
Journal of Machine Learning Research 16 (2015) 2543-2588 Submitted 8/14; Revised 5/15; Published 12/15

A General Framework for Fast Stagewise Algorithms

Ryan J. Tibshirani ryantibs@stat.cmu.edu

Departments of Statistics and Machine Learning

Carnegie Mellon University

Pittsburgh, PA 15213, USA

Editor: Bin Yu

Abstract

Forward stagewise regression follows a very simple strategy for constructing a sequence
of sparse regression estimates: it starts with all coefficients equal to zero, and iteratively
updates the coefficient (by a small amount ε) of the variable that achieves the maximal
absolute inner product with the current residual. This procedure has an interesting connec-
tion to the lasso: under some conditions, it is known that the sequence of forward stagewise
estimates exactly coincides with the lasso path, as the step size ε goes to zero. Further-
more, essentially the same equivalence holds outside of least squares regression, with the
minimization of a differentiable convex loss function subject to an `1 norm constraint (the
stagewise algorithm now updates the coefficient corresponding to the maximal absolute
component of the gradient).

Even when they do not match their `1-constrained analogues, stagewise estimates pro-
vide a useful approximation, and are computationally appealing. Their success in sparse
modeling motivates the question: can a simple, effective strategy like forward stagewise
be applied more broadly in other regularization settings, beyond the `1 norm and spar-
sity? The current paper is an attempt to do just this. We present a general framework for
stagewise estimation, which yields fast algorithms for problems such as group-structured
learning, matrix completion, image denoising, and more.
Keywords: forward stagewise regression, lasso, ε-boosting, regularization paths

1. Introduction

In a regression setting, let y ∈ Rn denote an outcome vector and X ∈ Rn×p a matrix of
predictor variables, with columns X1, . . . Xp ∈ Rn. For modeling y as a linear function of X,
we begin by considering (among the many possible candidates for sparse estimation tools) a
simple method: forward stagewise regression. In plain words, forward stagewise regression
produces a sequence of coefficient estimates β(k), k = 0, 1, 2, . . ., by iteratively decreasing
the maximal absolute inner product of a variable with the current residual, each time by
only a small amount. A more precise description of the algorithm is as follows.

Algorithm 1 (Forward stagewise regression)

Fix ε > 0, initialize β(0) = 0, and repeat for k = 1, 2, 3, . . .,

β(k) = β(k−1) + ε · sign
(
XT
i (y −Xβ(k−1))

)
· ei, (1)

where i ∈ argmax
j=1,...p

|XT
j (y −Xβ(k−1))|. (2)

c©2015 Ryan J. Tibshirani.

Tibshirani

In the above, ε > 0 is a small fixed constant (e.g., ε = 0.01), commonly referred to as the
step size or learning rate; ei denotes the ith standard basis vector in Rp; and the element
notation in (2) emphasizes that the maximizing index i need not be unique. The basic
idea behind the forward stagewise updates (1), (2) is highly intuitive: at each iteration we
greedily select the variable i that has the largest absolute inner product (or correlation, for
standardized variables) with the residual, and we add siε to its coefficient, where si is the
sign of this inner product. Accordingly, the fitted values undergo the update:

Xβ(k) = Xβ(k−1) + ε · siXi.

Such greediness, in selecting variable i, is counterbalanced by the small step size ε > 0;
instead of increasing the coefficient of Xi by a (possibly) large amount in the fitted model,
forward stagewise only increases it by ε, which “slows down” the learning process. As a
result, it typically requires many iterations to produce estimates of reasonable interest with
forward stagewise regression, e.g., it could easily take thousands of iterations to reach a
model with only tens of active variables (we use “active” here to refer to variables that are
assigned nonzero coefficients). See the left panel of Figure 1 for a small example.

This “slow learning” property is a key difference between forward stagewise regression
and the closely-named forward stepwise regression procedure: at each iteration, the latter
algorithm chooses a variable in a similar manner to that in (2)1, but once it does so, it
updates the fitted model by regressing y on all variables selected thus far. While both are
greedy algorithms, the stepwise procedure is much greedier; after k iterations, it produces
a model with exactly k active variables. Forward stagewise and forward stepwise are old
techniques (some classic references for stepwise regression methods are Efroymson, 1966
and Draper and Smith, 1966, but there could have been earlier relevant work). According
to Hastie et al. (2009), forward stagewise was historically dismissed by statisticians as being
“inefficient” and hence less useful than methods like forward or backward stepwise. This
is perhaps understandable, if we keep in mind the limited computational resources of the
time. From a modern perspective, however, we now appreciate that “slow learning” is a
form of regularization and can present considerable benefits in terms of the generalization
error of the fitted models—this is seen not only in regression, but across variety of settings.
Furthermore, by modern standards, forward stagewise is computationally cheap: to trace
out a path of regularized estimates, we repeat very simple iterations, each one requiring (at
most) p inner products, computations that could be trivially parallelized.

The revival of interest in stagewise regression began with the work of Efron et al. (2004),
where the authors derived a surprising connection between the sequence of forward stagewise
estimates and the solution path of the lasso (Tibshirani, 1996),

β̂(t) = argmin
β∈Rp

1

2
‖y −Xβ‖22 subject to ‖β‖1 ≤ t, (3)

over the regularization parameter t ≥ 0. The relationship between stagewise and the lasso
will be reviewed in Section 2.1 in detail, but the two panels in Figure 1 tell the essence

1. If A denotes the active set at the end of iteration k − 1, then at iteration k forward stepwise chooses
the variable i such that the sum of squared errors from regressing y onto the variables in A ∪ {i} is
smallest. This is equivalent to choosing i such that |X̃T

i (y −Xβ(k−1))| is largest, where β(k−1) denote
the coefficients from regressing y on the variables in A, and X̃i is the residual from regressing Xi on the
variables in A.

2544

General Stagewise Algorithms

0.0 0.5 1.0 1.5 2.0

−
0

.2
0

.0
0

.2
0

.4
0

.6

Stagewise path
C

o
o

rd
in

a
te

s

‖β(k)‖1

0.0 0.5 1.0 1.5 2.0

−
0

.2
0

.0
0

.2
0

.4
0

.6

Lasso path

‖β̂(t)‖1
C
o
or
d
in
at
es

Figure 1: A simple example using the prostate cancer data from Hastie et al. (2009), where the log
PSA score of n = 67 men with prostate cancer is modeled as a linear function of p = 8
biological predictors. The left panel shows the forward stagewise regression estimates
β(k) ∈ R8, k = 1, 2, 3, . . ., with the 8 coordinates plotted in different colors. The stagewise
algorithm was run with ε = 0.01 for 250 iterations, and the x-axis here gives the `1 norm
of the estimates across iterations. The right panel shows the lasso solution path, also
parametrized by the `1 norm of the estimate. The similarity between the stagewise and
lasso paths is visually striking; for small enough ε, they appear identical. This is not a
coincidence and has been rigorously studied by Efron et al. (2004), and other authors; in
Section 2.1 we provide an intuitive explanation for this phenomenon.

of the story. The stagewise paths, on the left, appear to be jagged versions of their lasso
counterparts, on the right. Indeed, as the step size ε is made smaller, this jaggedness
becomes less noticeable, and eventually the two sets of paths appear exactly the same. This
is not a coincidence, and under some conditions (on the problem instance in consideration),
it is known that the stagewise path converges to the lasso path, as ε → 0. Interestingly,
when these conditions do not hold, stagewise estimates can deviate substantially from lasso
solutions, and yet in such situations the former estimates can still perform competitively
with the latter, say, in terms of test error (or really any other standard error metric). This
is an important point, and it supports the use of stagewise regression as a general tool for
regularized estimation.

1.1 Summary of Our Contributions

This paper departs from the lasso setting and considers the generic convex problem

x̂(t) ∈ argmin
x∈Rn

f(x) subject to g(x) ≤ t, (4)

2545

Tibshirani

where f, g : Rn → R are convex functions, and f is differentiable. Motivated by forward
stagewise regression and its connection to the lasso, our main contribution is the follow-
ing general stagewise algorithm for producing an approximate solution path of (4), as the
regularization parameter t varies over [t0,∞).

Algorithm 2 (General stagewise procedure)

Fix ε > 0 and t0 ∈ R. Initialize x(0) = x̂(t0), a solution in (4) at t = t0. Repeat, for
k = 1, 2, 3, . . .,

x(k) = x(k−1) + ∆, (5)

where ∆ ∈ argmin
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε. (6)

The intuition behind the general stagewise algorithm can be seen right away: at each
iteration, we update the current iterate in a direction that minimizes the inner product
with the gradient of f (evaluated at the current iterate), but simultaneously restrict this
direction to be small under g. By applying these updates repeatedly, we implicitly adjust
the trade-off between minimizing f and g, and hence one can imagine that the kth iterate
x(k) approximately solves (4) with t = g(x(k)). In Figure 2, we show a few simple examples
of the general stagewise paths implemented for various different choices of loss functions f
and regularizing functions g.

In the next section, we develop further intuition and motivation for the general stage-
wise procedure, and we tie in forward stagewise regression as a special case. The rest of
this article is then dedicated to the implementation and analysis of stagewise algorithms:
Section 3 derives the specific form of the stagewise updates (5), (6) for various problem
setups, Section 4 conducts large-scale empirical evaluations of stagewise estimates, Section
5 presents some theory on suboptimality, and Section 6 concludes with a discussion.

Throughout, our arguments and examples are centered around three points, summarized
below.

1. Simple, fast estimation procedures. The general framework for stagewise estimation
in Algorithm 2 leads to simple and efficient stagewise procedures for group-structured
regularization problems (e.g., the group lasso, multitask learning), trace norm regular-
ization problems (e.g., matrix completion), quadratic regularization problem problems
(e.g., nonparametric smoothing), and (some) generalized lasso problems (e.g., image
denoising). For such problems, the proposed stagewise procedures are often competi-
tive with existing commonly-used algorithms in terms of efficiency, and are generally
much simpler.

2. Similar to actual solution paths, but more stable. In many examples, the computed
stagewise path is highly similar to the actual solution path of the corresponding convex
regularization problem in (4)—typically, this happens when the components of the
actual solution change “slowly” with the regularization parameter t. In many others,
even though it shares gross characteristics of the actual solution path, the stagewise
path is different—typically, this happens when the components of the actual solution
change “rapidly” with t, and the stagewise component paths are much more stable.

2546

0.0 0.5 1.0 1.5 2.0 2.5

−
0

.2
0

.0
0

.2
0

.4
0

.6

Group lasso path

C
o

o
rd

in
a

te
s

g(β̂(t))

0.0 0.5 1.0 1.5 2.0 2.5

−
0
.2

0
.0

0
.2

0
.4

0
.6

Stagewise path

g(β(k))

C
o
or
d
in
at
es

0 2 4 6 8 10

−
4

−
3

−
2

−
1

0
1

2

Matrix completion path

C
o
o
rd

in
a
te

s

g(β̂(t))

0 2 4 6 8 10

−
4

−
3

−
2

−
1

0
1

2

Stagewise path

g(β(k))

C
o
or
d
in
at
es

0.0 0.5 1.0 1.5

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Ridge logistic path

C
o
o
rd

in
a
te

s

g(β̂(t))

0.0 0.5 1.0 1.5

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

Stagewise path

g(β(k))

C
o
or
d
in
at
es

Figure 2: Examples comparing the actual solution paths (left column) to the stagewise paths (right
column) across various problem contexts, using the prostate cancer data set. The first
row considers a group lasso model on the prostate data (where the groups were some-
what arbitrarily chosen based on the predictor types); the second row considers a matrix
completion task, on a partially observed submatrix of the full predictor matrix; the third
row considers a logistic regression model with ridge regularization (the outcome being
the indicator of log PSA > 1). In each case, the stagewise estimates were very easy to
compute; Sections 3.1, 3.3, and 3.4 discuss these problem settings in detail.

Tibshirani

3. Competitive statistical performance. Across essentially all cases, even those in which
its constructed path is not close to the actual solution path, the stagewise algorithm
performs favorably from a statistical point of view. That is, stagewise estimates are
comparable to solutions in (4) with respect to relevant error metrics, across various
problem settings. This suggests that stagewise estimates deserved to be studied on
their own, regardless of their proximity to solutions in (4).

The third point above, on the favorable statistical properties of stagewise estimates, is
based on empirical arguments, rather than theoretical ones. Statistical theory for stagewise
estimates is an important topic for future work.

2. Properties of the General Stagewise Framework

For motivation and background, we cover the connection between stagewise regression and
the lasso in more detail, and then rewrite the stagewise regression updates in a form that
naturally suggests the general stagewise proposal of this paper. Following this, we discuss
properties of the general stagewise framework, and related work.

2.1 Motivation: Stagewise Regression and the Lasso

The lasso estimator is a popular tool for sparse estimation in the regression setting. Dis-
played in (3), we assume for simplicity that the lasso solution β̂(t) in (3) is unique, which
holds under very weak conditions on X.2 Recall that the parameter t controls the level
of sparsity in the estimate β̂(t): when t = 0, we have β̂(0) = 0, and as t increases, select
components of β̂(t) become nonzero, corresponding to variables entering the lasso model
(nonzero components of β̂(t) can also become zero, corresponding to variables leaving the
model). The solution path β̂(t), t ∈ [0,∞) is continuous and piecewise linear as a function
of t, and for a large enough value of t, the path culminates in a least squares estimate of y
on X.

The right panel of Figure 1 shows an example of the lasso path, which, as we discussed
earlier, appears quite similar to the stagewise path on the left. This is explained by the
seminal work of Efron et al. (2004), who describe two algorithms (actually three, but the
third is unimportant for our purposes): one for explicitly constructing the lasso path β̂(t)
as a continuous, piecewise linear function of the regularization parameter t ∈ [0,∞), and
another for computing the limiting stagewise regression paths as ε→ 0. One of the (many)
consequences of their work is the following: if each component of the lasso solution path
β̂(t) is a monotone function of t, then these two algorithms coincide, and therefore so do
the stagewise and lasso paths (in the limit as ε → 0). Note that the lasso paths for the
data example in Figure 1 are indeed monotone, and hence the theory confirms the observed
convergence of stagewise and lasso estimates in this example.

The lasso has undergone intense study as a regularized regression estimator, and its
statistical properties (e.g., its generalization error, or its ability to detect a truly relevant
set of variables) are more or less well-understood at this point. Many of these properties cast

2. For example, it suffices to assume that X has columns in general position, see Tibshirani (2013). Note
that here we are only claiming uniqueness for all parameter values t < t∗, where t∗ is the smallest `1
norm of a least squares solution of y on X.

2548

General Stagewise Algorithms

the lasso in a favorable light. Therefore, the equivalence between the (limiting) stagewise
and lasso paths lends credibility to forward stagewise as a regularized regression procedure:
for a small step size ε, we know that the forward stagewise estimates will be close to
lasso estimates, at least when the individual coordinate paths are monotone. At a high
level, it is actually somewhat remarkable that such a simple algorithm, Algorithm 1, can
produce estimates that can stand alongside those defined by the (relatively) sophisticated
optimization problem in (3). There are now several interesting points to raise.

• The nonmonotone case. In practice, the components of the lasso path are rarely
monotone. How do the stagewise and lasso paths compare in such cases? A precise
theoretical answer is not known, but empirically, these paths can be quite different.
In particular, for problems in which the predictors X1, . . . Xp are correlated, the lasso
coordinate paths can be very wiggly (as variables can enter and leave the model
repeatedly), while the stagewise paths are often very stable; see, e.g., Hastie et al.
(2007). In support of these empirical findings, the latter authors derived a local
characterization of the lasso and forward stagewise paths: they show that at any
point along the path, the lasso estimate decreases the sum of squares loss function at
an optimal rate with respect to the increase in `1 norm, and the (limiting) forward
stagewise estimate decreases the loss function at an optimal rate with respect to the
increase in `1 arc length. Loosely speaking, since the `1 arc length accounts for the
entire history of the path up until the current point, the (limiting) stagewise algorithm
is less “willing” to produce wiggly estimates.

Despite these differences, stagewise estimates tend to perform competitively with lasso
estimates in terms of test error, and this is true even with highly correlated predictor
variables, when the stagewise and lasso paths are very different (such statements are
based on simulations, and not theory; see Hastie et al., 2007; Knudsen, 2013). This
is a critical point, as it suggests that stagewise should be considered as an effective
tool for regularized estimation, apart from any link to a convex problem. We return
to this idea throughout the paper.

• General convex loss functions. Fortunately, the stagewise method extends to sparse
modeling in other settings, beyond Gaussian regression. Let f : Rp → R be a dif-
ferentiable convex loss function, e.g., f(β) = 1

2‖y −Xβ‖22 for the regression setting.
Beginning again with β(0) = 0, the analogy of the stagewise steps in (1), (2) for the
present general setting are

β(k) = β(k−1) − ε · sign
(
∇if(β(k−1))

)
· ei, (7)

where i ∈ argmax
j=1,...p

|∇jf(β(k−1))|. (8)

That is, at each iteration we update β(k) in the direction opposite to the largest
component of the gradient (largest in absolute value). Note that this reduces to the
usual update rules (1), (2) when f(β) = 1

2‖y −Xβ‖22. Rosset et al. (2004) studied the
stagewise routine (7), (8), and its connection to the `1-constrained estimate

β̂(t) = argmin
β∈Rp

f(β) subject to ‖β‖1 ≤ t. (9)

2549

Tibshirani

Similar to the result for lasso regression, these authors prove that if the solution β̂(t)
in (9) has monotone coordinate paths, then under mild conditions3 on f , the stagewise
paths given by (7), (8) converge to the path β̂(t) as ε→ 0. This covers, e.g., the cases of
logistic regression and Poisson regression losses, with predictor variables X in general
position. The same general message, as in the linear regression setting, applies here:
compared to the relatively complex optimization problem (9), the stagewise algorithm
(7), (8) is very simple. The most (or really, the only) advanced part of each iteration
is the computation of the gradient ∇f(β(k−1)); in the logistic or Poisson regression
settings, the components of ∇f(β(k−1)) are given by

∇jf(β(k−1)) = XT
j

(
y − µ(β(k−1))

)
, j = 1, . . . p,

where y ∈ Rn is the outcome and µ(β(k−1)) ∈ Rn has components

µi(β
(k−1)) =

{
1/[1 + exp(−(Xβ(k−1))i)] for logistic regression

exp((Xβ(k−1))i) for Poisson regression
, i = 1, . . . n.

Its precise connection to the `1-constrained optimization problem (9) for monotone
paths is encouraging, but even outside of this case, the simple and efficient stagewise
algorithm (7), (8) produces regularized estimates deserving of attention in their own
right.

• Forward-backward stagewise. Zhao and Yu (2007) examined a novel modification of
forward stagewise, under a general loss function f : at each iteration, their proposal
takes a backward step (i.e., moves a component of β(k) towards zero) if this would
decrease the loss function by a sufficient amount ξ; otherwise it takes a forward step
as usual. The authors prove that, as long as the parameter ξ used for the backward
steps scales as ξ = o(ε), the path from this forward-backward stagewise algorithm
converges to the solution path in (9) as ε → 0. The important distinction here
is that their result does not assume monotonicity of the coordinate paths in (9).
(It does, however, assume that the loss function f is strongly convex—in the linear
regression setting, f(β) = 1

2‖y −Xβ‖22, this is equivalent to assuming that X ∈ Rn×p
has linearly independent predictors, which requires n ≥ p).4 The forward-backward
stagewise algorithm hence provides another way to view the connection between (the
usual) forward stagewise steps (7), (8) and the `1-regularized optimization problem
(9): the forward stagewise path is an approximation to the solution path in (9) given
by skipping the requisite backward steps needed to correct for nonmonotonicities.

Clearly, there has been some fairly extensive work connecting the stagewise estimates
(1), (2) and the lasso estimate (3), or more generally, the stagewise estimates (7), (8) and

3. Essentially, Rosset et al. (2004) assume that conditions on f that imply a unique solution in (9), and
allow for a second order Taylor expansion of f . Such conditions are that f(β) = h(Xβ), with h twice
differentiable and strictly convex, and X having columns in general position.

4. It is also worth pointing out that the type of convergence considered by Zhao and Yu (2007) is stronger
than that considered by Efron et al. (2004) and Rosset et al. (2004). The former authors prove that,
under suitable conditions, the entire stagewise path converges globally to the lasso solution path; the
latter authors only prove a local type of convergence, that has to do with the limiting stagewise and
lasso directions at any fixed point along the path.

2550

General Stagewise Algorithms

the `1-constrained estimate (9). Still, however, this connection seems mysterious. Both
methods produce a regularization path, with a fully sparse model on one end, and a fully
dense model on the other—but beyond this basic degree of similarity, why should we expect
the stagewise path (7), (8) and the `1 regularization path (9) to be so closely related? The
work referenced above gives a mathematical treatment of this question, and we feel, does
not provide much intuition. In fact, there is a simple interpretation of the forward stagewise
algorithm that explains its connection to the lasso problem, seen next.

2.2 A New Perspective on Forward Stagewise Regression

We start by rewriting the steps (7), (8) for the stagewise algorithm, under a general loss f ,
as

β(k) = β(k−1) + ∆,

where ∆ = −ε · sign
(
∇if(β(k−1))

)
· ei,

and |∇if(β(k−1))| = ‖∇f(β(k−1))‖∞.

As ∇if(β(k−1)) is maximal in absolute value among all components of the gradient, the
quantity sign(∇if(β(k−1))) · ei is a subgradient of the `∞ norm evaluated at ∇f(β(k−1)):

∆ ∈ −ε ·
(
∂‖x‖∞

∣∣∣
x=∇f(β(k−1))

)
.

Using the duality between the `∞ and `1 norms,

∆ ∈ −ε ·
(

argmax
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ 1
)
,

or equivalently,

∆ ∈ argmin
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ ε.

(Above, as before, the element notation emphasizes that the maximizer or minimizer is not
necessarily unique.) Hence the forward stagewise steps (7), (8) satisfy

β(k) = β(k−1) + ∆, (10)

where ∆ ∈ argmin
z∈Rp

〈∇f(β(k−1)), z〉 subject to ‖z‖1 ≤ ε. (11)

Written in this form, the stagewise algorithm exhibits a natural connection to the `1-
regularized optimization problem (9). At each iteration, forward stagewise moves in a
direction that minimizes the inner product with the gradient of f , among all directions
constrained to have a small `1 norm; therefore, the sequence of stagewise estimates balance
(small) decreases in the loss function f with (small) increases in the `1 norm, just like the
solution path in (9), as the regularization parameter t increases. This intuitive perspec-
tive aside, the representation (10), (11) for the forward stagewise estimates is important
because it inspires an analogous approach for general convex regularization problems. This
was already presented in Algorithm 2, and next we discuss it further.

2551

Tibshirani

2.3 Basic Properties of the General Stagewise Procedure

Recall the general minimization problem in (4), where we assume that the loss function f is
convex and differentiable, and the regularizer g is convex. It can now be seen that the steps
(5), (6) in the general stagewise procedure in Algorithm 2 are directly motivated by the
forward stagewise steps, as expressed in (10), (11). The explanation is similar to that given
above: as we repeat the steps of the algorithm, the iterates are constructed to decrease
the loss function f (by following its negative gradient) at the cost of a small increase in
the regularizer g. In this sense, the stagewise algorithm navigates the trade-off between
minimizing f and g, and produces an approximate regularization path for (4), i.e., the kth
iterate x(k) approximately solves problem (4) with t = g(x(k)).

From our work at the end of the last subsection, it is clear that forward stagewise regres-
sion (7), (8), or equivalently (10), (11), is a special case of the general stagewise procedure,
applied to the `1-regularized problem (9). Moreover, the general stagewise procedure can
be applied in many other settings, well beyond `1 regularization, as we show in the next
section. Before presenting these applications, we now make several basic remarks.

• Initialization and termination. In many cases, initializing the algorithm is easy: if
g(x) = 0 implies x = 0 (e.g., this is true when g is a norm), then we can start the
stagewise procedure at t0 = 0 and x(0) = 0. In terms of a stopping criterion, a general
strategy for (approximately) tracing a full solution path is to stop the algorithm
when g(x(k)) does not change very much between successive iterations. If instead the
algorithm has been terminated upon reaching some maximum number of iterations or
some maximum value of g(x(k)), and more iterations are desired, then the algorithm
can surely be restarted from the last reached iterate x(k).

• First-order justification. If g satisfies the triangle inequality (again, e.g., it would as
a norm), then the increase in the value of g between successive iterates is bounded by
ε:

g(x(k)) ≤ g(x(k−1)) + g(∆) ≤ g(x(k−1)) + ε.

Furthermore, we can give a basic (and heuristic) justification of the stagewise steps
(5), (6). Consider the minimization problem (4) at the parameter t = g(x(k−1)) + ε;
we can write this as

x̂(t) ∈ argmin
x∈Rn

f(x)− f(x(k−1)) subject to g(x)− g(x(k−1)) ≤ ε,

and then reparametrize as

x̂(t) = x(k−1) + ∆∗, (12)

∆∗ ∈ argmin
z∈Rn

f(x(k−1) +z)− f(x(k−1)) subject to g(x(k−1) +z)− g(x(k−1)) ≤ ε.

(13)

We now modify the problem (13) in two ways: first, we replace the objective function
in (13) with its first-order (linear) Taylor approximation around x(k−1),

〈∇f(x(k−1)), z〉 ≈ f(x(k−1) + z)− f(x(k−1)), (14)

2552

General Stagewise Algorithms

and second, we shrink the constraint set in (13) to

{z ∈ Rn : g(z) ≤ ε} ⊆ {z ∈ Rn : g(x(k−1) + z)− g(x(k−1)) ≤ ε},

since, as noted earlier, any element of the left-hand side above is an element of the
right-hand side by the triangle inequality. These two modifications define a different
update direction

∆ ∈ argmin
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε,

which is exactly the direction (6) in the general stagewise procedure. Hence the
stagewise algorithm chooses ∆ as above, rather than choosing the actual direction ∆∗

in (13), to perform an update step from x(k−1). This update results in a feasible point
x(k) = x(k−1) + ∆ for the problem (4) at t = g(k−1) + ε; of course, the point x(k) is not
necessarily optimal, but as ε gets smaller, the first-order Taylor approximation in (14)
becomes tighter, so one would imagine that the point x(k) becomes closer to optimal.

• Dual update form. If g is a norm, then the update direction defined in (6) can be
expressed more succinctly in terms of the dual norm g∗(x) = maxg(z)≤1 x

T z. We
write

∆ ∈ −ε ·
(

argmax
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ 1
)

= −ε · ∂g∗
(
∇f(x(k−1))

)
, (15)

i.e., the direction ∆ is −ε times a subgradient of the dual norm g∗ evaluated at
∇f(x(k−1)). This is a useful observation, since many norms admit a known dual norm
with known subgradients; we will see examples of this in the coming section.

• Invariance around ∇f . The level of difficulty associated with computing the update
direction, i.e., in solving problem (6), depends entirely on g and not on f at all
(assuming that ∇f can be readily computed). We can think of ∆ as an operator on
Rn:

∆(x) ∈ argmin
z∈Rn

〈x, z〉 subject to g(z) ≤ ε. (16)

This operator ∆(·) is often called the linear minimization oracle associated with the
function g, in the optimization literature. At each input x, it returns a minimizer of
the problem in (16). Provided that ∆(·) can be expressed in closed-form—which is
fortuitously the case for many common statistical optimization problems, as we will
see in the sections that follow—the stagewise update step (5) simply evaluates this
operator at ∇f(x(k−1)), and adds the result to x(k−1):

x(k) = x(k−1) + ∆
(
∇f(x(k−1))

)
.

An analogy can be drawn here to the proximal operator in proximal gradient descent,
used for minimizing the composite function f+g, where f is smooth but g is (possibly)
nonsmooth. The proximal operator is defined entirely in terms of g, and as long as
it can be expressed analytically, the generalized gradient update for x(k) simply uses
the output of this operator at ∇f(x(k−1)).

2553

Tibshirani

• Unbounded stagewise steps. Suppose that g is a seminorm, i.e., it satisfies g(ax) =
|a|g(x) for a ∈ R, and g(x+ y) ≤ g(x) + g(y), but g can have a nontrivial null space,
Ng = {x ∈ Rn : g(x) = 0}. In this case, the stagewise update step in (5) can be
unbounded; in particular, if

〈∇f(x(k)), z〉 6= 0 for some z ∈ Ng, (17)

then we can drive 〈∇f(x(k)), z〉 → −∞ along a sequence with g(z) = 0, and so the
stagewise update step would be clearly undefined. Fortunately, a simple modification
of the general stagewise algorithm can account for this problem. Since we are assuming
that g is a seminorm, the set Ng is a linear subspace. To initialize the general stagewise
algorithm at say t0 = 0, therefore, we solve the linearly constrained optimization
problem

x(0) ∈ argmin
x∈Ng

f(x).

In subsequent stagewise steps, we then restrict the updates to lie in the subspace
orthogonal to Ng. That is, to be explicit, we replace (5) (6) in Algorithm 2 with

x(k) = x(k−1) + ∆, (18)

where ∆ ∈ argmin
z∈N⊥g

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε, (19)

where N⊥g denotes the orthocomplement of Ng. We will see this modification, e.g.,
put to use for the quadratic regularizer g(β) = βTQβ, where Q is positive semidefinite
and singular.

Some readers may wonder why we are working with the constrained problem (4), and
not

x̂(λ) ∈ argmin
x∈Rn

f(x) + λg(x), (20)

where λ ≥ 0 is now the regularization parameter, and is called the Lagrange multiplier
associated with g. It is probably more common in the current statistics and machine
learning literature for optimization problems to be expressed in the Lagrange form (20),
rather than the constrained form (4). The solution paths of (4) and (20) (given by varying
t and λ in their respective problems) are not necessarily equal for general convex functions
f and g; however, they are equal under very mild assumptions5, which hold for all of the
examples visited in this paper. Therefore, there is not an important difference in terms
of studying (4) versus (20). We choose to focus on (4) as we feel that the intuition for
stagewise algorithms is easier to see with this formulation.

2.4 Related Work

There is a lot of work related to the proposal of this paper. Readers familiar with opti-
mization will likely identify the general stagewise procedure, in Algorithm 2, as a particular

5. For example, it is enough to assume that g ≥ 0, and that for all parameters t, λ ≥ 0, the solution sets of
(4), (20) are nonempty.

2554

General Stagewise Algorithms

type of (normalized) steepest descent. Steepest descent is an iterative algorithm for mini-
mizing a smooth convex function f , in which we update the current iterate in a direction
that minimizes the inner product with the gradient of f (evaluated at the current iterate),
among all vectors constrained to have norm ‖ · ‖ bounded by 1 (e.g., see Boyd and Van-
denberghe, 2004); the step size for the update can be chosen in any one of the usual ways
for descent methods. Note that gradient descent is simply a special case of steepest descent
with ‖ · ‖ = ‖ · ‖2 (modulo normalizing factors). Meanwhile, the general stagewise algo-
rithm is just steepest descent with ‖ · ‖ = g(·), and a constant step size ε. It is important
to point out that our interest in the general stagewise procedure is different from typical
interest in steepest descent. In the classic usage of steepest descent, we seek to minimize
a differentiable convex function f ; our choice of norm ‖ · ‖ affects the speed with which we
can find such a minimizer, but under weak conditions, any choice of norm will eventually
bring us to a minimizer nonetheless. In the general stagewise algorithm, we are not really
interested in the final minimizer itself, but rather, the path traversed in order to get to
this minimizer. The stagewise path is composed of iterates that have interesting statistical
properties, given by gradually balancing f and g; choosing different functions g will lead
to generically different paths. Focusing on the path, instead of its endpoint, may seem
strange to a researcher in optimization, but it is quite natural for researchers in statistics
and machine learning.

Another method related to our general stagewise proposal is the Frank-Wolfe algorithm
(Frank and Wolfe, 1956), used to minimize a differentiable convex function f over a convex
set C. Similar to (projected) gradient descent, which iteratively minimizes local quadratic
approximations of f over C, the Frank-Wolfe algorithm iteratively minimizes local linear
approximations of f over C. In a recent paper, Jaggi (2013) shed light on Frank-Wolfe as
an efficient, scalable algorithm for modern machine learning problems. For a single value
of the regularization parameter t, the Frank-Wolfe algorithm can be used to solve problem
(4), taking as the constraint set C = {x : g(x) ≤ t}; the Frank-Wolfe steps here look very
similar to the general stagewise steps (5), (6), but an important distinction is that the
iterates from Frank-Wolfe result in a single estimate, rather than each iterate constituting
its own estimate along the regularization path, as in the general stagewise procedure. This
connection deserves more discussion, see Online Appendix A.1. Other well-known methods
based on local linearization are cutting-plane methods (Kelley, 1960) and bundle methods
(Hiriart-Urruty and Lemarechal, 1993). Teo et al. (2007) present a general bundle method
for regularized risk minimization that is particularly relevant to our proposal (see also Teo
et al., 2010); this is similar to the Frank-Wolfe approach in that it solves the problem (4)
at a fixed value of the parameter t (one difference is that its local linearization steps are
based on the entire history of previous iterates, instead of just the single last iterate). For
brevity, we do not conduct a detailed comparison between their bundle method and our
general stagewise procedure, though we believe it would be interesting to do so.

Yet another class of methods that are highly relevant to our proposal are boosting proce-
dures. Boosting algorithms are iterative in form, and we typically think of them as tracing
out a sequence of estimates, just like our general stagewise algorithm (and unlike the it-
erative algorithms described above, e.g., steepest descent and Frank-Wolfe, which we tend
to think of as culminating in a single estimate). The literature on boosting is vast; see,
e.g., Hastie et al. (2009) or Buhlmann and Yu (2010) for a nice review. Among boosting

2555

Tibshirani

methods, gradient boosting (Friedman, 2001) most closely parallels forward stagewise fit-
ting. Consider a setup in which our weak learners are the individual predictor variables
X1, . . . Xp, and the loss function is L(Xβ) = f(β). The gradient boosting updates, using a
shrinkage factor ε, are most commonly expressed in terms of the fitted values, as in

Xβ(k) = Xβ(k−1) + ε · αiXi, (21)

where αi ∈ argmin
α∈R

L(Xβ(k−1) + αXi), (22)

and i ∈ argmin
j=1,...p

(
min
α∈R
‖ − ∇L(Xβ(k−1))− αXj‖22

)
. (23)

The step (23) selects the weak learnerXi that best matches the negative gradient, −∇L(Xβ(k−1)),
in a least squares sense; the step (22) chooses the coefficient αi of Xi via line search. If we
assume that the variables have been scaled to have unit norm, ‖Xj‖2 = 1 for j = 1, . . . p,
then it is easy to see that (23) is equivalent to

i ∈ argmax
j=1,...p

|XT
j ∇L(Xβ(k−1))| = argmax

j=1,...p
|∇jf(β(k−1))|,

which is exactly the same selection criterion used by forward stagewise under the loss
function f , as expressed in (8). Therefore, at a given iteration, gradient boosting and
forward stagewise choose the next variable i in the same manner, and only differ in their
choice of the coefficient of Xi in the constructed additive model. The gradient boosting
update in (21) adds ε ·αiXi to the current model, where αi is chosen by line search in (22);
meanwhile, the forward stagewise update in (7) can be expressed as

Xβ(k) = Xβ(k−1) + ε · siXi, (24)

where si = −sign(∇if(β(k−1)), a simple choice of coefficient compared to αi. Because αi
is chosen by minimizing the loss function along the direction defined by Xi (anchored at
Xβ(k−1)), gradient boosting is even more greedy than forward stagewise, but practically
there is not a big difference between the two, especially when ε is small. In fact, the
distinction between (21) and (24) is slight enough that several authors refer to forward
stagewise as a boosting procedure, e.g., Rosset et al. (2004), Zhao and Yu (2007), and
Buhlmann and Yu (2010) refer to forward stagewise as ε-boosting.

The tie between boosting and forward stagewise suggests that we might be able to
look at our general stagewise proposal through the lens of boosting, as well. Above we
compared boosting and forward stagewise for the problem of sparse estimation; in this
problem, deciding on the universe of weak learners for gradient boosting is more or less
straightforward, as we can use the variables X1, . . . Xp themselves (or, e.g., smooth marginal
transformations of these variables for sparse nonparametric estimation). This works because
each iteration of gradient boosting adds a single weak learner to the fitted model, so the
model is sparse in the early stages of the algorithm, and becomes increasingly dense as
the algorithm proceeds. However, for more complex problems (beyond sparse estimation),
specifying a universe of weak learners is not as straightforward. Consider, e.g., matrix
completion or image denoising—what kind of weak learners would be appropriate here? At
a broad level, our general stagewise procedure offers a prescription for a class of weak learners

2556

General Stagewise Algorithms

based on the regularizer g, through the definition of ∆ in (6). Such weak learners seem
intuitively reasonable in various problem settings: they end up being groups of variables
for group-structured estimation problems (see Section 3.1), rank 1 matrices for matrix
completion (Section 3.3), and pixel contrasts for image denoising (Section 3.5). This may
lead to an interesting perspective on gradient boosting with an arbitrary regularization
scheme, though we do not explore it further.

Finally, the form of the update ∆ in (6) sets our work apart from other general path
tracing procedures. Zhao and Yu (2007) and Friedman (2008) propose approximate path
following methods for optimization problems whose regularizers extend beyond the `1 norm,
but their algorithms only update one component of the estimate at a time (which corre-
sponds to using individual variables as weak learners, in the boosting perspective); on the
other hand, our general stagewise procedure specifically adapts its updates to the regu-
larizer of concern g. We note that, in certain special cases (i.e., for certain regularizers
g), our proposed algorithm bears similarities to existing algorithms in the literature: for
ridge regularization, our proposal is similar to gradient-directed path following, as studied
in Friedman and Popescu (2004) and Ramsay (2005), and for `1/`2 multitask learning, our
stagewise algorithm is similar to the block-wise path following method of Obozinski et al.
(2010).

3. Applications of the General Stagewise Framework

In each subsection below, we walk through the application of the stagewise framework to a
particular type of regularizer.

3.1 Group-structured Regularization

We begin by considering the group-structured regularization problem

β̂(t) ∈ argmin
β∈Rp

f(β) subject to

G∑
j=1

wj‖βIj‖2 ≤ t, (25)

where the index set {1, . . . p} has been partitioned into G groups I1, . . . IG, βIj ∈ Rpj
denotes the components of β ∈ Rp for the jth group, and w1, . . . wG ≥ 0 are fixed weights.
The loss f is kept as a generic differentiable convex function—this is because, as explained in
Section 2.3, the stagewise updates are invariant around ∇f , in terms of their computational
form.

Note that the group lasso problem (Bakin, 1999; Yuan and Lin, 2006) is a special case
of (25). In the typical group lasso regression setup, we observe an outcome y ∈ Rn and
predictors X ∈ Rn×p, and the predictor variables admit some natural grouping I1, . . . IG.
To perform group-wise variable selection, one can use the group lasso estimator, defined as
in (25) with

f(β) =
1

2

∥∥∥y − G∑
j=1

XIjβIj

∥∥∥2

2
and wj =

√
pj , j = 1, . . . G,

2557

Tibshirani

where XIj ∈ Rn×pj is the predictor matrix for group j, and pj = |Ij | is the size of the group
j. The same idea clearly applies outside of the linear regression setting (e.g., see Meier
et al., 2008 for a study of the group lasso regularization in logistic regression).

A related yet distinct problem is that of multitask learning. In this setting we consider
not one but multiple learning problems, or tasks, and we want to select a common set of
variables that are important across all tasks. A popular estimator for this purpose is based
on `1/`2 regularization (Argyriou et al., 2006; Obozinski et al., 2010), and also fits into
the framework (25): the loss function f becomes the sum of the losses across the tasks,
and the groups I1, . . . IG collect the coefficients corresponding to the same variables across
tasks. For example, in multitask linear regression, we write y(i) ∈ Rn for the outcome,
X(i) ∈ Rn×m for the predictors, and β(i) the coefficients for the ith task, i = 1, . . . r. We
form a global coefficient vector β = (β(1), . . . β(m)) ∈ Rp, where p = m · r, and form groups
I1, . . . Im, where Ij collects the coefficients of predictor variable j across the tasks. The
`1/`2 regularized multitask learning estimator is then defined as in (25) with

f(β) =
1

2

r∑
i=1

‖y(i) −X(i)β(i)‖22 and wj = 1, j = 1, . . .m,

where the default is to set all of the weights to 1, in the lack of any prior information about
variable importance (note that the groups I1, . . . Im are all the same size here).

The general stagewise algorithm, Algorithm 2, does not make any distinction between
cases such as the group lasso and multitask learning problems; it only requires f to be a
convex and smooth function. To initialize the algorithm for the group regularized problem
(25), we can take t0 = 0 and β(0) = 0. The next lemma shows how to calculate the
appropriate update direction ∆ in (6).

Lemma 1 For g(β) =
∑G

j=1wj‖βIj‖2, the general stagewise procedure in Algorithm 2 re-
peats the updates β(k) = β(k−1) + ∆, where ∆ can be computed as follows: first find i such
that

‖(∇f)Ii‖2
wi

= max
j=1,...G

‖(∇f)Ij‖2
wj

, (26)

where we abbreviate ∇f = ∇f(β(k−1)), then let

∆Ij = 0 for all j 6= i, (27)

∆Ii =
−ε · (∇f)Ii
wi‖(∇f)Ii‖2

. (28)

We omit the proof; it follows straight from the KKT conditions for (6), with g as
defined in the lemma. Computation of ∆ in (26), (27), (28) is very cheap, and requires
O(p) operations. To rephrase: at the kth iteration, we simply find the group i such that
the corresponding block of the gradient ∇f(β(k−1)) has the largest `2 norm (after scaling
appropriately by the weights). We then move the coefficients for group i in a direction
opposite to this gradient value; for all other groups, we leave their coefficients untouched
(note that, if a group has not been visited by past update steps, then this means leaving
its coefficients identically equal to zero). The outputs of the stagewise algorithm therefore

2558

General Stagewise Algorithms

match our intuition about the role of the constraint in (25)—for some select groups, all
coefficients are set to nonzero values, and for other groups, all coefficients are set to zero.
That the actual solution in (25) satisfies this intuitive property can be verified by examining
its own KKT conditions.

Looking back at Figure 2, the first row compares the exact solution and stagewise paths
for a group lasso regression problem. The stagewise path was computed using 300 steps
with ε = 0.01, and shows strong similarities to the exact group lasso path. In other problem
instances, say, when the predictors across different groups are highly correlated, the group
lasso coefficient paths can behave wildly with t, and yet the stagewise paths can appear
much less wild and more stable. Later, in Section 4, we consider larger examples and give
more thorough empirical comparisons.

3.2 Group-structured Regularization with Arbitrary Norms

Several authors have considered group-based regularization using the `∞ norm in place of
the usual `2 norm (e.g., see Turlach et al., 2005 for such an approach in multitask learning).
To accommodate this and other general group-structured regularization approaches, we
consider the problem

β̂(t) ∈ argmin
β∈Rp

f(β) subject to

G∑
j=1

wjhj(βIj) ≤ t, (29)

where each hj is an arbitrary norm. Let h∗j denote the dual norm of hj ; e.g., if hj(x) = ‖x‖qj ,
then h∗j (x) = ‖x‖rj , where 1/qj + 1/rj = 1. Similar to the result in Lemma 1, the stagewise
updates for problem (29) take a simple group-based form.

Lemma 2 For g(β) =
∑G

j=1wjhj(βIj), the general stagewise procedure in Algorithm 2 re-
peats the updates β(k) = β(k−1) + ∆, where ∆ can be computed as follows: first find i such
that

h∗i
(
(∇f)Ii

)
wi

= max
j=1,...G

h∗j
(
(∇f)Ij

)
wj

,

where we abbreviate ∇f = ∇f(β(k−1)), then let

∆Ij = 0 for all j 6= i,

∆Ii ∈ −
ε

wi
· ∂h∗i

(
(∇f)Ii

)
.

Again we omit the proof; it follows from the KKT conditions for (6). Indeed, Lemma
2 covers Lemma 1 as a special case, recalling that the `2 norm is self-dual. Also, recalling
that the `∞ and `1 norms are dual, Lemma 2 says that the stagewise algorithm for g(β) =∑G

j=1wj‖βIj‖∞ first finds i such that

‖(∇f)Ii‖1
wi

= max
j=1,...G

‖(∇f)Ij‖1
wj

,

2559

Tibshirani

and then defines the update direction ∆ by

∆Ij = 0 for all j 6= i,

∆` = − ε

wi
·
{

0 for ` ∈ Ii, (∇f)` = 0

sign
(
(∇f)`

)
for ` ∈ Ii, (∇f)` 6= 0.

More broadly, Lemma 2 provides a general prescription for deriving the stagewise updates
for regularizers that are block-wise sums of norms, as long as we can compute subgradients
of the dual norms. For example, the norms in consideration could be a mix of `p norms,
matrix norms, etc.

3.3 Trace Norm Regularization

Consider a class of optimization problems over matrices,

B̂(t) ∈ argmin
B∈Rm×n

f(B) subject to ‖B‖∗ ≤ t, (30)

where ‖B‖∗ denotes the trace norm (also called the nuclear norm) of a matrixB, i.e., the sum
of its singular values. Perhaps the most well-known example of trace norm regularization
comes from the problem of matrix completion (e.g., see Candes and Recht, 2009; Candes and
Tao, 2010; Mazumder et al., 2010). Here the setup is that we only partially observe entries
of a matrix Y ∈ Rm×n—say, we observe all entries (i, j) ∈ Ω—and we seek to estimate the
missing entries. A natural estimator for this purpose (studied by, e.g., Mazumder et al.,
2010) is defined as in (30) with

f(B) =
1

2

∑
(i,j)∈Ω

(Yij −Bij)2.

The trace norm also appears in interesting examples beyond matrix completion. For exam-
ple, Chen and Ye (2014) consider regularization with the trace norm in multiple nonpara-
metric regression, and Harchaoui et al. (2012) consider it in large-scale image classification.

The general stagewise algorithm applied to the trace norm regularization problem (30)
can be initialized with t0 = 0 and B(0) = 0, and the update direction in (6) is now simple
and efficient.

Lemma 3 For g(B) = ‖B‖∗, the general stagewise procedure in Algorithm 2 repeats the
updates β(k) = β(k−1) + ∆, where

∆ = −ε · uvT , (31)

with u, v being leading left and right singular vectors, respectively, of ∇f(B(k−1)).

The proof relies on the fact that the dual of the trace norm g(B) = ‖B‖∗ is the spectral
norm g∗(B) = ‖B‖2, and then invokes the representation (15) for stagewise estimates. For
the stagewise update direction (31), we need to compute the leading left and right singular
vectors u, v of the m× n matrix ∇f(B(k−1))—these are the left and right singular vectors
corresponding to the top singular value of ∇f(B(k−1)). Assuming that ∇f(B(k−1)) has
a distinct largest singular value, this can be done, e.g., using the power method: letting

2560

General Stagewise Algorithms

A = ∇f(B(k−1)), we first run the power method on the m ×m matrix AAT , or the n × n
matrix ATA, depending on whichever is smaller. This gives us either u or v; to recover
the other, we then simply use matrix multiplication: v = ATu/‖ATu‖2 or u = Av/‖Av‖2.
The power method is especially efficient if A = ∇f(B(k−1)) is sparse (each iteration being
faster), or has a large spectral gap (fewer iterations required until convergence). Of course,
alternatives to the power method can be used for computing the leading singular vectors
of ∇f(B(k−1)), such as methods based on inverse iterations, Rayleigh quotients, or QR
iterations; see, e.g., Golub and Van Loan (1996).

In the second row of Figure 2, the exact and stagewise paths for are shown matrix
completion problem, where the stagewise paths were computed using 500 steps with ε =
0.05. While the two sets of paths appear fairly similar, we note that it is harder to judge
the degree of similarity between the two in the matrix completion context. Here, the
coordinate paths correspond to entries in the estimated matrix B̂, and their roles are not as
clear as they are in, say, in a regression setting, where the coordinate paths correspond to
the coefficients of individual variables. In other words, it is difficult to interpret the slight
differences between the exact and stagewise paths in the second row of Figure 2, which
present themselves as the trace norm grows large. Therefore, to get a sense for the effect of
these differences, we might compare the mean squared error curves generated by the exact
and stagewise estimates. This is done in depth in Section 4.

3.4 Quadratic Regularization

Consider problems of the form

β̂(t) ∈ argmin
β∈Rp

f(β) subject to βTQβ ≤ t, (32)

where Q � 0, a positive semidefinite matrix. The quadratic regularizer in (32) encompasses
several common statistical tasks. When Q = I, the regularization term βTβ = ‖β‖22 is well-
known as ridge (Hoerl and Kennard, 1970), or Tikhonov regularization (Tikhonov, 1943).
This regularizer shrinks the components of the solution β̂ towards zero. In a (generalized)
linear model setting with many predictor variables, such shrinkage helps control the variance
of the estimated coefficients. Beyond this simple ridge case, roughness regularization in
nonparametric regression often fits into the form (32), with Q not just the identity. For
example, smoothing splines (Wahba, 1990; Green and Silverman, 1994) and P-splines (Eilers
and Marx, 1996) can both be expressed as in (32). To see this, suppose that y1, . . . yn ∈ R
are observed across input points x1, . . . xn ∈ R, and let b1, . . . bp denote the B-spline basis
(of, say, cubic order) with knots at locations z1, . . . zp ∈ R. Smoothing splines use the inputs
as knots, z1 = x1, . . . zp = xn (so that p = n); P-splines typically employ a (much) smaller
number of knots across the range of x1, . . . xn ∈ R. Both estimators solve problem (32),
with a loss function f(β) = 1

2‖y −Bβ‖22, and B ∈ Rn×p having entries Bij = bj(xi), but
the two use a different definition for Q: its entries are given by Qij =

∫
b′′i (x)b′′j (x) dx in the

case of smoothing splines, while Q = DTD in the case of P-splines, where D is the discrete
difference operator of a given (fixed) integral order. Both estimators can be extended to the
logistic or Poisson regression settings, just by setting f to be the logistic or Poisson loss,
with natural parameter η = Bβ (Green and Silverman, 1994; Eilers and Marx, 1996).

2561

Tibshirani

When Q is positive definite, the general stagewise algorithm, applied to (32), can be
initialized with t0 = 0 and β(0) = 0. The update direction ∆ in (6) is described by the
following lemma.

Lemma 4 For g(β) = βTQβ, with Q a positive definite matrix, the general stagewise
procedure in Algorithm 2 repeats the updates β(k) = β(k−1) + ∆, where

∆ = −√ε · Q−1∇f√
(∇f)TQ−1∇f

, (33)

and ∇f is an abbreviation for ∇f(β(k−1)).

The proof follows by checking the KKT conditions for (6). When Q = I, the update
step (33) of the general stagewise procedure for quadratic regularization is computationally
trivial, reducing to

∆ = −√ε · ∇f‖∇f‖2
.

This yields fast, simple updates for ridge regularized estimators. For a general matrix Q,
computing the update direction in (33) boils down to solving the linear equation

Qv = ∇f(β(k−1)) (34)

in v. This is expensive for an arbitrary, dense Q; a single solve of the linear system (34)
generally requires O(p3) operations. Of course, since the systems across all iterations involve
the same linear operator Q, we could initially compute a Cholesky decomposition of Q
(or a related factorization), requiring O(p3) operations, and then use this factorization to
solve (34) at each iteration, requiring only O(p2) operations. While certainly more efficient
than the naive strategy of separately solving each instance of (34), this is still not entirely
desirable for large problems.

On the other hand, for several cases in which Q is structured or sparse, the linear system
(34) can be solved efficiently. For example, if Q is banded with bandwidth d, then we can
solve (34) in O(pd2) operations (actually, an initial Cholesky decomposition takes O(pd2)
operations, and each successive solve with this decomposition then takes O(pd) operations).

Importantly, the matrix Q is banded in both the smoothing spline and P-spline regu-
larization cases: for smoothing splines, Q is banded because the B-spline basis functions
have local support; for P-splines, Q is banded because the discrete difference operator is.
However, some care must be taken in applying the stagewise updates in these cases, as
Q is singular, i.e., positive semidefinite but not strictly positive definite. The stagewise
algorithm needs to be modified, albeit only slightly, to deal with this issue—this modifica-
tion was discussed in (18), (19) in Section 2.3, and here we summarize the implications for
problem (32). First we compute the initial iterate to lie in null(Q), the null space of Q,

β(0) ∈ argmin
β∈null(Q)

f(β). (35)

For, e.g., P-splines with Q = DTD, and D the discrete difference operator of order k, the
space null(Q) is k-dimensional and contains (the evaluations of) all polynomial functions

2562

General Stagewise Algorithms

of order k − 1. The stagewise algorithm is then initialized at such a point β(0) in (35),
and t0 = 0. For future iterations, note that when ∇f(β(k)) has a nontrivial projection onto
null(Q), the stagewise update in (6) is undefined, since 〈∇f(β(k)), z〉 can be made arbitrarily
small along a direction z such that zTQz = 0. Therefore, we must further constrain the
stagewise update to lie in the orthocomplement null(Q)⊥ = row(Q), the row space of Q, as
in

∆ ∈ argmin
z∈row(Q)

〈∇f(β(k−1)), z〉 subject to zTQz ≤ ε.

It is not hard to check that, instead of (33), the update now becomes

∆ = −√ε · Q+∇f√
(∇f)TQ+∇f

, (36)

with Q+ denoting the (Moore-Penrose) generalized inverse of Q.
From a computational perspective, the stagewise update in (36) for the rank deficient

case does not represent more much work than that in (33) for the full rank case. With
P-splines, e.g., we have Q = DTD where D ∈ R(n−k)×n is a banded matrix of full row rank.
A short calculation shows that in this case

(DTD)+ = DT (DDT)−2D,

i.e., applying Q+ is computationally equivalent to two banded linear system solves and
two banded matrix multiplications. Hence one stagewise update for P-spline regularization
problems takes O(p) operations (the bandwidth of D is a constant, d = k + 1), excluding
computation of the gradient.

The third row of Figure 2 shows an example of logistic regression with ridge regular-
ization, and displays the grossly similar exact solution and stagewise paths. Notably, the
stagewise path here was constructed using only 15 steps, with an effective step size

√
ε = 0.1.

This is a surprisingly small number of steps, especially compared to the numbers needed by
stagewise in the examples (both small and large) from other regularization settings covered
in this paper. As far as we can tell, this rough scaling appears to hold for ridge regular-
ization problems in general—for such problems, the stagewise algorithm can be run with
relatively large step sizes for small numbers of steps, and it will still produce statistically
appealing paths. Unfortunately, this trend does not persist uniformly across all quadratic
regularization problems; it seems that the ridge case (Q = I) is really a special one.

For a second example, we consider P-spline regularization, using both continuous and
binomial outcomes. The left panel of Figure 3 displays an array of stagewise estimates,
computed under P-spline regularization and a Gaussian regression loss. We generated n =
100 noisy observations y1, . . . y100 from an underlying sinusoidal curve, sampled at input
locations x1, . . . x100 drawn uniformly over [0, 1]. The P-splines were defined using 30 equally
spaced knots across [0, 1], and the stagewise algorithm was run for 300 steps with

√
ε =

0.005. The figure shows the spline approximations delivered by the stagewise estimates
(from every 15th step along the path, for visibility) and the true sinusoidal curve overlayed as
a thick dotted black line. We note that in this particular setting, the stagewise algorithm is
not so interesting computationally, because each update step solves a banded linear system,
and yet the exact solution can itself be computed at the same cost, at any regularization

2563

Tibshirani

parameter value. The example is instead meant to portray that the stagewise algorithm
can produce smooth and visually reasonable estimates of the underlying curve.

The right panel of Figure 3 displays an analogous example using n = 100 binary ob-
servations, y1, . . . y100, generated according to the probabilities p∗i = 1/(1 + e−µ(xi)), i =
1, . . . 100, where the inputs x1, . . . x100 were sampled uniformly from [0, 1], and µ is a smooth
function. The probability curve p∗(x) = 1/(1 + e−µ(x)) is drawn as a thick dotted black line.
We ran the stagewise algorithm under a logistic loss, with

√
ε = 0.005, and for 300 steps;

the figure plots the probability curves associated with the stagewise estimates (from ev-
ery 15th step along the path, for visibility). Again, we can see that the fitted curves are
smooth and visually reasonable. Computationally, the difficulty of the stagewise algorithm
in this logistic setting is essentially the same as that in the previous Gaussian setting; all
that changes is the computation of the gradient, which is an easy task. The exact solution,
however, is more difficult to compute in this setting than the previous, and requires the use
of iterative algorithm like Newton’s method. This kind of computational invariance around
the loss function, recall, is an advantage of the stagewise framework.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Gaussian, 300 steps

●●

●●

●

●●●●

●

●

●

●●●●●

●

●●

●●

●

●●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●● ●●●●●

●

●●

●

●●●●●●

●●

●●

●

●●●

●

●●

●

●

●

●●●

●

●●●●

●

●●●● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic, 300 steps

Figure 3: Snapshots of the stagewise path for P-spline regularization problems, with continuous
data in the left panel, and binary data in the right panel. In both examples, we use
n = 100 points, and the true data generating curve is displayed as a thick dotted black
line. The colored curves show the stagewise estimates over the first 300 path steps
(plotted are every 15th estimate, for visibility).

3.5 Generalized Lasso Regularization

In this last application, we study generalized `1 regularization problems,

β̂(t) ∈ argmin
β∈Rp

f(β) subject to ‖Dβ‖1 ≤ t, (37)

2564

General Stagewise Algorithms

where D is a given matrix (it need not be square). The regularization term above is also
called generalized lasso regularization, since it includes lasso regularization as a special case,
with D = I, but also covers a number of other regularization forms (Tibshirani and Taylor,
2011). For example, fused lasso regularization is encompassed by (37), with D chosen to
be the edge incidence matrix of some graph G, having nodes V = {1, . . . p} and edges E =
{e1, . . . em}. In the special case of the chain graph, wherein E = {{1, 2}, {2, 3}, . . . {p−1, p}},
we have

D =

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...
0 0 0 . . . −1 1

 ,
so that ‖Dβ‖1 =

∑p−1
j=1 |βj − βj+1|. This regularization term encourages the ordered com-

ponents of β to be piecewise constant, and problem (37) with this particular choice of D
is usually called the 1-dimensional fused lasso in the statistics literature (Tibshirani et al.,
2005), or 1-dimensional total variation denoising in signal processing (Rudin et al., 1992).
In general, the edge incidence matrix D ∈ Rm×p has rows corresponding to edges in E, and
its `th row is

D` = (0, . . .−1
↑
i

, . . . 1
↑
j

, . . . 0) ∈ Rp,

provided that the `th edge is e` = {i, j}. Hence ‖Dβ‖1 =
∑
{i,j}∈E |βi − βj |, a regularization

term that encourages the components of β to be piecewise constant with respect to the
structure defined by the graph G. Higher degrees of smoothness can be regularized in this
framework as well, using trend filtering methods; see Kim et al. (2009) or Tibshirani (2014)
for the 1-dimensional case, and Wang et al. (2015) for the more general case over arbitrary
graphs.

Unfortunately the stagewise update in (6), under the regularizer g(β) = ‖Dβ‖1, is not
computationally tractable. Computing this update is the same as solving a linear program,
absent of any special structure in the presence of a generic matrix D. But we can make
progress by studying the generalized lasso from the perspective of convex duality. Our
jumping point for the dual is actually the Lagrange form of problem (37), namely

β̂(λ) ∈ argmin
β∈Rp

f(β) + λ‖Dβ‖1, (38)

with λ ≥ 0 now being the regularization parameter. The switch from (37) to (38) is justi-
fied because the two parametrizations admit identical solution paths. Following standard
arguments in convex analysis, the dual problem of (38) can be written as

û(λ) ∈ argmin
u∈Rm

f∗(−DTu) subject to ‖u‖∞ ≤ λ, (39)

with f∗ denoting the convex conjugate of f . The primal and dual solutions satisfy the
relationship

∇f(β̂(λ)) +DT û(λ) = 0. (40)

The general strategy is now to apply the stagewise algorithm to the dual problem (39)
to produce an approximate dual solution path, and then convert this into an approximate

2565

Tibshirani

primal solution path via (40). The stagewise procedure for (39) can be initialized with
λ0 = 0 and u(0) = 0, and the form of the updates is described next. We assume that the
conjugate function f∗ is differentiable, which holds if f is strictly convex.

Lemma 5 Applied to the problem (39), the general stagewise procedure in Algorithm 2
repeats the updates u(k) = u(k−1) + ∆, where

∆i = −ε ·

1

[
D∇f∗(−DTu(k−1))

]
i
< 0

−1
[
D∇f∗(−DTu(k−1))

]
i
> 0

0
[
D∇f∗(−DTu(k−1))

]
i

= 0

for i = 1, . . .m. (41)

The proof follows from the duality of the `∞ and `1 norms, and the alternative repre-
sentation in (15) for stagewise updates. Computation of ∆ in (41), aside from evaluating
the gradient ∇f∗, reduces to two matrix multiplications: one by D and one by DT . In
many cases (e.g., fused lasso and trend filtering problems), the matrix D is sparse, which
makes this update step very cheap. To reiterate the dual strategy: we compute the dual
estimates u(k), k = 1, 2, 3, . . . using the stagewise updates outlined above, and we compute
primal estimates β(k), k = 1, 2, 3, . . . by solving for β(k) in the stationarity condition

∇f(β(k)) +DTu(k) = 0, (42)

for each k. The kth dual iterate u(k) is viewed as an approximate solution in (39) at λ =
‖u(k)‖∞, and the kth primal iterate β(k) an approximate solution in (37) at t = ‖Dβ(k)‖1.

As pointed out by a referee of this paper, there is a key relationship between f and its
conjugate f∗ that simplifies the update direction in (41) considerably. At step k, observe
that

∇f∗(−DTu(k−1)) = ∇f∗(∇f(β(k−1))) = β(k−1).

The first equality comes from the primal-dual relationship (40) at step k − 1, and the
second is due to the fact that x = ∇f∗(z) ⇐⇒ z = ∇f(x). As a result, the dual update
u(k) = u(k−1) + ∆ with ∆ as in (41) can be written more succinctly as

u(k) = u(k−1) − ε · sign(Dβ(k−1)), (43)

where sign(·) is to be interpreted componentwise (with the convention sign(0) = 0). There-
fore, one can think of the dual stagewise strategy as alternating between computing a dual
estimate u(k) as in (43), and computing a primal estimate β(k) by solving (42).

We note that, since the stagewise algorithm is being run through the dual, the estimates
β(k), k = 1, 2, 3, . . . for generalized lasso problems differ from those in the other stagewise
implementations encountered thus far, in that β(k), k = 1, 2, 3, . . . correspond to approxi-
mate solutions at increasing levels of regularization, as k increases. That is, the stagewise
algorithm for problem (37) begins at the unregularized end of the path and iterates towards
the fully regularized end, which is opposite to its usual direction.

A special case worth noting is that of Gaussian signal approximator problems, where the
loss is f(β) = 1

2‖y − β‖22. For such problems, the primal-dual relationship in (42) reduces
to

β(k) = y −DTu(k),

2566

General Stagewise Algorithms

for each k. This means that the initialization u(0) = 0 and λ0 = 0 in the dual is the same
as β(0) = y and t0 = ‖Dy‖1 in the primal. Furthermore, it means that the dual updates in
(43) lead to primal updates that can be expressed directly as

β(k) = β(k−1) − ε ·DT sign(Dβ(k−1)). (44)

From the pure primal perspective, therefore, the stagewise algorithm begins with the trivial
unregularized estimate β(0) = y, and to fit subsequent estimates in (44), it iteratively shrinks
along directions opposite to the active rows of D. That is, if D`β

(k−1) > 0 (where D` is
the `th row of D), then the algorithm adds DT

` to β(k−1) in forming β(k), which shrinks
D`β

(k) towards zero, as D`D
T
` > 0 (recall that D` is a row vector). The case D`β

(k−1) < 0
is similar. If D`β

(k−1) = 0, then no shrinkage is applied along D`.

This story can be made more concrete for fused lasso problems, where D is the edge inci-
dence matrix of a graph: here the update in (44) evaluates the differences across neighboring
components of β(k−1), and for any nonzero difference, it shrinks the associated components
towards each other to build β(k). The level of shrinkage is uniform across all active differ-
ences, as any two neighboring components move a constant amount ε towards each other.6

This is a simple and natural iterative procedure for fitting piecewise constant estimates over
graphs. For small examples using 1d and 2d grid graphs, see Online Appendix A.3.

4. Large-scale Examples and Practical Considerations

We compare the proposed general stagewise procedure to various alternatives, with respect
to both computational and statistical performance, across the three of the four major reg-
ularization settings seen so far. The fourth setting is moved to Online Appendix A.4 for
reasons of space. The current section specifically investigates large examples, at least rela-
tive to the small examples presented in Sections 1–3. Of course, one can surely find room
to criticize our comparisons, e.g., with respect to a different tuning of the algorithm that
computes exact solutions, a coarser grid of regularization parameter values over which it
computes solutions, a different choice of algorithm completely, etc. We have tried to con-
duct fair comparisons in each problem setting, but we recognize that perfectly fair and
exhaustive comparisons are near impossible. The message that we hope to convey is not
that the stagewise algorithm is computationally superior to other algorithms in the prob-
lems we consider, but rather, that the stagewise algorithm is computationally competitive
with the others, yet it is very simple, and capable of producing estimates of high statistical
quality.

4.1 Group Lasso Regression

Overview. We examine two simulated high-dimensional group lasso regression problems.
To compute group lasso solution paths, we used the SGL R package, available on the CRAN
repository. This package implements a block coordinate descent algorithm for solving the
group lasso problem, where each block update itself applies accelerated proximal gradient

6. This is assuming that D is the edge incidence matrix of an unweighted graph; with edge weights, the
rows of D scale accordingly, and so the effective amounts of shrinkage in the stagewise algorithm scale
accordingly too.

2567

Tibshirani

descent (Simon et al., 2013). This idea is not complicated, but an efficient implementation
of this algorithm requires care and attention to detail, such as backtracking line search
for the proximal gradient step sizes. The stagewise algorithm, on the other hand, is very
simple—in C++, the implementation is only about 50 lines of code. Refer to Section 3.1
for a description of the stagewise update steps. The algorithmics of the SGL package are
also written in C++.

Examples and Comparisons. In both problem setups, we used n = 200 observations,
p = 4000 predictors, and G = 100 equal-sized groups (of size 40). The true coefficient vector
β∗ ∈ R4000 was defined to be group sparse, supported on only 4 groups, and the nonzero
components were drawn independently from N(0, 1). We generated observations y ∈ R200

by adding independent N(0, τ2) noise to Xβ∗, where the predictor matrix X ∈ R200×4000

and noise level τ were chosen under two different setups. In the first, the entries of X
were drawn independently from N(0, 1), so that the predictors were uncorrelated (in the
population); we also let τ = 6. In the second, each row of X was drawn independently from
a N(0,Σ) distribution, where Σ had a block correlation structure. The covariance matrix Σ
was defined so that each predictor variable had unit (population) variance, but (population)
correlation ρ = 0.85 with 99 other predictors, each from a different group. Further, in this
second setup, we used an elevated noise level τ = 10.

Figure 4 shows a comparison of the group lasso and stagewise paths, from both com-
putational and statistical perspectives. We fit group lasso solutions over 100 regularization
parameter values (the SGL package started at the regularized end, and used warm starts).
We also ran the stagewise algorithm in two modes: for 250 steps with ε = 1, and for 25
steps with ε = 10. The top row of Figure 4 asserts that, in both the uncorrelated and corre-
lated problem setups, the mean squared errors of the stagewise fits Xβ(k) to the underlying
mean Xβ∗ are quite competitive with those of the exact fits Xβ̂(t). In both plots, the red
and black error curves, corresponding to the stagewise fits with ε = 1 and the exact fits,
respectively, lie directly on top of each other. It took less than 1 second to compute these
stagewise fits, in either problem setup; meanwhile, it took about 10 times this long to com-
pute the group lasso fits in the uncorrelated setup, and 100 times this long in the correlated
setup. The stagewise algorithm with ε = 10 took less than 0.1 seconds to compute a total of
25 estimates, and offers a slightly degraded but still surprisingly competitive mean squared
error curve, in both the correlated and uncorrelated problem setups. Exact timings can be
found in the middle row of Figure 4. The error curves and timings were all averaged over
10 draws of observations y from the uncorrelated or correlated simulation models (for fixed
X,β∗); the timings were made on a desktop personal computer.

Though the exact and stagewise component paths typically appear quite similar in the
uncorrelated problem setup, the same is not true for the correlated setup. The bottom row
of Figure 4 displays an example of the two sets of component paths for one simulated draw of
observations, under the correlated predictor model. The component paths of the group lasso
solution, on the left, vary wildly with the regularization parameter; the stagewise paths, on
the right, are much more stable. It is interesting to see that such different estimates can
yield similar mean squared errors (as, recall, shown in the top row of Figure 4) but this is
the nature of using correlated predictors in a regression problem.

2568

0 50 100 150 200

40
60

80
10

0
12

0
14

0
16

0

Uncorrelated predictors

Group lasso norm

M
ea

n
sq

ua
re

d
er

ro
r

●●●●●●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●●
●●●

●●●●●●●
●●●

●●●●●●●●●●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ●●●●

●

●

●

Exact
Stagewise, eps=1
Stagewise, eps=10

0 50 100 150 200

50
10

0
15

0

Correlated predictors

Group lasso norm

M
ea

n
sq

ua
re

d
er

ro
r

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●

●

●

●

●

●

●

●
●

●
● ●

● ●
●

● ●
●

● ●

● ●

● ●
● ●

●

●

●

Exact
Stagewise, eps=1
Stagewise, eps=10

Algorithm timings

Method Uncorrelated case Correlated case
Exact: coordinate descent, 100 solutions 9.08 (1.06) 78.64 (17.92)

Stagewise: ε = 1, 250 estimates 0.93 (0.00) 0.94 (0.01)
Stagewise: ε = 10, 25 estimates 0.09 (0.00) 0.10 (0.01)

Frank-Wolfe: within 1% of criterion value 67.73 (10.37) 92.91 (8.37)
Frank-Wolfe: within 1% of mean squared error 1.30 (0.56) 13.17 (26.26)

0 50 100 150 200

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Group lasso path

C
o

o
rd

in
a

te
s

g(β̂(t))

0 50 100 150 200

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Stagewise path

g(β(k))

C
o
or
d
in
at
es

Figure 4: Statistical and computational comparisons between group lasso solutions and correspond-
ing estimates produced by the stagewise approach, when n = 200, p = 4000. The top
row shows that stagewise estimates can achieve competitive mean squared errors to that
of group lasso solutions, as computed by coordinate descent, under two different setups
for the predictors in group lasso regression: uncorrelated and block correlated. (The
curves were averaged over 10 simulations, with standard deviations denoted by dotted
lines.) The middle table reports runtimes in seconds (averaged over 10 simulations, with
standard deviations in parentheses) for the various algorithms considered, and shows
that the stagewise algorithm represents a computationally attractive alternative to the
SGL coordinate descent approach and the Frank-Wolfe algorithm. Lastly, the bottom
row contrasts the group lasso and stagewise component paths, for one draw from the
correlated predictors setup.

Tibshirani

Frank-Wolfe. We include a comparison to the Frank-Wolfe algorithm for computing group
lasso solutions, across the same 100 regularization parameter values considered by the co-
ordinate descent method. Recall that the updates from Frank-Wolfe share the same com-
putational underpinnings as the stagewise ones, but are combined in a different manner;
refer to Online Appendix A.1 for details. We implemented the Frank-Wolfe method for
group lasso regression in C++, which starts at the largest regularization parameter value,
and uses warm starts along the parameter sequence. The middle row of Figure 4 reports
the Frank-Wolfe timings, averaged over 10 draws from the uncorrelated and correlated
simulation models. We considered two schemes for termination of the algorithm, at each
regularization parameter value t: the first terminates when

‖y −Xβ̃(t)‖22 ≤ 1.01 · ‖y −Xβ̂(t)‖22, (45)

where β̃(t) is the Frank-Wolfe iterate at t, and β̂(t) is the computed coordinate descent
solution at t; the second terminates when

‖Xβ∗ −Xβ̃(t)‖22 ≤ 1.01 ·max
{
‖Xβ∗ −Xβ̂(t)‖22, ‖Xβ∗ −Xβ(kt)‖22

}
, (46)

where β(kt) is the imputed stagewise estimate at the parameter value t (computed by linear
interpolation of the appropriate neighboring stagewise estimates). In other words, the first
rule (45) stops when the Frank-Wolfe iterate is within 1% of the criterion value achieved
by the coordinate descent solution, and the second rule (46) stops when the Frank-Wolfe
iterate is within 1% of the mean squared error of either of the coordinate descent or stagewise
fits. Using the first rule, the Frank-Wolfe algorithm took about 68 seconds to compute 100
solutions in the uncorrelated problem setup, and 93 seconds in the correlated problem
setup. In terms of the total iteration count, this meant 18,627 Frank-Wolfe iterations in
the uncorrelated case, and 25,579 in the correlated case; these numbers are meaningful,
because, recall, one Frank-Wolfe iteration is (essentially) computationally equivalent to one
stagewise iteration. We can see that Frank-Wolfe struggles here to compute solutions that
match the accuracy of coordinate descent solutions, especially for large values of t—in fact,
when we changed the factor of 1.01 to 1 in the stopping rule (45), the Frank-Wolfe algorithm
converged far, far more slowly. (For this part, the coordinate descent solutions themselves
were only computed to moderate accuracy; we used the default convergence threshold in the
SGL package.) The results are more optimistic under the second stopping rule. Under this
rule, the Frank-Wolfe algorithm ran in just over 1 second (274 iterations) in the uncorrelated
setup, and about 13 seconds (3592 iterations) in the correlated setup. But this stopping rule
represents an idealistic situation for Frank-Wolfe, and moreover, it cannot be realistically
applied in practice, since it relies on the underlying mean Xβ∗.

4.2 Matrix Completion

Overview. We consider two matrix completion examples, one simulated and one using
real data. To compute solutions of the matrix completion problem, under trace norm
regularization, we used the softImpute R package from CRAN, which implements proximal
gradient descent (Mazumder et al., 2010). The proximal operator here requires a truncated
singular value decomposition (SVD) of a matrix the same dimensions as the input (partially

2570

General Stagewise Algorithms

observed) matrix Y . SVD calculations are generally very expensive, but for this problem
a partial SVD can be efficiently computed with clever schemes based on bidiagonalization
or alternating least squares. The softImpute package uses the latter scheme to compute
a truncated SVD, and though this does provide a substantial improvement over the naive
method of computing a full SVD, it is still far from cheap. The partial SVD computation via
alternating least squares scales roughly quadratically with the rank of the sought solution,
and this must be repeated for every iteration taken by the algorithm until convergence.

In comparison, the stagewise steps for the matrix completion problem require only the
top left and right singular vectors of a matrix the same size as the input Y . Refer back
to Section 3.3 for an explanation. To emphasize the differences between the two methods:
the proximal gradient descent algorithm of softImpute, at each regularization parameter
value t of interest, must iteratively compute a partial SVD until converging on the desired
solution; the stagewise algorithm computes a single pair of left and right singular vectors,
to form one estimate at one parameter value t, and then moves on to the next value of t.
For the following examples, we used a simple R implementation of the stagewise algorithm;
the computational core of the softImpute package is also written in R.

Examples and Comparisons. In the first example, we simulated an underlying low-
rank matrix B∗ ∈ R500×500, of rank 50, by letting B∗ = UUT , where U ∈ R500×50 had
independent N(0, 1) entries. We then added N(0, 20) noise, and discarded 40% of the
entries, to form the input matrix Y ∈ R500×500 (so that Y was 60% observed). We ran
softImpute at 100 regularization parameter values (starting at the regularized end, and
using warm starts), and we ran two different versions of the stagewise algorithm: one with
ε = 50, for 500 steps, and one with ε = 250, for 100 steps. The left plot in Figure 5 shows
the mean squared error curves of the resulting estimates, averaged over 10 draws of the
input matrix Y from the above prescription (with B∗ fixed). We can see that the stagewise
estimates, with ε = 50, trace out an essentially identical mean squared error curve to that
from the exact solutions. We can also see that, curiously, the larger step size ε = 250 leads to
suboptimal performance in stagewise estimation, as measured by mean squared error. This
is unlike the previous group lasso setting, in which a larger step size still yielded basically
the same performance (albeit slightly noisier mean squared error curves).

The proximal gradient descent method implemented by softImpute in this simulated
example took an average of 206 iterations to compute 100 solutions across 100 values of
the regularization parameter (averaged over the 10 repetitions of the observation matrix
Y). This means an average of just 2.06 iterations per solution—quite rapid convergence
behavior for a first-order method like proximal gradient descent. (Note: we used the default
convergence threshold for softImpute, which is only moderately small.) The stagewise al-
gorithms, using step sizes ε = 50 and ε = 250, ran for 500 and 100 iterations, respectively.
As explained, the two types of iterations here are different in nature. Each iteration of prox-
imal gradient descent computes a truncated SVD, which is of roughly quadratic complexity
in the rank of current solution, and therefore becomes more expensive as we progress down
the regularization path; each stagewise iteration computes a single pair of left and right
singular vectors, which has the same cost throughout the path, independent of the rank of
the current estimate. The bottom row of Figure 5 is a table containing the running times of
these two methods (averaged over 10 draws of Y , and recorded on a desktop computer). We

2571

Tibshirani

0 5000 10000 20000

46
48

50
52

54
56

58
60

Simulated data

Trace norm

M
ea

n
sq

ua
re

d
er

ro
r

●●●
●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●●

●
●
●
●●

●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

Exact
Stagewise, eps=50
Stagewise, eps=250

0 5000 10000 15000 20000 25000

2
4

6
8

10
12

14

MovieLens data

Trace norm
Te

st
 s

qu
ar

ed
 e

rr
or

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●●
●
●●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

Exact
Stagewise, eps=50
Stagewise, eps=250

Algorithm timings

Method Simulated data MovieLens data
Exact: proximal gradient, 100 solutions 60.20 (1.45) 334.67

Stagewise: ε = 50, 500 estimates 92.92 (2.42) 107.66
Stagewise: ε = 250, 100 estimates 18.26 (0.98) 21.22

Frank-Wolfe: within 1% of criterion value 989.77 (19.88) -
Frank-Wolfe: within 1% of mean squared error 154.06 (10.76) -

Figure 5: Comparisons between exact and stagewise estimates for matrix completion problems.
The top left plot shows mean squared error curves for a simulated example of a 40%
observed, 500× 500 input matrix, and the right shows the same for the MovieLens data,
where the input is 6% observed and 943 × 1682. (The error curves in the left plot
were averaged over 10 repetitions, and standard deviations are drawn as dotted lines.)
The stagewise estimates with ε = 50 are competitive in both cases. The bottom table
gives the runtimes of softImpute proximal gradient descent, stagewise, and the Frank-
Wolfe algorithm. (Timings for the simulated case were averaged over 10 repetitions, with
standard deviations in parentheses; Frank-Wolfe was not run on the MovieLens example.)

see that proximal gradient descent spent an average of about 60 seconds to compute 100 so-
lutions, i.e., 0.6 seconds per solution. The stagewise algorithm with ε = 50 took an average
of about 93 seconds for 500 steps, and the algorithm with ε = 250 an average of 18 seconds
for 100 steps, with both translate into about 0.18 seconds per estimate. The speedy time of
0.6 seconds per estimate of softImpute is explained by two factors: fast iterations (using
the impressive, custom alternating least squares routine developed by the package authors
to compute partial SVDs), and few iterations needed per solution (recall, only an average
of 2.06 per solution in this example). The 0.18 seconds per stagewise iteration reflects the
runtime of computing leading left and right singular vectors with R’s standard svd function,
as our implementation somewhat naively does (it does not take advantage of sparsity in any

2572

General Stagewise Algorithms

way). This naive stagewise implementation works just fine for moderate matrix sizes, as
in the current example. But for larger matrix sizes (and higher levels of missingness), we
see significant improvements when we use a more specialized routine for computing the top
singular vectors. We also see a bigger separation in the costs per estimate with stagewise
and proximal gradient descent. This is discussed next.

The second example is based on the MovieLens data set (collected by the GroupLens
Research Project at the University of Minnesota, see http://grouplens.org/datasets/

movielens/). We examined a subset of the full data set, with 100,000 ratings from m = 943
users on n = 1682 movies (hence the input matrix Y ∈ R943×1682 was approximately 6%
observed). We used an 80%/20% split of these ratings for training and testing, respectively;
i.e., we computed matrix completion estimates using the first 80% of the ratings, and eval-
uated test errors on the held out 20% of the ratings. For the estimates, we ran softImpute

over 100 values of the regularization parameter (starting at the regularized end, using warm
starts), and stagewise with ε = 50 for 500 steps, as well as with ε = 250 for 100 steps. The
right plot of Figure 5 shows the test error curves from each of these methods. The stage-
wise estimates computed with ε = 50 and the exact solutions perform quite similarly, with
the exact solutions having a slight advantage as the trace norm exceeds about 2500. The
stagewise error curve when ε = 250 begins by dropping off strongly just like the other two
curves, but then it flattens out too early, while the other two continue descending. (We note
that, for step sizes larger than ε = 250, the test error curve stops decreasing even earlier,
and for step sizes smaller than ε = 50, the error curve reaches a slightly lower minimum,
in line with that of the exact solution. This type of behavior is reminiscent of boosting
algorithms.)

In terms of computation, the proximal gradient descent algorithm used a total of 1220
iterations to compute 100 solutions in the MovieLens example, or an average of 122 it-
erations per solution. This is much more than the 2.06 seconds per iteration as in the
previous simulated example, and it explains the longer total runtime of about 335 seconds,
i.e., the longer total time of 33.5 seconds per solution. The stagewise algorithms ran, by
construction, for 500 and 100 steps and took about 108 and 21 seconds, respectively, i.e.,
an average of 0.21 seconds per estimate. To compute the leading left and right singular
vectors in each stagewise step here, we used the rARPACK R package from CRAN, which
accommodates sparse matrices. This was highly beneficial because the gradient ∇f(B(k−1))
at each stagewise step was very sparse (about 6% entries of its were nonzero, since Y was
about 6% observed).

Frank-Wolfe. We now compare the Frank-Wolfe algorithm for computing matrix comple-
tion solutions, over the same 100 regularization parameter values used by softImpute. Each
Frank-Wolfe iteration computes a single pair of left and right top singular vectors, just like
stagewise iterations; see Online Appendix A.1 for a general description of the Frank-Wolfe
method (or Jaggi and Sulovsky, 2010 for a study of Frank-Wolfe for trace norm regular-
ization problems in particular). We implemented the Frank-Wolfe algorithm for matrix
completion in R, which starts at the regularized end of the path, and uses warm starts at
each regularization parameter value. The timings for the Frank-Wolfe method, run on the
simulated example, are given in the table in Figure 5 (we did not run it on the MovieLens
example). As before, in the group lasso setting, we considered two different stopping rules

2573

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/

Tibshirani

for Frank-Wolfe, applied at each regularization parameter value t: the first stops when the
achieved criterion value is within 1% of that achieved by the proximal gradient descent
approach in softImpute, and the second stops when the achieved mean squared error is
within 1% of either that of softImpute or stagewise. In either case, we cap the maximum
number of iterations at 100, at each parameter value t.

Under the first stopping rule, the Frank-Wolfe algorithm required an average of 5847
iterations to compute 100 solutions (averaged over 10 draws of the input matrix Y); further-
more, this total was calculated under the limit of 100 maximum iterations per solution, and
the algorithm met this limit at each one of the largest 50 regularization parameter values
t. Recall that each one of these Frank-Wolfe iterations is computationally equivalent to a
stagewise iteration. Accordingly, 500 steps of the stagewise algorithm, with ε = 50, ran in
about an order of magnitude less time—93 seconds versus 990 seconds. The message is that
the Frank-Wolfe algorithm experiences serious difficulty in producing solutions at a level of
accuracy close to that of proximal gradient descent, especially for lower levels of regular-
ization. Using the second stopping rule, Frank-Wolfe ran much faster, and computed 100
solutions in about 997 iterations, or 154 seconds. However, there are two important points
to stress. First, this rule is not generally available in practice, as it depends on performance
measured with respect to the true matrix B∗. Second, the termination behavior under this
rule is actually somewhat misleading, because once the mean squared error curve begins to
rise (in the left plot of Figure 5, after about t = 7000 in trace norm), the second rule will
always cause Frank-Wolfe with warm starts to trivially terminate in 1 iteration. Indeed,
in the simulated data example, the Frank-Wolfe algorithm using this rule took about 22
iterations per solution before t = 7000, and trivially 1 iteration per solution after this point.

4.3 Image Denoising

Overview. We study the image denoising problem, cast as a generalized lasso problem with
Gaussian signal approximator loss, and 2d fused lasso or 2d total variation regularization
(meaning that the underlying graph is a 2d grid). To compute exact solutions of this
problem, we applied a direct (noniterative) algorithm of Chambolle and Darbon (2009), that
reduces this problem to sequence of maximum flow problems. The “parametric” maximum
flow approach taken by these authors is both very elegant and highly specialized. To the
best of our knowledge, their algorithm is one of the fastest existing algorithms for 2d fused
lasso problems (more generally, fused lasso problems over graphs). For the simulations in
this section we relied on a fast C++ implementation provided by the authors (see http:

//www.cmap.polytechnique.fr/~antonin/software/), which totals close to 1000 lines of
code. The stagewise algorithm is almost trivially simple in comparison, as our own C++
implementation requires only about 50 lines of code. For the 2d fused lasso regularizer,
the stagewise update steps reduce to sparse matrix multiplications; refer to Section 3.5 for
details.

Examples and Comparisons. We inspect two image denoising examples. For the first,
we constructed a 300×200 image to have piecewise constant levels, and added independent
N(0, 1) noise to the level of each pixel. Both this true underlying image and its noisy version
are displayed in Figure 6. We then ran the parametric max flow approach of Chambolle and
Darbon (2009), to compute exact 2d fused lasso solutions, at 100 values of the regularization

2574

http://www.cmap.polytechnique.fr/~antonin/software/
http://www.cmap.polytechnique.fr/~antonin/software/

General Stagewise Algorithms

parameter. (This algorithm is direct and does not take warm starts, so each instance was
solved separately.) We also ran the stagewise method in two modes: for 6000 steps with
ε = 0.0005, and for 500 steps with ε = 0.005. The mean squared error curves for each
method are shown in the top left corner of Figure 6, and timings are given in the bottom
table. (All results here have been averaged over 10 draws of the noisy image, and the timings
were recorded on a desktop computer.) We can see that the stagewise estimates, both with
ε = 0.0005 and ε = 0.005, perform comparably to the exact solutions in terms of mean
squared error, though the estimates under the smaller step size fare slightly better towards
the more regularized end of the path. The 6000 stagewise estimates using ε = 0.0005 took
about 15 seconds to compute, and the 500 stagewise estimates using ε = 0.005 took roughly
1.5 seconds. The max flow approach required an average of about 110 seconds to compute
100 solutions, with the majority of computation time spent on solutions at higher levels of
regularization (which, here, correspond to lower mean squared errors). Finally, the estimate
from each method that minimized mean squared error is also plotted in Figure 6; all look
very similar and do a visually reasonable job of recovering the underlying image. That
the stagewise approach can deliver such high-quality denoised images with simple, cheap
iterations is both fortuitous and surprising.

The second example considers the stagewise algorithm for a larger-scale image denoising
task, based on a real 640×480 image, of Lake Pukaki in front of Mount Cook, New Zealand.
We worked with each color channel—red, green, blue—separately, and the pixel values were
scaled to lie between 0 and 1. For each of these three images, we added independent
N(0, 0.5) noise to the pixel values, and ran the stagewise algorithm with ε = 0.005 for 650
steps. We chose this number of steps because the achieved mean squared error (averaged
over the three color channels) roughly began to rise after this point. We then recombined the
three denoised images—on the red, green, blue color channels—to form a single image. See
Figure 7. Visually, the reconstructed image is remarkably close to the original one, especially
considering the input noisy image on which it is computed. The stagewise algorithm took a
total of around 21 seconds to produce this result; recall, though, that in this time it actually
produced 650× 3 = 1950 fused lasso estimates (650 steps in three different image denoising
tasks, one for each color).

4.4 Choice of Step Size

We discuss a main practical issue when running the stagewise algorithm: choice of the step
size ε. Of course, when ε is too small, the algorithm is less efficient, and when ε is too
large, the stagewise estimates can fail to span the full regularization path (or a sizeable
portion of it). Our heuristic suggestion therefore is to start with a large step size ε, and
plot the progress of the achieved loss f(x(k)) and regularizer g(x(k)) function values across
steps k = 1, 2, 3, . . . of the algorithm. With a proper choice of ε, note that we should see
f(x(k)) monotone decreasing with k, as well as g(x(k)) monotone increasing with k (this
is true of f(x̂(t)) and g(x̂(t)) as we increase the regularization parameter t, in the exact
solution computation). If ε is too large, then it seems to be the tendency in practice that
the achieved values f(x(k)) and g(x(k)), k = 1, 2, 3, . . . stop their monotone progress at some
point, and alternate back and forth. Figure 8 illustrates this behavior. Once encountered,

2575

True image Noisy image

2e+03 5e+03 2e+04 5e+04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fused lasso seminorm

M
ea

n
sq

ua
re

d
er

ro
r

ra
te

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●

●

●

●

Exact
Stagewise, eps=0.0005
Stagewise, eps=0.005

Exact, t = 2055.9
Stagewise, ε = 0.0005,

2323 steps
Stagewise, ε = 0.005,

211 steps

3
4

5
6

7

Algorithm timings

Method Runtime
Exact: maximum flow, 100 solutions 109.04 (6.21)
Stagewise: ε = 0.0025, 6000 estimates 15.11 (0.18)

Stagewise: ε = 0.25, 500 estimates 1.26 (0.02)

Figure 6: Comparisons between exact 2d fused lasso solutions and stagewise estimates on a syn-
thetic image denoising example. The true underlying 300× 200 image is displayed in the
middle of the top row. (A color scale is applied for visualization purposes, see the left
end of the bottom row.) Over 10 noisy perturbations of this underlying image, with one
such example shown in the right plot of the top row, we compare averaged mean squared
errors of the exact solutions and stagewise estimates, in the left plot of the top row.
Average timings for these methods are given in the bottom table. (Standard deviations
are denoted by dotted lines in the error plots, and are in parentheses in the table.) The
stagewise estimates have competitive mean squared errors and are fast to compute. The
bottom row of plots shows the optimal image (i.e., that minimizing mean squared error)
from each method, based on the single noisy image in the top right.

Original image:

Noisy version:

Stagewise, ε = 0.001,
650 steps:

(computed in
21.34 seconds)

Figure 7: A more realistic image denoising example using stagewise. We began with a 640 × 480
photograph of Lake Pukaki and Mount Cook, in New Zealand, shown at the top. Working
with each color channel separately, we added noise to form the middle noisy image, and
ran the stagewise algorithm to eventually yield the bottom image, a nice reconstruction.

Tibshirani

an appropriate response would be decrease ε (say, halve it), and continue the stagewise
algorithm from the last step before this alternating pattern surfaced.

0 10 20 30 40 50

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

k

eps=5

eps=50

f
(x

(k
))

0 10 20 30 40 50
0

5
0

1
0

0
1

5
0

k

eps=5

eps=50
g
(x

(k
))

Figure 8: An example displaying a common tendency of stagewise estimates under a choice of step
size ε that is too large. We used the group lasso regression data setup from Figure 4
(uncorrelated case). Both the achieved loss f(x(k)) (left plot) and regularizer g(x(k))
(right plot) function values should be monotonic across steps k = 1, 2, 3, We see that
for the larger step size ε = 50 (in red), progress halts and an alternating pattern begins,
with both sequences; for the smaller step size ε = 5 (in black), progress continues all the
way until the end of the path.

The heuristic guideline above attempts to produce the largest step size ε that still
produces an expansive regularization path of stagewise estimates. This ignores the subtlety
that a larger choice ε may offer suboptimal statistical performance, even if the corresponding
estimates span the full path. This was seen in some examples of Section 4 (e.g., matrix
completion, in Figure 5), but not in others (e.g., group lasso regression, in Figure 4). The
issue of tuning ε for optimal statistical performance is more complex and problem dependent.
Although it is clearly important, we do not study this task in the current paper. We mention
the (somewhat obvious) point that strategies like cross-validation (if applicable, in the given
problem setting) could be helpful here.

5. Suboptimality Bounds for Stagewise Estimates

This section focuses on theoretical suboptimality guarantees for the general stagewise algo-
rithm, and proposes a new shrunken variant of the stagewise method.

2578

General Stagewise Algorithms

5.1 General Stagewise Suboptimality

We present a suboptimality bound for estimates produced by the general stagewise algo-
rithm, restricting our attention to a norm regularizer g. The following result makes use
of the dual norm g∗ of g which, recall, is defined as g∗(x) = maxg(z)≤1 x

T z. Its proof is
based on recursively tracking a duality gap for the general problem (4), and is deferred until
Online Appendix A.5.

Theorem 1 Consider the general problem (4), assuming that f is differentiable and convex,
and g is a norm. Assume also that ∇f is Lipschitz with respect to the pair g∗, g with constant
L, i.e.,

g∗
(
∇f(x)−∇f(y)

)
≤ L · g(x− y), all x, y.

Fix a regularization parameter value t of interest, and consider running the general stagewise
algorithm, Algorithm 2, from x(0) = x̂(t0), a solution in (4) at a parameter value t0 ≤ t.
Suppose that we run the algorithm for k steps, with step size ε, such that tk = t0 + kε = t.
The resulting stagewise estimate x(k) satisfies

f(x(k))− f(x̂(t)) ≤ L(t2 − t20) + L(t− t0)ε.

Therefore, if we consider the limiting stagewise estimate at the parameter value t, denoted
by x̃(t), as the step size ε→ 0, then such an estimate satisfies

f(x̃(t))− f(x̂(t)) ≤ L(t2 − t20).

Remark 1. In the theorem, the kth stagewise estimate x(k) is taken to be an approximate
solution at the static regularization parameter value tk = t0 + kε, not at the dynamic value
tk = g(x(k)), as we have been considering so far. It is easy to see that with the static
choice tk = t0 + kε, we have g(x(k)) ≤ tk, so that x(k) is still feasible at the parameter
tk. Furthermore, this choice simplifies the analysis, and would also simplify running the
algorithm in practice (when g is expensive to compute, e.g., in the trace norm setting).

Remark 2. The assumptions that f is differentiable and that its gradient ∇f is Lipschitz
continuous are fairly standard in the analysis of optimization algorithms; usually the Lips-
chitz assumption is made with respect to a prespecified pair of primal and dual norms, but
here instead we rely on the pair naturally suggested by the problem (4), namely, g, g∗. For
example, in the least squares setting, f(β) = 1

2‖y −Xβ‖22, with an arbitrary norm g as the
regularizer, the Lipschitz constant of ∇f is

L = max
u6=0

g∗(XTXu)

g(u)
,

which we might write as L = ‖XTX‖g,g∗ in the spirit of matrix norms.

Remark 3. The theorem can be extended to the case when g is a seminorm regularizer. As
written, the Lipschitz constant L would be infinite if g has a nontrivial null space Ng that
overlaps with ∇f , as made precise in (17). However, we could g∗ redefine as

g∗(x) = max
z∈N⊥g , g(z)≤1

xT z,

and one can then check that, under the same conditions, the proof of Theorem 1 goes
through just as before, but now the bounds apply to the modified stagewise estimates in
(18), (19).

2579

Tibshirani

5.2 Shrunken Stagewise Framework

For reasons that will become apparent, we introduce a shrunken version of the stagewise
estimates.

Algorithm 3 (Shrunken stagewise procedure)

Fix ε > 0, α ∈ (0, 1), t0 ∈ R. Set x(0) = x̂(t0), a solution in (4) at t = t0. Repeat, for
k = 1, 2, 3, . . .,

x(k) = αx(k−1) + ∆, (47)

where ∆ ∈ argmin
z∈Rn

〈∇f(x(k−1)), z〉 subject to g(z) ≤ ε. (48)

The only difference between Algorithm 3 and the existing stagewise proposal in Al-
gorithm 2 is that the update step in (47) shrinks the current iterate x(k−1) by a constant
amount α < 1, before adding the direction ∆. Note that in the case of unbounded stagewise
updates, we would replace (48) by the subspace constrained version (19), as explained in
Section 2.3.

Before we give examples or theory, we motivate the study of the shrunken stagewise
algorithm from a conceptual point of view. It helps to think about lasso regression in
particular, with f(β) = 1

2‖y −Xβ‖22 and g(β) = ‖β‖1. Recall that in this case, the general
stagewise procedure reduces to classical forward stagewise regression, in Algorithm 1. A
step k, forward stagewise updates the component i of the estimate β(k−1) such that the
variable Xi has the largest absolute inner product with the residual y −Xβ(k−1); further,
it moves β

(k−1)
i in a direction given by the sign of this inner product. It is intuitively clear

why such a procedure generally yields monotone component paths: if Xi has a large positive
inner product with the residual, and we add a small amount ε to the ith coefficient, then in
the next step, Xi will still have a large positive inner product with the residual. This inner
product will have been slightly decremented due to the change in ith coefficient, but we
will continue to increment the ith coefficient by ε (decrement the ith inner product) until
another variable attains a comparable inner product with the residual. In other words,
the ith component path computed by forward stagewise will increase monotonically, and
eventually flatten out.

So how does nonmonoticity occur in stagewise paths? Keeping with the above thought
experiment, in order for the ith coefficient path to decrease at some point, the variable Xi

must achieve a negative inner product with the residual, and this must be largest in mag-
nitude compared to the inner products from all other variables. Given that Xi had a large
positive inner product with the residual in previous iterations, this seems highly unlikely,
especially in a high-dimensional setting with many variables in total. But we know from
many examples that the components of the exact lasso solution path can exhibit many non-
monotonicities, even very early on in the regularization path, and even in high-dimensional
settings. To recover the exact path with a stagewise-like algorithm, therefore, some change
needs to be made to counteract the momentum gathered over successive updates. Zhao and
Yu (2007) do just this, as discussed in the introduction, by adding an explicit backward
step to the stagewise routine in which coefficients are driven towards zero as long as this
decreases the loss by a significant amount.

2580

General Stagewise Algorithms

An arguably simpler way to achieve a roughly similar effect is to shrink all coefficients
towards zero at each step. This is what is done by the shrunken stagewise method, in
Algorithm 3, via the parameter α < 1. In shrunken stagewise for lasso regression, the
importance of each variable wanes over steps of the algorithm. Thus, in the absence of
attention from the stagewise update mechanism, a coefficient path slides towards zero,
instead of leveling off; for a coefficient path to depart from zero, or even remain at a
constant level, it must regain the attention of the update mechanism by repeatedly achieving
the maximal absolute inner product. This actually represents a fairly different philosophy
from the pure stagewise approach (with α = 1) and the two can be crudely contrasted as
follows: pure stagewise keeps coefficients at constant levels, unless there is good reason to
move them away from zero; shrunken stagewise drives coefficients to zero, unless there is
good reason to keep them on their current trajectories.

We give a small example of shrunken stagewise applied to lasso regression, with n = 20
observations and p = 10 variables. The rows of the predictor matrix X ∈ R20×10 were
drawn independently from a Gaussian distribution with mean zero, and a covariance matrix
having unit diagonals and constant off-diagonals ρ = 0.8. The underlying coefficient vector
β∗ ∈ R10 had dense support, with all entries drawn fromN(0, 1), and the observations y were
formed by adding independent N(0, 1) noise to Xβ∗. Figure 9 shows the exact lasso solution
path on the left panel, the stagewise path in the middle panel, and the shrunkage stagewise
path on the right. We can see that, at various points, components of the exact lasso path
become nonmonotone, and as expected, the corresponding the stagewise component paths
ignore this trend and level out. The shrunken stagewise component paths pick up on the
nonmonotonicities and actually mimick the exact ones quite closely. We note that the
stagewise and shrunken stagewise algorithms were not run here for efficiency, but were run
at fine resolution to reveal their limiting behaviors; both used a small step size ε = 0.0001,
and the latter used a shrinkage factor α = ε/10. The two required 100,000 and 500,000
steps, respectively.

To be upfront, we remark that the shrunken stagewise method is not a computationally
efficient approach, and we do not advocate its use in practice. The stagewise algorithm in
the above example could have been run, e.g., with ε = 0.01 and for 100 steps, and this would
have yielded a sequence of estimates with effectively the same pattern. But to capture the
nonmonotonicities present in the exact solution path, larger step sizes do not suffice for
shrunken stagewise, and the algorithm needs to be run with ε = 0.0001 and for 500,000
steps—this is clearly not desirable for such a small example with n = 20 and p = 10,
and it does not bode well for scalability. We will see in what follows that the shrunken
stagewise estimates provide a bridge between pure stagewise estimates and exact solutions
in the general convex regularization problem (4). Hence we view the shrunken stagewise
estimates as interesting and worthwhile because they provides this connection.

The main reason we choose to study the shrinkage strategy in Algorithm 3, as opposed to,
say, backward steps, is that the shrinkage approach applies outside of the lasso regularization
setting; as far as we can tell, there is no natural analog of backwards steps beyond the
sparse setting. In fact, in the general problem setup, the shrinkage factor α in Algorithm 3
somewhat roughly mirrors what is done by Frank-Wolfe (this is really a different strategy,
but still, it is one that computes exact solutions; compare equations (48) and (2) from
Online Appendix A.1). A general interpretation of the shrinkage operation in (48) is that

2581

Tibshirani

0 2 4 6

−
2

−
1

0
1

2

Lasso
C

o
o

rd
in

a
te

s

‖β̂(t)‖1

0 2 4 6
−

2
−

1
0

1
2

Stagewise

‖β(k)‖1

C
o
or
d
in
at
es

0 2 4 6

−
2

−
1

0
1

2

Shrunken stagewise

‖β(k)‖1

C
o
or
d
in
at
es

Figure 9: Exact, stagewise, and shrunken stagewise paths for a small lasso regression problem
with n = 20 observations, and p = 10 correlated predictors. When components of the
lasso solution path become nonmonotone (e.g., top black path, and bottom red path),
the corresponding stagewise ones are more stable and remain at a constant level, but
shrunken stagewise matches the nonmonotonicities.

it lessens the dependence of the stagewise estimates on the computed history, i.e., decreases
the stability of the computed stagewise component paths, and implicitly allows for more
weight to be placed on the local update directions. Empirical examples with, e.g., group
lasso regression or matrix completion confirm that shrunken stagewise estimates can be
tuned to track the exact solution path even when the pure stagewise path deviates from it.
We do not examine these cases here but instead turn to theoretical development.

5.3 Shrunken Stagewise Suboptimality

As in Section 5.1, we assume that g is a norm, and write g∗ for its dual norm. We also
consider the kth shrunken stagewise estimate x(k) as an approximate solution in the gen-
eral problem (4) at a static value of the regularization parameter, defined recursively as
tk = αtk−1 + ε. A straightforward inductive argument shows that g(x(k)) ≤ tk, i.e., the
estimate x(k) is feasible for the problem (4) at t = tk. Under this setup, the same limiting
suboptimality bound as in Theorem 1 can be established for the shrunken stagewise esti-
mates. For the sake of space, we do not present this result. Instead we show that, under
additional conditions, the shrunken stagewise estimates overcome the stability inherent to
stagewise, and achieve the idealized behavior suggested by Figure 9, i.e., they converge to
exact solutions along the path. See Online Appendix A.6 for the proof.

Theorem 2 Consider the general problem (4). Assume, as in Theorem 1, that the loss
function f is differentiable and convex, the regularizer g is a norm, and ∇f is Lipschitz
with respect to g∗, g, having Lipschitz constant L. Fix a parameter value t, and consider
running the shrunken stagewise algorithm, Algorithm 3, from x(0) = x̂(t0), a solution in (4)
at a parameter value t0 ≤ t. Consider the limiting estimate x̃(t) at the parameter value t,

2582

General Stagewise Algorithms

as both ε→ 0 and α→ 1. Suppose that

1− α
ε
→ 0 and

1− α
ε2
→∞.

Let k = k(ε, α) denote the number of steps taken by the shrunken stagewise algorithm to
reach the parameter value tk = t; note that k → ∞ as ε → 0, α → 1. Define the effec-
tive Lagrange parameters λi = g∗(∇f(x(i))), i = 1, . . . k, and assume that these parameters
exhibit a weak type of decay:

λi/ti ≥ CL, i = 1, . . . r − 1,

λr/tr ≤
(C + 1)θ2 − 2

2
L,

(49)

for some r < k, with r/k → θ ∈ (0, 1), and some constant C. Then the limiting shrunken
stagewise estimate x̃(t) at the parameter value t, as ε→ 0 and α→ 1, satisfies

f(x̃(t)) = f(x̂(t)),

i.e., x̃(t) is a solution in (4) at the parameter value t.

Remark 1. The result above can be extended to the case when g is a seminorm. We simply
need to redefine g∗ and the updates in order to accommodate the possibly nontrivial null
space Ng of g, as discussed in the third remark following Theorem 1.

Remark 2. The assumption in (49) of Theorem 2 stands out as technical assumption that
is hard to interpret. This condition is used in the proof to control a term in the duality gap
expansion that involves differences of g∗(∇f(x(i))) across successive iterations i, i+ 1. The
theorem refers to such a quantity, λi = g∗(∇f(x(i))), as the “effective Lagrange parameter”
at x(i). To explain this, consider the stationarity condition for the problem (4),

∇f(x) + λv = 0,

where v ∈ ∂g(x) = argmaxg∗(z)≤1 x
T z. This implies that ∇f(x) = −λv, or g∗(∇f(x)) =

λg∗(v) = λ, which gives an expression for the Lagrange parameter associated with a solution
of the constrained problem (4). As x(i) is not a solution, but an approximate one, we call
λi = g∗(∇f(x(i))) its effective Lagrange parameter.

The condition (49) says that until some number of steps r along the path, the ratio of
effective Lagrange parameters λi to bound parameters ti must not be too small, and then
at step r it must not be too large. This is a formulation of a type of weak decay of λi/ti,
i = 1, 2, 3, It is not intuitively clear to us when (i.e., in what kinds of problems) we
should expect this condition to be satisfied. We can, however, inspect it empirically. For
the example lasso problem in Figure 9 (where, recall, the shrunken stagewise path appears
to approach the exact solution path), we plot the ratio λi/ti, i = 1, 2, 3, . . . in Figure 10.
This ratio displays a sharp decay across steps of the algorithm, and so, at least empirically,
the assumption (49) seems reasonable. We suspect that in general, the two hard bounds
in (49) can be replaced by a more natural decay condition, and furthermore, there are
characterizable problem classes with sharp decays of the Lagrange to bound parameter
ratios. These are topics for future work.

2583

Tibshirani

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

k

‖X
T
(y

−
X
β
(k
))
‖ ∞

/t
k

Figure 10: A plot of λk/tk = ‖XT (y −Xβ(k))‖∞/tk across steps k of the shrunken stagewise al-
gorithm, for the lasso data set of Figure 9. This decay roughly verifies the condition
(49) of Theorem 2, needed to ensure the convergence of shrunken stagewise estimates
to exact solutions.

6. Discussion

We presented a framework for computing incremental stagewise paths in a general regular-
ized estimation setting, defined by minimizing a differentiable convex loss function subject
to a convex constraint. The stagewise estimates are explicitly and efficiently computable for
a wide variety of problems, and they provide an approximate solution path for the under-
lying convex problem of interest, but exhibit generally more stability as the regularization
parameter changes. In some situations this approximation (i.e., the discrepancy between
stagewise estimates and solutions) appears empirically to be quite tight, and in others it
does not. All in all, however, we have found that the stagewise estimates essentially al-
ways offer competitive statistical performance (as measured, e.g., by test error) with that
of exact solutions. This suggests that they should be a point of study, even apart from
their ability to approximate solution paths of convex problems, and a rigorous (theoretical)
characterization of the statistical properties of stagewise estimates is an important direction
to pursue in the future. There are many other potential topics for future work, as alluded
to throughout the paper. It is our hope that other researchers will take an interest too, and
that this paper marks the beginning of a deeper understanding of stagewise capabilities.

Acknowledgements

This paper was inspired by an attempt to explain the intuitive connection between forward
stagewise regression and the lasso, in preparing lectures for a graduate class on optimization

2584

General Stagewise Algorithms

at Carnegie Mellon University. We thank co-teacher Geoff Gordon and the students of this
class for early motivating conversations. We also thank Rob Tibshirani, Jerry Friedman,
Jonathan Taylor, Jacob Bien, and Lester Mackey for their helpful feedback. We are grateful
to Jacob Bien for his understanding and patience throughout our (unusually slow) writing
process, and to Lester Mackey for enlightening discussion on the Frank-Wolfe connection.
Lastly, we would like to thank the editors and referees who reviewed this paper, as they
provided extremely helpful and constructive reports. We gratefully acknowledge the funding
support from NSF grant DMS-1309174.

References

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learn-
ing. Advances in Neural Information Processing Systems, 19, 2006.

Sergey Bakin. Adaptive Regression and Model Selection in Data Mining Problems. PhD
thesis, School of Mathematical Sciences, Australian National University, 1999.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, 2004.

Peter Buhlmann and Bin Yu. Boosting. Wiley Interdisciplinary Reviews: Computational
Statistics, 2(1):69–74, 2010.

Emmanuel J. Candes and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics, 9(6):717–772, 2009.

Emmanuel J. Candes and Terence Tao. The power of convex relaxation: near-optimal
matrix completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

Antonin Chambolle and Jerome Darbon. On total variation minimization and surface
evolution using parametric maximum flows. International Journal of Computer Vision,
84:288–307, 2009.

Jianhui Chen and Jieping Ye. Sparse trace norm regularization. Computational Statistics,
29(3–4):623–629, 2014.

Norman Draper and Henry Smith. Applied Regression Analysis. Wiley, New York, 1966.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
Annals of Statistics, 32(2):407–499, 2004.

M. Efroymson. Stepwise regression—a backward and forward look. Eastern Regional Meet-
ings of the Institute of Mathematical Statistics, 1966.

Paul Eilers and Brian Marx. Flexible smoothing with B-splines and penalties. Statistical
Science, 11(2):89–121, 1996.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 32(1–2):95–110, 1956.

2585

Tibshirani

Jerome Friedman. Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 29(5):1190–1232, 2001.

Jerome Friedman. Fast sparse regression and classification. Unpublished manuscript, http:
//www-stat.stanford.edu/~jhf/ftp/GPSpub.pdf, 2008.

Jerome Friedman and Bogdan Popescu. Gradient directed regularization. Unpublished
manuscript, http://www-stat.stanford.edu/~jhf/ftp/pathlite.pdf, 2004.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, 1996. Third edition.

Peter Green and Bernard Silverman. Nonparametric Regression and Generalized Linear
Models: A Roughness Penalty Approach. Chapman & Hall/CRC Press, Boca Raton,
1994.

Zaid Harchaoui, Matthijs Douze, Mattis Paulin, Miroslav Dudik, and Jerome Malick. Large-
scale image classification with trace-norm regularization. IEEE Conference on Computer
Vision and Pattern Recognition, pages 3386–3393, 2012.

Trevor Hastie, Jonathan Taylor, Robert Tibshirani, and Guenther Walther. Forward stage-
wise regression and the monotone lasso. Electronic Journal of Statistics, 1:1–29, 2007.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing; Data Mining, Inference and Prediction. Springer, New York, 2009. Second edition.

Jean-Baptiste Hiriart-Urruty and Claude Lemarechal. Convex Analysis and Minimization
Algorithms. Springer, Berlin, 1993. Two volumes.

Arthur Hoerl and Robert Kennard. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. Proceed-
ings of the International Conference on Machine Learning, 30, 2013.

Martin Jaggi and Marek Sulovsky. A simple algorithm for nuclear norm regularized prob-
lems. Proceedings of the International Conference on Machine Learning, 27, 2010.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial and Applied Mathematics, 8(4):703–712, 1960.

Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky. `1 trend filter-
ing. SIAM Review, 51(2):339–360, 2009.

Eliot Knudsen. Stagewise Regression: Competing with the State of the Art via an Effi-
cient, Simple, Iterative Algorithm. Undergraduate honors thesis, Department of Statis-
tics, Carnegie Mellon University, 2013.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms
for learning large incomplete matrices. Journal of Machine Learning Research, 11:2287–
2322, 2010.

2586

http://www-stat.stanford.edu/~jhf/ftp/GPSpub.pdf
http://www-stat.stanford.edu/~jhf/ftp/GPSpub.pdf
http://www-stat.stanford.edu/~jhf/ftp/pathlite.pdf

General Stagewise Algorithms

Lukas Meier, Sara van de Geer, and Peter Buhlmann. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B, 70(1):53–71, 2008.

Guillame Obozinski, Ben Taskar, and Michael Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing, 20(2):
231–252, 2010.

James Ramsay. Parameter flows. Unpublished manuscript, 2005.

Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum
margin classifier. Journal of Machine Learning Research, 5:941–973, 2004.

Leonid I. Rudin, Stanley Osher, and Emad Faterni. Nonlinear total variation based noise
removal algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse group lasso.
Journal of Computational and Graphical Statistics, 22(2), 2013.

Choon Hui Teo, Quoc Le, Alex Smola, and S. V. N. Vishwanathan. A scalable modular con-
vex solver for regularized risk minimization. Proceedings of the International Conference
on Knowledge Discovery and Data Mining, 13, 2007.

Choon Hui Teo, S. V. N. Vishwanathan, Alex Smola, and Quoc Le. Bundle methods for
regularized risk minimization. Journal of Machine Learning Research, 11:311–365, 2010.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B, 58(1):267–288, 1996.

Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B, 67
(1):91–108, 2005.

Ryan J. Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics, 7:
1456–1490, 2013.

Ryan J. Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. Annals
of Statistics, 42(1):285–323, 2014.

Ryan J. Tibshirani and Jonathan Taylor. The solution path of the generalized lasso. Annals
of Statistics, 39(3):1335–1371, 2011.

Andrey Tikhonov. On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39
(5):195–198, 1943.

Berwin Turlach, William Venables, and Stephen Wright. Simultaneous variable selection.
Technometrics, 47(3):349–363, 2005.

Grace Wahba. Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Philadelphia, 1990.

2587

Tibshirani

Yu-Xiang Wang, James Sharpnack, Alex Smola, and Ryan J. Tibshirani. Trend filtering
on graphs. Proceedings of the International Conference on Artificial Intelligence and
Statistics, 18:1042–1050, 2015.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68(1):49–67, 2006.

Peng Zhao and Bin Yu. Stagewise lasso. Journal of Machine Learning Research, 8:2701–
2726, 2007.

2588

	Introduction
	Summary of Our Contributions

	Properties of the General Stagewise Framework
	Motivation: Stagewise Regression and the Lasso
	A New Perspective on Forward Stagewise Regression
	Basic Properties of the General Stagewise Procedure
	Related Work

	Applications of the General Stagewise Framework
	Group-structured Regularization
	Group-structured Regularization with Arbitrary Norms
	Trace Norm Regularization
	Quadratic Regularization
	Generalized Lasso Regularization

	Large-scale Examples and Practical Considerations
	Group Lasso Regression
	Matrix Completion
	Image Denoising
	Choice of Step Size

	Suboptimality Bounds for Stagewise Estimates
	General Stagewise Suboptimality
	Shrunken Stagewise Framework
	Shrunken Stagewise Suboptimality

	Discussion

