
Journal of Machine Learning Research 16 (2015) 103-147 Submitted 6/11; Revised 7/14; Published 1/15

Links Between Multiplicity Automata, Observable Operator
Models and Predictive State Representations — a Unified

Learning Framework

Michael Thon m.thon@jacobs-university.de

Herbert Jaeger h.jaeger@jacobs-university.de

Jacobs University Bremen

28759 Bremen, Germany

Editor: Joelle Pineau

Abstract

Stochastic multiplicity automata (SMA) are weighted finite automata that generalize prob-
abilistic automata. They have been used in the context of probabilistic grammatical infer-
ence. Observable operator models (OOMs) are a generalization of hidden Markov models,
which in turn are models for discrete-valued stochastic processes and are used ubiquitously
in the context of speech recognition and bio-sequence modeling. Predictive state represen-
tations (PSRs) extend OOMs to stochastic input-output systems and are employed in the
context of agent modeling and planning.

We present SMA, OOMs, and PSRs under the common framework of sequential sys-
tems, which are an algebraic characterization of multiplicity automata, and examine the
precise relationships between them. Furthermore, we establish a unified approach to learn-
ing such models from data. Many of the learning algorithms that have been proposed can
be understood as variations of this basic learning scheme, and several turn out to be closely
related to each other, or even equivalent.

Keywords: multiplicity automata, hidden Markov models, observable operator models,
predictive state representations, spectral learning algorithms

1. Introduction

Multiplicity automata (MA) (Schützenberger, 1961) are weighted nondeterministic au-
tomata which generalize both finite and probabilistic automata. The discovery that MA
are efficiently learnable (Bergadano and Varricchio, 1994; Ohnishi et al., 1994) in the ex-
act learning model of Angluin (Angluin, 1987) sparked an interest in these, and several
versions have been studied. One such version is stochastic multiplicity automata (SMA),
which model rational stochastic languages and have been used in the context of proba-
bilistic grammatical inference (Denis et al., 2006; Bailly et al., 2009). Independent of this
line of research, hidden Markov models (HMMs) (see Rabiner, 1989) for discrete-valued
stochastic processes have been extensively studied and are now a standard tool in many
pattern recognition domains such as speech recognition, natural language processing and
bio-sequence modeling. Observable operator models (OOMs) are a generalization of HMMs
that was introduced by Jaeger (1998) following previous work on deciding the equivalence
of HMMs (Ito et al., 1992). Finally, predictive state representations (PSRs) are mod-

c©2015 Michael Thon and Herbert Jaeger.

Thon and Jaeger

els for stochastic input-output systems developed by Littman, Sutton, and Singh (2001)
and inspired by OOMs. PSRs generalize partially observable Markov decision processes
(POMDPs) (Kaelbling et al., 1998) and have been used in the context of agent modeling
and planning (James et al., 2004; James and Singh, 2005; Wolfe and Singh, 2006; Boots
et al., 2010). As it turns out, all of these models are instances of MA and thereby closely
related, though this is not widely perceived, due in part to the disjoint scientific communi-
ties.

All of SMA, OOMs and PSRs model some form of probability distribution. A central
task common to all cases is therefore to estimate a model from a given sample. This may
also be referred to as learning, system identification or model induction depending on the
context.

In this paper we present SMA, OOMs, and PSRs under a common framework and exam-
ine the precise relationships between them. Furthermore, we establish a unified approach to
learning such models from data. Many of the learning algorithms that have been proposed
can be understood as variations of this basic learning theme, and several turn out to be
closely related or even equivalent.

In Section 2 we cover the essential theory for sequential systems (SSs) — a term coined
by Carlyle and Paz (1971) for a purely algebraic characterization of MA. Though not new,
we present this theory in a way that can be readily turned into algorithms, and with
full proofs, because they give much insight and pave the way to the presented learning
approach. The first result concerns the relationship between SSs and the objects that they
describe, namely formal series f : Σ∗ → K for K = R or K = C (see Section 1.1 for
details). Any such function can be associated with a linear function space F , and has a SS
representation if and only if the space F is finite dimensional. In fact, a SS can be seen as
a representation of f w.r.t. some basis of F , and a change of basis will correspond to an
equivalence transformation of SSs, where equivalence of two SSs means that they represent
the same function. The remaining theory will be concerned with such transformations of
SSs. It is shown how to transform any SS to an equivalent minimal SS, how to decide
equivalence, how to normalize SSs and how to convert SSs into a so-called “interpretable”
form.

In Section 3 we mention the relationship between MA and the more general class
of weighted finite automata (WFA) and their extension to input-output systems called
weighted finite-state transducers (WFST). We then present SMA, OOMs and PSRs as
instances of SSs with specific additional constraints that model probabilistic languages,
stochastic processes and controlled processes, respectively, via the formal series f that they
describe. We only sketch the basic concepts and give pointers to relevant literature. The
main emphasis is on exploring the relations among the various model classes. We show that
SMA are related to OOMs in the same way that probabilistic finite automata are related to
HMMs, and show how to trivially convert any HMM into an OOM. OOMs and PSRs share
the notion of a “predictive state” for the modeled process, which can be either implicit (as
in the case of OOMs) or explicit (as for PSRs). Any PSR is essentially an input-output
(IO)-OOM, while any OOM can be converted to a PSR by making the state “interpretable”.
Finally, PSRs generalize POMDPs in the same way that OOMs generalize HMMs.

Section 4 on learning is the main technical contribution of this paper. We present a
learning framework that covers the cases of SMA, OOMs and PSRs in a unified way. The

104

Links Between MA, OOMs and PSRs

only difference for the model classes concerns the way that estimates are obtained from
the sample data. To turn the learning framework into a concrete algorithm, several design
choices need to be made. Depending on these, many algorithms that have been proposed
in the literature are recovered. This unified viewpoint has several advantages. First of all,
modifications and improvements made for a specific model class can be generalized to other
learning algorithms. Additionally, the general learning framework allows us to identify
the key points responsible for statistical efficiency and thereby indicates a clear path for
improvements. In this section, we present generalized and simplified versions of two key
OOM learning algorithms — error controlling (EC) and efficiency sharpening (ES) — and
show that these are in fact closely related to spectral learning algorithms.

1.1 Notation

Let Σ∗ be the set of words over a finite alphabet Σ, including the empty word ε. Symbols
from the alphabet Σ will be denoted by normal variables as in x, y ∈ Σ, while words will
be denoted by variables with a bar over them, e.g., x, y ∈ Σ∗. For x and y in Σ∗, let xy be
the concatenation of words, and |x| denote the length of the word x. Furthermore, let Σk

denote the subset of words of length k. Let {xi | i ∈ N} = Σ∗ be an enumeration of Σ∗ such
that x0 = ε. We will be interested in characterizing functions f : Σ∗ → K for K = R or
K = C, since these can be used to describe probabilistic languages, stochastic processes and
controlled processes (cf. Definitions 18, 20, and 28). These form a K-vector space which
we denote by K〈〈Σ〉〉. For a given function f : Σ∗ → K, we define the system matrix F as
the infinite matrix F = [f(xjyi)]i,j∈N. Note that this is the transpose of what is commonly
known as the Hankel matrix. Furthermore, for a given function f we define the functions
fx : Σ∗ → K by setting fx(y) := f(xy) for any sequences x, y ∈ Σ∗. Note that these
functions correspond to the columns of the system matrix F . Let F := span{fx |x ∈ Σ∗}
be the linear space spanned by these functions / the columns of F . Clearly, F ⊆ K〈〈Σ〉〉.
We define rank(f) := rank(F) = rank(F).

A d-dimensional sequential system (SS) is a structureM = (σ, {τz}, ωε), which consists
of an initial state vector ωε ∈ Kd, a matrix τz ∈ Kd×d for each z ∈ Σ and an evaluation
function σ : Kd → K. For x = x1 · · ·xn ∈ Σ∗ let τx = τxn · · · τx1 , and let ωx = τxωε, which
we call a state of the SS M. Let τΣ =

∑
z∈Σ τz.

If the function σ is linear, we call the sequential system linear. In this paper, we will be
dealing only with the linear case, so σ will just be a row vector, i.e., σ> ∈ Kd.

For a given SS M, we define its (external) function to be

fM : Σ∗ → K, fM(x) = στxωε (1)

Finally, we define the rank of a SS M to be rank(M) := rank(fM).

2. Basic Properties of Sequential Systems

In this section we present the basic theory for sequential systems. This goes back to
Schützenberger (1961), to Carlyle and Paz (1971) who coined the term sequential systems,
and to Fliess (1974) but has been presented in various forms also for OOMs (Jaeger, 2000b)
and PSRs (Singh et al., 2004). Here, we present the theory in a concise, self-contained
fashion that can readily be turned into algorithms.

105

Thon and Jaeger

We begin with a technical result that lies at the heart of the whole theory.

Proposition 1 Let f : Σ∗ → K be given. If rank(f) = d < ∞, then there exist linear
operators τ̃z : F → F for each z ∈ Σ and a linear functional σ̃ : F → K that satisfy
τ̃z(fx) = fxz and σ̃(fx) = f(x) for all x ∈ Σ∗. Furthermore, σ̃(τ̃x(fε)) = f(x) for all
x ∈ Σ∗, where τ̃x = τ̃xn ◦ · · · ◦ τ̃x1.

Proof Let J ⊂ N be an index set denoting a maximal set of linearly independent columns
of the matrix F . Then clearly, B = {fxj | j ∈ J} is a basis for F . Define linear operators τ̃z
and a linear functional σ̃ by their action on these basis elements:

• τ̃z(fxj) := fxjz for all z ∈ Σ,

• σ̃(fxj) := fxj (ε) = f(xj).

We will show that then τ̃z(fx) = fxz and σ̃(fx) = f(x) for all x ∈ Σ∗. For this, let x ∈ Σ∗.
Then fx =

∑
j∈J λjfxj for suitable coordinates λj , and fxz =

∑
j∈J λjfxjz, since for any

y ∈ Σ∗, we have fxz(y) = fx(zy) =
∑

j∈J λjfxj (zy) =
∑

j∈J λjfxjz(y). Therefore, τ̃z(fx) =
τ̃z(
∑

j∈J λjfxj) =
∑

j∈J λjfxjz = fxz, and σ̃(fx) = σ̃(
∑

j∈J λjfxj) =
∑

j∈J λjfxj (ε) =
fx(ε) = f(x).

Finally, σ̃(τ̃x(fε)) = σ̃(fx) = f(x) for all x ∈ Σ∗.

The above proposition establishes a crucial property that makes this theory appealing,
as it means that the functions f = fε, fx = τ̃x(f), the linear operators τ̃z and the linear
functional σ̃ have coordinate representations as vectors and matrices with respect to some
basis B for F . Note that this remains true even if rank(f) = ∞, but the coordinate rep-
resentations will then be infinite and of little practical use. The property f(x) = σ̃(τ̃x(fε))
(cf. Equation 1) means that the function f is fully described by the data (σ̃, {τ̃z}, fε). If
these are given in some coordinate representation, then we have a SS representation:

Proposition 2 Let f : Σ∗ → K be given. If rank(f) = d < ∞, then there exists a
d-dimensional SS M such that f = fM.

Proof Let B be a basis for F , and letM = (σ, {τz}, ωε) be the coordinate representations
of (σ̃, {τ̃z}, fε) with respect to B, where we are using the definitions for σ̃ and τ̃z from the
above Proposition 1. Then for any x ∈ Σ∗, we have f(x) = σ̃(τ̃x(fε)) = στxωε = fM(x).

Note that for the SSM constructed in Proposition 2 as a coordinate representation with
respect to some basis B of F , the states ωx = τxωε will be the coordinate representations
of the functions fx = τ̃x(f) with respect to the basis B. Also note that due to Equation (1)
we may evaluate f(x) using the SS M without knowledge of the basis B.

The above proposition suggests that two SS might describe the same function f if and
only if they are representations for f with respect to different bases for F . However, this is
only correct for so-called minimal SS, as will be detailed out in the following.

Definition 3 Two SSs M and M′ are equivalent, denoted by M∼=M′, if they define the
same function, i.e., if fM = fM′. It is clear that this notion is an equivalence relation on
the set of all SSs.

106

Links Between MA, OOMs and PSRs

We now introduce concepts needed to characterize the equivalence on SS. We give such
a characterization for minimal SS in Proposition 12. For this, we introduce the concept of
minimal SS, give a criteria for minimality in Corollary 8 and a procedure in Algorithm 2 to
construct an equivalent minimal SS.

Definition 4 For a given SS M we call the linear spaces W = span {τxωε |x ∈ Σ∗} the
state space and W̃ = span {(στx)> |x ∈ Σ∗} the co-state space of M.

Definition 5 We call a d-dimensional SS M trimmed if it has full state and co-state
spaces, i.e., if W = W̃ = Kd. We call a SS minimal if no equivalent model of lower
dimension exists.

It will turn out in Corollary 8 that a SS is minimal if and only if it is trimmed. But
first, we show how to construct bases for the state (and co-state) space of a given SS.

Proposition 6 The following procedure constructs a basis B for the state space W of a
given d-dimensional SS in time O(max{d, |Σ|}d3) (the construction of a basis B̃ for the
co-state space W̃ is analogous):

Algorithm 1: Compute a basis B for the state space W of a given SS

B ← {}, C ← {ωε}
while |C| > 0 do

ω ← some element of C, C ← C \ {ω}
if ω is linearly independent of B then
B ← B ∪ {ω}
C ← C ∪ {τzω | z ∈ Σ}

Proof At any time during the run of the algorithm, B is a set of linearly independent
vectors. Furthermore the set C of “candidate vectors” increases by |Σ| elements each time a
new vector is added to the set B, but decreases by one element each run through the main
loop. Therefore, the algorithm terminates after at most d|Σ| + 1 runs through the main
loop, since there are at most d linearly independent vectors that can be added to B. Next
we examine the runtime of the algorithm. Checking ω for linear independence from B can
be done by checking PBω = ω in time O(d2) if the orthogonal projection matrix PB onto
span(B) is known. This check is performed at most d|Σ|+ 1 times, yielding a complexity of
O(d3|Σ|). Clearly, the matrix PB must be updated every time a vector is added to B, which
is a O(d3) operation that needs to performed at most d times, giving a total complexity of
O(d4). Finally, every time a vector ω is added to B, the set C is increased by |Σ| vectors,
each of which requires time O(d2) to be computed from ω, for a total time complexity of
O(d3|Σ|). Adding these together gives the claimed time complexity.

Finally, we show that the returned set B is indeed a basis of the state-space W . Ob-
serve that for all ω ∈ B and for all z ∈ Σ, the vectors τzω have been added as “candidate
vectors” to the set C at some point during the run of the algorithm — namely when ω was
added to B. Each of these vectors is checked in turn and is at that point either linearly
dependent on B, or added to B. Therefore, these vectors τzω are all linearly dependent on
the final set B, i.e., τz(B) ⊆ span(B) for all z ∈ Σ. By linearity of τz this implies that also

107

Thon and Jaeger

τz(span(B)) ⊆ span(B) for all z ∈ Σ. So span(B) contains ωε and is closed under the action
of τz for all z ∈ Σ, which implies that {τxωε |x ∈ Σ∗} ⊆ span(B). But B ⊂ {τxωε |x ∈ Σ∗}
by construction of B. Together, this implies span(B) = span({τxωε |x ∈ Σ∗}) = W .

The above is a polynomial time algorithm for which we have explicitly stated the runtime
complexity, since it is the workhorse for the operations of this section and dominates their
runtimes. Note further that the computed bases are by construction of the form B =
{τxjωε | j ∈ J} and B̃ = {(στxi)> | i ∈ I} for suitable index sets I, J and corresponding
words xi and xj of length at most d, where d is the dimension of the SS. Also, the above
procedure allows us to check whether a given SS is trimmed.

The following proposition is the core technical result needed to establish the connection
between a SS being trimmed, having full rank, and being minimal.

Proposition 7 For a d-dimensional SS M, let {τxjωε | j ∈ J} and {(στxi)> | i ∈ I} be

bases for W and W̃ respectively, and define F I,J = [fM(xjxi)](i,j)∈I×J , then rank(M) =

rank(F I,J) ≤ min{|I|, |J |} ≤ d. Furthermore, if |I| = d or |J | = d then rank(M) =
min{|I|, |J |}.

Proof Define Π = ((στxk)>)>k∈N and Φ = (τxkωε)k∈N, as well as ΠI = ((στxi)
>)>i∈I ∈ K |I|×d

and ΦJ = (τxjωε)j∈J ∈ Kd×|J |. The rows of ΠI are a basis for the row space of Π and the
columns of ΦJ are a basis for the column space of Φ. Now F = ΠΦ and F I,J = ΠIΦJ .
Therefore rank(M) := rank(F) = rank(ΠΦ) = rank(ΠIΦ) = rank(ΠIΦJ) = rank(F I,J).
Moreover, rank(ΠI) = |I| and rank(ΦJ) = |J | imply that rank(ΠIΦJ) ≤ min{|I|, |J |} ≤ d
as well as rank(ΠIΦJ) = |J | if |I| = d and rank(ΠIΦJ) = |I| if |J | = d.

From this, we obtain the following result, which allows us to check a d-dimensional SS
for minimality by checking whether the SS is trimmed, i.e., by constructing bases for the
state and co-state space and checking if these have dimension d.

Corollary 8 Let M be a d-dimensional SS. The following are equivalent:

(i) M is trimmed

(ii) rank(M) = d

(iii) M is minimal

Proof If M has full rank, i.e., rank(M) = d, then M must be minimal, as any lower-
dimensional SS must have a lower rank and therefore cannot be equivalent. Conversely,
if M is minimal, then we must have rank(M) = d, since by Proposition 2 there exists a
rank(M)-dimensional equivalent SS. By Proposition 7 — and using the notation from the
proposition — we see that rank(M) = d⇔ |I| = |J | = d, i.e., if and only ifM is trimmed.

Next, we define the transformation of a SS by linear maps ρ and ρ′. Such transformations
will serve as the basic operation on SS for all conversion operations.

108

Links Between MA, OOMs and PSRs

Definition 9 For a d-dimensional SS M = (σ, {τz}, ωε) and any matrices ρ ∈ Kn×d and
ρ′ ∈ Kd×n, we define the n-dimensional SS ρMρ′ := (σρ′, {ρτzρ′}, ρωε).

If ρ is non-singular, and ρ′ = ρ−1, then this transformation will yield an equivalent
conjugated SS. If the SS is minimal, then this corresponds to a change of basis for the
underlying function space F .

Lemma 10 Let M = (σ, {τz}, ωε) be a d-dimensional SS, and ρ ∈ Rd×d be non-singular.
Then M∼= ρMρ−1. We will call ρMρ−1 a conjugate of M.

Proof ∀x ∈ Σ∗ : fρMρ−1(x) = (σρ−1)(ρτxnρ
−1) · · · (ρτx1ρ−1)(ρωε) = στxωε = fM(x).

We already know how to check for minimality. We now show how to convert a given SS
to an equivalent minimal SS using the introduced transformations on SSs.

Proposition 11 For a given SS M, the following procedure constructs an equivalent min-
imal SS M′′:

Algorithm 2: Minimization of a SS M
1 Construct a basis {τxjωε | j ∈ J} for the state space W of M

Set Φ = (τxjωε)j∈J .

Set M′ = Φ†MΦ, where Φ† denotes the Moore-Penrose pseudoinverse of Φ.

2 Construct a basis {(σ′τ ′xi)> | i ∈ I ′} for the co-state space W̃ ′ of M′.
Set Π′ = ((σ′τ ′xi)

>)>i∈I′.

Set M′′ = Π′M′Π′†.

Proof Note that by construction the columns of Φ and Π′> form bases for the spaces W
and W̃ ′ respectively. Therefore, Φ†Φ = id and ΦΦ†|W = id, as well as (Π′>)†Π′> = id and
Π′>(Π′>)†|W̃ ′ = id. We can simply check equivalence, i.e., that for any x ∈ Σ∗,

fM′′(x) = σ′′τ ′′xn · · · τ ′′x1ω′′ε
= σ′Π′†Π′τ ′xnΠ′† · · ·Π′τ ′x1Π′†Π′ω′ε

= ω′>ε Π′>(Π′>)†τ ′>x1 Π′> · · · (Π′>)†τ ′>xnΠ′>(Π′>)†σ′>

= σ′τ ′xn · · · τ ′x1ω′ε
= σΦΦ†τxnΦ · · ·Φ†τx1ΦΦ†ωε

= στxωε = fM(x).

Next, consider (τ ′xjω
′
ε)j∈J = (Φ†τxjωε)j∈J = Φ†Φ = id. This implies that M′ has full state

space W ′ and that {τ ′xjω′ε | j ∈ J} is a basis for W ′, since the dimension d′ of M′ is |J | by

construction. By Proposition 7, |J | = d′ implies rank(M′) = min(|I ′|, |J |) = |I ′|. By con-
struction |I ′| = d′′ where d′′ is the dimension of M′′. Furthermore, rank(M′) = rank(M′′)
since M′ ∼=M′′ so by Corollary 8 M′′ is minimal.

As we can convert any SS to an equivalent minimal SS using the above Algorithm 2,
it will be sufficient to characterize equivalence only for minimal SS. This is done by the
following result.

109

Thon and Jaeger

Proposition 12 Let M = (σ, {τz}, ωε) and M′ = (σ′, {τ ′z}, ω′ε) be minimal d-dimensional
SS. The following are equivalent:

(i) M∼=M′

(ii) M′ = ρMρ−1 for some non-singular ρ ∈ Kd×d

(iii) ΠΦ = Π′Φ′, Πωε = Π′ω′ε, σΦ = σ′Φ′ and ∀z ∈ Σ : ΠτzΦ = Π′τ ′zΦ
′, where {τxjωε | j ∈

J} and {(στxi)> | i ∈ I} are bases for the state and co-state spaces W and W̃ of M
respectively, and Π = ((στxi)

>)>i∈I , Φ = (τxjωε)j∈J , Π′ = ((σ′τ ′xi)
>)>i∈I , and Φ′ =

(τ ′xjω
′
ε)j∈J .

Proof Lemma 10 establishes (ii)⇒ (i). For (i)⇒ (iii) note that fM = fM′ implies that
Πτz̄Φ = [f(xj z̄xi)]i,j∈I×J = Π′τ ′z̄Φ

′ for all z̄ ∈ Σ∗, as well as Πωε = (f(xi))
>
i∈I = Π′ω′ε and

σΦ = (f(xj))j∈J = σ′Φ′. Finally, to see (iii) ⇒ (ii), note that Π and Φ have full rank,
since M is minimal, so Π′ and Φ′ must also have full rank. Let ρ = Π′−1Π = Φ′Φ−1, then
ρ−1 = ΦΦ′−1. We can now easily check that M′ = ρMρ−1.

Note that this allows us to decide equivalence for any given SS M and M′ by first
converting them to equivalent minimal SS M̃ and M̃′ respectively using Algorithm 2, and
then checking for equivalence by criteria (iii) from the above Proposition 12. The required
bases for the state and co-state spaces of M̃ and M̃′ can be computed by Algorithm 1.

The following proposition shows that any SS can be transformed into an equivalent SS
where σ and ωε can be essentially any desired vectors. This implies that it is no restriction
to assume some fixed form for σ, as is sometimes done. For instance, in the case of OOMs
often σ = (1, . . . , 1) is used, while for MA often σ = (1, 0, . . . , 0) is assumed.

Proposition 13 Let M = (σ, {τz}, ωε) be a d-dimensional SS, and let σ′>, ω′ε ∈ Kd such
that σ′ω′ε = σωε. Then there exists a non-singular linear map ρ such that ρMρ−1 =
(σ′, {τ ′z}, ω′ε).

Proof Extend {σ>} to an orthogonal basis {σ>, v2, . . . , vd} of Kd, and {σ′>} to an or-
thogonal basis {σ′>, v′2, . . . , v′d} of Kd. We distinguish two cases:

If c := σωε = σ′ω′ε 6= 0, then ρ1 = (ωε, v2, . . . , vd)
−1 and ρ2 = (ω′ε, v

′
2, . . . , v

′
d) are non-

singular. Let ρ = ρ2ρ1. We can easily see that ρ2ρ1ωε = ρ2e1 = ω′ε and σρ−1 = σρ−1
1 ρ−1

2 =
c · e>1 ρ−1

2 = σ′, since σ′ρ2 = c · e>1 .

If σωε = σ′ω′ε = 0, then (perhaps after reordering vi and v′i) ρ1 = (σ>

σσ>
, ωε, v3, . . . , vd)

−1

and ρ2 = (σ′>

σ′σ′>
, ω′ε, v

′
3, . . . , v

′
d) are non-singular. Let ρ = ρ2ρ1. We can again check that

ρ2ρ1ωε = ρ2e2 = ω′ε and σρ−1 = σρ−1
1 ρ−1

2 = e1ρ
−1
2 = σ′, since σ′ρ2 = e1.

Finally, we introduce a special property called interpretability that a SS can have. This
concept has led to some confusion in the past — especially regarding the relationship be-
tween OOMs and PSRs. This is due to the fact that it has been defined differently for
OOMs, IO-OOMs and PSRs, as will be discussed later. Another source of confusion is that
interpretability has been regarded as a crucial property for learning, which is however only

110

Links Between MA, OOMs and PSRs

true for the the very early learning algorithms. Here we give a definition of interpretability
that works for all models, and we will defer the discussion of the different uses to the later
sections.

Definition 14 A d-dimensional SSM is said to be interpretable w.r.t. the sets Y1, . . . , Yd ⊂
Σ∗ if the states ωx take the form ωx = [fM(xY1), . . . , fM(xYd)]

> for all x ∈ Σ∗, where
fM(xY) =

∑
y∈Y fM(xy).

The following proposition and algorithm show how to make a SS interpretable, i.e., how
to convert any given SS into an equivalent interpretable form.

Proposition 15 Let M = (σ, {τz}, ωε) be a d-dimensional minimal SS, and Y1, . . . , Yd ⊂
Σ∗. If ρ = [(στY1)>, . . . , (στYd)>]> is non-singular, where τY =

∑
y∈Y τy, then M′ :=

ρMρ−1 ∼=M and M′ is interpretable w.r.t. Y1, . . . , Yd.

Proof ∀x ∈ Σ∗ : ω′x = ρωx = [στY1τxωε, . . . , στYdτxωε]
> = [fM(xY1), . . . , fM(xYd)]

>.

Corollary 16 For a SS M, the following algorithm returns an equivalent interpretable SS.

Algorithm 3: Make a SS M of rank d interpretable

1 Minimize M, i.e., find an equivalent minimal SS M′ using Algorithm 2.

2 Construct a basis {(σ′τ ′xi)> | i ∈ I} of the co-state space W̃ ′ of M′ using Algorithm 1

Select sets Yk = {xik} where {i1, . . . , id} = I.

Set ρ = [(σ′τ ′Y1)>, . . . , (σ′τ ′Yd)>]>.

3 Return ρM′ρ−1.

Proof The above algorithm indeed returns an equivalent SS that is interpretable w.r.t. the
selected sets Yk, since M′ is minimal and therefore ρ is non-singular by construction.

3. Versions of Sequential Systems

In this section we first show that SS are an algebraic characterization of multiplicity au-
tomata (MA), and we mention the relationship to the more general class of weighted finite
automata (WFA) and its extension to weighted finite-state transducers (WFST). We then
define stochastic multiplicity automata (SMA), observable operator models (OOMs) and
predictive state representations (PSRs), which are known to generalize probabilistic finite
automata (PFA), hidden Markov models (HMMs) and partially observable Markov decision
processes (POMDPs), respectively. We show that these are all instances of SSs that are
used to model different kinds of objects. Furthermore, we examine the relations between
these models. An overview is given in Figure 1.

111

Thon and Jaeger

stochastic multiplicity
automata (SMA)

predictive state
representations

(PSRs)
≡

input-output OOMs
(IO-OOMs)

observable operator
models (OOMs)

probabilistic finite
automata (PFA)

hidden Markov
models (HMMs)

partially observable
Markov decision

processes (POMDPs)

stochastic processes controlled processesprobabilistic languages

multiplicity automata (MA) ≡ (linear) sequential systems (SS)

Figure 1: SMA, OOMs and PSRs are versions of SSs that model probabilistic languages,
stochastic processes and controlled processes respectively, and strictly generalize
PFA, HMMs and POMDPs respectively.

3.1 Multiplicity Automata and Weighted Automata

The above definition of linear finite dimensional SS is an equivalent algebraic way of looking
at a type of automata that were introduced by Schützenberger (1961) and are most com-
monly known as multiplicity automata (Salomaa and Soittola, 1978; Berstel and Reutenauer,
1988). We will give a very brief introduction.

Definition 17 A K-multiplicity automaton (MA) is a structure 〈Σ, Q, ϕ, ι, τ〉, where Σ
is an alphabet, Q is a finite set of states, ϕ : Q × Σ × Q → K is the state transition
function, ι : Q → K is the initialization function, and τ : Q → K is the termination
function. The state transition function is extended to words by setting ∀x ∈ Σ∗, z ∈ Σ :
ϕ(q, xz, q′) =

∑
s∈Q ϕ(q, x, s)ϕ(s, z, q′), and ϕ(q, ε, q′) = 1 if q = q′ and 0 otherwise. A

multiplicity automaton M then defines a function

fM : Σ∗ → K, fM(x) =
∑
q,q′∈Q

ι(q)ϕ(q, x, q′)τ(q′).

The formal equivalence of MA to linear finite-dimensional SS is easily seen by rewriting
the definition of MA in terms of matrix multiplication: Set ωε = [ι(qi)]i, τz = [ϕ(qj , z, qi)]i,j ,
and σ = [τ(qj)]

>
j . Then we have τxz = [ϕ(qj , xz, qi)]i,j = [

∑
qk∈Q ϕ(qj , x, qk)ϕ(qk, z, qi)]i,j =

[ϕ(qk, z, qi)]i,k[ϕ(qj , x, qk)]k,j = τzτx and similarly fM(x) = στxωε. However, the above
definition of MA makes it apparent how MA are an extension of non-deterministic finite

112

Links Between MA, OOMs and PSRs

automata (NFA) to WFA that add weights to the initial and terminal states as well as the
state transitions. The weight of a path from an initial state to a termination state is then
given by the product of the corresponding weights (hence the name multiplicity automata),
while the value fM(x) is computed by summing the weights of all paths compatible with x.

At this point we should mention that MA as defined here are merely a special case of
WFA. The difference is that for MA we consider weights from a field K (here K = R or
K = C), while for WFA the weights are only required to come from an algebraic structure K
called a semiring. There exists a large body of theory for WFA that generalizes the theory
of SS that we have presented in Section 2, which can be found in the recent textbook by
Droste et al. (2009). Note that while MA and WFA are formally closely related, there is
a difference in the way they are viewed and used. For instance, WFA are often considered
over the semiring R+ with weights given the interpretation of transition probabilities, which
are then called probabilistic finite automata (PFA). Such PFA are graphical models, and
the states Q are latent states. For R-MA, however, the weights are allowed to be negative,
and the weights as well as the states Q become abstract notions. In other words, PFA
(and WFA in general) are typically used when the states and transition structure carry
some meaning, while MA are typically used as an abstract tool to characterize functions
f : Σ∗ → K. This difference in perspective is reflected in the relationship of PFA to SMA,
HMM to OOM and POMDP to PSR described in the remainder of this Section 3. Note
that PFA are a special case of MA, as R+ ⊂ R. In fact, there exist functions f : Σ∗ → R+

that can be described by a MA, but not by a PFA, i.e., MA are strictly more general than
PFA. This sequence of increasing generalization starting with finite automata (FA) can be
summarized as follows:

FA ⊂ NFA ⊂ PFA ⊂ MA ≡ SS ⊂ WFA.

Furthermore, there exists a natural extension of WFA to input-output systems that
are called weighted finite-state transducers (WFST). Here, the alphabet Σ is split as Σ =
ΣI ×ΣO, where ΣI is regarded as input alphabet and ΣO as output alphabet. The function
fM : Σ∗I × Σ∗O → K is then viewed as describing a relation between ΣI and ΣO. Again,
K is in general only required to be a semiring, but a typical choice is K = R+ with
the interpretation of state transition probabilities, yielding a latent variable model called
probabilistic finite-state transducers (PFST). WFST are a flexible class of models that have
been shown to unify several common approaches used in the the context of language and
speech processing; a survey is given by Mohri et al. (2002). Furthermore, IO-OOMs and
thereby PSRs (cf. Section 3.2 and Section 3.3) are in fact WFST with weights in K = R,
although they are not usually viewed this way, as WFST are typically seen as latent variable
models, while IO-OOMs and PSRs are not. However, since PFST are MA, as long as the
desired application merely requires the characterization of the function fM : Σ∗I×Σ∗O → R+,
the SS learning algorithms described in Section 4 can be applied to the case of WFST as
well, as has been done recently by Balle et al. (2011).

Note that in the context of MA one is usually interested in characterizing functions
f : Σ∗ → K, which are also called formal series in general and recognizable series if they
are computed by a MA. However, a MAM can also be used to recognize a language L ⊆ Σ∗

by setting LM = {x ∈ Σ∗ | fM(x) ⊆ J} for some subset J ⊆ K, e.g., J = {k ∈ K : k > κ}

113

Thon and Jaeger

for some threshold parameter κ ≥ 0. The class of languages recognizable by MA is known
to be strictly more general than the class of regular languages (Cortes and Mohri, 2000).

MA have received a lot of attention in the context of learning theory following the
discovery of efficient learning algorithms (Bergadano and Varricchio, 1994; Ohnishi et al.,
1994) in an extended version of the exact learning model of Angluin (1987). This led to
further results on the learnability of several classes of DNF formulae (Bergadano et al.,
1996), the class of polynomials over finite fields, decision trees and others (Beimel et al.,
1996, 2000).

3.1.1 Stochastic Multiplicity Automata and Stochastic Languages

Additionally, MA have been applied in the context of probabilistic grammatical infer-
ence (Denis et al., 2006; Bailly et al., 2009), which is of particular interest to us because of
the close relationship of these approaches to OOMs and PSRs — as we shall see.

Definition 18 A function f : Σ∗ → R that satisfies 0 ≤ f ≤ 1 and f(Σ∗) =
∑

x∈Σ∗ f(x) =
1 is called a stochastic language, probabilistic language or just distribution over Σ∗. A dis-
tribution fM on Σ∗ that is defined by some MA M is called a rational stochastic language,
and a MA that defines such a distribution is called a stochastic MA (SMA).

Denis and Esposito (2008) give a comprehensive overview of rational stochastic languages
over various fields K, their relationships and relations to subclasses such as the important
class of probabilistic regular languages.

Definition 19 A probabilistic (finite) automaton (PFA) is a SMA with the following re-
strictions: (i) ι, τ, ϕ have values in [0, 1], and (ii) ι(Q) = 1 and ∀q ∈ Q : τ(q)+ϕ(q,Σ, Q) =
1, where ι(Q) =

∑
q∈Q ι(q) and ϕ(q,Σ, Q) =

∑
x∈Σ

∑
q′∈Q ϕ(q, x, q′). The stochastic lan-

guages that can be represented by PFA are called probabilistic regular languages.

PFA are closely related to hidden Markov models (HMMs), and the relationship has
been detailed out by Dupont et al. (2005). It is however less well known that SMA are
closely related to observable operator models — a class of models for stochastic processes
that generalize HMM in a similar way that SMA generalize PFA.

We point out two results that are relevant in the context of modeling probabilistic lan-
guages by MA. First of all, it is known that it is an NP-hard problem to compute the
maximum likelihood estimate of parameters of a PFA with known structure from a given
training set of words (Abe and Warmuth, 1992). In practice, algorithms based on expec-
tation maximization (EM) (Dempster et al., 1977) are used which compute locally optimal
models instead. In contrast to this, the algebraic theory for SSs allows for powerful learning
algorithms (see Section 4) that often outperform EM-trained PFA or HMMs (Rosencrantz
et al., 2004; Jaeger et al., 2006a). However, these learning algorithms may return MA
that are arbitrarily close to SMA but fail to represent stochastic languages. It is in fact
undecidable whether a MA represents a stochastic language (Denis and Esposito, 2004).

3.2 Observable Operator Models and Stochastic Processes

Observable operator models were introduced by Jaeger (1997) as a concise algebraic charac-
terization of stochastic processes (see also Jaeger, 1998, 2000b; Jaeger et al., 2006b). These

114

Links Between MA, OOMs and PSRs

models are closely related to other algebraic characterizations of stochastic processes (Heller,
1965; Ito, 1992; Upper, 1997) that were studied in the context of deciding the equivalence
for HMMs (Gilbert, 1959), which came to a successful conclusion by framing HMMs in the
more general class of linearly dependent processes by Ito et al. (1992).

Definition 20 A (discrete-valued) stochastic process is a function f : Σ∗ → [0, 1] that
satisfies (i) f(ε) = 1 and (ii) ∀x ∈ Σ∗ : f(x) =

∑
x∈Σ f(xx). Such a function f defines the

probabilities of initial observation sequences. An observable operator model (OOM) is a
linear SS M such that fM is a stochastic process. A stochastic process that can be modeled
by a finite dimensional OOM is called a linearly dependent process.

One of the interesting features of OOMs is their notion of “state” of a (stochastic)
process. The idea that goes back to Zadeh (1969) is that a system state is really nothing
more than the information that is required to predict the future. In the case of OOMs, the
states ωx not only carry enough information to predict the future, they are (in a certain
sense) just future predictions.

To see this, recall that the states ωx of a SS are coordinate representations of the
functions fx w.r.t. some unknown basis B of the function space F . In the case of OOMs,
these functions take on the meaning that fx(y) = P (xy), i.e., they give the probability of
observing the sequence x followed by y. These functions are therefore called future prediction
functions in the context of OOMs. The operators {τz} are then state update operators
that update a state ωx (corresponding to the future prediction function fx after an initial
observation of x) according to the new observation z to the new state ωxz (corresponding
to the future prediction function fxz after an initial observation of xz) — hence the name
“observable operators” (Jaeger, 1998).

For convenience, these functions fx, as well as the corresponding states ωx, are often
normalized to fx/f(x) and ωx/σωx respectively, since fx(y)/f(x) = στyωx/σωx = P (y|x),
the probability of observing y given that x has been observed. Therefore, an OOM started
in the normalized state ωx/σωx represents a stochastic process started after an initial ob-
servation of x. This corresponds to the notion of a residual automaton in the context of
SMA, which is obtained by starting a SMA in the (normalized) state ωx/

∑
z∈Σ∗ στzωx and

then represents a residual language (Denis and Esposito, 2004).

3.2.1 Relation to Hidden Markov Models

Any HMM can be trivially converted into an OOM. A hidden Markov model (HMM)
consists of an unobserved Markov process Xt that takes values in a finite set of states
Q = {s1, . . . , sn}, and is governed by a stochastic state transition matrix T = [P (Xt+1 =
sj |Xt = si)]i,j . At each time step an observation Yt from Σ is made according to the emis-
sion vector Ez = [P (Yt = z |Xt = si)]i. Finally, an initial state vector π = [P (X0 = si)]i is
needed to fully specify the distribution of the stochastic process Yt (Rabiner, 1989).

Proposition 21 (Jaeger, 2000b) A given HMM (T, {Ez}z∈Σ, π) with N states is equivalent
to the OOM (σ, {τz}, ωε) defined by σ = (1, . . . , 1), τz = T>diag(Ez) and ωε = π. The rank
of the OOM is less than or equal to N .

115

Thon and Jaeger

Moreover, there are examples of OOMs of finite rank that cannot be modeled by any
HMM with a finite number of states. A prototypical example is the so-called “probability
clock” (Jaeger, 1998). It is an open question how to find a “close” HMM for a given OOM.
While OOMs can be seen as a generalization of HMMs, one should keep in mind that there
is a fundamental difference in the notion of the state of the process. The state vector
in the case of a HMM is a stochastic vector that expresses the belief about the underlying
hidden state, while for an OOM it is a coordinate representation of the corresponding future
prediction function. However, under certain conditions it is possible to recover HMM-like
hidden states from an OOM (Hsu et al., 2009; Anandkumar et al., 2012).

3.2.2 Relationship to Stochastic Multiplicity Automata

The main difference between OOMs and SMA is that OOMs model stochastic processes,
while SMA model distributions on words. However, we can use a stochastic process to
model a distribution on words if we introduce a termination symbol $.

Definition 22 An OOM M over the alphabet Σ$ = Σ ∪ {$} is terminating if fM(Σ∗$) :=∑
x∈Σ∗ στ$τxωε = 1.

Proposition 23 An OOM M = (σ, {τz}, ωε) over the alphabet Σ can be extended to a
terminating OOMM′ = (σ, {τ ′z}, ωε) over the alphabet Σ$ = Σ∪{$} by setting τ ′z = (1−p)τz
and τ ′$ = pτΣ for some fixed termination probability p ∈ (0, 1), where τΣ =

∑
z∈Σ τz.

Proof We first show that M′ describes a stochastic process. Clearly, fM′ ≥ 0 and
fM′(ε) = σωε = 1. To show property (ii), take any x ∈ Σ∗$ and note that by linearity
τ ′xωε =

∑
k λkτxkωε for suitable λk ∈ R and sequences xk ∈ Σ∗ (this is obtained by re-

placing all occurrences of τ ′$ by p
∑

z∈Σ τz). Then
∑

z∈Σ$
fM′(xz) = σ(

∑
z∈Σ$

τ ′z)τ
′
xωε =

στΣτ
′
xωε =

∑
k λkστΣτxkωε =

∑
k λkστxkωε = στ ′xωε = fM′(x). Furthermore, fM′(Σ

∗$) =∑
x∈Σ∗ στ

′
$τ
′
xωε =

∑∞
l=0

∑
x∈Σl σpτΣ(1− p)lτxωε =

∑∞
l=0 p(1− p)l = 1.

Definition 24 A terminating OOM M over the alphabet Σ ∪ {$} and a SMA A over the
alphabet Σ are related, if fM(x$) = fA(x) for all x ∈ Σ∗.

Lemma 25 If A = (σ, {τz}, ωε) is a minimal d-dimensional SMA, then τΣ∗ =
∑∞

k=0 τ
k
Σ

exists and is equal to (Id − τΣ)−1, where τΣ =
∑

z∈Σ τz.

Proof We will show that the spectral radius1 ρ(τΣ) satisfies ρ(τΣ) < 1, which implies
the lemma. Assume ρ(τΣ) ≥ 1, i.e., there exists some λ ∈ C, |λ| ≥ 1 and v ∈ Cd
such that τΣv = λv. As A is minimal, we may find sequences xj , xi ∈ Σ∗ such that
Π = ((στxi)

>)>i∈I and Φ = (τxjωε)j∈J with |I| = |J | = d are non-singular using Algo-
rithm 1. Then v = Φa for some a ∈ Cd, and ΠτkΣΦa = λkΠΦa for any k ∈ N. Now the
SMA property fA(Σ∗) =

∑∞
k=0 στ

k
Σωε = 1 implies that ΠτkΣΦ → 0 as k → ∞, while the

right hand side λkΠΦa does not (note ΠΦa 6= 0), which is a contradiction.

1. For A ∈ Cn×n with eigenvalues λ1, . . . , λk, the spectral radius is defined as ρ(A) := max
i

|λi|.

116

Links Between MA, OOMs and PSRs

Proposition 26 Let A = (σ, {τz}, ωε) be a minimal d-dimensional SMA. Then M =
(σ′, {τ ′z}, ω′ε) is a related (d + 1)-dimensional terminating OOM over the alphabet Σ$ =
Σ ∪ {$}, if

• σ′ = [σ
∑∞

k=0 τ
k
Σ, 1] = [σ(Id − τΣ)−1, 1],

• τ ′z =
[
τz 0
0 0

]
, τ ′$ = [0 0

σ 1], and

• ω′ε = [ωε
0].

Proof We can simply check that for all z ∈ Σ∗$

fM(z) = σ′τ ′zω
′
ε =

σ(
∑∞

k=0 τ
k
Σ)τzωε if z ∈ Σ∗,

στxωε if z = x$. . . $ for some x ∈ Σ∗,

0 otherwise.

This implies fM ≥ 0, fM(x$) = fA(x) for all x ∈ Σ∗ (M and A are related), as well as
fM(Σ∗$) = fA(Σ∗) = 1 (M is terminating if it is an OOM). Furthermore, σ′ω′ε = fA(Σ∗) =
1 and σ′τ ′Σ$

= [σ
∑∞

k=0 τ
k
ΣτΣ + σ, 1] = σ′, which imply property (i) and (ii) for a stochastic

process respectively.

Proposition 27 Conversely, let M = (σ, {τz}, ωε) be a d-dimensional terminating OOM
over the alphabet Σ ∪ {$}. Then A = (στ$, {τz}, ωε) is a related d-dimensional SMA over
the alphabet Σ.

Proof Clearly, fA(x) = fM(x$) ≥ 0 for all x ∈ Σ∗ and fA(Σ∗) = fM(Σ∗$) = 1.

3.2.3 Historical Remarks

Note that our definition of OOMs given in Definition 20 differs slightly from the definition
typically found in the literature.

First of all, the property (ii) for a stochastic process means that an OOM must satisfy
στΣωx = σωx for all x ∈ Σ∗, which implies (ii)’ στ = σ if the OOM is minimal, but not in
general. The property (ii)’ is however often stated as part of the definition for OOMs. Our
above Definition 20 is therefore slightly more relaxed than the standard definition in the
case of non-minimal models, but this has no practical consequences.

Furthermore, for purely historical reasons, OOMs are sometimes required to satisfy
σ = (1, . . . , 1), which is mainly an issue of normalization (cf. Proposition 13). However,
this in turn has led to a more restrictive definition of interpretability for OOMs, since due
to property (i) of stochastic processes, an OOM that satisfies σ = (1, . . . , 1) can only be
interpretable with respect to sets Yk, if 1 = σωε = (1, . . . , 1) · [fM(Yi)]

>
i =

∑
k

∑
y∈Yk P (y).

This is typically assured by requiring the sets Yk to partition Σl for some l. One can relax
this restriction on the sets Yk for the definition of interpretability — as we have done in
Definition 14 — if one is willing to drop the normalization requirement σ = (1, . . . , 1) as
well.

117

Thon and Jaeger

Nevertheless, even though the normalization requirement σ = (1, . . . , 1) is superfluous,
several of the OOM learning algorithms have been designed to yield OOMs normalized
such that σ = (1, . . . , 1) — oftentimes unnecessarily complicating the algorithms — and
some proofs have made use of this normalization as well. Later in Section 4 we present
simplified and generalized versions of the EC and ES learning algorithms by removing this
normalization restriction from the algorithms and proofs.

3.3 Predictive State Representations and Controlled Processes

Following the development of OOMs for stochastic processes, extensions to the case of
controlled processes — stochastic processes that depend on an external input at each time
step — were proposed by Jaeger (1998) as input-output OOMs, by Littman et al. (2001) as
predictive state representations and as a further variant as transformed PSRs by Rosencrantz
et al. (2004). All approaches are (in the linear case) equivalent and can be easily understood
in the framework of linear SSs.

Definition 28 A (discrete-valued) controlled (stochastic) process with input from ΣI and
output in ΣO is a function p : Σ∗ → [0, 1] that satisfies (i) p(ε) = 1 and (ii) ∀x ∈ Σ∗, a ∈ ΣI :
p(x) =

∑
o∈ΣO

p(xao), where Σ = (ΣI×ΣO) and ao = (a, o). We define p(y|x) = p(xy)/p(x)
for p(x) 6= 0 and zero otherwise. An input-output OOM (IO-OOM) is just a SS that models
a controlled process.

Note that the values of p are not probabilities. One may interpret p(a1o1 . . . anon) as
P (o1 . . . on|a1 . . . an), i.e., as the conditional probability of observing the outputs o1 . . . on
given the inputs a1 . . . an. However, one must take care, as the sequence of inputs may
depend on the observed outputs as well. This is explained in more detail in Section 4.1.

Definition 29 Let p be a controlled process with predictive states ω̇h defined as ω̇h =
[p(q1|h), . . . , p(qd|h)]> ∈ Rd for h ∈ Σ∗ and some fixed set of sequences qi ∈ Σ∗. If ω̇h is a
sufficient statistic for any history h ∈ Σ∗, i.e., for every x ∈ Σ∗ there is a function mx :
Rd → [0, 1] such that p(x|h) = mx(ω̇h) for all h ∈ Σ∗, then the sequences {q1, . . . , qd} are
called core tests, which together with the initial state ω̇ε and projection functions mx form
a d-dimensional predictive state representation (PSR) for p. If the projection functions are
linear functionals (i.e., just row vectors in Rd), then the PSR is called linear.

Note that PSRs share the notion of “state” with OOMs in that the state consists of the
information required to predict the future, but PSRs additionally require the entries of the
state vectors ω̇h to be “predictions” p(qi|h) for the core tests qi. Such states are therefore
called predictive states.

We will only consider linear PSRs for controlled processes here, and show that these are
essentially SS for controlled processes (i.e., IO-OOMs) that are additionally interpretable
with respect to singleton sets (core tests). Note that there has been some confusion about
the precise relationship between PSRs and IO-OOMs, which we address in Sections 3.3.2
and 3.3.3 below.

118

Links Between MA, OOMs and PSRs

Proposition 30 Let a d-dimensional linear PSR consisting of core tests qi, projection func-
tions mx and an initial state ω̇ε for a controlled process p be given. Then an equivalent SS
M = (σ, {τz}, ωε) is obtained by setting

ωε = ω̇ε, τz = [(mzq1)>, . . . , (mzqd)>]> and σ =
∑
o∈ΣO

mao for any a ∈ ΣI .

Furthermore, M will be interpretable w.r.t. the sets {qi}.

Proof First note that σω̇x =
∑

o∈ΣO
maoω̇x =

∑
o∈ΣO

p(ao|x) = 1 for all x ∈ Σ∗ such that
p(x) 6= 0 because p is a controlled process. Next, we prove that (*) ωx = p(x)ω̇x and (**)
fM(x) = p(x) by induction on the length l of x:

• For l = 0 we have ωε = p(ε)ω̇ε and fM(ε) = σωε = σω̇ε = 1 = p(ε).

• Assume (*) and (**) are true for all x ∈ Σl. Let xz ∈ Σl+1. Then (*) ωxz =
τzωx = τzω̇xp(x) = [p(zqi|x)]>i p(x) = [p(qi|xz)]>i p(z|x)p(x) = ω̇xzp(xz) and (**)
fM(xz) = σωxz = σω̇xzp(xz) = p(xz).

Note that property (*) says that ωx = p(x)ω̇x = [p(xq1), . . . , p(xqd)]
> for all x, i.e., thatM

is interpretable w.r.t. the sets {qi}.

Proposition 31 Conversely, letM = (σ, {τz}, ωε) be a SS for a controlled process p. Then
an equivalent PSR is obtained by making the SS interpretable with respect to singleton sets
{yi} for appropriate sequences yi ∈ Σ∗ (e.g., using Algorithm 3). We can then use these as
core tests for the PSR, and set mx = στx for all x ∈ Σ∗.

Proof We assume that the SS has been made interpretable w.r.t. the sequences y1, . . . , yd.
Then the normalized states ω̇h = ωh/σωh have the form ω̇h = [p(y1|h), . . . , p(yd|h)]>. Fur-
thermore, for all h ∈ Σ∗ : mxω̇h = στxω̇h = στxτhωε/στhωε = p(x|h), as desired.

Corollary 32 A linear PSR can be specified by the parameters ({mao}, {Mao}, ω>ε) for
ao ∈ ΣI × ΣO, where Mao = τ>ao and mao = (στao)

>, and defines a controlled process via

p(a1o1 · · · anon) = ω>ε Ma1o1 · · ·Man−1on−1manon .

This is the usual way of specifying a PSR.

Note that transformed PSRs (TPSRs) are just PSRs that model controlled processes in
the form of Corollary 32 without any further requirements (i.e., without the requirement
that the states need to be interpretable). These are readily converted to SSs by setting
σ = (

∑
o∈ΣO

mao)
> for any a ∈ ΣI and using the equations from the Corollary 32 otherwise.

Note that this may not give equivalent models if the PSR does not model a controlled
process.

119

Thon and Jaeger

3.3.1 Relation to Partially Observable Markov Decision Processes

Finally, we note how to convert POMDPs into SSs (which can then be further converted
to PSRs by making the SS interpretable, as described above). A POMDP with d states
Q = {s1, . . . , sd} for a controlled process with input alphabet ΣI and output alphabet ΣO

consists of an initial belief state b ∈ Rd whose i-th element is the probability of the model
starting in state si, a state transition matrix Ta ∈ Rd×d for each action a ∈ A such that the
i, j-th entry of Ta is the probability of transitioning to state si from state sj if action a is
taken, and a vector Oao ∈ Rd for each action-observation pair ao ∈ (ΣI × ΣO) whose i-th
entry is the probability of observing o after arriving in state si by taking action a (Kaelbling
et al., 1998).

Setting O′ao = diag (Oao) we can summarize the belief-state update procedure for the
POMDP concisely by stating that a POMDP models a controlled stochastic process p via
the equation

p(a1o1 · · · anon) = (1, . . . , 1)(O′anonTan) · · · (O′a1o1Ta1)b.

Clearly, setting σ = (1, . . . , 1), τao = O′aoTa and ωε = b yields an equivalent SS.

3.3.2 IO-OOMs, Interpretable IO-OOMs, PSRs and TPSRs

We have shown above that IO-OOMs, PSRs and TPSRs are equivalent models in the sense
that they model the same class of controlled processes and that they can be readily converted
into one another. Furthermore, TPSRs are essentially IO-OOMs (except that the evaluation
functional σ is replaced by the set {mao} of evaluation functionals), while PSRs are TPSRs
(and therefore essentially IO-OOMs) with predictive states, which corresponds to IO-OOMs
being interpretable w.r.t. singleton sets (core tests). This is summarized in Table 1.

SSs for controlled
processes with. . .

single evaluation functional
σ

set of evaluation functionals
{mao}

abstract,
uninterpretable states

IO-OOMs TPSRs

predictive states
IO-OOMs that are
interpretable w.r.t.

singleton sets
PSRs

Table 1: The differences between IO-OOMs, PSRs and TPSRs

Note that we have written “IO-OOMs that are interpretable w.r.t. singleton sets” in-
stead of simply “interpretable IO-OOMs” for a reason. This is because interpretability was
originally defined for IO-OOMs in a more restrictive way (cf. Section 3.3.3). It has been
shown that not every IO-OOM has an equivalent “interpretable IO-OOM” (in the original
sense) (Singh et al., 2004), i.e., that “interpretable IO-OOMs” are less general than IO-
OOMs and PSRs. At the same time it was believed that some notion of interpretability
would be crucial for the learnability of such models, which is however not the case, as we
shall see in Section 4. Together, this has led to the false impression that PSRs are more
general than IO-OOMs.

120

Links Between MA, OOMs and PSRs

As the original notion of interpretability for IO-OOMs has turned out to be overly
restrictive, we propose to employ the notion of interpretability that we have introduced
here for SSs as the “correct” notion for IO-OOMs, and consider the original notion as
deprecated.

3.3.3 Historical Remarks

The same remarks that we have made above in Section 3.2.3 for OOMs also apply to IO-
OOMs. Namely, IO-OOMs were originally required to satisfy (ii)’: ∀a ∈ ΣI : σ

∑
o∈ΣO

τao =
σ instead of the the property (ii) for a controlled process. This is equivalent for minimal
models, but slightly more restrictive in general. However, as every SS can be minimized,
this has no practical consequences.

Furthermore, IO-OOMs were originally typically required to satisfy σ = (1, . . . , 1), which
is again merely a matter of normalization. However, an IO-OOM that satisfies σ = (1, . . . , 1)
can only be interpretable with respect to the sets Yk, if 1 = σωε = (1, . . . , 1) · [fM(Yi)]

>
i =∑

k

∑
y∈Yk p(y). It turns out that this can be assured by requiring the sets Yk to partition

Σl
O×{a1}× · · ·×{al} for some l and a fixed sequence a1 . . . al of inputs called a characteri-

zation frame. This restriction on the choice of sets Yk therefore became part of the original
definition of interpretability for IO-OOMs.

Unfortunately, unlike the case for OOMs, the resulting original notion of interpretability
for IO-OOMs has turned out to be a severe limitation (Singh et al., 2004).

However, one may use the more general notion of interpretability given in Definition 14
for IO-OOMs instead, if one is willing to drop the (unnecessary) normalization requirement
σ = (1, . . . 1).

3.4 Extensions

In this section we have presented SMAs, OOMs and PSRs as versions of linear sequen-
tial systems — or more generally weighted finite automata — that model probabilistic
languages, stochastic processes and controlled processes respectively, as is summarized in
Figure 1. For completeness, we wish to briefly mention some extensions of these basic model
types that have been studied, but which are beyond the scope of this paper.

First of all, various non-linear SSs exists. For instance, several versions of quantum
finite automata have been studied (Kondacs and Watrous, 1997; Moore and Crutchfield,
2000). One form are SSs (σ, {τx}, ωε ∈ CP d) where the operators τx are unitary and
σ(τxωε) = ||πτxωε||2 for some projection π and the Fubini-Study metric || · || (Moore and
Crutchfield, 2000). A similar type of OOMs exist which are called norm-OOMs. These are
SSs (σ, {τx}, ωε ∈ Rd) such that

∑
x∈Σ τ

>
x τx = I and σ(τxωε) = ||τxωε||2. Such norm-OOMs

describe stochastic processes and can always be converted into an equivalent OOM (Zhao
and Jaeger, 2010). Recently, quadratic weighted automata have been proposed by Bailly
(2011), where a SS M is learnt for

√
f and a product SS M ⊗M is constructed that

satisfies fM⊗M = f2
M ≈ f . All of these approaches avoid the “negative probabilities

problem”, where the estimated model fM may violate the requirement fM ≥ 0. Non-linear
versions of PSRs have also been investigated, which have been shown to in some cases yield
representations for deterministic dynamical systems that are exponentially smaller than a
minimal OOM representation (Rudary and Singh, 2003).

121

Thon and Jaeger

Furthermore, OOMs and PSRs are models for discrete-valued stochastic (controlled)
processes. Many real-world processes of interest are, however, continuous-valued. A con-
tinuous version of OOMs exists that extends semi-continuous HMMs (Jaeger, 2000a), and
WFST have been similarly extended to allow for continuous inputs (Recasens and Quattoni,
2013). Multivariate continuous inputs and outputs are handled using features of observa-
tions by reduced-rank HMMs (Siddiqi et al., 2010). So called predictive linear Gaussian
models (PLGs), which are based on PSRs, closely resemble linear dynamical system mod-
els (Rudary et al., 2005; Wingate and Singh, 2006a,b; Rudary and Singh, 2006, 2008) and
are further generalized by exponential family PSRs (Wingate and Singh, 2008b,a). A gen-
eralization of OOMs using Hilbert space embeddings was introduced by Song et al. (2010).
This has been further refined and extended to include features and can now be employed
— among other things — for controlled processes and to planning in reinforcement learning
tasks (Boots and Gordon, 2010; Boots et al., 2010, 2013).

4. Learning

In this section we present a general approach to learning SSs from data. We show how
several of the learning algorithms that have been proposed for SMA, OOMs and PSRs can
be understood in this framework, and that in fact many of the proposed learning algorithms
are closely related.

We begin by establishing a result that lies at the heart of the learning algorithms, which
was formulated by Kretzschmar (2001) for the case of OOMs. Assuming a function fM can
be described by some minimal SSM, it allows us to reconstruct an equivalent SSM′ from
data given in the form of finitely many function values of fM — as long as these are given
exactly and we know the rank d of the underlying model M. We will therefore refer to the
Equations (2) as the learning equations.

Proposition 33 For a minimal d-dimensional SS M = (σ, {τz}, ωε), let {τxjωε | j ∈ J}
and {(στ>xi)> | i ∈ I} be finite sets that span the state space W and the co-state space W̃

respectively. Define F I,J = [fM(xjxi)](i,j)∈I×J and F I,Jz = [fM(xjzxi)](i,j)∈I×J . Further-

more, define F I,0 = [fM(xi)]i∈I and F 0,J = [fM(xj)]
>
j∈J . Let C ∈ Rd×|I| and Q ∈ R|J |×d

be rank d matrices such that CF I,JQ is invertible. Then the SS M′ = (σ′, {τ ′z}, ω′ε) defined
as follows is equivalent to M:

σ′ = F 0,JQ(CF I,JQ)−1,

τ ′z = CF I,Jz Q(CF I,JQ)−1,

ω′ε = CF I,0.

(2)

Furthermore, CF I,J = (ω′xj)j∈J and CF I,Jz = (ω′xjz)j∈J , where ω′x = τ ′xω
′
ε are states of the

SS M′.

Proof Let Π = ((στxi)
>)>i∈I , Φ = (τxjωε)j∈J . Then F I,J = ΠΦ, F I,Jz = ΠτzΦ, F I,0 = Πωε

and F 0,J = σΦ. We can then simply calculate τ ′z = CΠτzΦQ(CΠΦQ)−1 = CΠτz(CΠ)−1,
as well as ω′ε = CΠωε and σ′ = σΦQ(CΠΦQ)−1 = σ(CΠ)−1. That is, we have shown that
M′ = ρMρ−1 for the non-singular transformation ρ = CΠ. Furthermore, CF I,J = CΠΦ =

122

Links Between MA, OOMs and PSRs

ρΦ = (ρτxjωε)j∈J = (τ ′xjω
′
ε)j∈J , and analogously for CF I,Jz .

The matrices C and Q that appear in the learning Equations (2) are indeed arbitrary
(provided that CF I,JQ has the correct dimension d and full rank), as long as the function
values fM(x) are given exactly. However, if one only has access to estimates f̂(x), then
the selection of C and Q plays a crucial role in obtaining good model estimates, as will be
further discussed in Section 4.4.

Furthermore, note that we generally do not know a priori which sets of words to consider
such that {τxjωε | j ∈ J} and {(στ>xi)> | i ∈ I} span the state and co-state spaces W and W̃
of M. Proposition 6 guarantees that it suffices to consider all words of length at most d,
but the rank d of M is generally unknown as well. Selecting appropriate sets of words xi
and xj and an appropriate model dimension d are therefore crucial and non-trivial steps in
learning models from data.

We can turn the above Proposition 33 into a generic learning procedure for SSs:

Algorithm 4: General procedure for learning a SS from data

1 Obtain estimates f̂(x) of the function values f(x) for words x ∈ Σ∗.

2 Choose finite sets {xj | j ∈ J}, {xi | i ∈ I} ⊂ Σ∗, which we call sets of indicative and

characteristic words respectively. Then assemble the estimates f̂(x) into estimates of
the matrices F̂ I,J , F̂ I,Jz , F̂ I,0 and F̂ 0,J .

3 Find a reasonable target dimension d for the model to be learnt.

4 Choose C ∈ Rd×|I| and Q ∈ R|J |×d called the characterizer and indicator, such that

CF̂ I,JQ is invertible.

5 Apply the learning Equations (2) to obtain a model estimate M̂.

At this point we should clarify what is meant here by learning a model from data. For
general MA the goal is often to reconstruct an automaton from as few membership queries
— obtaining the value f(x) for some x ∈ Σ∗ — and equivalence queries — proposing a
function h and receiving a counterexample x such that h(x) 6= f(x) if h 6= f — as possible.
This is an extended version of the exact learning model of Angluin (1987). However, in the
case of SMA, OOMs and PSRs, the external function represents a distribution. Therefore,
in these cases it is usual to assume that we observe samples from this distribution and wish
to estimate model parameters from the given samples such that the estimated model best
describes the underlying distribution — “best” in a sense that depends on the context and
the approach taken by a specific learning algorithm.

We should also mention one common problem when learning SMAs, OOMs and PSRs
from data. Namely, even if the function fM in question can be described by a SMA, OOM
or PSR modelM, the learnt model M̂ will only be an approximation toM and will describe
a function fM̂ that may not satisfy the properties of a probabilistic language, stochastic

process or controlled process, respectively, i.e., the learnt model M̂ may not be a SMA,
OOM or PSR. What typically happens is that the learnt model M̂ will predict “negative
probabilities” for certain sequences x. Moreover, it is an undecidable problem whether a

123

Thon and Jaeger

given SS M̂ satisfies fM̂ ≥ 0, and therefore, whether it is a SMA — a result that carries over
to OOMs and PSRs as well (Wiewiora, 2008). In practice, there are three basic ways to deal
with this “negative probabilities problem”: First of all, one can resort to alternative models
as described in Section 3.4 that preclude the problem by design. For the particular case
of quadratic weighted automata the learning procedure presented here still applies (Bailly,
2011), but in general one will need alternative learning algorithms. Secondly, one may
attempt to learn a restricted class of SS such as PFA, HMMs or POMDPs by enforcing
additional constraints on the parameters of the SS. This can be achieved either by adding a
set of convex constraints to a generalized version of the spectral learning method presented
in Section 4.4.2 (Balle et al., 2012), or by an additional conversion step (Anandkumar et al.,
2012), which however may fail. Finally, one may work with such an “invalid” SS model by
employing a simple and effective heuristic as described by Jaeger et al. (2006b, Appendix
J) to normalize all model predictions to fall into the desired range.

Finally, we will briefly remark on the runtime characteristics of the above learning
procedure. Steps 1 and 2 can be accomplished in time O(N), where N is the size of
the training data, for most strategies mentioned in Section 4.2 by employing a suffix tree
or similar representation of the training data. For a given target dimension d, Step 4,
when solved via the EC (Section 4.4.3) or spectral algorithms (Section 4.4.3), requires the
O(d|I||J |) computation of a d-truncated singular value decomposition (SVD) of F̂ I,J , while
the ES algorithm (Section 4.4.4) requires O(d2lmax{|I|, |J |}) operations to compute C,
where l is the (generally very small) average length of characteristic and indicative words,
and O(d|I||J |) operations to compute Q — per iteration (but one typically uses a constant
number of iterations), which therefore amounts to a run-time of O(d|I||J |) as well. Solving
the learning Equations (2) for Step 5 essentially requires the computation of the operators
τ̂z, which costs O(d|I||J ||Σ|) operations. So for a known target dimension d, the above
learning procedure typically requires O(N + d|I||J ||Σ|) operations. Step 3 can be solved
by computing a dmax-truncated SVD of F̂ I,J for some upper bound dmax < min{|I|, |J |}
on the target dimension, which incurs a runtime costs of O(dmax|I||J |), or by using cross-
validation, which requires repeatedly performing, for various choices of d, Steps 4 and 5
as well as evaluations on test data of size T , which we assume to be constant, incurring a
runtime cost of O(d log(d)|I||J ||Σ|), where d is the finally selected model dimension.

In the following, we will discuss the steps of the learning procedure in more detail.

4.1 Obtaining Estimates f̂(x)

This step clearly depends on the context we are dealing with. Recall that in the context
of SMA, the functions we are considering are distributions on words, while in the context
of OOMs and PSRs they represent stochastic processes and controlled processes respec-
tively. The following Remarks 34 to 36 summarize how to obtain these estimates in the
different scenarios of probabilistic languages, stochastic processes and controlled processes,
respectively.

Remark 34 Let f : Σ∗ → [0, 1] be a distribution on Σ∗, and let S = (s1, s2, . . . , sN) be

a collection of N samples from f . Then f̂(x) = #(x)
N , where #(x) denotes the number of

occurrences of x in the sample S, is a consistent estimator for f(x).

124

Links Between MA, OOMs and PSRs

In the case of stochastic processes, one typically observes few (or even just one) long
initial realization of the process. In this case it is still possible to obtain the desired estimates
if the stochastic process is stationary and ergodic2 by invoking the ergodic theorem and
using time-averages as estimates. The same idea is commonly used in the case of controlled
processes as well and called suffix-history method in the PSR community.

Remark 35 Let f : Σ∗ → [0, 1] be a stationary and ergodic stochastic process, and let
s̄ = s1s2 . . . sN be a finite initial realization of length N from this process. Then

f̂(x) =
#(x)

N − |x|+ 1
,

where #(x) denotes the number of occurrences of x in the sequence s̄ is a consistent esti-
mator for f(x).

In the case of controlled processes the situation is more complicated. It is important
to have a good understanding of the meaning of the value f(x) when f is a controlled
process and x = a1o1 . . . anon ∈ (ΣI ×ΣO)n is some input-output sequence. Intuitively, this
is the probability of the system output o1 . . . on conditioned on the system input a1 . . . an.
This is sometimes written as f(a1o1 . . . anon) = P (o1 . . . on | a1 . . . an) even though this

notation is misleading, as it suggests that P (o1 . . . on | a1 . . . an) = P (a1o1...anon)
P (a1ΣO...anΣO) , which is

false (Bowling et al., 2006). To clarify this, consider the stochastic process that is specified
by the controlled process f together with some system input specification. This stochastic
process is governed by probabilities of the form

P (a1o1 . . . anon) =

n∏
k=1

P (ok | a1o1 . . . ak) ·
n∏
k=1

P (ak | a1o1 . . . ak−1ok−1).

The second factor in the equation models the system input and is sometimes called the
input policy π, while the first factor models the system output and is just the controlled
process f . Therefore, for x = a1o1 . . . anon,

f(x) = P (o1 . . . on | a1 . . . an) =
n∏
k=1

P (ok | a1o1 . . . ak) =
P (x)

π(x)
. (3)

Note that for the special case of a blind input policy π — one that does not depend on
the observed output, i.e., that satisfies P (ak | a1o1 . . . ak−1ok−1) = P (ak | a1 . . . ak−1) for all
x — we in fact do have π(x) = P (a1ΣO . . . anΣO).

From the above Equation (3), the following estimates are derived (Bowling et al., 2006):

Remark 36 Let f : Σ∗ → [0, 1] be a controlled process, and let s̄ = a1o1 . . . aNoN be a finite
initial sample from f according to some input policy π, such that the resulting stochastic
process is stationary and ergodic. Then

f̂(x) =
n∏
k=1

#(a1o1 . . . akok)

#(a1o1 . . . ak)

2. A stationary ergodic process is a stochastic process where the statistical properties do not change with
time (stationarity) and where these can be estimated as time-averages from a single long sample (ergod-
icity). For details, see for example the textbook by Gray (1988)

125

Thon and Jaeger

is a consistent estimator for f(x). If the input policy π is known, then

f̂(x) =
#(x)

N − |x|+ 1
· 1

π(x)

is also a consistent estimator which may be used instead. Again, #(x) denotes the number
of occurrences of x in the sequence s̄.

None of the above estimates exploits the rich structure of the matrix F . If required,
some of the convex constraints that the matrix F must satisfy can be ensured by applying
an additional normalization step to the estimated matrix F̂ , as done by McCracken and
Bowling (2006). These convex constraints — including a convex relaxation of the rank
constraint — may also be used to infer missing values if some entries f̂(x) cannot be
obtained directly, which becomes relevant in the context of learning more general (e.g.,
non-stochastic) weighted automata (Balle and Mohri, 2012), or to infer sequence alignment
when learning WFST from unaligned input-output sequences (Bailly et al., 2013).

4.2 Choosing Indicative and Characteristic Words

Choosing indicative and characteristic words {xj | j ∈ J}, {xi | i ∈ I} ⊂ Σ∗ is equivalent
to selecting which columns J and rows I of the system matrix F to estimate. Clearly,
it is only possible to obtain a correct estimate for f if I and J are selected such that
rank(F) = d = rank(F I,J). It is however unclear how to satisfy this if the true rank is
unknown or even impossible if rank(F) = ∞ — as may often be the case for real-world
examples. Determining an appropriate rank for the model will be discussed in the following
section.

One approach is, however, to attempt to select minimal sets of indicative and charac-
teristic words such that rank(F) = rank(F I,J). Such minimal sets are called sets of core
histories and core tests in the context of PSRs, and their selection is called the discovery
problem. This problem is easily solved by Algorithm 1 once a (minimal) SS model for f is
known. For the case where only function values of f are available, an iterative procedure has
been proposed (James and Singh, 2004) that, starting with the empty words, adds in each
iteration all length-one extensions of previously found core histories and tests, but retains
only a minimal set needed to span F̂ I,J . Since any noisy matrix is typically non-singular,
some notion of numerical linear independence is used to decide which words to retain in
each step. It is important to note that there exist simple examples of finite rank where this
iterative procedure fails to deliver sets of core histories and tests (James and Singh, 2004),
i.e., it does not in general solve the discovery problem. A similar algorithm called DEES
has been proposed in the context of learning SMA (Denis et al., 2006). The algorithms for
learning MA in the exact learning framework also work by finding a minimal set of indica-
tive and characteristic words, but there it is assumed that the function f may be queried
exactly, and furthermore equivalence queries are employed to find additional core tests and
histories (Ohnishi et al., 1994; Bergadano and Varricchio, 1994; Beimel et al., 2000).

It is important to note that there is no requirement to find minimal or even small sets of
indicative and characteristic words, i.e., one does not need to solve the discovery problem
when learning SS models from data (and once a SS model has been learnt, the problem is
easily solved by Algorithm 1). In fact, using small such sets means that less of the available

126

Links Between MA, OOMs and PSRs

training data will enter the model estimation, i.e., the available data will be under-exploited.
It is therefore desirable to use (much) larger sets of indicative and characteristic words than
strictly needed.

An approach which is in some sense complementary is to use all sequences of a given
length l. By Proposition 6 one can ensure rank(F I,J) = d by choosing l ≥ d. However,
this is highly impractical, since the size of F̂ I,J grows exponentially with l. Also, many of
the estimates in F̂ I,J will be based on very few — if any — occurrences in the available
training data. Nevertheless, choosing a length l � d and utilizing as indicative as well as
characteristic words all words of length l that occur at least once in the training data often
gives good results (Zhao et al., 2009a).

A further approach is to select as indicative and characteristic words all those that
actually occur in the data and therefore allow data-based estimates (Bailly et al., 2009).
However, it is reasonable to disallow indicative (resp. characteristic) words that are suffixes
(resp. prefixes) of some other indicative (resp. characteristic) word if they always occur
at the same positions in the training data, as these would just lead to identical columns
(resp. rows) in the estimated matrices that are based on the same parts of the training
data (Jaeger et al., 2006b). Moreover, one may select only the words that occur most
frequently in the data (Balle et al., 2014). These approaches yield a choice of indicative and
characteristic words that is matched to the available training data and can be computed
in time O(N) where N is the size of the training data by using a suffix tree or similar
representation of the training data.

Finally, it is also possible to group words into sets of words (as is also done in Defini-
tion 14) that we call events, and to use indicative and characteristic events in place of words.
This corresponds to adding the respective columns and rows in the matrices F̂ I,J , F̂ I,Jz , etc.
and can be formally accomplished by a special selection of the indicator and character-
izer matrices Q and C. Finding good indicative and characteristic events was the strategy
adopted by early OOM learning algorithms (Jaeger, 2000b). A further generalization of
this idea of considering events in place of words is proposed by Wingate et al. (2007). Using
such events may carry an additional advantage if the estimation of f̂(Y) from the available
data can be performed more efficiently or accurately than computing f̂(Y) =

∑
x∈Y f̂(x).

4.3 Determining the Model Rank

We should note that the goal of this step may be stated in two different ways. First of all, we
may be interested in estimating the true rank of the external function f and use this as the
model rank. On the other hand, we may rather be interested in choosing any model rank
that allows for a good approximation of the external function f from the available data.
These goals are related, as one can only hope to estimate an exact model if the model rank
is at least rank(f). However, they are not the same, and it depends on the context which
approach is most appropriate. For instance, if it is known that the external function f must
have a small finite rank, which may even carry some meaning, it may be desirable (and
well-defined) to estimate this true rank from the data. On the other hand, when dealing
with real-world systems of possibly infinite rank, and faced with generally limited training
data, it may not even make sense to speak of the correct model rank. In such cases one will
typically use the second approach, which is really an instance of the bias-variance dilemma.

127

Thon and Jaeger

4.3.1 Estimating the True Rank

For suitably chosen indicative and characteristic words, one can expect to have rank(f) =
rank(F I,J). However, since one only has access to an estimate F̂ I,J of this matrix, a
typical approach is to determine what is known as the numerical rank (or effective rank or
pseudorank). We give a brief description following Hansen (1998).

The numerical ε-rank rε of a matrix A may be defined as the smallest rank of any matrix
that can be obtained from A by a small perturbation E of size at most ε:

rε(A) = min
||E||≤ε

rank(A+ E).

In terms of the singular values σ1 ≥ · · · ≥ σK of A this means that rε satisfies σrε >
ε ≥ σrε+1 if the size of the perturbation E is measured by the spectral norm || · ||2, or
alternatively that rε is the smallest k such that

∑K
i=k+1 σ

2
i ≤ ε2 if the Frobenius norm || · ||F

is used instead. Both criteria can be used to determine rε.

Assuming that A is only an estimate of an underlying matrix Ã, it makes sense to
choose ε to be of the same order as the expected size of the error, i.e., ε ≈ E[||A− Ã||]. The
numerical rank of A is then rε(A) for some reasonable choice of ε. Note that the notion of
numerical rank makes sense if the errors on matrix entries of A are of comparable magnitudes
and can be reasonably quantified, and if there is a significant gap between σrε and σrε+1.
Otherwise, the numerical rank is somewhat arbitrary. It is furthermore important to note
that the numerical rank measures how many dimensions can be significantly distinguished
from noise. It is therefore only a lower bound for the true rank of the underlying matrix.

The main difficulty in determining the numerical rank of the matrix F̂ I,J therefore lies
in finding a suitable ε. This may be approached by obtaining estimates for or bounds on the
variances of the individual matrix entries (Jaeger, 1998; James and Singh, 2004), which may,
however, differ widely across F̂ I,J . These approaches will therefore lead to very conservative
estimates of the rank. Still, these estimates will be consistent, i.e., will converge to the true
rank in the limit of infinite training data.

Independent of such error estimates it may be reasonable to assume that there will be a
relative “gap” between σd+1 and σd in the singular value spectrum of F̂ I,J around the true
rank d = rank(F I,J). A recently proposed method searches for such a gap starting from
σrε , where the numerical rank rε of F̂ I,J is used as a lower bound for the true rank (Bailly
et al., 2009).

4.3.2 Finding a Suitable Model Rank

Intuitively speaking, the model rank should be chosen sufficiently large to be able to repre-
sent the complexity of the data, but not too large, as otherwise overfitting results.

One standard approach is to use cross-validation. For this, one needs to split the avail-
able data into training and test data. One then estimates models of various ranks from the
training data and evaluates these on the test data, for instance by calculating the log likeli-
hood of the test data under the models. Finally, one chooses the model rank that gives the
best performance. Care must be taken when estimating models for controlled or stochastic
processes from one long training sequence s̄, as this sequence cannot be partitioned arbi-
trarily into training and test sets, and the distribution over future observations given a

128

Links Between MA, OOMs and PSRs

history of observations at some time t may differ from the initial distribution. Additionally,
performing cross-validation is computationally intense.

In comparison, the above methods based on calculating the numerical rank of F̂ I,J are
elegant algebraic approaches to the problem. Recall that the numerical rank will reflect the
number of dimensions present in the training data that can be distinguished from noise. It
is therefore reasonable to postulate that the numerical rank of F̂ I,J might be a well-suited
choice for the model dimension.

Interestingly, though, there is some evidence that at least the EC and spectral learning
procedures described in the following section do not seem to suffer much from overfit-
ting (Zhao et al., 2009a). In practical applications it may therefore be viable to simply
pre-select a high model dimension.

Deeper insight into this crucial part of the learning procedure is unfortunately lacking.
Further research into this question is therefore needed.

4.4 Selecting the Characterizer and Indicator

The effect of the characterizer C and indicatorQ is to reduce the available data in F̂ I,J , F̂ I,Jz ,
F̂ I,0 and F̂ 0,J to a d-dimensional representation, where d is the chosen target dimension for
the model to be learnt.

Assuming that d = rank(F) = rank(CF I,JQ), the matrices CF I,JQ,CF I,Jz Q,CF I,0,
and F 0,JQ together contain the same information as F and are sufficient to reconstruct a
SS model for f via the learning Equations (2). The requirement that CF I,JQ must have
full rank d therefore ensures that no information is lost.

In fact — provided that CF I,JQ has full rank d — really any choice of characterizer and
indicator may be used and will lead to a consistent model estimation, i.e., a correct model
will be obtained in the limit of infinite training data. Hamilton et al. (2013) show that for
certain dynamical systems a random choice of characterizer C does indeed work well.

However, in general the choice of characterizer C and indicator Q is central to achieving
statistical efficiency, i.e., making efficient use of the available training data. This step lies
at the heart of the learning procedure, and in fact much research — even if not explicitly
stated — can be seen as optimizing this step of the learning algorithm.

4.4.1 By Selection / Grouping of Rows and Columns of F̂

It is important to note that the choice of indicative and characteristic words discussed in
Section 4.2 can be viewed equivalently as a special choice of characterizer and indicator. To
see this, assume one could estimate the entire matrix F̂ from data. Then any selection of
rows I and columns J from F̂ can be achieved by characterizer and indicator matrices C,Q
of the form C = C ′CI and Q = QJQ′, where CI and QI are appropriate binary matrices
with a single one entry in the corresponding columns or rows, and zeros otherwise, such
that CI F̂QJ = F̂ I,J . This can easily be extended to account for groupings of words into
events by allowing several one entries per column / row of CI , QJ respectively.

One advantage of this point of view is that this immediately justifies grouping of words
into events, as suggested in Section 4.2. But more importantly, this highlights that choosing
indicative and characteristic words as described in Section 4.2 is in fact a restricted approach
to the more general problem of finding appropriate characterizer and indicator matrices. We

129

Thon and Jaeger

argue that a good choice of characterizer and indicator is the key to achieving high statistical
efficiency of the learning procedure and that therefore the (pre-)selection of indicative and
characteristic words should be guided by trying to retain as much information from the
available training data as possible. In other words, the (pre-)selection of indicative and
characteristic words in Section 4.2 is primarily a practical necessity that should rather be
seen as discarding rows and columns from F̂ that carry only little or no information.

4.4.2 Spectral Methods

Recall that the j-th columns of the matrices F and Fz correspond to the functions fxj
and fxjz, and that the operator τz of any minimal model M for f — regarded as a linear
operator τ̃z on the space F — satisfies τ̃z(fxj) = fxjz (cf. Proposition 1). The matrix τz
is just a representation of this operator with respect to some basis of F . We can therefore
regard the columns of F and Fz as argument-value pairs for the operator τ̃z, from which
we can recover τ̃z. To obtain a matrix representation τz, we need to fix some basis for the
column space F , which corresponds to mapping the columns of F and Fz to Rd — this is
accomplished by the characterizer C.

We are only given estimates F̂ I,J and F̂ I,Jz . The idea of the spectral methods is to
find an estimate of the column space F̂ by projecting the columns of F̂ I,J and F̂ I,Jz to a
best rank d representation (best in the least squares sense). This is accomplished by the
d-truncated SVD. We then estimate the matrices τ̂z via least squares linear regression from
the so obtained argument-value pairs. Note that the column space F is already spanned by
the columns of F I,J — if I and J are chosen appropriately — and we may therefore base
the estimate of the principal subspace F̂ on the estimate F̂ I,J only. Formally, this means:

Algorithm 5: Spectral method for computing characterizer C and indicator Q

1 Compute UdSdV
>
d , the d-truncated SVD of F̂ I,J .

2 Set C = U>d and Q = (CF̂ I,J)† = VdS
†
d.

Note that UdSdV
>
d indeed gives the best rank d approximation to F̂ I,J with respect

the Frobenius norm by the Eckart-Young theorem (Eckart and Young, 1936). However, the
matrix F I,J

M̂
reconstructed via the so learnt model M̂ — which will clearly have rank at

most d — will in general not be a best rank d approximation to F̂ I,J . This is due to the
fact that constructing F I,J

M̂
from the model M̂ enforces additional structure. Interestingly,

we have observed that the reconstructed matrix F I,J
M̂

is often a better approximation to the

true matrix F I,J than either of F̂ I,J and its best rank d approximation.

This spectral approach is often referred to as principal component analysis (PCA).
However, PCA typically involves mean-centering the data first. PCA projects the data
onto a d-dimensional affine subspace that contains the data mean, while here we know that
the data F̂ I,J lie approximately on a true subspace (even though they do not have zero
mean). Mean-centering the data is therefore inappropriate in this context — nevertheless,
it it sometimes done anyway (Bailly et al., 2009). To avoid confusion, we refer to learning
algorithms based on this idea simply as spectral learning algorithms (Rosencrantz et al.,
2004; Hsu et al., 2009; Bailly et al., 2009; Siddiqi et al., 2010; Boots and Gordon, 2010;
Bailly, 2011; Balle et al., 2011, 2014). Furthermore, an online version of this spectral

130

Links Between MA, OOMs and PSRs

learning algorithm has been developed by Boots and Gordon (2011), whereas a modification
that combines the subspace estimation step (determining the characterizer C) and linear
regression step (solving the learning Equations 2) into a single optimization problem is given
by Balle et al. (2012).

Clearly, these methods are motivated by trying to find a model M̂ of rank d such that
its external function fM̂ best approximates the estimated external function f̂ . To make
this precise, one needs to define a distance measure on functions in R〈〈Σ〉〉. In the case of
stochastic languages the functions all lie in the Hilbert space l2(Σ∗) and the metric of this
function space may be used. For stochastic processes, a natural choice may be the cross-
entropy. This will be related to finding a maximum-likelihood estimate of model parameters
from data. So far, none of these questions has been resolved. However, sample complexity
results that fall into the probably approximately correct (PAC) learning framework (Valiant,
1984) are available for several spectral learning algorithms (Hsu et al., 2009; Bailly et al.,
2009; Siddiqi et al., 2010; Bailly, 2011). These give bounds on the number or size N of
samples that are required to obtain a model estimateM that is approximately correct (i.e.,
such that |fM − f | < ε for a given ε and a specified distance measure) with probability at
least 1 − δ for a given δ. Typically, the required size N is shown to be polynomial in the
PAC parameters 1/ε and 1/δ, as well as other parameters that depend on f such as the
alphabet size |Σ| and the rank of f .

Finally, we mention a shortcoming of the spectral methods as they are commonly used.
They implicitly assume that the variances of the estimates f̂(xjxi) are all of the same order.
This, however, is clearly not the case, which suggests that replacing the SVD computation by
a weighted low-rank matrix approximation (Markovsky and Huffel, 2007a) and the linear
regression of the learning Equations (2) by weighted total least squares (Markovsky and
Huffel, 2007b) may give better results, as long as weights that reflect the precision of the
estimates f̂(x) can be estimated reliably from the available data. In fact, if the variances
Var(f̂(xjxi)) can be estimated and — even approximately — factored as Var(f̂(xjxi)) =
vjwi > 0, then this leads to a simple row and column weighted spectral learning method:

Algorithm 6: Row and column weighted spectral learning

1 Let DI = [diag(wi)i∈I]
− 1

2 and DJ = [diag(vj)j∈J]−
1
2 be suitable row and column

weight matrices

2 Let F̃ I,J = DI F̂
I,JDJ and F̃ I,Jz = DI F̂

I,J
z DJ

3 Let ŨdS̃dṼ
>
d be the d-truncated SVD of F̃ I,J

4 Let C = Ũ>d DI and Q = DJ(CF̃ I,JDJ)† = DJ ṼdS̃
†
d.

We mention this particular row and column weighted approach here, as it is simple,
effective, and we will show that it is closely related to the ES approach described in Sec-
tion 4.4.4.

4.4.3 The EC Algorithm

The error controlling (EC) approach selects characterizer and indicator matrices C and Q
that minimize an error bound for the relative approximation error of the estimated model
parameters (Zhao et al., 2009a). This algorithm was originally formulated for OOMs only,
and made use of the normalization σ = (1, . . . , 1) that is often used in the context of OOMs.

131

Thon and Jaeger

This in turn imposed additional restrictions on the admissible selections of indicative and
characteristic words. Here, we present a more general and yet simplified EC approach that
eliminates these restrictions and applies to learning SMA, OOMs, IO-OOMs and PSRs
alike.

To formalize this, first assume we have fixed C and Q, and derived estimated operators
τ̂z and correct operators τz from the estimates F̂ I,J , F̂ I,Jz and the correct matrices F I,J ,
F I,Jz respectively using the learning Equations (2). Note that these depend on the choice
of C and Q. To write things more concisely, denote the matrix obtained by stacking the
τz operators by τ∗ = [τz1 ; . . . ; τzl] (using MATLAB notation), where Σ = {z1, . . . , zl}, and

τ̂∗ = [τ̂z1 ; . . . ; τ̂zl]. Similarly, construct the matrices F I,J∗ and F̂ I,J∗ by stacking the F I,Jz and

F̂ I,Jz respectively.

Proposition 37 For a given choice of C and Q, and using the above definitions, the esti-
mate τ̂∗ has a relative approximation error

‖τ∗ − τ̂∗‖F
‖τ∗‖F

≤ κ
(
‖F I,J − F̂ I,J‖F +

√
l

ρ(τΣ)
‖F I,J∗ − F̂ I,J∗ ‖F

)
,

where ρ(τΣ) is the spectral radius of the matrix τΣ, which is independent of the choice of C
and Q, and κ = ‖C‖F ‖Q(CF̂ I,JQ)−1‖F .

This is a slightly improved and more general version of the central Proposition 3 pre-
sented in (Zhao et al., 2009a). For completeness, the proof is given in the appendix.

The EC algorithm then selects C,Q in such a way that the quantity κ is minimized,
which is equivalent to the optimization problem

(C,Q) = argmin
(C,Q)

{‖C‖F ‖Q‖F : CF̂ I,JQ = Id}, (4)

since every (C,Q) that minimizes κ gives a solution (C,Q′) to Equation (4) by substituting
Q′ = Q(CF̂ I,JQ)−1 and noting (CF̂ I,JQ′) = Id. This optimization problem can be solved
efficiently by the following iterative procedure (Zhao et al., 2009a):

Algorithm 7: The C, Q optimization resulting from the EC approach

initialize C ∈ Rd×|I| randomly
repeat

Q = (CF̂ I,J)†, C = (F̂ I,JQ)†

until convergence of ‖C‖F ‖Q‖F
Although not previously realized, this turns out to be related to a well-known EM-based

algorithm for principal component analysis for which it is known that the rows of C (upon
convergence) will span the space of the first d principle components of F̂ I,J (Roweis, 1998).
We can use this relationship to gain the following insight.

Proposition 38 Assuming the model rank d is chosen such that the singular values σi
of F̂ I,J satisfy σd > σd+1, the EC algorithm as presented here and the spectral method
presented in the previous section will lead to equivalent models.

132

Links Between MA, OOMs and PSRs

Proof Note that the condition σd > σd+1 merely says that rank(F̂ I,J) ≥ d and that the
d-dimensional principal subspace of F̂ I,J is unique. Let C and Q = (CF̂ I,J)† be the char-
acterizer and indicator obtained by the spectral method, and let C ′ and Q′ = (C ′F̂ I,J)† be
the result of the above iterative procedure after convergence. Then the rows of C and C ′

will each span the same d-dimensional space (Roweis, 1998). This means that C = ρC ′ for
some non-singular ρ ∈ Rd×d, and therefore Q = (ρC ′F̂ I,J)† = (C ′F̂ I,J)†ρ−1 = Q′ρ−1. By
Proposition 12 the learning Equations (2) will result in equivalent models.

In fact, the above optimization problem can also be solved non-iteratively by a d-
truncated SVD. This is a new result for which we give the full proof in the appendix:

Proposition 39 Let UdSdV
>
d ≈ F̂ I,J be the d-truncated SVD of F̂ I,J . Then C∗ = S

− 1
2

d U>d

and Q∗ = (C∗F̂ I,J)† = VdS
− 1

2
d are a solution to the optimization problem in Equation (4)

— provided a solution exists at all, i.e., rank(F̂ I,J) ≥ d.

Clearly, this solution (C∗, Q∗) will again yield an equivalent model. Finally, we note that
other versions of bounds on the relative approximation error than given in Proposition 37
may be considered instead, which can lead to choices of C and Q that give non-equivalent
models. The performance of these seems to be comparable, though (Zhao et al., 2009b).

4.4.4 Efficiency Sharpening

The ES algorithm has previously been worked out only for the case of stationary stochastic
processes and “traditional” OOMs where σ = (1, . . . , 1). Here we give an account of the ES
principle that is more general than in the original work, and we establish connections to
the spectral algorithms. The basic ES principle as we present it here may also be applied
to learning SMA, IO-OOMs and PSRs from data. However, the concrete ES algorithm
presented in Algorithm 8 makes use of several variance approximations and resulting sim-
plifications that are only valid for the estimators from Remark 35 for the case of stationary
stochastic processes.

The idea of the efficiency sharpening (ES) (Jaeger et al., 2006b) learning algorithm
is to view the learning Equations (2) as a model estimator parameterized by C (and Q),
and to select C such that the resulting estimator has minimum variance while still being
consistent. Furthermore, this optimal choice of C is derived from knowledge of a modelM
for f , or in practice from a previous estimate thereof. To make this approach tractable,
some simplifying assumptions are made.

First, a simplified version of the learning Equations (2) is used, where the indicator is
taken to be Q = (CF I,J)†. This leads to operator estimates

τ̂z = CF̂ I,Jz (CF̂ I,J)†.

Jaeger et al. (2006b) now argue that due to the (pseudo)inversion, the variance of τ̂z
is dominated by the variance of the factor CF̂ I,J . The variance of a matrix is here taken
w.r.t. the Frobenius norm. The ES algorithm therefore strives to find an admissible C
such that the variance of CF̂ I,J is minimized — assuming knowledge of a model M for

133

Thon and Jaeger

f . A characterizer C is admissible if CF I,JQ is invertible. This is solved by the following
proposition, which we state here in a more general form than in the original work (Jaeger
et al., 2006b):

Proposition 40 Let M = (σ, {τz}, ωε) be a d-dimensional minimal SS for a function f :
Σ∗ → R, and assume that f̂(x) are unbiased and uncorrelated estimators for all x ∈ Σ∗.
Define

C∗ = Π>D2
I , where Π> = ((στxi)

>)i∈I , and D2
I = [diag(

∑
j∈J

Var[f̂(xjxi)])i∈I]
†.

Then Var[CF̂ I,J] is minimized by the characterizer C∗ + 0 among all characterizers of the
form C∗ +G that satisfy GΠ = 0.

The proof is given in the appendix, however, some explanatory remarks are in order.
First of all, the assumptions that the estimates f̂(x) are unbiased and uncorrelated are
reasonable, yet not strictly correct, meaning that the characterizer C∗ will only approximate
the theoretically optimal characterizer.

Next, we need a technical lemma to understand why it suffices to consider only charac-
terizers of the form (C∗ +G) for some G satisfying GΠ = 0:

Lemma 41 If C∗ has full row rank, then any admissible characterizer C can be written as
ρ(C∗ +G) for some non-singular ρ ∈ Rd×d and G such that GΠ = 0.

Proof Let C be some admissible characterizer. Then CΠ ∈ Rd×d must be invertible. Also,
C∗Π = (DIΠ)>(DIΠ) will be invertible if C∗ has full row rank. Choosing ρ = (CΠ)(C∗Π)−1

and G = ρ−1(C − ρC∗) we can easily verify that C = ρ(C∗ +G) and GΠ = 0.

Note that the characterizers C∗ + G and ρ(C∗ + G) will lead to equivalent models via
the learning Equations (2). Therefore, if the characterizer C∗ is best among the class of
characterizers C∗ +G where GΠ = 0 then it is also the overall best choice.

Furthermore, the condition that C∗ must have full row rank can be assured by (i)
choosing indicative and characteristic sequences and the modeling dimension d accordingly,
so that d = rank(M) = rank(F I,J) = rank(Π) and (ii) assuming that the variance of the
estimators f̂(x) is non-zero, ensuring that DI is invertible — which will typically be the
case in practice.

Finally, to compute C∗ via Proposition 40, we need to know the variances of the esti-
mators f̂(x) occurring in DI . Instead, we will replace DI by an approximation that can
be computed directly from the model M. The approximation we present here is only valid
for the case of stationary stochastic processes, but may be modified to cover the case of
probabilistic languages as well.

Consider the estimators f̂(x) as in Remarks 34 and 35. It is reasonable to assume that
the counts #(x) follow a binomial distribution, i.e., #(x) ∼ bN,p, where N is the length

of the training sequence s̄ and p = f(x). This gives Var[f̂(x)] = f(x)(1 − f(x))/N , which
we may further approximate by f(x)/N , as in practice the values of f(x) will typically be

134

Links Between MA, OOMs and PSRs

small for most sequences x. Also, the division by N is superfluous, as it cancels via the
learning Equations (2). Using the approximation Var[f̂(x)] ≈ f(x), one can approximate

D2
I ≈ D̃2

I := [diag(
∑
j∈J

f(xjxi))i∈I]
† = [diag(ΠτxJωε)]

†,

where τxJ =
∑

j∈J τxj . The approximation

C∗ ≈ Cr := Π>D̃2
I

is the characterizer that is actually used in the ES algorithm.
In the case of a stationary stochastic process and a choice of indicative words that

partition Σl or Σ≤l for some l one will have τxJωε = ωε, and therefore D̃2
I = [diag(Πωε)]

†.
In this case, the columns ci = (στxi)

>/στxiωε of Cr can be seen as the normalized states
ωrxir/ω

>
ε ω

r
xir

for the reversed words xi
r under the reversed model M> = (ω>ε , {τ>z }, σ>),

where ωrxir = τ>(xi)1 · · · τ
>
(xi)k

σ>. This is essentially the original version given by Jaeger et al.

(2006b), and the reason why this characterizer was called the reverse characterizer. This
make-up of Cr from states of the reversed process is also instrumental for the practical
algorithms given by Jaeger et al. (2006b).

Additionally, the ES algorithm further exploits the interpretation of columns of CF I,J

and CF I,Jz as model states ωxj and ωxjz as given in Proposition 33. These columns give
argument-value pairs from which the operators τz can be deduced — as we have seen before.
However, it is argued that in the face of estimates F̂ I,J and F̂ I,Jz the j-th columns should
be weighted by (

∑
i∈I f̂(xjxi))

− 1
2 prior to performing linear regression to better reflect the

weight of evidence that each column estimate is based on.
In practice a true model M is unknown. Therefore, the ES algorithm employs the

following iterative procedure (again, our treatment here is more general than the original
account by Jaeger et al. (2006b)):

Algorithm 8: The ES algorithm (for the case of stochastic processes)

1 Select some initial model estimate M̂ (e.g., via the learning Equations 2 using a
random choice of C and Q).
repeat

2 Using the current model estimate M̂, compute C = Π̂>D2
I ,

where Π̂> = ((σ̂τ̂xi)
>)i∈I and D2

I = [diag(Π̂
∑

j∈J τ̂xj ω̂ε)i∈I]
†.

3 Let Q = DJ(CF̂ I,JDJ)†, where DJ = [diag(
∑

i∈I f̂(xjxi))j∈J]†
1
2 .

4 Obtain a new model estimate M̂ via the learning Equations (2).
until some fixed number of iterations, or some performance criteria of the estimated
models stops increasing.

Note that this procedure constructs a sequence of estimators along with a sequence of
model estimates. The rationale of such ES algorithms is that the sequence of estimators
increases in statistical efficiency, hence the name efficiency sharpening algorithms. The
ES iterations come with no convergence guarantees. Nevertheless, this procedure has been
found in practice to converge in very few iterations (3 – 5 typically suffice), and the results
are of a similar quality as obtained by spectral algorithms (comparisons in Zhao et al.,
2009a,b).

135

Thon and Jaeger

The ES algorithm is closely related to the row and column weighted spectral algorithm
presented in Section 4.4.2. Precisely:

Proposition 42 Assume F I,J of rank d is determined by some underlying minimal model
M = (ω>ε , {τ>z }, σ>) of rank d and let Π> = ((στxi)

>)i∈I , DI = [diag(
∑

j∈J f(xjxi))i∈I]
† 1
2

and DJ = [diag(
∑

i∈I f(xjxi))j∈J]†
1
2 . Let Cr = Π>D2

I be the reverse characterizer, and let

C ′ = Ũ>d DI be the characterizer obtained by the weighted spectral method, where ŨdS̃dṼ
>
d is

the d-truncated SVD of DIF
I,JDJ . Then Cr = ρC ′ for some non-singular transformation

ρ.

Proof First, ŨdS̃dṼ
>
d = DIF

I,JDJ , since F I,J is assumed to have rank d. Now observe
that ŨdS̃dṼ

>
d = DIF

I,JDJ = DIΠΦDJ , where Φ = (τxjωε)j∈J , and therefore the columns

of DIF
I,J , Ũd and DIΠ all span im(DIF

I,J). So C ′ = Ũ>d DI and Cr = (DIΠ)>DI = Π>D2
I

have the same row space, and we can therefore find such a transformation ρ.

This means that the reverse characterizer Cr also gives a representation of the principal
subspace of the weighted matrix DIF

I,J . The main difference to the weighted spectral
method described in Section 4.4.2 is that Cr is derived algebraically from an underlying
model estimate, while the weighted spectral method estimates the principle subspace from
the weighted data matrix D̂I F̂

I,J with weights D̂I that also need to be determined from
the data, e.g., D̂I = [diag(

∑
j∈J f̂(xjxi))i∈I]

† 1
2 .

5. Conclusion

We have shown that OOMs, PSRs and SMA are closely related instances of MA, and we
have presented a unified learning framework for estimating such models from data that
subsumes many of the existing learning algorithms. In presenting the learning framework,
we have isolated the key design choices that need to be made to obtain a concrete learning
algorithm. For each design choice we have surveyed the approaches that have been taken
in the past and have tried to give some guidance.

We briefly summarize the choices that need to be made to obtain a concrete learning
algorithm. First of all, estimates of the system matrices F̂ I,J and F̂ I,Jz must be obtained
from the available training data. Individual entries may be estimated by the formulas given
in Section 4.1. However, it is of much greater importance to decide which entries need to
be estimated, that is, which rows I and columns J should be selected. This is discussed
in Section 4.2. While many of the existing algorithms attempt to choose as few rows and
columns to estimate as possible, we argue that this leads to poor statistical efficiency, and
that the selection should ideally be matched to the available training data. Next, one
must select a suitable model dimension d. This may be achieved by an algebraic criterion,
as described in Section 4.3.1, or by cross-validation. It is also possible to treat this as a
learning parameter that can be hand-tuned by the modeler. We note that it is generally
neither necessary nor advisable to set the target dimension to the correct rank of the
underlying system, as the optimal choice depends on the available training data. Finally,
the estimated system matrices F̂ I,J and F̂ I,Jz need to be “compressed” to d× d matrices by
suitable characterizer and indicator matrices C and Q. A good selection of C and Q is vital

136

Links Between MA, OOMs and PSRs

to obtaining high statistical efficiency, and this is treated in detail in Section 4.4. We show
that several of the proposed approaches to selecting C and Q can be seen as variations of
a spectral learning algorithm presented in Section 4.4.2.

We conclude with a remark on implementing such a learning algorithm in practice.
Clearly, the main limiting factor is the size of the matrices F̂ I,J and F̂ I,Jz , as these may
become very large. However, it is possible to obtain an efficient sparse representation of
these matrices by employing a suffix tree representation of the training data (Zhao et al.,
2009b,a; Jaeger et al., 2006b). Furthermore, if one uses the method described in Section 4.4.4
one can avoid evaluating these matrices explicitly and instead calculate CF̂ I,J and CF̂ I,Jz
directly (Jaeger et al., 2006b).

Acknowledgements

We gratefully acknowledge the funding by the German Research Foundation (DFG) under
the project JA 1210/5-1. We would also like to thank the anonymous reviewers for their
constructive and very helpful comments.

Appendix

Proof [of Proposition 37](adapted from Zhao et al., 2009a) Let C∗ = diag(C, . . . , C) (l
copies of C). Using the introduced notation the learning Equations (2) can be written
concisely to obtain:

τ∗ =
(
C∗F̂

I,J
∗ Q+ C∗(F

I,J
∗ − F̂ I,J∗)Q

)(
CF̂ I,JQ+ C(F I,J − F̂ I,J)Q

)−1

=
(
C∗F̂

I,J
∗ Q+ C∗(F

I,J
∗ − F̂ I,J∗)Q

)
(CF̂ I,JQ)−1

(
Id + C(F I,J − F̂ I,J)Q(CF̂ I,JQ)−1

)−1

=
(
τ̂∗ +

(
C∗(F

I,J
∗ − F̂ I,J∗)Q

)
(CF̂ I,JQ)−1

)(
Id + C(F I,J − F̂ I,J)Q(CF̂ I,JQ)−1

)−1
,

which implies τ∗ + τ∗C(F I,J − F̂ I,J)Q(CF̂ I,JQ)−1 = τ̂∗ + (C∗(F
I,J
∗ − F̂ I,J∗)Q)(CF̂ I,JQ)−1.

By rearranging, taking Frobenius norms and using the triangle inequality and submulti-
plicativity, we obtain

‖τ∗ − τ̂∗‖F ≤ ‖C‖F ‖Q(CF̂ I,JQ)−1‖F
(
‖τ∗‖F ‖F I,J − F̂ I,J‖F +

‖C∗‖F
‖C‖F

‖F I,J∗ − F̂ I,J∗ ‖F
)
.

Now ‖C∗‖F
‖C‖F =

√
l, and ‖τ∗‖2F =

∑
z∈Σ ‖τz‖2F ≥ ‖τΣ‖2F ≥ ρ(τΣ)2, where τΣ =

∑
z∈Σ τz, and

the result follows.

Note that in the original paper the inequality ‖τ∗‖F ≥ 1√
l

was used instead, which depended

on the columns of τ∗ summing to 1. This was in turn insured by adding additional restric-
tions on the choice of characteristic words and characterizer C. These are now no longer
needed.

Lemma 43 Let D = diag(d1, . . . , dn) and S = diag(s1, . . . , sn) satisfying d1 ≥ · · · ≥ dn ≥ 0
and 0 ≤ s1 ≤ · · · ≤ sn, and let U be an orthogonal n × n matrix, i.e., U>U = UU> = I .
Then ‖DUS‖F ≥ ‖DS‖F .

137

Thon and Jaeger

Proof ‖DUS‖2F =
∑n

i,j=1(diuijsj)
2. Furthermore, U>U = UU> = In implies that (∗)∑n

i=1 u
2
i,j = 1 for all j and

∑n
j=1 u

2
i,j = 1 for all i. We will show the slightly stronger claim

that ‖DUS‖2F ≥ ‖DS‖2F for any matrix U satisfying (∗), which allows us to assume w.l.o.g.
that ui,j ≥ 0 for all entries in U , since only the squared entries u2

i,j appear in the expressions

for ‖DUS‖2F and (∗). So from now on we assume that U merely satisfies (∗) and that all
entries in U are non-negative.

First note that if U is lower triangular, then (∗) implies that U = In:
∑n

i=1 u
2
i,n = 1

implies that u2
n,n = 1 and u2

i,n = 0 for i < n. Then
∑n

j=1 u
2
n,j = 1 implies that u2

n,j = 0 for

j < n, since u2
n,n = 1. That is, U =

[
Un−1 0

0 1

]
, and the condition (∗) must therefore hold for

Un−1 as well. By induction on n, U = In. In this case ‖DUS‖2F = ‖DS‖2F .
So assume U is not lower triangular. Consider a row-wise ordering of matrix positions,

i.e., define ord(i, j) = (i− 1)n+ j, and let (i′, j′) = argmin
(i,j)

{ord(i, j) : j > i, ui,j 6= 0}, i.e., i′

is the first row of U to contain a non-zero element above the diagonal, and j′ is the column
index of the first such entry within the i′-th row. We call ord(i′, j′) the order of U , and say
that a lower triangular matrix has infinite order.

Now consider the i′-th column of U . By the choice of i′ we must have
∑i′−1

i=1 u
2
i,i′ = 0, and

therefore
∑n

i=i′+1 u
2
i,i′ = 1−u2

i′,i′ =
∑n

j=1 u
2
i′,j−u2

i′,i′ ≥ u2
i′,j′ . We can therefore find a vector

v such that vi = 0 for i < i′, vi′ = −u2
i′,j′ , and 0 ≤ vi ≤ u2

i,i′ as well as
∑n

i=i′+1 vi = u2
i′,j′

for i = i′ + 1, . . . , n. Let U2 = [u2
i,j]i,j=1...n be the matrix of element-wise squares of entries

in U , and let Ũ2 be obtained by subtracting the vector v from the i′-th column of U2 and
adding v to the j′-th column of U2. Let Ũ be the matrix of element-wise square roots of
entries in Ũ2.

We can easily check that all entries in Ũ2 are non-negative, so that this is well-defined.
Also Ũ satisfies (∗), since

∑n
i=1 vi = 0 by construction, and adding such a vector to one

column of Ũ2 and subtracting from another does not change the row and column sums.
Furthermore,

‖DUS‖2F − ‖DŨS‖2F =
n∑
i=1

(
d2
i vis

2
i′ − d2

i vis
2
j′
)

= d2
i′vi′(s

2
i′ − s2

j′) +
n∑

i=i′+1

d2
i vi(s

2
i′ − s2

j′)

= (s2
i′ − s2

j′)

(
d2
i′vi′ +

n∑
i=i′+1

d2
i vi

)
.

Now s2
i′ − s2

j′ ≤ 0 since j′ > i′, and
∑n

i=i′+1 d
2
i vi ≤ d2

i′
∑n

i=i′+1 vi = d2
i′u

2
i′,j′ , while d2

i′vi′ =

−d2
i′u

2
i′,j′ , so (d2

i′vi′+
∑n

i=i′+1 d
2
i vi) ≤ 0. This shows that ‖DUS‖2F ≥ ‖DŨS‖2F . And finally,

the order of Ũ is larger than the order of U , as we have eliminated the non-zero element of
lowest order above the diagonal in U , and in turn have introduced only non-zero elements
above the diagonal of higher order (in rows below the i′-th), or none at all.

By iterating this construction we arrive at a lower triangular matrix U∗ with non-
negative entries that satisfies (∗) and ‖DUS‖2F ≥ ‖DU∗S‖2F = ‖DS‖2F .

138

Links Between MA, OOMs and PSRs

Proof [Proof of Proposition 39] Assume r = rank(F̂ I,J) ≥ d and let USV > = F̂ I,J be

the full SVD of F̂ I,J . We can simply verify that indeed (C∗F̂ I,J)† = (S
− 1

2
d U>d USV

>)† =

(S
− 1

2
d V >d)† = VdS

− 1
2

d , which implies that C∗F̂ I,JQ∗ = C∗F̂ I,J(C∗F̂ I,J)† = Id, as required.

Furthermore, ‖C∗‖F ‖Q∗‖F = ‖S−
1
2

d ‖2F =
∑d

i=1 σ
−1
i , where the σi are the singular values

of F̂ I,J , which are also the diagonal elements of S. We will show that this is indeed the
minimum of ‖C‖F ‖Q‖F subject to CF̂ I,JQ = Id.

Using the substitution C = C ′U> and Q = V Q′, we can see that minimizing ‖C‖F ‖Q‖F
subject to CF̂ I,JQ = Id is equivalent to minimizing ‖C ′‖F ‖Q′‖F subject to C ′SQ′ = Id and
that this will have the same minimal value. Let C ′r, Q

′
r and Sr be truncated versions of C ′,

Q′ and S that consist of the first r columns, rows or rows and columns, respectively. Then
minimizing ‖C ′r‖F ‖Q′r‖F subject to C ′rSrQ

′
r = Id is equivalent and has the same minimal

value, because C ′SQ′ = C ′rSrQ
′
r (since σi = 0 for i > r) and the additional columns in C ′

and rows in Q′ are best set to zero.

Assume now that C ′r and Q′r = (C ′rSr)
† minimize ‖C ′r‖F ‖Q′r‖F subject to C ′rSrQ

′
r = Id.

We can select Q′r = (C ′rSr)
†, as this minimizes ‖C ′r‖F ‖Q′r‖F subject to C ′rSrQ

′
r = Id for a

given C ′r. It remains to show that ‖C ′r‖F ‖Q′r‖F ≥ ‖C∗‖F ‖Q∗‖F =
∑d

i=1 σ
−1
i .

Let LDR> = C ′rSr be the SVD of C ′rSr. Then C ′r = LDR>S−1
r , and Q′r = (C ′rSr)

† =
RD†L>. Let d1, . . . , dd be the diagonal elements of D and let Dr be the r × r matrix
obtained by extending D with zero rows. Then

‖C ′r‖2F = ‖LDR>S−1
r ‖2F = ‖DrR

>S−1
r ‖2F

Lemma 43
≥ ‖DrS

−1
r ‖2F =

d∑
i=1

d2
iσ
−2
i ,

‖Q′r‖2F = ‖RD†L>‖2F = ‖D†‖2F =
d∑
i=1

d−2
i .

Multiplying these expressions and substituting d2
i = a2

iσi, we obtain

‖C ′r‖2F ‖Q′r‖2F =

(
d∑
i=1

a2
iσ
−1
i

)(
d∑
i=1

a−2
i σ−1

i

)

=

d∑
i=1

σ−2
i +

d∑
i,j=1
i<j

(
a2
i

a2
j

+
a2
j

a2
i

)
σ−1
i σ−1

j

=

d∑
i=1

σ−2
i +

d∑
i,j=1
i<j

((
ai
aj
− aj
ai

)2

+ 2

)
σ−1
i σ−1

j

≥
(

d∑
i=1

σ−1
i

)2

,

since this expression is clearly minimal when ai = 1 for all i. So we can conclude that
‖C ′r‖F ‖Q′r‖F ≥

∑d
i=1 σ

−1
i . Therefore, C∗ and Q∗ are in fact a minimal solution to the

optimization problem (4).

139

Thon and Jaeger

Proof [of Proposition 40] First, we calculate:

Var[CF̂ I,J]
(∗)
= E

[
||CF̂ I,J − CF I,J ||2F

]
=
∑
j∈J

d∑
k=1

E

(∑
i∈I

ckif̂(xjxi)−
∑
i∈I

ckif(xjxi)

)2

(∗)
=
∑
j∈J

d∑
k=1

Var

[∑
i∈I

ckif̂(xjxi)

]

(∗∗)
=
∑
j∈J

d∑
k=1

∑
i∈I

c2
kiVar[f̂(xjxi)]

=
∑
i∈I
‖(C)i‖2F

∑
j∈J

Var[f̂(xjxi)] =
∑
i∈I

vi‖(C)i‖2F ,

where (C)i is the i-th column of C, and vi =
∑

j∈J Var[f̂(xjxi)]. Note that we have used
unbiasedness in (∗) and uncorrelatedness in (∗∗).

Our goal is now to minimize J(G) = Var[(C∗+G)F̂ I,J] =
∑

i∈I vi||(C∗+G)i||2F subject
to the constraints hk,l(G) = [GΠ]k,l = 0 for k, l = 1 . . . d. Note that if vi = 0 for some i, then
the i-th column of G does not influence the value of J(G), and we may w.l.o.g. fix (G)i = 0
and replace the equality constraints by h̃k,l(G) = [GDD†Π]k,l = 0, where D = diag[(vi)i∈I].
This is a convex quadratic programming problem, therefore G = 0 will be a solution if and
only if it satisfies the KKT conditions

∂J

∂G
(G) +

d∑
k,l=1

λk,l
∂hk,l
∂G

(G) = 0, and

∀k, l = 1 . . . d : h̃k,l(G) = 0,

for some Lagrange multipliers λk,l ∈ R. Clearly, the latter condition h̃k,l(G) = 0 is sat-

isfied for all k, l by G = 0. We can calculate
∑d

k,l=1 λk,l
∂h̃k,l
∂G (G) = λΠ>D†D, where

λ ∈ Rd×d, [λ]k,l = λk,l, as well as ∂J
∂G(G) = 2(C∗ + G)D = 2(Π>D2

I + G)D. The first
condition is then satisfied by G = 0 with λ = −2I, since Π>D2

ID = Π>D†D by definition
of DI .

References

Naoki Abe and Manfred K. Warmuth. On the computational complexity of approximating
distributions by probabilistic automata. Machine Learning, 9:205–260, 1992.

Animashree Anandkumar, Daniel Hsu, and Sham M. Kakade. A method of moments
for mixture models and hidden markov models. In Shie Mannor, Nathan Srebro, and
Robert C. Williamson, editors, Proceedings of the 25th Annual Conference on Learning

140

Links Between MA, OOMs and PSRs

Theory (COLT 2012), volume 23 of JMLR Workshop & Conference Proceedings, pages
33.1–33.34, 2012.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.

Raphaël Bailly. Quadratic weighted automata: Spectral algorithm and likelihood maxi-
mization. In Chun-Nan Hsu and Wee Sun Lee, editors, Proceedings of the 3rd Asian
Conference on Machine Learning (ACML 2011), volume 20 of JMLR Workshop & Con-
ference Proceedings, pages 147–163, 2011.

Raphaël Bailly, François Denis, and Liva Ralivola. Grammatical inference as a princi-
pal component analysis problem. In Andrea Pohoreckyj Danyluk, Léon Bottou, and
Michael L. Littman, editors, Proceedings of the 26th International Conference on Ma-
chine Learning (ICML 2009), volume 382 of ACM Proceedings, pages 33–40, 2009.

Raphael Bailly, Xavier Carreras, and Ariadna Quattoni. Unsupervised spectral learning of
finite state transducers. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26 (NIPS
2013), pages 800–808. Curran Associates, Inc., 2013.

Borja Balle and Mehryar Mohri. Spectral learning of general weighted automata via con-
strained matrix completion. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher
J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25 (NIPS 2012), pages 2168–2176, 2012.

Borja Balle, Ariadna Quattoni, and Xavier Carreras. A spectral learning algorithm for
finite state transducers. In Dimitrios Gunopulos, Thomas Hofmann, Donato Malerba, and
Michalis Vazirgiannis, editors, Machine Learning and Knowledge Discovery in Databases
- European Conference (ECML/PKDD 2011), Proceedings, Part I, volume 6911 of Lecture
Notes in Computer Science, pages 156–171. Springer, 2011.

Borja Balle, Ariadna Quattoni, and Xavier Carreras. Local loss optimization in operator
models: A new insight into spectral learning. In Proceedings of the 29th International
Conference on Machine Learning (ICML 2012). icml.cc / Omnipress, 2012.

Borja Balle, Xavier Carreras, Franco M. Luque, and Ariadna Quattoni. Spectral learning of
weighted automata – a forward-backward perspective. Machine Learning, 96(1-2):33–63,
2014.

Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-
ricchio. On the applications of multiplicity automata in learning. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science (FOCS 1996), pages
349–358. IEEE Computer Society, 1996.

Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Var-
ricchio. Learning functions represented as multiplicity automata. Journal of the ACM,
47(3):506–530, 2000.

141

Thon and Jaeger

Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from mul-
tiplicity and equivalence queries. In Maurizio A. Bonuccelli, Pierluigi Crescenzi, and
Rossella Petreschi, editors, Proceedings of the 2nd Italian conference on Algorithms and
Complexity (CIAC 1994), volume 778 of Lecture Notes in Computer Science, pages 54–62.
Springer, 1994.

Francesco Bergadano, Dario Catalano, and Stefano Varricchio. Learning sat-k-DNF formu-
las from membership queries. In Proceedings of the 28th Annual ACM Symposium on
Theory of Computing (STOC 1996), pages 126–130. ACM, 1996.

Jean Berstel, Jr. and Christophe Reutenauer. Rational Series and Their Languages, vol-
ume 12 of EATCS Monographs on Theoretical Computer Science. Springer, 1988.

Byron Boots and Geoffrey J. Gordon. Predictive state temporal difference learning. In
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23 (NIPS 2010), pages 271–279.
MIT Press, 2010.

Byron Boots and Geoffrey J. Gordon. An online spectral learning algorithm for partially
observable nonlinear dynamical systems. In Wolfram Burgard and Dan Roth, editors,
Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI 2011). AAAI
Press, 2011.

Byron Boots, Sajid M. Siddiqi, and Geoffrey J. Gordon. Closing the learning-planning loop
with predictive state representations. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2010), pages 1369–1370.
IFAAMAS, 2010.

Byron Boots, Geoffrey J. Gordon, and Arthur Gretton. Hilbert space embeddings of pre-
dictive state representations. In Proceedings of the 29th Conference on Uncertainty in
Artificial Intelligence (UAI 2013), pages 92–101. AUAI Press, 2013.

Michael Bowling, Peter McCracken, Michael James, James Neufeld, and Dana F. Wilkinson.
Learning predictive state representations using non-blind policies. In William W. Cohen
and Andrew Moore, editors, Proceedings of the 23rd International Conference on Machine
Learning (ICML 2006), volume 148 of ACM Proceedings, pages 129–136, 2006.

Jack W. Carlyle and Azaria Paz. Realizations by stochastic finite automata. Journal of
Computer and System Sciences, 5(1):26–40, 1971.

Corinna Cortes and Mehryar Mohri. Context-free recognition with weighted automata.
Grammars, 3(2/3):133–150, 2000.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood estimation
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39
(1):1–38, 1977.

François Denis and Yann Esposito. Learning classes of probabilistic automata. In Proceed-
ings of the 17th Annual Conference on Learning Theory (COLT 2004), volume 3120 of
Lecture Notes in Computer Science, pages 124–139. Springer, 2004.

142

Links Between MA, OOMs and PSRs

François Denis and Yann Esposito. On rational stochastic languages. Fundamenta Infor-
maticae, 86(1):41–77, 2008.

François Denis, Yann Esposito, and Amaury Habrard. Learning rational stochastic lan-
guages. In Gábor Lugosi and Hans-Ulrich Simon, editors, Proceedings of the 19th Annual
Conference on Learning Theory (COLT 2006), volume 4005 of Lecture Notes in Computer
Science, pages 274–288. Springer, 2006.

Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted Automata.
Springer, 2009.

Pierre Dupont, François Denis, and Yann Esposito. Links between probabilistic automata
and hidden Markov models: probability distributions, learning models and induction
algorithms. Pattern Recognition, 38(9):1349–1371, 2005.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

Michel Fliess. Matrices de Hankel. Journal de Mathématiques Pures et Appliquées, 53:
197–222, 1974.

Edgar J. Gilbert. On the identifiability problem for functions of finite Markov chains. The
Annals of Mathematical Statistics, 30(3):688–697, 1959.

Robert M. Gray. Probability, Random Processes, and Ergodic Properties. Springer, 1988.

William L. Hamilton, Mahdi M. Fard, and Joelle Pineau. Modelling sparse dynamical sys-
tems with compressed predictive state representations. In Sanjoy Dasgupta and David
Mcallester, editors, Proceedings of the 30th International Conference on Machine Learn-
ing (ICML 2013), volume 28 of JMLR Workshop & Conference Proceedings, pages 178–
186, 2013.

Per Christian Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects
of Linear Inversion. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1998.

Alex Heller. On stochastic processes derived from Markov chains. The Annals of Mathe-
matical Statistics, 36(4):1286–1291, 1965.

Daniel Hsu, Sham M. Kakade, and Tong Zhang. A spectral algorithm for learning hidden
Markov models. In Proceedings of the 22nd Annual Conference on Learning Theory
(COLT 2009), 2009.

Hisashi Ito. An Algebraic Study of Discrete Stochastic Systems. Unpublished doctoral
dissertation, University of Tokyo, Bunkyo-ku, Tokyo, 1992.

Hisashi Ito, Shun ichi Amari, and Kingo Kobayashi. Identifiability of hidden Markov infor-
mation sources and their minimum degrees of freedom. IEEE Transactions on Informa-
tion Theory, 38(2):324–333, 1992.

143

Thon and Jaeger

Herbert Jaeger. Observable operator models and conditioned continuation representations.
Arbeitspapiere der GMD 1043, GMD Forschungszentrum Informationstechnik, Sankt Au-
gustin, Germany, 1997.

Herbert Jaeger. Discrete-time, discrete-valued observable operator models: a tutorial. Tech-
nical Report 42, GMD Forschungszentrum Informationstechnik, Sankt Augustin, Ger-
many, 1998.

Herbert Jaeger. Modeling and learning continuous-valued stochastic processes with OOMs.
GMD Report 102, GMD Forschungszentrum Informationstechnik, Sankt Augustin, Ger-
many, 2000a.

Herbert Jaeger. Observable operator models for discrete stochastic time series. Neural
Computation, 12(6):1371–1398, 2000b.

Herbert Jaeger, MingJie Zhao, and Andreas Kolling. Efficient estimation of ooms. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing
Systems 18 (NIPS 2005), pages 555–562. MIT Press, 2006a.

Herbert Jaeger, MingJie Zhao, Klaus Kretzschmar, Tobias Oberstein, Dan Popovici, and
Andreas Kolling. Learning observable operator models via the ES algorithm. In Simon
Haykin, José C. Pŕıncipe, Terrence J. Sejnowski, and John McWhirter, editors, New
Directions in Statistical Signal Processing: From Systems to Brains, Neural Information
Processing, chapter 14, pages 417–464. MIT Press, Cambridge, MA, USA, 2006b.

Michael R. James and Satinder P. Singh. Learning and discovery of predictive state rep-
resentations in dynamical systems with reset. In Carla E. Brodley, editor, Proceedings
of the 21st International Conference on Machine Learning (ICML 2004), volume 69 of
ACM Proceedings, pages 53–60, 2004.

Michael R. James and Satinder P. Singh. Planning in models that combine memory with
predictive representations of state. In Manuela M. Veloso and Subbarao Kambhampati,
editors, Proceedings of the 20th National Conference on Artificial Intelligence (AAAI
2005), pages 987–992. AAAI Press, 2005.

Michael R. James, Satinder Singh, and Michael L. Littman. Planning with predictive state
representations. In Proceedings of the 3rd International Conference on Machine Learning
and Applications (ICMLA 2004), pages 304–311. IEEE Computer Society, 2004.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting
in partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Attila Kondacs and John Watrous. On the power of quantum finite state automata. In
Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS
1996), pages 66–75. IEEE Computer Society, 1997.

Klaus Kretzschmar. Learning symbol sequences with observable operator models. GMD
Report 161, GMD Forschungszentrum Informationstechnik, Sankt Augustin, Germany,
2001.

144

Links Between MA, OOMs and PSRs

Michael L. Littman, Richard S. Sutton, and Satinder P. Singh. Predictive representations
of state. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, editors,
Advances in Neural Information Processing Systems 14 (NIPS 2001), pages 1555–1561.
MIT Press, 2001.

Ivan Markovsky and Sabine Van Huffel. Left vs right representations for solving weighted
low-rank approximation problems. Linear Algebra and its Applications, 422(2-3):540–552,
2007a.

Ivan Markovsky and Sabine Van Huffel. Overview of total least-squares methods. Signal
Processing, 87(10):2283–2302, 2007b.

Peter McCracken and Michael H. Bowling. Online discovery and learning of predictive
state representations. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in
Neural Information Processing Systems 18 (NIPS 2005). MIT Press, 2006.

Mehryar Mohri, Fernando Pereira, and Michael Riley. Weighted finite-state transducers in
speech recognition. Computer Speech & Language, 16(1):69–88, 2002.

Cristopher Moore and James P. Crutchfield. Quantum automata and quantum grammars.
Theoretical Computer Science, 237(1-2):275–306, 2000.

Hiroyuki Ohnishi, Hiroyuki Seki, and Tadao Kasami. A polynomial time learning algorithm
for recognizable series. IEICE Transactions on Information and Systems, E77-D(10):
1077–1085, 1994.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Adrià Recasens and Ariadna Quattoni. Spectral learning of sequence taggers over continuous
sequences. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip Zelezný,
editors, Machine Learning and Knowledge Discovery in Databases - European Conference
(ECML/PKDD 2013), Proceedings, Part I, volume 8188 of Lecture Notes in Computer
Science, pages 289–304. Springer, 2013.

Matthew Rosencrantz, Geoffrey J. Gordon, and Sebastian Thrun. Learning low dimensional
predictive representations. In Carla E. Brodley, editor, Proceedings of the 21st Interna-
tional Conference on Machine Learning (ICML 2004), volume 69 of ACM Proceedings,
pages 695–702, 2004.

Sam Roweis. EM algorithms for PCA and SPCA. In Michael I. Jordan, Michael J. Kearns,
and Sara A. Solla, editors, Advances in Neural Information Processing Systems 10 (NIPS
1997), pages 626–632. MIT Press, 1998.

Matthew Rudary and Satinder P. Singh. Predictive linear-Gaussian models of controlled
stochastic dynamical systems. In William W. Cohen and Andrew Moore, editors, Pro-
ceedings of the 23rd International Conference on Machine Learning (ICML 2006), volume
148 of ACM Proceedings, pages 777–784, 2006.

145

Thon and Jaeger

Matthew Rudary and Satinder P. Singh. Predictive linear-Gaussian models of stochastic
dynamical systems with vector-value actions and observations. In Proceedings of the 10th
International Symposium on Artificial Intelligence and Mathematics (ISAIM 2008), 2008.

Matthew Rudary, Satinder P. Singh, and David Wingate. Predictive linear-Gaussian mod-
els of stochastic dynamical systems. In Fahiem Bacchus and Tommi Jaakkola, editors,
Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence (UAI 2005),
pages 501–508. AUAI Press, 2005.

Matthew R. Rudary and Satinder Singh. A nonlinear predictive state representation. In
S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Process-
ing Systems 15 (NIPS 2002), pages 855–862. MIT Press, 2003.

Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, 1978.

Marcel Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4(2-3):245–270, 1961.

Sajid M. Siddiqi, Byron Boots, and Geoffrey J. Gordon. Reduced-rank hidden markov
models. In Yee Whye Teh and D. Mike Titterington, editors, Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics (AISTATS 2010), vol-
ume 9 of JMLR Workshop & Conference Proceedings, pages 741–748, 2010.

Satinder Singh, Michael R. James, and Matthew R. Rudary. Predictive state representa-
tions: A new theory for modeling dynamical systems. In Joseph Halpern, editor, Proceed-
ings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI 2004), pages
512–519. AUAI Press, 2004.

Le Song, Byron Boots, Sajid M. Siddiqi, Geoffrey J. Gordon, and Alex J. Smola. Hilbert
space embeddings of hidden Markov models. In Johannes Fürnkranz and Thorsten
Joachims, editors, Proceedings of the 27th International Conference on Machine Learning
(ICML 2010), pages 991–998. Omnipress, 2010.

Daniel R. Upper. Theory and Algorithms for Hidden Markov Models and Generalized Hidden
Markov Models. PhD thesis, University of California at Berkeley, 1997.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

Eric W. Wiewiora. Modeling Probability Distributions with Predictive State Representations.
PhD thesis, University of California, San Diego, 2008.

David Wingate and Satinder P. Singh. Kernel predictive linear Gaussian models for non-
linear stochastic dynamical systems. In William W. Cohen and Andrew Moore, editors,
Proceedings of the 23rd International Conference on Machine Learning (ICML 2006),
volume 148 of ACM Proceedings, pages 1017–1024, 2006a.

146

Links Between MA, OOMs and PSRs

David Wingate and Satinder P. Singh. Mixtures of predictive linear Gaussian models for
nonlinear, stochastic dynamical systems. In Anthony Cohn, editor, Proceedings of the
21st National Conference on Artificial Intelligence (AAAI 2006). AAAI Press, 2006b.

David Wingate and Satinder P. Singh. Exponential family predictive representations of
state. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20 (NIPS 2007), pages 1617–1624. MIT Press, 2008a.

David Wingate and Satinder P. Singh. Efficiently learning linear-linear exponential family
predictive representations of state. In William W. Cohen, Andrew McCallum, and Sam T.
Roweis, editors, Proceedings of the 25th International Conference on Machine Learning
(ICML 2008), volume 307 of ACM Proceedings, pages 1176–1183, 2008b.

David Wingate, Vishal Soni, Britton Wolfe, and Satinder P. Singh. Relational knowledge
with predictive state representations. In Manuela M. Veloso, editor, Proceedings of the
20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2035–
2040. AAAI Press, 2007.

Britton Wolfe and Satinder P. Singh. Predictive state representations with options. In
William W. Cohen and Andrew Moore, editors, Proceedings of the 23rd International
Conference on Machine Learning (ICML 2006), volume 148 of ACM Proceedings, pages
1025–1032, 2006.

Lotfi Asker Zadeh. The concept of system, aggregate, and state in system theory. In
Lotfi Asker Zadeh and Elijah Polak, editors, System Theory, volume 8 of Inter-University
Electronics Series, pages 3–42. McGraw-Hill, New York, 1969.

MingJie Zhao and Herbert Jaeger. Norm observable operator models. Neural Computation,
22(7):1927–1959, 2010.

MingJie Zhao, Herbert Jaeger, and Michael Thon. A bound on modeling error in observable
operator models and an associated learning algorithm. Neural Computation, 21(9):2687–
2712, 2009a.

MingJie Zhao, Herbert Jaeger, and Michael Thon. Making the error-controlling algorithm of
observable operator models constructive. Neural Computation, 21(12):3460–3486, 2009b.

147

	Introduction
	Notation

	Basic Properties of Sequential Systems
	Versions of Sequential Systems
	Multiplicity Automata and Weighted Automata
	Stochastic Multiplicity Automata and Stochastic Languages

	Observable Operator Models and Stochastic Processes
	Relation to Hidden Markov Models
	Relationship to Stochastic Multiplicity Automata
	Historical Remarks

	Predictive State Representations and Controlled Processes
	Relation to Partially Observable Markov Decision Processes
	IO-OOMs, Interpretable IO-OOMs, PSRs and TPSRs
	Historical Remarks

	Extensions

	Learning
	Obtaining Estimates (x)
	Choosing Indicative and Characteristic Words
	Determining the Model Rank
	Estimating the True Rank
	Finding a Suitable Model Rank

	Selecting the Characterizer and Indicator
	By Selection / Grouping of Rows and Columns of
	Spectral Methods
	The EC Algorithm
	Efficiency Sharpening

	Conclusion

