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Abstract

We develop a learning principle and an efficient algorithm for batch learning from logged
bandit feedback. This learning setting is ubiquitous in online systems (e.g., ad placement,
web search, recommendation), where an algorithm makes a prediction (e.g., ad ranking)
for a given input (e.g., query) and observes bandit feedback (e.g., user clicks on presented
ads). We first address the counterfactual nature of the learning problem (Bottou et al.,
2013) through propensity scoring. Next, we prove generalization error bounds that ac-
count for the variance of the propensity-weighted empirical risk estimator. In analogy to
the Structural Risk Minimization principle of Wapnik and Tscherwonenkis (1979), these
constructive bounds give rise to the Counterfactual Risk Minimization (CRM) principle.
We show how CRM can be used to derive a new learning method—called Policy Optimizer
for Exponential Models (POEM)—for learning stochastic linear rules for structured out-
put prediction. We present a decomposition of the POEM objective that enables efficient
stochastic gradient optimization. The effectiveness and efficiency of POEM is evaluated
on several simulated multi-label classification problems, as well as on a real-world informa-
tion retrieval problem. The empirical results show that the CRM objective implemented
in POEM provides improved robustness and generalization performance compared to the
state-of-the-art.

Keywords: empirical risk minimization, bandit feedback, importance sampling, propen-
sity score matching, structured prediction

1. Introduction

Log data is one of the most ubiquitous forms of data available, as it can be recorded
from a variety of systems (e.g., search engines, recommender systems, ad placement) at
little cost. The interaction logs of such systems typically contain a record of the input to
the system (e.g., features describing the user), the prediction made by the system (e.g., a
recommended list of news articles) and the feedback (e.g., number of ranked articles the user
read) (Li et al., 2010). The feedback, however, provides only partial information— “bandit
feedback”— limited to the particular prediction shown by the system. The feedback for
all the other predictions the system could have made is typically not known. This makes
learning from log data fundamentally different from supervised learning, where “correct”

c©2015 Adith Swaminathan and Thorsten Joachims.



Swaminathan and Joachims

predictions (e.g., the best ranking of news articles for that user) together with a loss function
provide full-information feedback.

In this paper, we address the problem of learning from logged bandit feedback. Unlike
online learning with bandit feedback, batch learning with bandit feedback does not require
interactive experimental control over the system. Furthermore, it enables the reuse of
existing data and offline cross-validation techniques for model selection (e.g., “which features
to use?”, “which learning algorithm to use?”, etc.).

To design algorithms for batch learning from bandit feedback, counterfactual estimators
(Bottou et al., 2013) of a system’s performance can be used to estimate how other systems
would have performed if they had been in control of choosing predictions. Such estimators
have been developed recently for the off-policy evaluation problem (Dud́ık et al., 2011; Li
et al., 2011, 2014), where data collected from the interaction logs of one bandit algorithm
is used to evaluate another system.

Our approach to counterfactual learning centers around the insight that, to perform ro-
bust learning, it is not sufficient to have just an unbiased estimator of the off-policy system’s
performance. We must also reason about how the variances of these estimators differ across
the hypothesis space, and pick the hypothesis that has the best possible guarantee (tightest
conservative bound) for its performance. We first prove generalization error bounds for
a stochastic hypothesis family using an empirical Bernstein argument (Maurer and Pontil,
2009). This builds on recent approaches to deriving confidence intervals for counterfactual
estimators (Bottou et al., 2013; Thomas et al., 2015). By relating the generalization error
to the empirical sample variance of different hypotheses, we can effectively penalize the hy-
potheses with large variance during training using a data-dependant regularizer. In analogy
to Structural Risk Minimization for full-information feedback (Wapnik and Tscherwonenkis,
1979), the constructive nature of these bounds suggests a general principle—Counterfactual
Risk Minimization (CRM)—for designing methods for batch learning from bandit feedback.

Using the CRM principle, we derive a new learning algorithm—Policy Optimizer for
Exponential Models (POEM)—for structured output prediction. The training objective is
decomposed using repeated variance linearization, and optimizing it using AdaGrad (Duchi
et al., 2011) yields a fast and effective algorithm. We evaluate POEM on several multi-
label classification problems, verify that its empirical performance supports the theory, and
demonstrates substantial gain in generalization performance over the state-of-the-art.

This paper is an extended version of Swaminathan and Joachims (2015), adding the
following contributions. First, it provides the proof of the main generalization error bound
upon which the CRM principle is based. Second, it derives and details the Iterated Variance
Majorization Algorithm for training POEM, which was only sketched in Swaminathan and
Joachims (2015). Third, the paper provides a first real-world experiment using POEM for
learning a high precision classifier for information retrieval using logged click data.

The remainder of this paper is structured as follows. We review existing approaches
in Section 2. The learning setting is detailed in Section 3, and contrasted with supervised
learning. In Section 4, we derive the Counterfactual Risk Minimization learning principle
and provide a rule of thumb for setting hyper-parameters. In Section 5, we instantiate the
CRM principle for structured output prediction using exponential models and construct an
efficient decomposition of the objective for stochastic optimization. Empirical evaluations

1732



Counterfactual Risk Minimization

are reported in Section 6 and a real-world application is described in Section 7. We conclude
with future directions and discussion in Section 8.

2. Related Work

Existing approaches for batch learning from logged bandit feedback fall into two categories.
The first approach is to reduce the problem to supervised learning. In principle, since the
logs give us an incomplete view of the feedback for different predictions, one could first use
regression to estimate a feedback oracle for unseen predictions, and then use any supervised
learning algorithm using this feedback oracle. Such a two-stage approach is known to not
generalize well (Beygelzimer and Langford, 2009). More sophisticated techniques using the
Offset Tree algorithm (Beygelzimer and Langford, 2009) allow us to perform batch learn-
ing when the space of possible predictions is small. In contrast, our approach generalizes
structured output prediction, with exponential-sized prediction spaces. In particular, we
apply our approach to multilabel classification problems. When the number of labels is K,
the number of possible predictions is 2K . A direct application of the Offset tree algorithm
requires O(2K) space and only guarantees regret O((2K − 1)r) where r is the regret of
the underlying binary classifier. Our approach directly tackles the problem using popular
models from structured prediction instead, using computation and space complexity that
mimics supervised approaches to the problem.

The second approach to batch learning from bandit feedback uses propensity scoring
(Rosenbaum and Rubin, 1983) to derive unbiased estimators from the interaction logs (Bot-
tou et al., 2013). These estimators are used for a small set of candidate policies, and the
best estimated candidate is picked via exhaustive search. In contrast, our approach can be
optimized via gradient descent, over hypothesis families (of infinite size) that are equally as
expressive as those used in supervised learning. In particular, we build on recent work that
develops confidence bounds for counterfactual estimators (Bottou et al., 2013; Thomas et al.,
2015) using empirical Bernstein bounds. Our key insight is that these confidence intervals
are not merely observable but can be efficiently optimized during training. Other recent
bounds derived from analyzing Renyi divergences (Cortes et al., 2010) can analogously be
co-opted in our approach to counterfactual learning.

Our approach builds on counterfactual estimators that have been developed for off-
policy evaluation. The inverse propensity scoring approach can work well when we have
a good model of the historical algorithm (Strehl et al., 2010; Li et al., 2014, 2015), and
doubly robust estimators (Dud́ık et al., 2011) are even more effective when we additionally
have a good model of the feedback. In our work, we focus on the inverse propensity scoring
estimator, but the results we derive hold equally for the doubly robust estimators.

In the current work, we concentrate on the case where the historical algorithm was a
stationary, stochastic policy. Techniques like exploration scavenging (Langford et al., 2008)
and bootstrapping (Mary et al., 2014) allow us to perform counterfactual evaluation even
when the historical algorithm was deterministic or adaptive.

Our strategy of picking the hypothesis with the tightest conservative bound on per-
formance mimics similar successful approaches in other problems like supervised learning
(Wapnik and Tscherwonenkis, 1979), risk averse multi-armed bandits (Galichet et al., 2013),
regret minimizing contextual bandits (Langford and Zhang, 2008) and reinforcement learn-
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ing (Garcia and Fernandez, 2012). Beyond the problem of batch learning from bandit
feedback, our approach can have implications for several applications that require learning
from logged bandit feedback data: warm-starting multi-armed bandits (Shivaswamy and
Joachims, 2012) and contextual bandits (Strehl et al., 2010), pre-selecting retrieval func-
tions for search engines (Hofmann et al., 2013), policy evaluation for contextual bandits (Li
et al., 2011), and reinforcement learning (Thomas et al., 2015) to name a few.

3. Learning Setting: Batch Learning with Logged Bandit Feedback

Consider a structured output prediction problem that takes as input x ∈ X and outputs a
prediction y ∈ Y. For example, in multi-label document classification, x could be a news
article and y a bit vector indicating the labels assigned to this article. The inputs are

assumed drawn from a fixed but unknown distribution Pr(X ), x
i.i.d.∼ Pr(X ). Consider a

hypothesis space H of stochastic policies. A hypothesis h(Y | x) ∈ H defines a probability
distribution over the output space Y, and the hypothesis makes predictions by sampling,
y ∼ h(Y | x). Note that this definition also includes deterministic hypotheses, where
the distributions assign probability 1 to a single y. For notational convenience, denote
h(Y | x) by h(x), and the probability assigned by h(x) to y as h(y | x). We will abuse
notation slightly and use (x, y) ∼ h to refer to samples drawn from the joint distribution,
x ∼ Pr(X ), y ∼ h(Y | x). When it is clear from the context, we will drop (x, y) ∼ h and
simply write h.

In interactive learning systems, we only observe feedback δ(x, y) for the y sampled from
h(x). In this work, feedback δ : X × Y 7→ R is a cardinal loss that is only observed at the
sampled data points. Small values for δ(x, y) indicate user satisfaction with y for x, while
large values indicate dissatisfaction. The expected loss—called risk—of a hypothesis R(h)
is defined as

R(h) = Ex∼Pr(X )Ey∼h(x) [δ(x, y)] = Eh [δ(x, y)] .

The goal of the system is to minimize risk, or equivalently, maximize expected user satis-
faction. The aim of learning is to find a hypothesis h ∈ H that has minimum risk.

We wish to re-use the interaction logs of these systems for batch learning. Assume that
its historical algorithm acted according to a stationary policy h0(x) (also called logging
policy). The data collected from this system is

D = {(x1, y1, δ1), . . . , (xn, yn, δn)},

where yi ∼ h0(xi) and δi ≡ δ(xi, yi).
Sampling bias. D cannot be used to estimate R(h) for a new hypothesis h using the

estimator typically used in supervised learning. We ideally need either full information
about δ(xi, ·) or need samples y ∼ h(xi) to directly estimate R(h). This explains why, in
practice, model selection over a small set of candidate systems is typically done via A/B
tests, where the candidates are deployed to collect new data sampled according to y ∼ h(x)
for each hypothesis h. A relative comparison of the assumptions, hypotheses, and principles
used in supervised learning vs. our learning setting is outlined in Table 1. Fundamentally,
batch learning with bandit feedback is hard because D is both biased (predictions favored
by the historical algorithm will be over-represented) and incomplete (feedback for other
predictions will not be available) for learning.
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Supervised Batch w/bandit

Distribution (x, y∗) ∼ Pr(X × Y) x ∼ Pr(X ), y ∼ h0(x)
Data D {xi, y∗i } {xi, yi, δi, pi}
Hypothesis h y = h(x) y ∼ h(Y | x)
Loss ∆(y∗, ·) known δ(x, ·) unknown

Objective: argminh R̂(h) + C ·Reg(H) R̂M (h) + C ·Reg(H) + λ ·
√

V ar(h)
n

Table 1: Comparison of assumptions, hypotheses and learning principles for supervised
learning and batch learning with bandit feedback.

4. Learning Principle: Counterfactual Risk Minimization

The distribution mismatch between h0 and any hypothesis h ∈ H can be addressed using
importance sampling, which corrects the sampling bias as

R(h) = Eh [δ(x, y)] = Eh0
[
δ(x, y)

h(y | x)

h0(y | x)

]
.

This motivates the propensity scoring approach of Rosenbaum and Rubin (1983). During
the operation of the logging policy, we keep track of the propensity, h0(y | x) of the historical
system to generate y for x. From these propensity-augmented logs

D = {(x1, y1, δ1, p1), . . . , (xn, yn, δn, pn)},

where pi ≡ h0(yi | xi), we can derive an unbiased estimate of R(h) via Monte Carlo
approximation,

R̂(h) =
1

n

n∑
i=1

δi
h(yi | xi)

pi
. (1)

At first thought, one may think that directly estimating R̂(h) over h ∈ H and picking the
empirical minimizer is a valid learning strategy. Unfortunately, there are several pitfalls.

First, this strategy is not invariant to additive transformations of the loss and will
give degenerate results if the loss is not appropriately scaled. In Section 4.3, we develop
intuition for why this is so, and derive the optimal scaling of δ. For now, assume that
∀x,∀y, δ(x, y) ∈ [−1, 0].

Second, this estimator has unbounded variance, since pi ' 0 in D can cause R̂(h) to be
arbitrarily far away from the true risk R(h). This can be fixed by “clipping” the importance
sampling weights (Ionides, 2008; Strehl et al., 2010; Bottou et al., 2013; Cortes et al., 2010)

RM (h) = Eh0
[
δ(x, y) min

{
M,

h(y | x)

h0(y | x)

}]
,

R̂M (h) =
1

n

n∑
i=1

δi min

{
M,

h(yi | xi)
pi

}
.
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M ≥ 1 is a hyper-parameter chosen to trade-off bias and variance in the estimate, where
smaller values of M induce larger bias in the estimate. Optimizing R̂M (h) through exhaus-
tive enumeration over H yields the Inverse Propensity Scoring (IPS) training objective

ĥIPS = argmin
h∈H

{
R̂M (h)

}
. (2)

This objective captures the essence of previous offline policy optimization approaches (Bot-
tou et al., 2013; Strehl et al., 2010). These approaches differ from Equation (2) in the specific
way the importance sampling weights are clipped, and frame the optimization problem as a
maximization of counterfactual rewards as opposed to minimization of counterfactual risk.

Third, importance sampling typically estimates R̂M (h) of different hypotheses h ∈ H
with vastly different variances. Consider two hypotheses h1 and h2, where h1 is similar to
h0, but where h2 samples predictions that were not well explored by h0. Importance sam-
pling gives us low-variance estimates for R̂M (h1), but highly variable estimates for R̂M (h2).
Intuitively, if we can develop variance-sensitive confidence bounds over the hypothesis space,
optimizing a conservative confidence bound should find a h whose R(h) will not be much
worse, with high probability.

4.1 Generalization Error Bound

A standard analysis would give a bound that is agnostic to the variance introduced by
importance sampling. Following our intuition above, we derive a higher order bound that
includes the variance term using empirical Bernstein bounds (Maurer and Pontil, 2009). To
develop such a generalization error bound, we first need a concept of capacity for stochastic
hypothesis classes. Our strategy is to define an auxiliary deterministic function class FH
for H and directly use covering numbers for FH conditioned on a sample D. We start by
defining the auxiliary deterministic function class FH.

Definition 1 For any stochastic class H, define an auxiliary function class FH = {fh :
X × Y 7→ [0, 1]}. Each h ∈ H corresponds to a function fh ∈ FH,

fh(x, y) = 1 +
δ(x, y)

M
min

{
M,

h(y | x)

h0(y | x)

}
. (3)

Based on this auxiliary function class FH, we will study the convergence of R̂M (h) →
RM (h). A key insight is the following relationship between h and fh.

Lemma 2 For any stochastic hypothesis h, the clipped risk RM (h) and the expected value
of fh under the data generating distribution are related as

Eh0 [fh(x, y)] = 1 +
RM (h)

M
. (4)
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Proof Note that fh is a deterministic and bounded function. From the definition of fh
and by linearity of expectation,

Eh0 [fh(x, y)] = Eh0
[
1 +

δ(x, y)

M
min

{
M,

h(y | x)

h0(y | x)

}]
= 1 +

1

M
Eh0

[
δ(x, y) min

{
M,

h(y | x)

h0(y | x)

}]
= 1 +

RM (h)

M

As a consequence of Lemma 2, we can use classic notions of capacity for FH to reason
about the convergence of R̂M (h) → RM (h). Recall the covering number N∞(ε,F , n) for a
function class F .1 Define an ε−cover N (ε, A, ‖ · ‖∞) for a set A ⊆ Rn to be the size of the
smallest cardinality subset A0 ⊆ A such that A is contained in the union of balls of radius
ε centered at points in A0, in the metric induced by ‖ · ‖∞. The covering number is,

N∞(ε,F , n) = sup
(xi,yi)∈(X×Y)n

N (ε,F({(xi, yi)}), ‖ · ‖∞),

where F({(xi, yi)}) is the function class conditioned on sample {(xi, yi)},

F({(xi, yi)}) = {(f(x1, y1), . . . , f(xn, yn)) : f ∈ F}.

Our measure for the capacity of our stochastic class H to “fit” a sample of size n shall be
N∞( 1

n ,FH, 2n).

For a compact notation, define the random variable uh ≡ δ(x, y) min
{
M, h(y|x)h0(y|x)

}
with

mean uh = RM (h). The sampleD contains n i.i.d. random variables uh
i ≡ δi min{M, h(yi|xi)pi

}.
Define the sample mean and variance of uh

i

ûh ≡
1

n

n∑
i=1

uh
i = R̂M (h),

ˆV ar(uh) ≡ 1

n− 1

n∑
i=1

(uh
i − ûh)2.

Theorem 3 With probability at least 1−γ in the random vector (x1, y1) · · · (xn, yn)
i.i.d.∼ h0,

with observed losses δ1, . . . , δn, for n ≥ 16 and a stochastic hypothesis space H with capacity
N∞( 1

n ,FH, 2n),

∀h ∈ H : R(h) ≤ R̂M (h) +

√
18

ˆV ar(uh)QH(n, γ)

n
+M

15QH(n, γ)

n− 1
,

where, QH(n, γ) ≡ log(
10 · N∞( 1

n ,FH, 2n)

γ
), 0 < γ < 1.

1. Refer Anthony and Bartlett (2009); Maurer and Pontil (2009) and the references therein for a compre-
hensive treatment of covering numbers.
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Proof The proof follows from Theorem 6 of Maurer and Pontil (2009) applied to the
deterministic function class FH. We sketch the main argument using symmetrization and
Rademacher variables here.

Define the random variable sh = 1 + uh
M with mean Eh0 [sh] and variance V ar(sh).

Observe that Eh0 [sh] = 1 + RM (h)
M from Lemma 2. Let sh

i = 1 + uh
i

M . The sample D
essentially contains n i.i.d. observations of sh. Let ŝh and ˆV ar(sh) denote the empirical

mean and variance of {shi}ni=1 respectively. Observe that ˆV ar(sh) =
ˆV ar(uh)
M2 . Abusing

notation slightly, we will use boldface sh to refer to the sample {shi}ni=1.
We begin with Bennet’s inequality.
For s, {si}ni=1 i.i.d. bounded random variables in [0, 1] having mean E [s] and variance

V ar(s), with probability at least 1− γ in {si}ni=1 ≡ s,

E [s]− ŝ ≤
√

2V ar(s) log 1/γ

n
+

log 1/γ

3n
. (5)

Intuitively, Bennet’s inequality tells us that the estimate ŝ has lower accuracy if V ar(s)
is high, which exactly captures our intuition about the variance introduced by importance
sampling when estimating the risk of a hypothesis “far” from h0. However, the diameter of
this confidence interval depends on the unobservable V ar(s).

We recite Theorem 11 from Maurer and Pontil (2009) that gives a variance-sensitive
bound with an observable confidence interval, which they call an Empirical Bernstein bound.

Under the same conditions as Bennet’s inequality (5), let n ≥ 2, ˆV ar(s) represent the
empirical variance of {si}ni=1. With probability at least 1− γ,

E [s]− ŝ ≤

√
2 ˆV ar(s) log 2/γ

n
+

7 log 2/γ

3(n− 1)
. (6)

This follows from confidence bounds on the sample standard deviation

√
ˆV ar(s) com-

pared to the true standard deviation Es

[
ˆV ar(s)

]
. Based on this bound, Maurer and Pontil

(2009) define two Lipschitz continuous functions, Φ,Ψ : [0, 1]n × R+ → R.

Φ(s, t) = ŝ+

√
2 ˆV ar(s)t

n
+

7t

3(n− 1)

Ψ(s, t) = ŝ+

√
18 ˆV ar(s)t

n
+

11t

n− 1
.

These functions are Lipschitz continuous,

Φ(s, t)− Φ(s′, t) ≤ (1 + 2

√
t

n
)‖s− s′‖∞

Ψ(s, t)−Ψ(s′, t) ≤ (1 + 6

√
t

n
)‖s− s′‖∞. (7)

The inequalities follow directly from

√
ˆV ar(s)−

√
ˆV ar(s′) ≤

√
2‖s− s′‖∞.
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For the symmetrization argument, consider two sets of n samples D and D′ drawn from
h0 according to the conditions of Theorem 3 and used to estimate risk of a hypothesis
h. This gives rise to two sets of n i.i.d. random variables sh and s′h. Also define the

Rademacher variables σ1, . . . σn
i.i.d∼ U{−1, 1}. Define (σ, sh, s

′
h) as the vector who’s ith

co-ordinate is set to sh
i or s′h

i as specified by σi.

(σ, sh, s
′
h)i =

{
sh
i if σi = 1

s′h
i if σi = −1.

For a fixed h ∈ H and a fixed double sample sh, s
′
h as described above,

Pr
σ

[
Φ((σ, sh, s

′
h), t) ≥ Ψ((σ, sh, s

′
h), t)

]
≤ 5e−t. (8)

This is simply a restatement of Lemma 14 from Maurer and Pontil (2009) and follows
by decomposing the event [Φ((σ, sh, s

′
h), t) ≥ Ψ((σ, sh, s

′
h), t)] as [Φ((σ, sh, s

′
h), t) ≥ A] ∧

[A ≥ Ψ((σ, sh, s
′
h), t)] where A uses the true mean and variance of sh. The probability

of the first event can be bounded using Bennet’s inequality (5), while the second event
can be bounded using the empirical Bernstein bound (6) and the confidence bounds on the

sample standard deviation

√
ˆV ar(s).

Set t = log 2
γ and consider t ≥ log 4 (i.e. γ ≤ 1

2). Equation (6) implies, for any h ∈ H,

Pr(Φ(sh, t) ≥ E [sh]) ≥ 1

2
. (9)

Hence, for any ρ > 0,

Pr
D

(∃h ∈ H : E [sh] > Ψ(sh, t) + ρ) = ED
[

sup
h∈H

I{E [sh] > Ψ(sh, t) + ρ}
]

≤ ED
[

sup
h∈H

I{E [sh] > Ψ(sh, t) + ρ}
]

2 Pr(Φ(s′h, t) ≥ E
[
s′h
]
) Equation (9)

= 2ED
[

sup
h∈H

ED′
[
I{E [sh] > Ψ(sh, t) + ρ ∧ Φ(s′h, t) ≥ E [sh]}

]]
since E [sh] = E

[
s′h
]

≤ 2EDED′

[
sup
h∈H

I{E [sh] > Ψ(sh, t) + ρ ∧ Φ(s′h, t) ≥ E [sh]}
]

≤ 2EDED′

[
sup
h∈H

I{Φ(s′h, t) > Ψ(sh, t) + ρ}
]

= 2EσEDED′

[
sup
h∈H

I{Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ρ}

]
since sh, s

′
h are i.i.d.

≤ 2 sup
D,D′

Eσ
[

sup
h∈H

I{Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ρ}

]
= 2 sup

D,D′
Pr
σ

(∃h ∈ H : Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ρ).

For a fixed D,D′, consider the ε−cover of FH, FH0. Denote the set of stochastic poli-
cies that correspond to each fh ∈ FH0 by H0. We know that

∣∣H0
∣∣ ≤ N∞(ε,FH, 2n) (by
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definition of the covering number, and since there is a one-to-one mapping from h to fh)
and ∀h ∈ H, ∃h′ ∈ H0 such that ‖sh − sh′‖∞ ≤ ε and ‖s′h − s′h′‖∞ ≤ ε (by definition

of ε−cover). Instantiate ρ = ε(2 + 8
√

t
n) and suppose ∃h ∈ H such that Φ((σ, sh, s

′
h), t) >

Ψ((−σ, sh, s′h), t) + ρ. Since Φ and Ψ are Lipschitz continuous, as demonstrated in Equa-
tion (7), hence there must exist a h′ ∈ H0 such that Φ((σ, sh′ , s

′
h′), t) > Ψ((−σ, sh′ , s′h′), t).

Hence,

Pr
σ

(∃h ∈ H : Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t) + ε(2 + 8

√
t

n
))

≤ Pr
σ

(∃h ∈ H0 : Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t))

≤
∑
h∈H0

Pr
σ

(Φ((σ, sh, s
′
h), t) > Ψ((−σ, sh, s′h), t))

≤ 5e−tN∞(ε,FH, 2n) Equation (8) .

In short,

Pr
D

(∃h ∈ H : E [sh] > Ψ(sh, t) + ε(2 + 8

√
t

n
)) ≤ 10e−tN∞(ε,FH, 2n).

Setting 10e−tN∞(ε,FH, 2n) = γ we get tγ = log 10N∞(ε,FH,2n)
γ > 1. Moreover,

2(tγ+1)
n ≤

2(tγ+1)
n−1 ≤ 4tγ

n−1 and for n ≥ 16, 8
√

tγ
n ≤ 2tγ . Substituting ε = 1

n and simplifying,

Pr
D

(∃h ∈ H : E [sh] > ŝh +

√
18 ˆV ar(sh)tγ

n
+

15tγ
n− 1

) ≤ γ.

Finally, E [sh] = 1 + RM (h)
M , ŝh = 1 + R̂M (h)

M and ˆV ar(sh) =
ˆV ar(uh)
M2 . Since δ(·, ·) ≤ 0,

hence R(h) ≤ RM (h). Putting it all together,

Pr
D

(∃h ∈ H : R(h) > R̂M (h) +

√
18 ˆV ar(uh)tγ

n
+

15Mtγ
n− 1

) ≤ γ.

4.2 CRM Principle

The generalization error bound from the previous section is constructive in the sense that
it motivates a general principle for designing machine learning methods for batch learning
from bandit feedback. In particular, a learning algorithm following this principle should
jointly optimize the estimate R̂M (h) as well as its empirical standard deviation, where the
latter serves as a data-dependent regularizer.

ĥCRM = argmin
h∈H

R̂M (h) + λ

√
ˆV ar(uh)

n

 . (10)
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M ≥ 1 and λ ≥ 0 are regularization hyper-parameters. When λ = 0, we recover the
Inverse Propensity Scoring objective of Equation (2). In analogy to Structural Risk Min-
imization (Wapnik and Tscherwonenkis, 1979), we call this principle Counterfactual Risk
Minimization, since both pick the hypothesis with the tightest upper bound on the true
risk R(h).

4.3 Optimal Loss Scaling

When performing supervised learning with true labels y∗ and a loss function ∆(y∗, ·), em-
pirical risk minimization using the standard estimator is invariant to additive translation
and multiplicative scaling of ∆. The risk estimators R̂(h) and R̂M (h) in bandit learning,
however, crucially require δ(·, ·) ∈ [−1, 0].

Consider, for example, the case of δ(·, ·) ≥ 0. The training objectives in Equation (2)
(IPS) and Equation (10) (CRM) become degenerate! A hypothesis h ∈ H that completely
avoids the sample D (i.e. ∀i = 1, . . . , n, h(yi | xi) = 0) trivially achieves the best possible
R̂M (h) (= 0) with 0 empirical variance. This degeneracy arises partially because when
δ(·, ·) ≥ 0, the objectives optimize a lower bound on R(h), whereas what we need is an
upper bound.

For any bounded loss δ(·, ·) ∈ [5,4], we have, ∀x

Ey∼h(x) [δ(x, y)] ≤ 4+ Ey∼h0(x)
[
(δ(x, y)−4) min

{
M,

h(y | x)

h0(y | x)

}]
.

Since the optimization objectives in Equations (2),(10) are unaffected by a constant scale
factor (e.g., 4−5), we should transform δ 7→ δ′ to derive a conservative training objective,

δ′ ≡ {δ −4}/{4 −5}.

Such a transformation captures the following assumption: for an input x ∈ D, if a new
hypothesis h 6= h0 samples an unexplored y not seen in D, in the worst case it will incur a
loss of 4. This is clearly a very conservative assumption, and we foresee future work that
relaxes this using additional assumptions about δ(·, ·) and Y.

4.4 Selecting Hyper-Parameters

We propose selecting the hyper-parameters M ≥ 1 and λ ≥ 0 via cross validation. However,
we must be careful not to set M too small or λ too big. The estimated risk R̂M (h) ∈ [−M, 0],

while the variance penalty

√
ˆV ar(uh)
n ∈

[
0, M

2
√
n

]
. If M is too small, all the importance

sampling weights will be clipped and all hypotheses will have the same biased estimate of
risk MR̂M (h0). Similarly, if λ � 0, a hypothesis h ∈ H that completely avoids D (i.e.
∀i = 1, . . . , n, h(yi | xi) = 0) has R̂M (h) (= 0) with 0 empirical variance. So, it will achieve
the best possible training objective of 0. As a rule of thumb, we can calibrate M and λ so
that the estimator is unbiased and the objective is negative for some h ∈ H. When h0 ∈ H,

M ' max{pi}/min{pi} and

{
R̂M (h0) + λ

√
ˆV ar(uh0 )

n

}
< 0 are natural choices.

1741



Swaminathan and Joachims

4.5 When is Counterfactual Learning Possible?

The bounds in Theorem 3 are with respect to the randomness in h0. Known impossibility
results for counterfactual evaluation using h0 (Langford et al., 2008) also apply to counter-
factual learning. In particular, if h0 was deterministic, or even stochastic but without full
support over Y, it is easy to engineer examples involving the unexplored y ∈ Y that guar-
antee sub-optimal learning even as |D| → ∞. Similarly, lower bounds for learning under
covariate shift (Cortes et al., 2010) also apply to counterfactual learning. Finally, a stochas-
tic h0 with heavier tails need not always allow more effective learning. From importance
sampling theory (Owen, 2013), what really matters is how well h0 explores the regions of
Y with favorable losses.

5. Learning Algorithm: POEM

We now use the CRM principle to derive an efficient algorithm for structured output predic-
tion using linear rules. Classic learning methods for structured output prediction based on
full-information feedback, e.g. structured support vector machines (Tsochantaridis et al.,
2004) and conditional random fields (Lafferty et al., 2001), predict using

hsupw (x) = argmax
y∈Y

{w · φ(x, y)} , (11)

where w is a d−dimensional weight vector, and φ(x, y) is a d−dimensional joint feature
map. For example, in multi-label document classification, for a news article x and a possible
assignment of labels y represented as a bit vector, φ(x, y) could simply be a concatenation
x ⊗ y of the bag-of-words features of the document (x), one copy for each of the assigned
labels in y. Several efficient inference algorithms have been developed to solve Equation (11).

The POEM algorithm that is derived in this section uses the same parameterization of
the hypothesis space as in Equation (11). However, it considers the following expanded
class of Stochastic Softmax Rules based on this parameterization, which contains the de-
terministic rule in Equation (11) as a limiting case.

5.1 Stochastic Softmax Rules

Consider the following stochastic family Hlin, parametrized by w. A hypothesis hw(x) ∈
Hlin samples y from the distribution

hw(y | x) = exp(w · φ(x, y))/Z(x).

Z(x) =
∑

y′∈Y exp(w ·φ(x, y′)) is the partition function. This can be thought of as the “soft-
max” variant of the “hard-max” rules from Equation (11). Additionally, for a temperature
multiplier α > 1, w 7→ αw induces a more “peaked” distribution hαw that preserves the
modes of hw, and intuitively is a “more deterministic” variant of hw.

hw lies in the exponential family of distributions, and has a simple gradient,

∇hw(y | x) = hw(y | x)
{
φ(x, y)− Ey′∼hw(x)

[
φ(x, y′)

]}
.
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5.2 POEM Training Objective

Consider a bandit structured-output data set D = {(x1, y1, δ1, p1), . . . , (xn, yn, δn, pn)}. In
multi-label document classification, this data could be collected from an interactive labeling
system, where each y indicates the labels predicted by the system for a document x. The
feedback δ(x, y) is how many labels (but not which ones) were correct. To perform learning,
first we scale the losses as outlined in Section 4.3. Next, instantiating the CRM principle of
Equation (10) for Hlin, (using notation analogous to that in Theorem 3, adapted for Hlin),
yields the POEM training objective:

w∗ = argmin
w∈Rd

ûw + λ

√
ˆV ar(uw)

n
, (12)

with uw
i ≡ δi min{M,

exp(w · φ(xi, yi))

pi · Z(xi)
},

ûw ≡
1

n

n∑
i=1

uw
i,

ˆV ar(uw) ≡ 1

n− 1

n∑
i=1

(uw
i − ûw)2.

While the objective in Equation (12) is not convex in w (even for λ = 0), we find that batch
and stochastic gradient descent compute hw that have good generalization error (e.g., L-
BFGS out of the box). The key subroutine that enables us to perform efficient gradient
descent is a tractable way to compute uw

i and ∇w(uw
i)—both depend on Z(xi) using the

formulas

uw
i = δi min{M,

exp(w · φ(xi, yi))

pi · Z(xi)
} (13)

∇w(uw
i) =

0 if exp(w·φ(xi,yi))
pi·Z(xi) ≥M

δi
pi
uw

i
{
φ(xi, yi)−

∑
y′

[
φ(xi, y

′) exp(w·φ(xi,y
′))

Z(xi)

]}
otherwise.

For the special case when φ(x, y) = x ⊗ y, where y is a bit vector ∈ {0, 1}L, Z(x) has a
simple decomposition:

exp(w · φ(x, y)) =
L∏
l=1

exp(ylwl · x),

Z(x) =
L∏
l=1

(1 + exp(wl · x)),

where L is the length of the bit vector representation of y. For the general case, sev-
eral approximation schemes have been developed to handle Z(x) for supervised training of
graphical models and we can directly co-opt these for batch learning under bandit feedback
as well.
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5.3 POEM Iterated Variance Majorization Algorithm

We could use standard batch gradient descent methods to minimize the POEM training
objective. In particular, prior work (Yu et al., 2010; Lewis and Overton, 2013) has estab-
lished theoretically sound modifications to L-BFGS for non-smooth non-convex optimiza-
tion. However, the following develops a stochastic method that can be much faster.

At first glance, the POEM training objective in Equation (12), specifically the variance
term resists stochastic gradient optimization in the presented form. To remove this obstacle,
we now develop a Majorization-Minimization scheme, similar in spirit to recent approaches
to multi-class SVMs (van den Burg and Groenen, 2014) that can be shown to converge
to a local optimum of the POEM training objective. In particular, we will show how to

decompose

√
ˆV ar(uw) as a sum of differentiable functions (e.g.,

∑
i uw

i or
∑

i{uwi}2) so
that we can optimize the overall training objective at scale using stochastic gradient descent.

Proposition 4 For any w0 such that ˆV ar(uw0) > 0,√
ˆV ar(uw) ≤ Aw0

n∑
i=1

uw
i +Bw0

n∑
i=1

{uwi}2 + Cw0

= G(w;w0).

Aw0 ≡ −
ˆuw0

(n− 1)

√
ˆV ar(uw0)

,

Bw0 ≡
1

2(n− 1)

√
ˆV ar(uw0)

,

Cw0 ≡
n{ ˆuw0}2

2(n− 1)

√
ˆV ar(uw0)

+

√
ˆV ar(uw0)

2
.

Proof Consider a first order Taylor approximation of

√
ˆV ar(uw) around w0. Observe

that
√
· is concave.√

ˆV ar(uw) ≤
√

ˆV ar(uw0) +∇z
√
z |z= ˆV ar(uw0 )

( ˆV ar(uw)− ˆV ar(uw0))

=

√
ˆV ar(uw0) +

ˆV ar(uw)− ˆV ar(uw0)

2

√
ˆV ar(uw0)

=

√
ˆV ar(uw0)

2
+

1

2

√
ˆV ar(uw0)

ˆV ar(uw)

=

√
ˆV ar(uw0)

2
+

∑n
i=1{uwi}2

2(n− 1)

√
ˆV ar(uw0)

+
−n{ûw}2

2(n− 1)

√
ˆV ar(uw0)

.
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Again Taylor approximate −{ûw}2, noting that −{·}2 is concave.

−{ûw}2 ≤ −{ ˆuw0}2 +∇z(−z2) |z= ˆuw0
(ûw − ˆuw0)

= −{ ˆuw0}2 + 2{ ˆuw0}2 − 2 ˆuw0 ûw

= { ˆuw0}2 −
2 ˆuw0

n

n∑
i=1

uw
i.

Substituting above and re-arranging terms, we derive the proposition.

Iteratively minimizing wt+1 = argminwG(w;wt) ensures that the sequence of iterates

w1, . . . , wt+1 are successive minimizers of

√
ˆV ar(uw). Hence, during an epoch t, POEM

proceeds by sampling uniformly i ∼ D, computing uw
i,∇uwi and, for learning rate η,

updating

w ← w − η{∇uwi + λ
√
n(Awt∇uwi + 2Bwtuw

i∇uwi)}.

After each epoch, wt+1 ← w, and iterated minimization proceeds until convergence.

The complete algorithm is summarized as Algorithm 1. Software implementing POEM
is available at http://www.cs.cornell.edu/∼adith/poem/ for download, as is all the code and
data needed to run each of the experiments reported in Section 6.

6. Empirical Evaluation

We now empirically evaluate the prediction performance and computational efficiency of
POEM on a broad range of scenarios. To be able to control these experiments effectively,
we derive bandit feedback from existing full-information data sets. As the learning task,
we consider multi-label classification with input x ∈ Rp and prediction y ∈ {0, 1}q. Popular
supervised algorithms that solve this problem include Structured SVMs (Tsochantaridis
et al., 2004) and Conditional Random Fields (Lafferty et al., 2001). In the simplest case,
CRF essentially performs logistic regression for each of the q labels independently. As
outlined in Section 5, we use a joint feature map: φ(x, y) = x⊗y. We conducted experiments
on different multi-label data sets collected from the LibSVM repository, with different ranges
for p (features), q (labels) and n (samples) represented as summarized in Table 2.

Experiment methodology. We employ the Supervised 7→ Bandit conversion (Beygelzimer
and Langford, 2009) method. Here, we take a supervised data setD∗ = {(x1, y∗1) . . . (xn, y

∗
n)}

Name p(# features) q(# labels) ntrain ntest
Scene 294 6 1211 1196
Yeast 103 14 1500 917
TMC 30438 22 21519 7077
LYRL 47236 4 23149 781265

Table 2: Corpus statistics for different multi-label data sets from the LibSVM repository.
LYRL was post-processed so that only top level categories were treated as labels.
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Algorithm 1 POEM pseudocode. An alternative version can use separate samplers for
estimating uw

i and {uwi}2 on Line 24.

1: procedure LossGradient(Ds, ~w) . Returns uw
i,∇w(uw

i) for i ∈ Ds
2: for i ∈ Ds do
3: ui ← uw

i. . Equation (13)
4: gi ← ∇w(uw

i).
return ~u,~g.

5: procedure ABC(D, ~w, λ) . Returns Aw, Bw, Cw from Proposition (4)
6: ~u,~g ← LossGradient(D, ~w).
7: R←

∑
i∈D ui/n.

8: V ←
√∑

i∈D(ui −R)2/(n− 1).

9: A← 1− λ
√
nR

(n−1)V .

10: B ← λ
2(n−1)V

√
n

.

11: C ← λV
2
√
n

+ λ
√
nR2

2(n−1)V .

return A,B,C.

12: procedure SGD(D, λ, µ) . L2 regularizer µ
13: ~w ← [0]d. . Initial param

14: ~h← [1]d. . Adagrad history
15: while True do
16: Shuffle D.
17: A,B,C ← ABC(D, w, λ).
18: for Ds ⊂ D do . Minibatch |Ds| = b
19: ~u,~g ← LossGradient(Ds, ~w).
20: u =

∑
i∈Ds ui/|Ds|.

21: g =
∑

i∈Ds gi/|Ds|.
22: hi ← hi + gi

2.
23: ji ← gi/

√
hi.

24: ~∇ ← A~j + 2µ~w + 2Bu~j.
25: if ‖~∇‖ ' 0 then return ~w. . Gradient norm convergence

26: if u > avg u then return ~w. . Progressive validation

27: ~w ← ~w − η~∇. . Step size η

and simulate a bandit feedback data set from a logging policy h0 by sampling yi ∼ h0(xi)
and collecting feedback ∆(y∗i , yi). In principle, we could use any arbitrary stochastic policy
as h0. We choose a CRF trained on 5% of D∗ as h0 using default hyper-parameters, since
they provide probability distributions amenable to sampling. In all the multi-label experi-
ments, ∆(y∗, y) is the Hamming loss between the supervised label y∗ vs. the sampled label y
for input x. Hamming loss is just the number of incorrectly assigned labels (both false posi-
tives and false negatives). To create bandit feedback D = {(xi, yi, δi ≡ ∆(y∗i , yi), pi ≡ h0(yi |
xi))}, we take four passes through D∗ and sample labels from h0. Note that each supervised
label is worth ' |Y| = 2q bandit feedback labels. We can explore different learning strategies
(e.g., IPS, CRM, etc.) on D and obtain learnt weight vectors wips, wcrm, etc. On the super-
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vised test set, we then report the expected loss per instance R = 1
ntest

∑
i Ey∼hw(xi)∆(y∗i , y)

and compare the generalization error of these learning strategies.

Baselines and learning methods. The expected Hamming loss of h0 is the baseline to
beat. Lower loss is better. The näıve, variance-agnostic approach to counterfactual learning
(Bottou et al., 2013; Strehl et al., 2010) can be generalized to handle parametric multilabel
classification by optimizing Equation (12) with λ = 0. We optimize it either using L-BFGS
(IPS(B)) or stochastic optimization (IPS(S)). POEM(S) uses our Iterative-Majorization
approach to variance regularization as outlined in Section 5.3, while POEM(B) is a L-BFGS
variant. Finally, we report results from a supervised CRF as a skyline, despite its unfair
advantage of having access to the full-information examples.

We keep aside 25% of D as a validation set—we use the unbiased counterfactual estima-
tor from Equation (1) for selecting hyper-parameters. λ = cλ∗, where λ∗ is the calibration
factor from Section 4.4 and c ∈ {10−6, . . . , 1} in multiples of 10. The clipping constant M
is similarly set to the ratio of the 90%ile to the 10%ile propensity score observed in the
training set of D. The reported results are not sensitive to this choice of M , any reasonably
large clipping constant suffices (e.g. even a simple, problem independent choice of M = 100
works well). When optimizing any objective over w, we always begin the optimization from
w = 0, which is equivalent to hw = uniform(Y). We use mini-batch AdaGrad (Duchi
et al., 2011) with batch size = 100 and step size η = 1 to adapt our learning rates for
the stochastic approaches and use progressive validation (Blum et al., 1999) and gradient
norms to detect convergence. Finally, the entire experiment set-up is run 10 times (i.e. h0
trained on randomly chosen 5% subsets, D re-created, and test set performance of different
approaches collected) and we report the averaged test set expected error across runs.

6.1 Does Variance Regularization Improve Generalization?

Results are reported in Table 3. We statistically test the performance of POEM against
IPS (batch variants are paired together, and the stochastic variants are paired together)
using a one-tailed paired difference t-test at significance level of 0.05 across 10 runs of
the experiment, and find POEM to be significantly better than IPS on each data set and
each optimization variant. Furthermore, on all data sets POEM learns a hypothesis that
substantially improves over the performance of h0. This suggests that the CRM principle
is practically useful for designing learning algorithms, and that the variance regularizer is
indeed beneficial.

6.2 How Computationally Efficient is POEM?

Table 4 shows the time taken (in CPU seconds) to run each method on each data set,
averaged over different validation runs when performing hyper-parameter grid search. Some
of the timing results are skewed by outliers, e.g., when under very weak regularization,
CRFs tend to take longer to converge. However, it is still clear that the stochastic variants
are able to recover good parameter settings in a fraction of the time of batch L-BFGS
optimization, and this is even more pronounced when the number of labels grows—the
run-time is dominated by computation of Z(xi).
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R Scene Yeast TMC LYRL

h0 1.543 5.547 3.445 1.463

IPS(B) 1.193 4.635 2.808 0.921
POEM(B) 1.168 4.480 2.197 0.918

IPS(S) 1.519 4.614 3.023 1.118
POEM(S) 1.143 4.517 2.522 0.996

CRF 0.659 2.822 1.189 0.222

Table 3: Test set Hamming loss, R for different approaches to multi-label classification on
different data sets, averaged over 10 runs. POEM is significantly better than IPS
on each data set and each optimization variant (one-tailed paired difference t-test
at significance level of 0.05).

Time(s) Scene Yeast TMC LYRL

IPS(B) 2.58 47.61 136.34 21.01
IPS(S) 1.65 2.86 49.12 13.66

POEM(B) 75.20 94.16 949.95 561.12
POEM(S) 4.71 5.02 276.13 120.09

CRF 4.86 3.28 99.18 62.93

Table 4: Average time in seconds for each validation run for different approaches to multi-
label classification. CRF is implemented by scikit-learn (Pedregosa et al., 2011).
On all data sets, stochastic approaches are much faster than batch gradients.

6.3 Can MAP Predictions Derived From Stochastic Policies Perform Well?

For the policies learnt by POEM as shown in Table 3, Table 5 reports the averaged per-
formance of the deterministic predictor derived from them. For a learnt weight vector w,
this simply amounts to applying Equation (11). In practice, this method of generating
predictions can be substantially faster than sampling since computing the argmax does not
require computation of the partition function Z(x) which can be expensive in structured
output prediction. From Table 5, we see that the loss of the deterministic predictor is
typically not far from the loss of the stochastic policy, and often better.

6.4 How Does Generalization Improve With Size Of D?

As we collect more data under h0, our generalization error bound indicates that prediction
performance should eventually approach that of the optimal hypothesis in the hypothesis
space. We can simulate n → ∞ by replaying the training data multiple times, collecting
samples y ∼ h0(x). In the limit, we would observe every possible y in the bandit feedback
data set, since h0(x) has non-zero probability of exploring each prediction y. However,
the learning rate may be slow, since the exponential model family has very thin tails, and
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R Scene Yeast TMC LYRL

POEM(S) 1.143 4.517 2.522 0.996
POEM(S)map 1.143 4.065 2.299 0.880

Table 5: Mean Hamming loss of MAP predictions from the policies in Table 3. POEMmap

is significantly better than POEM on all data sets except Scene (one-sided paired
difference t-test, significance level 0.05).

20 21 22 23 24 25 26 27 28

3

3.5

4

ReplayCount

R h0
CRF

POEM(S)

Figure 1: Generalization performance of POEM(S) as a function of n on the Yeast data
set.

hence may not be an ideal logging distribution to learn from. Holding all other details
of the experiment setup fixed, we vary the number of times we replayed the training set
(ReplayCount) to collect samples from h0, and report the performance of POEM(S) on the
Yeast data set in Figure 1. As expected, performance of POEM improves with increasing
sample size. Note that even with ReplayCount = 28, POEM(S) is learning from much less
information than the CRF, where each supervised label conveys 214 bandit label feedbacks.

6.5 How Does Quality of h0 Affect Learning?

In this experiment, we change the fraction of the training set f ·ntrain that was used to train
the logging policy—and as f is increased, the quality of h0 improves. Intuitively, there’s
a trade-off: better h0 probably samples correct predictions more often and so produces a
higher quality D to learn from, but it should also be harder to beat h0. We vary f from
1% to 100% while keeping all other conditions identical to the original experiment setup in
Figure 2, and find that POEM(S) is able to consistently find a hypothesis at least as good
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Figure 2: Performance of POEM(S) on the Yeast data set as h0 is improved. The fraction
f of the supervised training set used to train h0 is varied to control h0’s quality.
h0 performance does not reach CRF when f = 1 because we do not tune hyper-
parameters, and we report its expected loss, not the loss of its MAP prediction.

as h0. Moreover, even D collected from a poor quality h0 (0.5 ≤ f ≤ 0.2) allows POEM(S)
to effectively learn an improved policy.

6.6 How Does Stochasticity of h0 Affect Learning?

Finally, the theory suggests that counterfactual learning is only possible when h0 is suf-
ficiently stochastic (the generalization bounds hold with high probability in the samples
drawn from h0). Does CRM degrade gracefully when this assumption is violated? We test
this by introducing the temperature multiplier w 7→ αw,α > 0 (as discussed in Section 5)
into the logging policy. For h0 = hw0 , we scale w0 7→ αw0, to derive a “less stochastic”
variant of h0, and generate D ∼ hαw0 . We report the performance of POEM(S) on the
LYRL data set in Figure 3 as we change α ∈ [0.5, . . . , 32], compared against h0, and the
deterministic predictor— h0 map—derived from h0. So long as there is some minimum
amount of stochasticity in h0, POEM(S) is still able to find a w that improves upon h0 and
h0 map. The margin of improvement is typically greater when h0 is more stochastic. Even
when h0 is barely stochastic (α ≥ 24), performance of POEM(S) simply recovers h0 map,
suggesting that the CRM principle indeed achieves robust learning.

We observe the same trends (Figures 1, 2 and 3) across all data sets and optimization
variants. They also remain unchanged when we include l2−regularization (analogous to
supervised CRFs to capture the capacity of Hlin).
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Figure 3: Performance of POEM(S) on the LYRL data set as h0 becomes less stochastic.
For α ≥ 25, h0 ≡ h0 map (within machine precision).

7. Real-World Application

We now demonstrate how POEM (and in general the CRM principle) can be instantiated
effectively in real world settings. Bloomberg, the financial and media company in New
York, had the following challenging retrieval problem: the task was to train a high-precision
classifier that could reliably pick the best answer d∗ (or none, if none answered the query)
from a pool of candidate answers Y(x) for query x, where Y(x) was generated by an existing
high-recall retrieval function. The challenge lay in collecting supervised labeled data that
could be used to train this high-precision classifier.

Before we started our experiment with POEM, an existing high-precision classifier was
already in operation. It was trained using a few labeled examples (x, d∗), but scaling up
the system to achieve improved accuracy appeared challenging given the cost of acquiring
new (x, d∗) pairs that mimicked what the system saw during its operation. However, it was
possible to collect logs of the system, where each entry contained a query x and the features
φ(x, d) describing each candidate answer d ∈ Y(x). The high-precision classifier could be
modeled as a logistic regression classifier with weights w and a threshold τ . Each candidate
was scored using w, s(d) = w · φ(x, d). If the highest scoring candidate s(d∗) ≥ τ , it was
selected as the answer and otherwise the system abstained.

This existing system could easily be adapted to provide D as needed by POEM. For each
x, a dummy d0 ∈ Y(x) is added to the candidate pool to model abstention. During the oper-

ation of the system, answers are sampled according to exp(α·s(d))
Z . Z is the partition function

to ensure this is a valid sampling distribution, Z =
∑

d∈Y(x)∪d0 exp(α · s(d)). Abstention
is modeled by the fact that d0 is sampled with probability proportional to exp(α · s(d0)).
α is a temperature constant so that the system can be tuned to sample abstentions at
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roughly the same rate as its deterministic counterpart. Finally, the end-result feedback
(δ ∈ {thumbs-up, thumbs-down} represented as binary feedback) was logged and provided
bandit feedback for the presented answer d.

This data set was much easier to collect during the system run compared to annotating
each x in the logs with the best possible d∗ that would have answered the query. We argue
that this is a general, practical, alternative approach to training retrieval systems: use any
strategy with very high recall to construct Y, then use the parameters w estimated using
the CRM principle to search through this Y and find a precise answer.

On a small pilot study, we acquired D with ' 4000 (x, d, exp(α·s(d))Z , δ) tuples in the
training set and ' 500 tuples in the validation and test sets. We verified that the existing
high-precision classifier was statistically significantly better than random baselines for the
problem. POEM(S) is trained on this log data by performing gradient descent with w
initialized to w0 = 0 and validating c ∈

[
10−6, . . . 1

]
, λ = cλ∗ as described in Sections 4.4

and 6. POEM(S) found a w∗ that improved δ feedback over the existing system by over
30%, as estimated using the unbiased counterfactual estimator of Equation (1) on the test
set. Without using the variance regularizer, the IPS(S) found a w∗ that degraded the
system performance by 3.5% estimated counterfactually in the same way. This shows that
POEM and the CRM principle can bring potential benefit even in binary-feedback multi-
class classification settings where classic supervised learning approaches lack available data.

8. Conclusion

Counterfactual risk minimization serves as a robust principle for designing algorithms that
can learn from a batch of bandit feedback interactions. The key insight for CRM is to
expand the classical notion of a hypothesis class to include stochastic policies, reason about
variance in the risk estimator, and derive a generalization error bound over this hypothesis
space. The practical take-away is a simple, data-dependent regularizer that guarantees
robust learning. Following the CRM principle, we developed the POEM learning algorithm
for structured output prediction. POEM can optimize over rich policy families (exponential
models corresponding to linear rules in supervised learning), and deal with massive output
spaces as efficiently as classical supervised methods.

The CRM principle more generally applies to supervised learning with non-differentiable
losses, since the objective does not require the gradient of the loss function. We also foresee
extensions of the algorithm to handle ordinal or co-active feedback models for δ(·, ·), and
extensions of the generalization error bound to include adaptive or deterministic h0, etc.
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