (16), based on the observation data

(y1, X1), ..., (y`, X`), y ∈ R1, x ∈ X . (17)

2.5 Direct Constructive Setting of Density Ratio Estimation Problem

Let Fnum(x) and Fden(x) be two different cumulative distribution functions defined on X ⊂
Rd and let pnum(x) and pden(x) be the corresponding density functions. Suppose that
pden(x) > 0, x ∈ X . Consider the ratio of two densities:

R(x) =
pnum(x)

pden(x)
.

The problem is to estimate the ratio R(x) when densities are unknown, but iid data

X1, ..., X`den ∼ Fden(x), (18)

generated according to Fden(x), and iid data

X ′1, ..., X
′
`num ∼ Fnum(x), (19)
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generated according to Fnum(x), are given.
As before, we introduce the constructive setting of this problem: solve the integral

equation ∫
θ(x− u)R(u)dFden(u) = Fnum(x)

when cumulative distribution functions Fden(x) and Fnum(x) are unknown, but data (18) and
(19) are given. As before, we approximate the unknown cumulative distribution functions
Fnum(x) and Fden(x) using empirical distribution functions

F`num(x) =
1

`num

`num∑
j=1

θ(x−X ′j)

for Fnum(x), and

F`den(x) =
1

`den

`den∑
j=1

θ(x−Xj)

for Fden(x).
Since R(x) ≥ 0 and limx→∞ Fnum(x) = 1, our solution has to satisfy the constraints

R(x) ≥ 0, ∀x ∈ X ,∫
R(x)dFden(x) = 1.

Therefore, all main empirical inference problems can be represented via (multidimen-
sional) Fredholm integral equation of the first kind with approximately defined elements.
Although approximations converge to the true functions, these problems are computation-
ally difficult due to their ill-posed nature. Thus they require rigorous solutions.2

In Section 5, we consider methods for solving ill-posed operator equations, which we
apply in Section 6 to our problems of inference. Before that, however, we present a general
form for all statistical inference problems in the next subsections.

2.6 General Form of Statistical Inference Problems

Consider the multidimensional Fredholm integral equation∫
θ(z − z′)f(z′)dFA(z′) = FB(z),

where the kernel of operator equation is defined by the step function θ(z−z′), the cumulative
distribution functions FA(z) and FB(z) are unknown but the corresponding iid data

Z1, ..., Z`A ∼ FA(z)

Z1, ..., Z`B ∼ FB(z)

are given. In the different inference problems, the elements f(z), FA(z), FB(z) of the equa-
tion have different meanings (Table 1):

2. Various statistical methods exist for solving these inference problems. Our goal is to find general rigorous
solutions that take into account all the available characteristics of the problems.
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Conditional Conditional Density Regression
density probability ratio

z (x, y) x x (x, y), where y ≥ 0

f(z) p(y|x) p(y = 1|x)
pnum(x)

pden(x)
ŷ−1R(x), (R(x) =

∫
yp(y|x)dy)

FA(z) F (x) F (x) Fnum(x) F (x)

FB(z) F (x, y) F (x|y = 1)p(y = 1) Fden(x) ŷ−1
∫
θ(x− x′)y′dF (x′, y′)

Table 1: Vector z, solution f(z), and functions FA(z), FB(z) for different statistical infer-
ence problems.

1. In the problem of conditional density estimation, vector z is the pair (x, y), the solution
f(z) is p(y|x), the cumulative distribution function FA(z) is F (x) and the cumulative
distribution function FB(z) is F (x, y).

2. In the problem of conditional probability p(y = 1|x) estimation, vector z is x, the
solution f(z) is p(y = 1|x), the cumulative distribution function FA(z) is F (x), the
cumulative distribution function FB(z) is F (x|y = 1)p(y = 1), where p(y = 1) is the
probability of class y = 1.

3. In the problem of density ratio estimation, the vector z is x, the solution f(z) is
pnum(x)/pden(x), the cumulative function FA(z) is Fnum(x), the cumulative function
FB(z) is Fden(x).

4. In the problem of regression R(x) =
∫
yp(y|x)dy estimation, the vector z is (x, y),

where y ≥ 0, the solution f(z) is ŷ−1R(x), (R(x) =
∫
yp(y|x)dy), the cumulative

function FA(z) is F (x), the cumulative function FB(z) is ŷ−1
∫
θ(x′ − x′)y′dF (x′, y′).

Since statistical inference problems have the same kernel of the integral equations (i.e.,
the step-function) and the same right-hand side (i.e., the cumulative distribution func-
tion), it allows us to introduce (in Section 5) a common standard method (called V -matrix
method) for solving all inference problems.

3. Solution of Ill-Posed Operator Equations

In this section, we consider ill-posed operator equations and their solutions.

3.1 Fredholm Integral Equations of the First Kind

In this section, we consider the linear operator equations

Af = F, (20)
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where A maps elements of the metric space f ∈M ⊂ E1 into elements of the metric space
F ∈ N ⊂ E2. Let f be a continuous one-to-one operator and f(M) = N . Let the solution
of such operator equation exist and be unique. Then

M = A−1N .

The crucial question is whether this inverse operator A−1 is continuous. If it is, then
close functions in N correspond to close functions in M. That is, ”small” changes in the
right-hand side of (20) cause ”small” changes of its solution. In this case, we call the
operator A−1 stable (Tikhonov and Arsenin, 1977).

If, however, the inverse operator is discontinuous, then ”small” changes in the right-hand
side of (20) can cause significant changes of the solution. In this case, we call the operator
A−1 unstable.

Solution of equation (20) is called well-posed if this solution

1. exists;

2. is unique;

3. is stable.

Otherwise we call the solution ill-posed.

We are interested in the situation when the solution of operator equation exists, and is
unique. In this case, the effectiveness of solution of equation (20) is defined by the stability
of the operator A−1. If the operator is unstable, then, generally speaking, the numerical
solution of equation is impossible.

Here we consider linear integral operator

Af(x) =

∫ b

a
K(x, u)f(u)du

defined by the kernel K(t, u), which is continuous almost everywhere on a ≤ t ≤ b, c ≤
x ≤ d. This kernel maps the set of functions {f(t)}, continuous on [a, b], unto the set of
functions {F (x)}, also continuous on [c, d]. The corresponding Fredholm equation of the
first kind ∫ b

a
K(x, u)f(u)du = F (x)

requires finding the solution f(u) given the right-hand side F (x).

In this paper, we consider integral equation defined by the so-called convolution kernel

K(x, u) = K(x− u).

Moreover, we consider the specific convolution kernel of the form

K(x− u) = θ(x− u).

As stated in Section 2.2, this kernel covers all settings of empirical inference problems.
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First, we show that the solution of equation∫ 1

0
θ(x− u)f(u)du = x (21)

is indeed ill-posed3. It is easy to check that

f(x) = 1

is the solution of this equation. Indeed,∫ 1

0
θ(x− u)du =

∫ x

0
du = x. (22)

It is also easy to check that the function

f∗(x) = 1 + cosnx (23)

is a solution of the equation∫ 1

0
θ(x− u)f∗(u)du = x+

sinnx

n
. (24)

That is, when n increases, the right-hand sides of equations (22) and (24) are getting close
to each other, but their solutions (21) and (23) are not.

The problem is how one can solve an ill-posed equation when its right-hand side is
defined imprecisely.

3.2 Methods of Solving Ill-Posed Problems

In this subsection, we consider methods for solving ill-posed operator equations.

3.2.1 Inverse Operator Lemma

The following classical inverse operator lemma (Tikhonov and Arsenin, 1977) is the key
enabler for solving ill-posed problems.

Lemma. If A is a continuous one-to-one operator defined on a compact set M∗ ⊂M,
then the inverse operator A−1 is continuous on the set N ∗ = AM∗.

Therefore, the conditions of existence and uniqueness of the solution of an operator
equation imply that the problem is well-posed on the compact M∗. The third condition
(stability of the solution) is automatically satisfied. This lemma is the basis for all con-
structive ideas of solving ill-posed problems. We now consider one of them.

3.2.2 Regularization Method

Suppose that we have to solve the operator equation

Af = F (25)

3. Using the same arguments, one can show that the problem of solving any Fredholm equation of the first
kind is ill-posed.
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defined by continuous one-to-one operator A mapping M into N , and assume the solution
of (25) exists. Also suppose that, instead of the right-hand side F (x), we are given its
approximation Fδ(x), where

ρE2(F (x), Fδ(x)) ≤ δ.
Our goal is to find the solution of equation

Af = Fδ

when δ → 0.
Consider a lower semi-continuous functional W (f) (called the regularizer) that has the

following three properties:

1. the solution of the operator equation (25) belongs to the domain D(W ) of the func-
tional W (f);

2. functional W (f) is non-negative values in its domain;

3. all sets
Mc = {f : W (f) ≤ c}

are compact for any c ≥ 0.

The idea of regularization is to find a solution for (25) as an element minimizing the
so-called regularized functional

Rγ(f̂ , Fδ) = ρ2E2
(Af̂, Fδ) + γδW (f̂), f̂ ∈ D(W ) (26)

with regularization parameter γδ > 0.
The following theorem holds true (Tikhonov and Arsenin, 1977).
Theorem 1 Let E1 and E2 be metric spaces, and suppose for F ∈ N there exists a

solution of (25) that belongs to Mc. Suppose that, instead of the exact right-hand side F in
(25), its approximations4 Fδ ∈ E2 in (26) are given such that ρE2(F, Fδ) ≤ δ. Consider the
sequence of parameters γ such that

γ(δ) −→ 0 for δ −→ 0,

lim
δ−→0

δ2

γ(δ)
≤ r <∞. (27)

Then the sequence of solutions f
γ(δ)
δ minimizing the functionals Rγ(δ)(f, Fδ) on D(W ) con-

verges to the exact solution f (in the metric of space E1) as δ −→ 0.
In a Hilbert space, the functional W (f) may be chosen as ||f ||2 for a linear operator A.

Although the setsMc are (only) weakly compact in this case, regularized solutions converge
to the desired one. Such a choice of regularized functional is convenient since its domain
D(W ) is the whole space E1. In this case, however, the conditions on the parameters γ are
more restrictive than in the case of Theorem 1: namely, γ should converge to zero slower
than δ2.

Thus the following theorem holds true (Tikhonov and Arsenin, 1977).
Theorem 2 Let E1 be a Hilbert space and W (f) = ||f ||2. Then for γ(δ) satisfying (27)

with r = 0, the regularized element f
γ(δ)
δ converges to the exact solution f in metric E1 as

δ → 0.

4. The elements Fδ do not have to belong to the set N .
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4. Stochastic Ill-Posed Problems

In this section, we consider the problem of solving the operator equation

Af = F, (28)

where not only its right-hand side is defined approximately (F`(x) instead of F (x)), but
the operator Af is also defined approximately. Such problem are called stochastic ill-posed
problems.

In the next subsections, we describe the conditions under which it is possible to solve
equation (28), where both the right-hand side and the operator are defined approximately.
We first discuss the general theory for solving stochastic ill-posed problems and then con-
sider specific operators describing particular problems, i.e., empirical inference problems
described in Sections 2.3, 2.4, and 2.5. For all these problems, the operator has the form

A`f =

∫
θ(x− u)f(u)dF`(u).

We show that rigorous solutions of stochastic ill-posed problem with this operator leverage
the so-called V -matrix, which captures some geometric properties of the data; we also
describe specific algorithms for solution of our empirical inference problems.

4.1 Regularization of Stochastic Ill-Posed Problems

Consider the problem of solving the operator equation

Af = F

under the condition where (random) approximations are given not only for the function
on the right-hand side of the equation but for the operator as well (the stochastic ill-posed
problem).

We assume that, instead of the true operator A, we are given a sequence of random
continuous operators A`, ` = 1, 2, ... that converges in probability to the operator A (the
definition of closeness between two operators will be defined later).

First, we discuss general conditions under which the solution of stochastic ill-posed
problem is possible; after that, we consider specific operator equations corresponding to
each empirical inference problem.

As before, we consider the problem of solving the operator equation by the regularization
method, i.e., by minimizing the functional

R∗γ`(f, F`, A`) = ρ2E2
(A`f, F`) + γ`W (f). (29)

For this functional, there exists a minimum (perhaps, not unique). We define the closeness
of operator A and operator A` as the distance

||A` −A|| = sup
f∈D

||A`f −Af ||E2

W 1/2(f)
.

The main result for solving stochastic ill-posed problems via regularization method (29)
is provided by the following Theorem (Stefanyuk, 1986), (Vapnik, 1998).
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Theorem. For any ε > 0 and any constants C1, C2 > 0 there exists a value γ0 > 0
such that for any γ` ≤ γ0 the inequality

P{ρE1(f`, f) > ε} ≤ P{ρE2(F`, F ) > C1
√
γ`}+ P{||A` −A|| > C2

√
γ`} (30)

holds true.

Corollary. As follows from this theorem, if the approximations F`(x) of the right-hand
side of the operator equation converge to the true function F (x) in E2 with the rate of
convergence r(`), and the approximations A` converge to the true operator A in the metric
in E1 defined in (30) with the rate of convergence rA(`), then there exists such a function

r0(`) = max {r(`), rA(`)} ; lim
`→∞

r0(`) = 0,

that the sequence of solutions to the equation converges in probability to the true one if

lim
`→∞

r0(`)√
γ`

= 0, lim
`→∞

γ` = 0.

4.2 Solution of Empirical Inference Problems

In this section, we consider solutions of the integral equation

Af = F,

where operator A has the form

Af =

∫
θ(x− u)f(u)dF1(u),

and the right-hand side of the equation is F2(x). That is, our goal is to solve the integral
equation ∫

θ(x− u)f(u)dF1(x) = F2(x).

We consider the case where F1(x) and F2(x) are two different cumulative distribution func-
tions. (This integral equation also includes, as a special case, the problem of regression
estimation, where F2(x) =

∫
ydP (x, y) for non-negative y). This equation defines the main

empirical inference problem described in Section 2. The problem of density ratio estimation
requires solving this equation when both functions F1(x) and F2(x) are unknown but the
iid data

X1
1 , ..., X

1
`1 ∼ F1 (31)

X1
1 , ..., X

1
`2 ∼ F2 (32)

are available. In order to solve this equation, we use empirical approximations instead of
actual distribution functions, thus obtaining

A`1f =

∫
θ(x− u)dF`1(u) (33)
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F`k(x) =
1

`k

`k∑
i=1

θ(x−Xk
i ), k = 1, 2,

where F`1(u) are and F`2(x) are the empirical distribution functions obtained from data
(31) and (32), respectively.

One can show (see (Vapnik, 1998), Section 7.7) that, for sufficiently large `, the inequality

||A` −A|| = sup
f

||A`f −Af ||E2

W 1/2(f)
≤ ||F` − F ||E2

holds true for the smooth solution f(x) of our equations.
From this inequality, bounds (4), and the Theorem of Section 4.1, it follows that the

regularized solutions of our operator equations converge to the actual function

ρE1(f`, f)→`→∞ 0

with probability one.
Therefore, to solve our inference problems, we minimize the functional

Rγ(f, F`, A`1) = ρ2E2
(A`1f, F`2) + γ`W (f). (34)

In order to do this well and find the unique solution of this problem, we have to define
three elements of (34):

1. The distance ρE2(F1, F2) between functions F1(x) and F2(x) in E2.

2. The regularization functional W (f) in the space of functions f ∈ E1.

3. The rule for selecting the regularization constant γ`.

In the next sections, we consider the first two elements.

5. Solving Statistical Inference Problems with V -matrix

Consider the explicit form of the functional for solving our inference problems. In order
to do this, we specify expressions for the squared distance and regularization functional in
expression (34).

5.1 The V -matrix

In this subsection, we consider the key element of our approach, the V -matrix.

5.1.1 Definition of Distance

Let our distance in E2 be defined by the L2 metric

ρ2E2
(F1(x), F2(x)) =

∫
(F1(x)− F2(x))2σ(x)dµ(x),

where σ(x) is a known positive function and µ(x) is a known measure defined on X . To
define distance, one can use any non-negative measurable function σ(x) and any measure
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µ(x). For example, if our equation is defined in the box domain [0, 1]d, we can use uniform
measure in this domain and σ(x) = 1.

Below we define the measure µ(x) as

dµ(x) =
d∏

k=1

dF`(x
k), (35)

where each F`(x
k) is the marginal empirical cumulative distribution function of the coordi-

nate xk estimated from data.
We also choose function σ(x) in the form

σ(x) =

n∏
k=1

σk(x
k). (36)

In this paper, we consider several weight functions σ(xk):

1. The function
σ(xk) = 1.

2. For the problem of conditional probability estimation, we consider the function

σ(xk) =
1

F`(xk|y = 1)(1− F`(xk|y = 1)) + ε
, (37)

where ε > 0 is a small constant.

3. For the problem of regression estimation, we consider the case where y ≥ 0 and,
instead of F`(x

k|y = 1) in (37), the monotonic function

F`(x
k) =

1

`ŷav

∑̀
i=1

yiθ(x
k −Xk

i )

is used, where ŷav is the average value of y in the training data. This function has
properties of ECDF.

4. For the problem of density ratio estimation, we consider an estimate of function
Fnum(x) instead of the estimate of function F (x|y = 1) in (37).

Remark. In order to explain choice (37) for function σ(x), consider the problem of
one-dimensional conditional probability estimation. Let f0(x) be the true conditional prob-
ability. Consider the function f̂0(x) = p1f0(x). Then the solution of integral equation∫

θ(x− u)f̂(u)dF (u) = F (x|y = 1)

defines the conditional probability f̂0(x) = p1f0(x). Consider two functions: the estimate
of the right-hand side of equation F`(x|y = 1) and the actual right-hand side

F0(x|y = 1) =

∫ x

−∞
f̂0(t)dt.
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The deviation
∆ = F0(x|y = 1)− F`(x|y = 1)

between these two functions has different values of variance for different x. The variance is
small (equal to zero) at the end points of an interval and is large somewhere inside it. To
obtain the uniform relative deviation of approximation from the actual function over the
whole interval, we adjust the distance in any point of interval proportionally to the inverse
of variance. Since for any fixed x the variance is

Var(x) = F (x|y = 1)(1− F (x|y = 1)), (38)

we normalize the squared deviation ∆2 by (38). The expression (37) realizes this idea.

5.1.2 Definition of Distance for Conditional Probability Estimation
Problem

Consider the problem of conditional probability estimation.
For this problem, the squared distance between approximations of the right-hand side

and the left-hand side of equation

F`(x, y = 1) = p`F`(x|y = 1) =
1

`

∑̀
i=1

yiθ(x−Xi)

can be written as follows:

ρ2(A`f, F`) =

∫ (∫
θ(x− u)f(u)dF`(u)−

∫
yiθ(x− u)dF`(u)

)2

σ(x)dµ(x),

where yi ∈ {0, 1} and F`(x) is the empirical distribution function estimated from training
vectors Xi. Therefore, we obtain the expression

ρ2(A`f, F`) =
1

`2

∑̀
i,j=1

f(Xi)f(Xj)

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x)−

2

`2

∑̀
i,j=1

f(Xi)yj

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x)+

1

`2

∑̀
i,j=1

yiyj

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x),

(39)

where the last term does not depend on function f(x).
Since both σ(x) and µ(x) are products of one-dimensional functions, each integral in (39)

has the form

Vi,j =

∫
θ(x−Xi)θ(x−Xj)σ(x) dµ(x) =

d∏
k=1

∫
θ(xk −Xk

i )θ(xk −Xk
j )σk(x

k)dµ(xk). (40)

This (`× `)-dimensional matrix of elements Vi,j we call V -matrix of the sample X1, ..., X`,
where Xi = (X1

i , . . . X
d
i ), ∀i = 1, . . . , `.

Consider three cases:
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Case 1. Data belongs to the upper-bounded support (−∞, B]d for some B and σ(x) = 1 on
this support. Then the elements Vi,j of V -matrix have the form

Vi,j =
d∏

k=1

(B −max{Xk
i , X

k
j }).

Case 2. Case where σ(xk) = 1 and µ defined as (35). Then the elements Vi,j of V -matrix have
the form

Vi,j =

d∏
k=1

ν(Xk > max{Xk
i , X

k
j }).

where ν(Xk > max{Xk
i , X

k
j }) is the frequency of Xk from the given data with the

values larger than max{Xk
i , X

k
j }.

Case 3. Case where σ(x) is defined as (36), (37) and µ(x) as (35). In this case, the values Vi,j
also can be easily computed numerically (since both functions are piecewise constant,
the integration (40) is reduced to a summation of constants).

To rewrite the expression for the distance in a compact form, we introduce the `-
dimensional vector Φ

Φ = (f(X1), ..., f(X`))
T .

Then, taking into account (39), we rewrite the first summand of functional (34) as

ρ2(A`f, F`) =
1

`2
(
ΦTV Φ− 2ΦTV Y + Y TV Y

)
, (41)

where Y denotes the `-dimensional vector (y1, ..., y`)
T , yi ∈ {0, 1}.

5.1.3 Distance for Regression Estimation Problem

Repeating the same derivation for regression estimation problem, we obtain the same ex-
pression for the distance

ρ2(A`f, F`) =
1

`2
(
ΦTV Φ− 2ΦTV Y + Y TV Y

)
,

where coordinates of vector Y are values y ∈ R1 given in examples (17) for regression
estimation problem.

5.1.4 Distance for Density Ratio Estimation Problem

In the problem of density ratio estimation, we have to solve the integral equation∫
θ(x− u)R(u)dFden(u) = Fnum(x),

where cumulative distribution functions Fden(x) and Fnum(x) are unknown but iid data

X1, ..., X`den ∼ Fden(x)
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and iid data
X ′1, ..., X

′
`num ∼ Fnum(x)

are available.
Using the empirical estimates

F`num(x) =
1

`num

`num∑
j=1

θ(x−X ′j)

and

F`den(x) =
1

`den

`den∑
i=1

θ(x−Xi)

instead of unknown cumulative distribution Fnum(x) and Fden(x) and repeating the same
distance computations as in the problems of conditional probability estimation and regres-
sion estimation, we obtain

ρ2 =

∫ (∫
θ(x− u)R(u)dF`den(u)− F`num(x)

)2

σ(x)dµ(x) =

1

`2den

`den∑
i,j=1

R(Xi)R(Xj)

∫
θ(x−Xj)θ(x−Xj)σ(x)dµ(x)−

2

`num`den

`num∑
i=1

`den∑
j=1

R(Xi)R(X ′j)

∫
θ(x−Xi)θ(x−X ′j)σ(x)dµ(x)+

1

`2num

`num∑
i,j=1

∫
θ(x−X ′j)θ(x−X ′j)σ(x)dµ(x) =

1

`2num

`num∑
i,j=1

V ∗∗i,j +

1

`2den

`den∑
i,j=1

R(Xi)R(Xj)Vi,j −
2

`num`den

`den∑
i=1

`num∑
j=1

R(Xi)R(X ′j)V
∗
i,j ,

where the values Vi,j , V
∗
i,j , V

∗∗
i,j are calculated as

Vi,j =

∫
θ(x−Xi)θ(x−Xj)σ(x)dµ(x), i, j = 1, ..., `den,

V ∗i,j =

∫
θ(x−Xi)θ(x−X ′j)σ(x)dµ(x), i = 1, ..., `num, j = 1, ..., `den,

V ∗∗i,j =

∫
θ(x−X ′i)θ(x−X ′j)σ(x)dµ(x), i, j = 1, ..., `num.

We denote by V , V ∗, and V ∗∗ (respectively, (`den × `den)-dimensional, (`den × `num)-
dimensional, and (`num × `num)-dimensional) the matrices of corresponding elements Vi,j ,
V ∗i,j , and V ∗∗i,j . We also denote by 1`num the `num-dimensional vector of ones, and by R – the
`den-dimensional column vector of R(Xi), i = 1, . . . , `den.

Using these notations, we can rewrite the distance as follows:

ρ2 =
1

`2den

(
RTV R− 2

(
`den
`num

)
RTV ∗1`num +

(
`den
`num

)2

1T`numV
∗∗1`num

)
.
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5.2 The Regularization Functionals in RKHS

For each of our inference problems, we now look for its solution in Reproducing Kernel
Hilbert Space (RKHS).

5.2.1 Reproducing Kernel Hilbert Space

According to Mercer theorem, any positive semi-definite kernel has a representation

K(x, z) =
∞∑
k=1

λkφk(x)φk(z), x, z ∈ X ,

where {φk(x)} is a system of orthonormal functions and λk ≥ 0 ∀k.
Consider the set of functions

f(x; a) =

∞∑
k=1

akφk(x). (42)

We say that set of functions (42) belongs to RKHS of kernel K(x, z) if we can define the
inner product (f1, f2) in this space such that

(f1(x),K(x, y)) = f1(y). (43)

It is easy to check that the inner product

(f(x, a), f(x, b)) =

∞∑
k=1

akbk
λk

,

where ak and bk are the coefficients of expansion of functions f(x, a), and f(x, b), satisfies
the reproducing property (43). In particular, the equality

(K(x1, z),K(x2, z)) = K(x1, x2) (44)

holds true for the kernel K(x, x∗) that defines RKHS.
The remarkable property of RKHS is the so-called Representer Theorem (Kimeldorf and

Wahba, 1971), (Kimeldorf and Wahba, 1970), (Schölkopf et al., 2001), which states that
any function f(x) from RKHS that minimizes functional (34) can be represented as

f(x) =
∑̀
i=1

ciK(Xi, x),

where ci, i = 1, ..., ` are parameters and Xi, i = 1, ..., ` are vectors of observations.

5.2.2 Explicit Form of Regularization Functional.

In all our Statistical Inference problems, we are looking for solutions in RKHS, where we
use the squared norm as the regularization functional:

W (f) = (f, f) = ||f ||2. (45)
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That is, we are looking for solution in the form

f(x) =
∑̀
i=1

αiK(Xi, x), (46)

where Xi are elements of the observation. Using property (44), we define the functional
(45) as

W (f) =
∑̀
i,j=1

αiαjK(xi, xj).

In order to use the matrix form of (34), we introduce the following notations:

1. K is the (`× `)-dimensional matrix of elements K(Xi, Xj), i, j = 1, ..., `.

2. K(x) is the `-dimensional vector of functions K(Xi, x), i = 1, ..., `.

3. A is the `-dimensional vector A = (α1, ..., α`)
T of elements αi, i = 1, ..., `.

In these notations, the regularization functional has the form

W (f) = ATKA, (47)

and its solution has the form
f(x) = ATK(x). (48)

6. Solution of Statistical Inference Problems

In this section, we formulate our statistical inference problems as optimization problems.

6.1 Estimation of Conditional Probability Function

Here we present an explicit form of the optimization problem for estimating conditional
probability function.

We are looking for the solution in form (48), where we have to find vector A. In order
to find it, we have to minimize the objective function

T (A) = ATKVKA− 2ATKV Y + γATKA, (49)

where Y is a binary vector (with coordinates y ∈ {0, 1}) defined by the observations. The
first two terms of the objective function come from distance (41), the last term is regulariza-
tion functional (47). (The third term from (49) was omitted in the target functional since
it does not depend on the unknown function.) Since the conditional probability has values
between 0 and 1, we have to minimize this objective function subject to the constraint

0 ≤ ATK(x) ≤ 1, ∀x ∈ X. (50)

We also know that ∫
ATK(x)dF (x) = p0, (51)
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where p0 is the probability of class y = 1.

Minimization of (49) subject to constraints (50), (51) is a difficult optimization problem.
To simplify this problem, we minimize the functional subject to the constraints

0 ≤ ATK(Xi) ≤ 1, i = 1, ..., `, (52)

defined only at the vectors Xi of observations5.

Also, we can approximate equality (51) using training data

1

`

∑̀
i=1

ATK(Xi) = p`, (53)

where p` is the frequency of class y = 1 estimated from data. Using matrix notation, the
constraints (52) and (53) can be rewritten as follows:

0` ≤ KA ≤ 1`, (54)

1

`
ATK1` = p`. (55)

where K is the matrix of elements K(Xi, Xj), i, j = 1, ..., ` and 0`, 1` are `-dimensional
vectors of zeros and ones, respectively.

Therefore, we are looking for the solution in form (48), where parameters of vector A
minimize functional (49) subject to constraints (54) and (55). This is a quadratic optimiza-
tion problem with one linear equality constraint and 2` general linear inequality constraints.

In Section 6.4, we simplify this optimization problem by reducing it to a quadratic
optimization problem with one linear equality constraint and several box constraints.

6.2 Estimation of Regression Function

Similarly, we can formulate the problem of regression function estimation, which has the
form (48). To find the vector A, we minimize the functional

T (A) = ATKVKA− 2ATKV Y + γATKA, (56)

where Y is a real-valued vector (with coordinates yi ∈ R1 of observations (5)).

Suppose that we have the following knowledge about the regression function:

1. Regression y = f(x) = ATK(x) takes values inside an interval [a, b]:

a ≤ ATK(x) ≤ b, ∀x ∈ X . (57)

2. We know the expectation of the values of the regression function:∫
ATK(x)dF (x) = c. (58)

5. One can find the solution in closed form A = (V K + γI)−1V Y if constraints (52), (53) are ignored; here
I is the identity matrix.
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Then we can solve the following problem: minimize functional (56) subject to constraints
(57), (58).

Usually we do not have knowledge (57), (58), but we can approximate it from the
training data. Specifically, we can approximate a by the smallest value a` of yi, while b can
be approximated by the largest value b` of yi from the training set:

a` = min{y1, ..., y`}, b` = max{y1, ..., y`}.

We then consider constraint (57) applied only for the training data:

a` ≤ ATK(Xi) ≤ b`, i = 1, ..., `. (59)

Also, we can approximate (58) with the equality constraint

1

`

∑̀
i=1

ATK(Xi) =
1

`

∑̀
i=1

yi. (60)

Constraints (59), (60) can be written in matrix notation

a`1` ≤ KA ≤ 1`b`, (61)

1

`
ATK1` = ŷav, (62)

where ŷav is the right-hand side of (60). If these approximations6 are reasonable, the problem
of estimating the regression can be stated as minimization of functional (56) subject to
constraints (61), (62). This is a quadratic optimization problem with one linear equality
constraint and 2` general linear inequality constraints.

6.3 Estimation of Density Ratio Function

To solve the problem of estimating density ratio function in the form

R(x) = ATK(x),

where A is the `den-dimensional vector of parameters and K(x) is the `den-dimensional vector
of functions K(X1, x), ...,K(X`den , x), we have to minimize the functional

T (A) = ATKVKA− 2

(
`den
`num

)
ATKV ∗1`num + γATKA, (63)

where K is the (`den × `den)-dimensional matrix of elements K(Xi, Xj) subject to the con-
straints

ATK(x) ≥ 0, ∀x ∈ X,∫
ATK(x)dFden(x) = 1.

6. Without constraints, the solution has the closed form (see footnote 5), where y ∈ R1 are elements of
training data for regression.
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As above, we replace these constraints with their approximations

KA ≥ 0`den ,

1

`den
ATKV ∗1`num = 1.

Here K is (`den × `den)-dimensional matrix of observations from Fden(x), and V ∗ is (`den ×
`num)-dimensional matrix defined in Section 5.1.

6.4 Two-Stage Method for Function Estimation:
Data Smoothing and Data Interpolation

Solutions of Statistical Inference problems considered in the previous sections require nu-
merical treatment of the general quadratic optimization problem: minimization of quadratic
form subject to one linear equality constraint and 2` linear inequality constraints of general
type (` linear inequality constraints for density ratio estimation problem).

Numerical solution for such problems can be computationally hard (especially when `
is large). In this section, we simplify the problem by splitting it into two stages:

1. Estimating function values at ` observation points, that is, the estimating vector
Φ = (f(X1), ..., f(X`))

T .

2. Interpolating the values of function known at the ` observation points to other points
in the space X .

6.4.1 Stage 1: Estimating Function Values at Observation Points

In order to find the function values at the training data points, we rewrite the regularization
functional in objective functions (49), (56), (63) in a different form. In order to do this, we
use the equality

K = KK+K,

where K+ is the generalized inverse matrix of matrix7 K.
In our regularization term of objective functions, we use the equality

ATKA = ATKK+KA.

1. Estimation of values of conditional probability. For the problem of estimating
the values of conditional probability at ` observation points, we rewrite objective function
(49) in the form

W (Φ) = ΦTV Φ− 2ΦTV Y + γΦTK+Φ, (64)

where we have denoted
Φ = KA. (65)

In the problem of estimating conditional probability, Y is a binary vector.

7. Along with generalized inverse matrix, pseudoinverse matrix is also used. Pseudoinverse matrix M+ of
the matrix M (not necessarily symmetric) satisfies the following four conditions: (1) MM+M = M , (2)
M+MM+ = M+, (3) (MM+)T = MM+, and (4) (M+M)T = M+M . If matrix M is invertible, then
M+ = M−1. Pseudoinverse exists and is unique for any matrix.
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In order to find vector Φ, we minimize functional (64) subject to box constraints

0` ≤ Φ ≤ 1`,

and equality constraint
1

`
ΦT 1` = p`.

2. Estimating values of regression. In order to estimate the vector Φ of values of
regression at ` observation points, we minimize functional (64) (where Y is a real-valued
vector), subject to the box constraints

a`1` ≤ Φ ≤ b`1`,

and the equality constraint
1

`
ΦT 1` = ŷav.

3. Estimating values of density ratio function. In order to estimate the vector Φ
of values of density ratio function at `den observation points X1, ..., X`den , we minimize the
functional

ΦTV Φ− 2

(
`den
`num

)
ΦTV ∗1`num + γΦTK+Φ

subject to the box constraints

Φ ≥ 0`den ,

and the equality constraint
1

`den
ΦTV ∗1`num = 1.

6.4.2 Stage 2: Function Interpolation

In the second stage of our two-stage procedure, we use the estimated function values at the
points of training set to define the function in input space. That is, we solve the problem
of function interpolation.

In order to do this, consider representation (65) of vector Φ∗:

Φ∗ = KA∗. (66)

We also consider the RKHS representation of the desired function:

f(x) = A∗TK(x). (67)

If the inverse matrix K−1 exists, then

A∗ = K−1Φ∗.

If K−1 does not exist, there are many different A∗ satisfying (66). In this situation, the
best interpolation of Φ∗ is a (linear) function (67) that belongs to the subset of functions
with the smallest bound on VC dimension (Vapnik, 1998). According to Theorem 10.6
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in (Vapnik, 1998), such a function either satisfies equation (66) with the smallest L2 norm
of A∗ or it satisfies equation (66) with the smallest L0 norm of A∗.

Efficient computational implementations for both L0 and L2 norms are available in the
popular scientific software package Matlab.

Note that the obtained solutions in all our problems satisfy the corresponding constraints
only on the training data, but they do not have to satisfy these constraints at any x ∈ X .
Therefore, we truncate the obtained solution functions as

ftr(x) = [A∗TK(x)]ba,

where

[u]ba =


a, if u < a
u, if a ≤ u ≤ b
b, if u > b

Remark. For conditional probability estimation, the choice of a > 0, b < 1 (for
constraints in training and truncation in test) is an additional tool for regularization that
can leverage prior knowledge.

6.4.3 Additional Considerations

For many problems, it is useful to consider the solutions in the form of a function from a
set of RKHS functions with a bias term:

f(x) =
∑̀
i=1

αiK(Xi, x) + c = ATK(x) + c.

Using this set of functions, our quadratic optimization formulation for estimating the
function values at training data points for the problem of conditional probability and re-
gression estimation is as follows: minimize the functional (over vectors Φ)

(Φ + c1`)
TV (Φ + c1`)− 2(Φ + c1`)

TV Y + γΦTK+Φ

subject to the constraints
(a− c1`) ≤ Φ ≤ (b− c1`),

(where a = 0, b = 1 for conditional probability problem, and a = a`, b = b` for regression
problem).

1

`
1T` + c = ŷav

where we denoted

ŷav =
1

`

∑̀
i=1

yi.

For estimating the values of density ratio function at points (X1, . . . , X`den), we minimize
the functional

(Φ + c1`den)TV (Φ + c1`den)− 2

(
`den
`num

)
(Φ + c1`den)TV ∗1`num + γΦTK+Φ

subject to the constraints
−c1`den ≤ Φ,

ΦT 1`den + c`den = `den.
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7. Applications of Density Ratio Estimation

Here we describe three applications of density ratio estimation (Sugiyama et al., 2012), (Kawa-
hara and Sugiyama, 2009), specifically,

– Data adaptation and correction of solution for unbalanced data.

– Estimation of mutual information and problem of feature selection.

– Change point detection.

It is important to note that, in all these problems, it is required to estimate not the func-
tion R(x), but rather the values R(Xi) of density ratio function at the points X1, ..., X`den

(generated by probability measure Fden(x)).

Below we consider the first two problems in the pattern recognition setting and then
consider two new applications:

1) Learning from data with unbalanced classes

2) Learning of local rules.

7.1 Data Adaptation Problem

Let the iid data

(y1, X1), ..., (y`, X`) (68)

be defined by a fixed unknown density function p(x) and a fixed unknown conditional
density function p(y|x) generated according to an unknown joint density function p(x, y) =
p(y|x)p(x). Suppose now that one is given data

X∗1 , ..., X
∗
`1 (69)

defined by another fixed unknown density function p∗(x). This density function, together
with conditional density p(y|x) (the same one as for Equation 68), defines the joint density
function p∗(x, y) = p(y|x)p∗(x).

It is required, using data (68) and (69), to find in a set of functions f(x, α), α ∈ Λ, the
one that minimizes the functional

T (α) =

∫
L(y, f(x, α))p∗(x, y)dydx, (70)

where L(·, ·) is a known loss function.

This setting is an important generalization of the classical function estimation problem
where the functional dependency between variables y and x is the same (the function p(y|x)
which is the part of composition of p(x, y) and p∗(x, y)), but the environments (defined by
densities p(x) and p∗(x)) are different.

It is required, by observing examples from one environment (with p(x)), to define the
rule for another environment (with p∗(x)). Let us denote

R(x) =
p∗(x)

p(x)
, p(x) > 0.
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Then functional (70) can be rewritten as

T (α) =

∫
L(y, f(x, α))R(x)p(x, y)dydx,

and we have to minimize the functional

T`(α) =
∑̀
i=1

L(yi, f(Xi, α))R(xi),

where Xi, yi are data points from (68). In this equation, we have multipliers R(Xi) that
define the adaptation of data (69) generated by joint density p(x, y) = p(y|x)p(x) to the
data generated by the density p∗(x, y) = p(y|x)p∗(x). Knowledge of density ratio values
R(Xi) leads to a modification of classical algorithms.

For SVM method in pattern recognition (Vapnik, 1995), (Vapnik, 1998), this means that
we have to minimize the functional

T`(w) = (w,w) + C
∑̀
i=1

R(Xi)ξi (71)

(C is a tuning parameter) subject to the constraints

yi((w, zi) + b) ≥ 1− ξi, ξ ≥ 0, yi ∈ {−1,+1}, (72)

where zi is the image of vector Xi ∈ X in feature space Z.
This leads to the following dual-space SVM solution: maximize the functional

T`(α) =
∑̀
i=1

αi −
1

2

∑̀
i,j=1

αiαjyiyjK(Xi, Xj), (73)

where (zi, zj) = K(Xi, Xj) is Mercer kernel that defines the inner product (zi, zj) subject
to the constraint ∑̀

i=1

yiαi = 0 (74)

and the constraints
0 ≤ αi ≤ CR(Xi). (75)

The adaptation to new data is given by the values R(xi), i = 1, ..., `; these values are set
to 1 in standard SVM (71).

7.2 Estimation of Mutual Information.

Consider k-class pattern recognition problem y ∈ {a1, ..., ak}.
The entropy of nominal random variable y (level of uncertainty for y with no information

about corresponding x) is defined by

H(y) = −
k∑
t=1

p(y = at) log2 p(y = at).
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Similarly, the conditional entropy given fixed value x∗ (level of uncertainty of y given infor-
mation x∗) is defined by the value

H(y|x∗) = −
k∑
t=1

p(y = at|x∗) log2 p(y = at|x∗).

For any x∗, the difference (decrease in uncertainty)

∆H(y|x∗) = H(y)−H(y|x∗)

defines the amount of information about y contained in vector x∗. The expectation of this
value (with respect to x)

I(x, y) =

∫
∆H(y|x)dF (x)

is called the mutual information between variables y and vectors x. It describes how much
information vector x caries about variable y. The mutual information can be rewritten in
the form

I(x, y) =

k∑
t=1

p(y = at)

∫ (
p(x, y = at) log2

p(x, y = at)

p(x)p(y = at)

)
dF (x) (76)

(see (Cover and Thomas, 2006) for details).

For two densities (p(x|y = at) and p(x)), the density ratio function is

R(x, y = at) =
p(x|y = at)

p(x)
.

Using this notation, one can rewrite expression (76) as

I(x, y) =
k∑
t=1

p(y = at)

∫
R(y = at, x) log2R(y = at, x)dF (x), (77)

where F (x) is cumulative distribution function of x.

Our goal is to use data

(y1, X1), ..., (y`, X`)

to estimate I(x, y). Using in (77) the empirical distribution function F`(x) and the val-
ues p`(y = at) estimated from the data, we obtain the approximation I`(x, y) of mutual
information (77):

I`(x, y) =
1

`

m∑
t=1

p(y = at)
∑̀
i=1

R(Xi, y = at) log2R(Xi, y = at).

Therefore, in order to estimate the mutual information for k-class classification problem,
one has to solve the problem of values of density ratio estimation problem k times at the
observation points R(Xi, y = at), i = 1, ..., ` and use these values in (77).
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Feature selection problem and mutual information. Estimates of mutual infor-
mation play important role in the problem of feature selection. Indeed, the problem of
selecting k features from the set of n features require to find among n features x1, .., xn

such k elements xk1 , ..., xkk which contain maximal information about variable y generated
according to p(y|x), x = (x1, ..., xn). That means to find the subset of k elements with
maximal mutual information. This is a hard computational problem: even if one can es-
timate the mutual information from data well, one still needs to solve mutual information
estimation problem Ckn times to chose the best subset.

Therefore some heuristic methods are used (Brown et al., 2012) to chose the subset
with best features. There are two heuristic approaches to the problem of estimating best
features:

1. To estimate mutual information I(y, xt) or I(xt, xm) of scalar values and then combine
(heuristically) the results.

2. To estimate mutual information between the value of y and two features xt,m =
(xt, xm), obtaining n2 elements of matrix I(y, xt,m) t,m = 1, . . . , n and choose from this
matrix the minor with the largest score (say, the sum of its elements).

All these procedures require accurate estimates of mutual information.

7.3 Unbalanced Classes in Pattern Recognition

An important application of data adaptation method is the case of binary classification
problem with unbalanced training data (du Plessis and Sugiyama, 2012). In this case,
the numbers of training examples for both classes differ significantly (often, by orders of
magnitude). For instance, for diagnosis of rare diseases, the number of samples from the
first class (patients suffering from the disease) is much smaller than the number of samples
from the second class (patients without that disease).

Classical pattern recognition algorithms applied to unbalanced data can lead to large
false positive or false negative error rates. We would like to construct a method that would
allow to control the balance of both error rates. Formally, this means that training data
are generated according to some probability measure

p(x) = p(x|y = 1)p+ p(x|y = 0)(1− p),

where 0 ≤ p ≤ 1 is a fixed parameter that defines probability of the event of the first class.
Learning algorithms are developed to minimize the expectation of error for this generator
of random events.

Our goal, however, is to minimize the expected error for another generator

p∗(x) = p(x|y = 1)p∗ + p(x|y = 0)(1− p∗),

where p∗ defines different probability of the first class (in the rare disease example, we
minimize the expected error if this disease is not so rare); that is, for parameter p = p∗.

To solve this problem, we have to estimate the values of density ratio function

R(x) =
p∗(x)

p(x)
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from available data. Suppose we are given observations

(y1, X1), ..., (y`, X`). (78)

Let us denote by X1
i and X0

j vectors from (78) corresponding to y = 1 and y = 0, respec-
tively. We rewrite elements of x from (78) generated by p(x) as

X1
i1 , ..., X

1
im , X

0
im+1

, ..., X0
i`

Consider the new training set that imitates iid observations generated by p∗(x) by having
the elements of the first class to have frequency p∗:

X1
i1 , ..., X

1
im , X

1
j1 , ...X

1
js , X

0
im+1

, ..., X0
i`
, (79)

where X1
j1
, . . . , X1

js
are the result of random sampling from X1

i1
, . . . , X1

im
with replacement.

Now, in order to estimate values R(Xi), i = 1, ..., `, we construct function F`den(x) from
data (78) and function F`num(x) from data (79) and use the algorithm for density ratio
estimation. For SVM method, in order to balance data, we have to maximize (73) subject
to constraints (74) and (75).

8. Problem of Local Learning

In 1992, the following problem of local learning was formulated (Bottou and Vapnik, 1992):
given data

(x1, y1), ..., (x`, y`) (80)

generated according to an unknown density function

p0(y, x) = p0(y|x)p0(x),

find the decision rule that minimizes risk in a vicinity of the given point x0. Using some
heuristic concept of vicinity of given points, the corresponding algorithm was developed.
It was demonstrated (Bottou and Vapnik, 1992), (Vapnik and Bottou, 1993) that local
learning is often more accurate than the global learning.

In this Section, we present a reasonable definition of the concept of locality, and we solve
the problem of constructing local rules. Our goal is to use data (80) for constructing a rule
that is accurate for vectors distributed according to some ploc(x), for example, according to
the multidimensional normal distribution

ploc(x) = N(x0, σI) =
1

(2π)m/2σm

m∏
k=1

exp

{
−(xk − xk0)

2σ2

}
,

where x0 = (x10, ..., x
m
0 ) is the vector of means, σ > 0 and identity matrix I are known

parameters of multi-dimensional normal distribution (they are specified by our concept of
vicinity point x0). We denote by ploc(y, x) the density function

ploc(y, x) = p0(y|x)N(x0, σI).
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Therefore, the goal of local learning is to find, in the set of functions f(x, α), α ∈ Λ, the
function f(x, αn) that minimizes the functional

Tloc(α) =

∫
(y − f(x, α))2ploc(y, x)dydx

instead of the functional

T0(α) =

∫
(y − f(x, α))2p0(y, x)dydx,

as it is formulated in classical (global) learning paradigm.
We rewrite functional Tloc as follows:

Tloc(α) =

∫
(y − f(x, α))2R(x)p0(y, x)dydx,

where we have denoted

R(x) =
ploc(x)

p0(x)
.

To minimize the functional Tloc given data obtained according to p0(y, x), we minimize
the empirical risk

R̂(α) =
1

`

∑̀
i=1

(yi − f(xi, α))2R(xi).

To define this functional explicitly, we have to estimate the ratio of two densities, one of
which (the density that specifies vicinity of point x0) is known, and another one is unknown
but elements x of data obtained according to that unknown density p0(x) are available from
the training set.

This problem of density ratio estimation, however, differs from the one considered in
Section 6.3. It requires solving the integral equation when the right-hand side of equation
is precisely defined, whereas the operator is defined approximately:

1

`

∑̀
i=1

θ(x−Xi)R(xi) ≈
∫ x

−∞
N(x0, σI)dx.

The integral in the right-hand can be expressed as the product of m (where m is the
dimensionality of space X) functions

Erf(x∗|x0, σI) =
2m

(π)m/2

m∏
k=1

∫ xk∗

0
exp

{
−(xk − xk0)2

2σ2
dxk
}
.

Note that function Erf(x|x0, σI) can be easily computed using the so-called function erf(x):

erf(xk) =
2√
π

∫ xk

0
exp{−t2}dt,

which is tabulated.
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Using the method of estimation of density ratio, in order to estimate vector R =
(R(x1), ..., R(x`)), one has to minimize the functional

RTV R− 2`RTU + γRTK+R,

where we have denoted by U = (U1, ..., U`)
T the vector with coordinates

Ui =
m∏
k=1

∑̀
t=1

θ(xkt − xki )Erf(xkt |x0, σ)

subject to constraints
RT 1 = `

and constraints
R ≥ 0`.

In SVM technology, the V -matrix method requires to estimate values R(Xi) in the points
of observations first, and then to solve the SVM problem itself using the data adaptation
technique described in Section 6.3.

9. Comparison with Classical Methods

In this paper, we introduced a new unified approach to solution of statistical inference
problems based on their direct settings. We used rigorous mathematical techniques to solve
them. Surprisingly, all these problems are amenable to relatively simple solutions.

One can see that elements of such solutions already exist in the basic classical statistical
methods, for instance, in estimation of linear regression and in SVM pattern recognition
problems.

9.1 Comparison with Linear Methods

Estimation of linear regression function is an important part of classical statistics. It is
based on iid data

(y1, X1), ..., (y`, X`), (81)

where y is distributed according to an unknown function p(y|x). Distribution over vectors
x is a subject of special discussions: it could be either defined by an unknown p(x) or by
known fixed vectors. It is required to estimate the linear regression function

y = wT0 x.

Linear estimator. To estimate this function, classical statistics uses ridge regression
method that minimizes the functional

R(w) = (Y −Xw)T (Y −Xw) + γ(w,w), (82)

where X is the (` × n)-dimensional matrix of observed vectors X, and Y is the (` × 1)-
dimensional matrix of observations y. This approach also covers the least squares method
(for which γ = 0).
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When observed vectors X in X are distributed according to an unknown p(x), method
(81) is consistent under very general conditions.

The minimum of this functional has the form

w` = (XTX + γI)−1XTY. (83)

However, estimate (82) is not necessarily the best possible one.
The main theorem of linear regression theory, the Gauss-Markov theorem, assumes that

input vectors X in X (81) are fixed (they are not random!). Below we formulate it in a
slightly more general form.

Theorem. Suppose that the random values (yi−wT0Xi) and (yj−wT0Xj) are uncorrelated
and that the bias of estimate (82)

µ = Ey(w` − w0).

Then, among all linear8 estimates with bias9 µ, estimate (82) has the smallest expectation
of squared deviation:

Ey(w0 − w`)2 ≤ Ey(w0 − w)2, ∀w.

Generalized linear estimator. Gauss-Markov model can be extended in the following
way. Let `-dimensional vector of observations Y be defined by fixed vectors X and additive
random noise Ω = (ε1, ..., ε`)

T so that

Y = Xw0 + Ω,

where the noise vector Ω = (ε1, ..., ε`)
T is such that

EΩ = 0, (84)

EΩΩT = Σ. (85)

Here, the noise values at the different points Xi and Xj of matrix X are correlated and the
correlation matrix Σ is known (in the classical Gauss-Markov model, it is identity matrix
Σ = I). Then, instead of estimator (82) minimizing functional (81), one minimizes the
functional

R(w) = (Y −Xw)TΣ−1(Y −Xw) + γ(w,w). (86)

This functional is obtained as the result of de-correlation of noise in (83), (84). The mini-
mum of (85) has the form

ŵ∗ = (XTΣ−1X + γI)−1XTΣ−1Y. (87)

This estimator of parameters w is an improvement of (82) for correlated noise vector.
V -matrix estimator of linear functions. The method of solving regression estima-

tion problem (ignoring constraints) with V matrix leads to the estimate

ŵ∗∗ = (XTVX + γI)−1XTV Y.

8. Note that estimate (83) is linear only if matrix X is fixed.
9. Note that when γ = 0 in (82), the estimator (82) with γ = 0 is unbiased.
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The structure of the V -matrix based estimate is the same as those of linear regression
estimates (82) and (86), except that the V -matrix replaces identity matrix in (82) and
inverse covariance matrix in (86).

The significant difference, however, is that both classical models were developed for the
known (fixed) vectors X, while V -matrix is defined for random vectors X and is computed
using these vectors. It takes into account the information that classical methods ignore:
the domain of regression function and the geometry of observed data points. The complete
solution also takes into accounts the constraints that reflects the belief in estimated prior
knowledge about the solution.

9.2 Comparison with L2-SVM (Non-Linear) Methods

For simplicity, we discuss in this section only pattern recognition problem; we can use the
same approach for the non-linear regression estimation problem.

The pattern recognition problem can be viewed as a special case of the problem of
conditional probability estimation. Using an estimate of conditional probability p(y = 1|x),
one can easily obtain the classification rule

f(x) = θ(p(y = 1|x)− 1/2).

We now compare the solution f(x) with

f(x) = ATK(x)

obtained for conditional probability problem with the same form of solution that defines
SVM.

The coefficients A for L2-SVM have the form (Saunders et al., 1998), (Suykens and
Vandewalle, 1999)

A = (K + γI)−1Y. (88)

If V -matrix method ignores the prior knowledge about the properties of conditional prob-
ability function, the coefficients of expansion have the form

A = (KV + γI)−1V Y. (89)

It is easy, however, to incorporate the existing constraints into both solutions.

In order to find the standard hinge-loss SVM solution (Vapnik, 1995), we have to mini-
mize the quadratic form

−ATYKYA+ 2AT1`

with respect to A subject to the box constraint

0` ≤ A ≤ C1`

and the equality constraint
ATY1` = 0,

where C is the (penalty) parameter of the algorithm, and Y is (`× `)-dimensional diagonal
matrix with yi ∈ {−1,+1} from training data on its diagonal (see formulas (71), (72) , (73),
(74), and (75) with R(xi) = 1 in (71) and (75)).
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In order to find the values of conditional probability, we also have to minimize the
quadratic form

ΦT (V + γK+)Φ− 2ΦV Y,

with respect to Φ subject to the box constraints10

0` ≤ Φ ≤ 1`

and the equality constraint

ΦT1` = `p`,

where γ > 0 is the (regularization) parameter of the algorithm in the objective function (as
C for SVM).

The essential difference between SVM and V -matrix method is that the constraints
in SVM method appear due to necessary technicalities (related to Lagrange multiplier
method11) while in V -matrix method they appear as a result of incorporating existing
prior knowledge about the solution: the classical setting of pattern recognition problem
does not include such prior knowledge12.

The discussion above indicates that, on one hand, the computational complexity of
estimation of conditional probability is not higher than that of standard SVM classification,
while, on the other hand, the V -estimate of conditional probability takes into account not
only the information about the geometry of training data (incorporated in V -matrix) but
also the existing prior knowledge about solution (incorporated in the constraints above).

This leads to the following question:

Can V -matrix method replace SVM method for pattern recognition?

The answer to this question is not obvious. In the mid-1990s, the following Imperative
was formulated (Vapnik, 1995), (Vapnik, 1998):

While solving problem of interest, do not solve a more general problem as an inter-
mediate step. Try to get the answer that you need, but not a more general one. It
is quite possible that you have enough information to solve a particular problem of
interest well, but not enough information to solve a general problem.

10. Often one has stronger constraints

a` ≤ Φ ≤ b`,

where 0` ≤ a` and b` ≤ 1` are given (by experts) as additional prior information.
11. The Lagrange multiplier method was developed to find the solution in the dual optimization space and

constraints in SVM method are related to Lagrange multipliers. Computationally, it is much easier to
obtain the solution in the dual space given by (73), (74), (75) than in the primal space given by (71), (72).
As shown by comparisons (Osuna and Girosi, 1999) of SVM solutions in primal and dual settings, (1)
solution in primal space is more difficult computationally, (2) the obtained accuracies in both primal and
dual spaces are about the same, (3) the primal space solution uses significantly fewer support vectors,
and (4) the large number of support vectors in dual space solution is caused by the need to maintain the
constraints for Lagrange multipliers.

12. The only information in SVM about the solution are the constraints yif(xi, α) ≥ 1 − ξi, where ξi ≥ 0
are (unknown) slack variables (Vapnik and Izmailov, 2015). However, this information does not contain
any prior knowledge about the function f .
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Solving (ill-posed) conditional probability problem instead of pattern recognition prob-
lem might appear to contradict this Imperative. However, while estimating conditional
probability, one uses prior knowledge about the solution, and applies rigorous approaches,
whereas the SVM setting does not take that knowledge into account and is based, instead,
on justified heuristic approach of large margin. Since these two approaches leverage dif-
ferent factors and thus cannot be compared theoretically, it is important to compare them
empirically.

9.3 Experimental Comparison of I-Matrix (L2 SVM) and V -matrix Methods

In this section, we compare the L2-SVM based method with V -matrix based method for
estimation of one-dimensional conditional probability functions. Let the data be generated
by an unknown probability density function p(x, y) = p(y|x)p(x), where x ∈ X, y ∈ {0, 1}.
Then the regression function f0(x) coincides with the conditional probability function p(y =
1|x), so the problem of estimating the conditional probability in the set {f(x, α)}, α ∈ Λ is
equivalent to the problem of estimating the regression function on the data

(x1, y1), ..., (x`, y`).

We use L2-SVM method for the estimation of the non-linear regression function in the
set {f(x, α)}, α ∈ Λ belonging to RKHS.

According to this method, in order to estimate the regression in the set of RKHS asso-
ciated with the kernel K(xi, x), one has to find the parameters αi of the function

f(x, α) =
∑̀
i=1

αiK(xi, x) + α0

that minimize the functional

(Y −KΛ− α01)T (Y −KΛ− α01) + γΛTKΛ, (90)

where we have denoted Y = (y1, ..., y`)
T , Λ = (α1, ..., α`)

T , by K is the matrix of elements
K(xi, xj), i, j = 1, ..., ` and 1 is the `-dimensional vector of ones.

Additionally, we take into account that (since regression coincides with conditional prob-
ability) the desired function satisfies (`+ 1) constraints: one constraint of equality type

1

`

∑̀
i,j=1

αiK(xi, xj) + α0 =
1

`

∑̀
i=1

yi, (91)

and ` constraints of inequality type

0 ≤
∑̀
i=1

αiK(xi, xj) + α0 ≤ 1, j = 1, ..., `, (92)

forming L2-SVM based method of conditional probability estimation.

The V -matrix based method of conditional probability estimation minimizes the func-
tional

(Y −KΛ− α01)TV (Y −KΛ− α01) + γΛTKΛ (93)
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subject to the same constraints.

Therefore, the L2-SVM method differs from V -matrix method by using identity matrix
I instead of V matrix. Further, we call these method as I-matrix and V -matrix methods13

In this Section, we present results of experimental comparisons of I-matrix and V -matrix
methods. In our comparison, we consider two (one-dimensional) examples: estimating
monotonic14 and non-monotonic functions. In our experiments, we use the same kernel,
namely, INK-spline of order 0:

K(xi, xj) = min(x, xi).

We can apply three versions of the solution for this problem:

1. Solutions that are defined by closed forms (ignoring the prior knowledge about the
problem). These solutions are fast to obtain, without any significant computational
problems.

2. Solutions that minimize the corresponding functionals while taking into account only
the constraint of equality type.

These solutions are also fast, without any significant computational problems. In this
case one has to minimize functionals (90) and (93) choosing such α0 for which equality
constraints (91) holds true (Kuhn-Tucker condition)

3. Solutions that minimize functionals (90), (93) subject to all `+ 1 constraints.

These solutions require applying a full-scale quadratic optimization procedure. For
large values of `, it is not as simple computationally as previous two versions.

For our examples, all three solutions gave reasonably close results. Below we only report
the results of the last one, the QP-solution.

Our first goal was to estimate the effect of using V -matrix (and compare it to I-matrix).
To do this, we had to exclude the influence of the choice of regularization parameter γ.
We did this by using two one-dimensional problems of estimating conditional probability
functions: (1) monotonic function (Figure 1) and (2) non-monotonic one (Figure 2). For
each problem, we generated 10,000 test examples and selected the best the possible (for
the given training set) value of parameter γ. Figure 1 and Figure 2 present the result of
approximation of conditional probability function for training sets of different sizes (48, 96,

13. If one ignores the constraints, both methods (I-matrix method the V -matrix method) have closed form
solutions. The solutions are (for I-matrix method V = I)

A =
(
WK +

γ

2
I
)−1

WY,

where
W = V − c−1(V 1)(1TV ), c = 1TV 1.

α0 = c−11TV (Y −KA) .

14. Estimation of monotonic conditional probability function is important for pattern recognition problem
since the V C dimension of the set of monotonically increasing (decreasing) functions equal to one inde-
pendently of dimensionality.
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192, 384) using the best γ for I-matrix method (left column) and V -matrix method (right
column). In the figures, blue color corresponds to the true condition probability function,
while black color corresponds to its approximations; red and green points in the horizontal
axis correspond to two classes of the training set. In the Figures, we also show deviations
of the approximations from the true conditional probability functions in both L1(µ) and
L2(µ) metrics. In all our experiments we used the equal number of representatives of both
classes.

These comparisons show that in all cases V -matrix method delivers better solution.
Subsequently, we compared V -matrix and I-matrix methods when the parameter γ is

selected using the cross-validation technique on training data (6-fold cross validation based
on maximum likelihood criterion): Figure 3 and Figure 4. Here also V -matrix method
performs better than I-matrix method. The more training data is used, the larger is the
advantage of the V -matrix method.

It is especially important that, in all our experiments, V -matrix method produced more
smooth approximations to the true function than I-matrix method did. This is due to
incorporation of the geometry of the training data into the solution.
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Appendix A. Appendix: V -Matrix for Statistical Inference

In this section, we describe some details of statistical inference algorithms using V -matrix.
First, consider algorithms for conditional probability function P (y|x) estimation and re-
gression function f(x) estimation given iid data

(y1, X1), ..., (y`, X`) (94)

generated according to p(x, y) = p(y|x)p(x). In (94), y ∈ {0, 1} for the problem of con-
ditional probability estimation, and y ∈ R1 for the problems of regression estimation and
density ratio estimation. Our V -matrix algorithm consists of the following simple steps.

A.1 Algorithms for Conditional Probability and Regression Estimation

Step 1. Find the domain of function. Consider vectors

X1, ..., X` (95)

from training data. By a linear transformation in space X , this data can be embedded into
the smallest rectangular box with its edges parallel to coordinate axes. Without loss of
generality, we also chose the origin of coordinate y such that all yi ∈ [0,∞], i = 1, ..., ` are
non-negative.
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L1=0.037

L2=0.058

L1=0.029

L2=0.055

L1=0.044

L2=0.076

L1=0.027

L2=0.065

L1=0.031

L2=0.054

L1=0.029

L2=0.053

L1=0.023

L2=0.040

L1=0.018

L2=0.030

V-matrix methodI-matrix method

Training size 48 (24 + 24)

Training size 96 (48 + 48)

Training size 192 (96 + 96)

Training size 384 (192 +192)

Figure 1: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected on validation set of size 10,000.
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L1=0.094

L2=0.124

L1=0.092

L2=0.121

L1=0.048

L2=0.069

L1=0.046

L2=0.066

L1=0.044

L2=0.060

L1=0.039

L2=0.058

L1=0.027

L2=0.038

L1=0.022

L2=0.033

V-matrix methodI-matrix method

Training size 48 (24 + 24)

Training size 96 (48 + 48)

Training size 192 (96 + 96)

Training size 384 (192 +192)

Figure 2: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected on validation set of size 10,000.
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L1=0.045

L2=0.069

L1=0.030

L2=0.053

L1=0.047
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L1=0.027
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L1=0.029
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L2=0.040
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L2=0.030

V-matrix methodI-matrix method

Training size 48 (24 + 24)

Training size 96 (48 + 48)

Training size 192 (96 + 96)

Training size 384 (192 +192)

Figure 3: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected by cross-validation on training set.
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L1=0.051
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L1=0.045

L2=0.060

L1=0.039

L2=0.057

L1=0.030

L2=0.045

L1=0.024

L2=0.036

Training size 48 (24 + 24)

Training size 96 (48 + 48)

Training size 192 (96 + 96)

Training size 384 (192 +192)

V-matrix methodI-matrix method

Figure 4: Comparison of I-matrix and V -matrix methods where regularization parameters
γ were selected by cross-validation on training set.
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Further we assume that data (95) had been preprocessed in this way.
Step 2. Find the functions µ(xk). Using preprocessed data (95), construct for any

coordinate xk of the vector x the piecewise constant function

µk(x) =
1

`

∑̀
i=1

θ(xk −Xk
i ).

Step 3. Find functions σ(xk). For any coordinate of k = 1, ..., d find the following:

1. The value

ŷav =
1

`

∑̀
i=1

yi

(for pattern recognition problem, ŷav = p` is the fraction of training samples from
class y = 1).

2. The piecewise constant function

F∗(x
k) =

1

`ŷav

∑̀
i=1

yiθ(x−Xi)

(For pattern recognition problem, function F∗(x
k) = P (xk|y = 1) estimates cumula-

tive distribution function of xk for samples from class y = 1).

3. The piecewise constant function

σk(x) =
(
F∗(x

k)(1− F∗(xk)) + ε
)−1

.

Step 4. Find elements of V -matrix. Calculate the values

V k
ij =

∫
θ(xk −Xk

i )θ(xk −Xk
j )σ(xk)dµ(xk) =

∫ ∞
max{Xk

i ,X
k
j )
σ(xk)dµ(xk).

Since both σ(xk) and µ(xk) are piecewise constant functions, the last integral is a sum of
constants.

Step 5. Find V -matrix. Compute elements of V -matrix as

Vij =
d∏

k=1

V k
ij .

Remark 1. Since V -matrix in the problems of conditional probability and regression
estimation is scale-invariant, one can multiply all elements of this matrix by a fixed constant
in order to keep the values of matrix elements within reasonable bounds for subsequent
computations.

Remark 2. Any diagonal element V k
tt is not less than elements of the corresponding

row V k
tj and column V k

jt. Therefore, in order to compute V -matrix in multi-dimensional
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case, it is reasonable to compute its diagonal elements first and, if they are small, just to
replace the entries in the corresponding row and column with zeros.

It is possible (especially for large d) that V -matrix can have dominating diagonal ele-
ments. In this case, V -matrix can be approximated by a diagonal matrix. This is equivalent
to the weighted least square method where weights are defined by the diagonal values Vtt.

Step 6. Find the values of conditional probability or the values of regression
at the points of observation. Solve the quadratic optimization problem defined in the
corresponding sections (in Section 6.4).

Step 7. Find the conditional probability or regression function. Solve interpo-
lation problem defined in Section 6.4.

A.2 Algorithms for Density Ratio Estimation

For the problem of density ratio estimation, the algorithm requires the following modifica-
tions:

Step 1a. Find the domain of function. Domain of function is defined using data

X1, ..., X`den , X
′
1, ..., X

′
`num , (96)

where training vectors Xi and X ′j are distributed according to Fden(x) and Fnum(x′), re-
spectively.

Step 2a. Find the functions µ(xk). Using (preprocessed) data (96), construct for
coordinate xk, k = 1, ..., d of vector x the piecewise constant function

µk(x) =
1

(`den + `num)

(
`den∑
i=1

θ(xk −Xk
i ) +

`num∑
i=1

θ(xk −X ′ki )

)
.

Step 3a. Find functions σ(xk). For any coordinate xk, k = 1, ..., d find:

– the piecewise constant function

F∗∗(x
k) =

1

`num

`num∑
j=1

θ(x−X ′j);

– the piecewise constant function

σ(xk) =
(
F∗∗(x

k)(1− F∗∗(xk)) + ε
)−1

,

where ε > 0 is a small value.

Step 4a. Find the V -matrix and V ∗-matrix. Estimate the matrices using expres-
sions from corresponding sections.

Step 5a. Find the values of density ratio function at the points of observation.
Solve the quadratic optimization problem defined in corresponding sections.

Step 6a. Find the density ratio function. Solve the interpolation problem defined
in Section 6.4 (if estimated values of density ratio in `den points are not sufficient for the
application, and the function itself has to be estimated).
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A.3 Choice of Regularization Parameter

The value of regularization parameter γ can be selected using standard cross-validation
techniques.

For conditional probability estimation, one can look for maximization of likelihood rather
than for minimization of error rate. This leads to a more accurate estimate of conditional
probability function.
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