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Abstract

We present a new framework for multimodal gesture recognition that is based on a multiple
hypotheses rescoring fusion scheme. We specifically deal with a demanding Kinect-based
multimodal data set, introduced in a recent gesture recognition challenge (ChaLearn 2013),
where multiple subjects freely perform multimodal gestures. We employ multiple modali-
ties, that is, visual cues, such as skeleton data, color and depth images, as well as audio,
and we extract feature descriptors of the hands’ movement, handshape, and audio spectral
properties. Using a common hidden Markov model framework we build single-stream ges-
ture models based on which we can generate multiple single stream-based hypotheses for
an unknown gesture sequence. By multimodally rescoring these hypotheses via constrained
decoding and a weighted combination scheme, we end up with a multimodally-selected best
hypothesis. This is further refined by means of parallel fusion of the monomodal gesture
models applied at a segmental level. In this setup, accurate gesture modeling is proven to be
critical and is facilitated by an activity detection system that is also presented. The overall
approach achieves 93.3% gesture recognition accuracy in the ChaLearn Kinect-based mul-
timodal data set, significantly outperforming all recently published approaches on the same
challenging multimodal gesture recognition task, providing a relative error rate reduction
of at least 47.6%.

Keywords: multimodal gesture recognition, HMMs, speech recognition, multimodal
fusion, activity detection

1. Introduction

Human communication and interaction takes advantage of multiple sensory inputs in an
impressive way. Despite receiving a significant flow of multimodal signals, especially in
the audio and visual modalities, our cross-modal integration ability enables us to effectively
perceive the world around us. Examples span a great deal of cases. Cross-modal illusions are
indicative of lower perceptual multimodal interaction and plasticity (Shimojo and Shams,
2001): for instance, when watching a video, a sound is perceived as coming from the speakers
lips (the ventriloquism effect) while, in addition, speech perception may be affected by
whether the lips are visible or not (the McGurk effect).
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At a higher level, multimodal integration is also regarded important for language pro-
duction and this is how the notion of multimodal gestures can be introduced. Several
authors, as McNeill (1992), support the position that hand gestures hold a major role,
and together with speech they are considered to have a deep relationship and to form an
integrated system (Bernardis and Gentilucci, 2006) by interacting at multiple linguistic
levels. This integration has been recently explored in terms of communication by means
of language comprehension (Kelly et al., 2010). For instance, speakers pronounce words
while executing hand gestures that may have redundant or complementary nature, and
even blind speakers gesture while talking to blind listeners (Iverson and Goldin-Meadow,
1998). From a developmental point of view, see references in the work of Bernardis and
Gentilucci (2006), hand movements occur in parallel during babbling of 6-8 month children,
whereas word comprehension at the age of 8-10 months goes together with deictic gestures.
All the above suffice to provide indicative evidence from various perspectives that hand
gestures and speech seem to be interwoven.

In the area of human-computer interaction gesture has been gaining increasing atten-
tion (Turk, 2014). This is attributed both to recent technological advances, such as the
wide spread of depth sensors, and to groundbreaking research since the famous “put that
there” (Bolt, 1980). The natural feeling of gesture interaction can be significantly enhanced
by the availability of multiple modalities. Static and dynamic gestures, the form of the
hand, as well as speech, all together compose an appealing set of modalities that offers
significant advantages (Oviatt and Cohen, 2000).

In this context, we focus on the effective detection and recognition of multimodally
expressed gestures as performed freely by multiple users. Multimodal gesture recognition
(MGR) poses numerous challenging research issues, such as detection of meaningful infor-
mation in audio and visual signals, extraction of appropriate features, building of effective
classifiers, and multimodal combination of multiple information sources (Jaimes and Sebe,
2007). The demanding data set (Escalera et al., 2013b) used in our work has been recently
acquired for the needs of the multimodal gesture recognition challenge (Escalera et al.,
2013a). It comprises multimodal cultural-anthropological gestures of everyday life, in spon-
taneous realizations of both spoken and hand-gesture articulations by multiple subjects,
intermixed with other random and irrelevant hand, body movements and spoken phrases.

A successful multimodal gesture recognition system is expected to exploit both speech
and computer vision technologies. Speech technologies and automatic speech recogni-
tion (Rabiner and Juang, 1993) have a long history of advancements and can be considered
mature when compared to the research challenges found in corresponding computer vision
tasks. The latter range from low-level tasks that deal with visual descriptor representa-
tions (Li and Allinson, 2008), to more difficult ones, such as recognition of action (Laptev
et al., 2008), of facial expressions, handshapes and gestures, and reach higher-level tasks
such as sign language recognition (Agris et al., 2008). However, recently the incorporation
of depth enabled sensors has assisted to partially overcome the burden of detection and
tracking, opening the way for addressing more challenging problems. The study of multiple
modalities’ fusion is one such case, that is linked with subjects discussed above.

Despite the progress seen in either unimodal cases such as the fusion of multiple speech
cues for speech recognition (e.g., Bourlard and Dupont, 1997) or the multimodal case of
audio-visual speech (Potamianos et al., 2004; Glotin et al., 2001; Papandreou et al., 2009),
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the integration of dissimilar cues in MGR poses several challenges; even when several cues
are excluded such as facial ones, or the eye gaze. This is due to the complexity of the task
that involves several intra-modality diverse cues, as the 3D hands’ shape and pose. These
require different representations and may occur both sequentially and in parallel, and at
different time scales and/or rates. Most of the existing gesture-based systems have certain
limitations, for instance, either by only allowing a reduced set of symbolic commands based
on simple hand postures or 3D pointing (Jaimes and Sebe, 2007), or by considering single-
handed cases in controlled tasks. Such restrictions are indicative of the task’s difficulty
despite already existing work (Sharma et al., 2003) even before the appearance of depth
sensors (Weimer and Ganapathy, 1989).

The fusion of multiple information sources can be either early, late or intermediate, that
is, either at the data/feature level, or at the stage of decisions after applying independent
unimodal models, or in-between; for further details refer to relative reviews (Jaimes and
Sebe, 2007; Maragos et al., 2008). In the case of MGR late fusion is a typical choice
since involved modalities may demonstrate synchronization in several ways (Habets et al.,
2011) and possibly at higher linguistic levels. This is in contrast, for instance, to the
case of combining lip movements with speech in audio-visual speech where early or state-
synchronous fusion can be applied, with synchronization at the phoneme-level.

In this paper, we present a multimodal gesture recognition system that exploits the color,
depth and audio signals captured by a Kinect sensor. The system first extracts features for
the handshape configuration, the movement of the hands and the speech signal. Based on
the extracted features and statistically trained models, single modality-based hypotheses are
then generated for an unknown gesture sequence. The underlying single-modality modeling
scheme is based on gesture-level hidden Markov models (HMMs), as described in Section 3.1.
These are accurately initialized by means of a model-based activity detection system for
each modality, presented in Section 3.3. The generated hypotheses are re-evaluated using
a statistical multimodal multiple hypotheses fusion scheme, presented in Section 3.2. The
proposed scheme builds on previous work on N-best rescoring: N-best sentence hypotheses
scoring was introduced for the integration of speech and natural language by Chow and
Schwartz (1989) and has also been employed for the integration of different recognition
systems based on the same modality, e.g., by Ostendorf et al. (1991), or for audio-visual
speech recognition by Glotin et al. (2001). Given the best multimodally-selected hypothesis,
and the implied gesture temporal boundaries in all information streams, a final segmental
parallel fusion step is applied based on parallel HMMs (Vogler and Metaxas, 2001). We
show in Section 5 that the proposed overall MGR framework outperforms the approaches
that participated in the recent demanding multimodal challenge (Escalera et al., 2013a), as
published in the proceedings of the workshop, by reaching an accuracy of 93.3 and leading
to a relative error rate (as Levenshtein distance) reduction of 47% over the first-ranked
team.

2. Related Work

Despite earlier work in multimodal gesture recognition, it is considered an open field, re-
lated to speech recognition, computer vision, gesture recognition and human-computer in-
teraction. As discussed in Section 1 it is a multilevel problem posing challenges on audio
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and visual processing, on multimodal stream modeling and fusion. Next, we first consider
works related to the recent advances on multimodal recognition, including indicative works
evaluated in the same ChaLearn challenge and recognition task by sharing the exact train-
ing/testing protocol and data set. Then, we review issues related to basic components and
tasks, such as visual detection and tracking, visual representations, temporal segmentation,
statistical modeling and fusion.

There are several excellent reviews on multimodal interaction either from the computer
vision or human-computer interaction aspect (Jaimes and Sebe, 2007; Turk, 2014). Since
earlier pioneering works (Bolt, 1980; Poddar et al., 1998) there has been an explosion of
works in the area; this is also due to the introduction of everyday usage depth sensors (e.g.,
Ren et al., 2011). Such works span a variety of applications such as the recent case of gestures
and accompanying speech integration for a problem in geometry (Miki et al., 2014), the in-
tegration of nonverbal auditory features with gestures for agreement recognition (Bousmalis
et al., 2011), or within the aspect of social signal analysis (Ponce-López et al., 2013); Song
et al. (2013) propose a probabilistic extension of first-order logic, integrating multimodal
speech/visual data for recognizing complex events such as everyday kitchen activities.

The ChaLearn task is an indicative case of the effort recently placed in the field: Pub-
lished approaches ranked in the first places of this gesture challenge, employ multimodal
signals including audio, color, depth and skeletal information; for learning and recogni-
tion one finds approaches ranging from hidden Markov models (HMMs)/Gaussian mixture
models (GMMs) to boosting, random forests, neural networks and support vector machines
among others. Next, we refer to indicative approaches from therein, (Escalera et al., 2013b).
In Section 5 we refer to specific details for the top-ranked approaches that we compare with.
Wu et al. (2013), the first-ranked team, are driven by the audio modality based on end-point
detection, to detect the multimodal gestures; then they combine classifiers by calculating
normalized confidence scores. Bayer and Thierry (2013) are also driven by the audio based
on a hand-tuned detection algorithm, then they estimate class probabilities per gesture
segment and compute their weighted average. Nandakumar et al. (2013) are driven by both
audio HMM segmentation, and skeletal points. They discard segments not detected in both
modalities while employing a temporal overlap coefficient to merge overlapping modalities’
segments. Finally, they recognize the gesture with the highest combined score. Chen and
Koskela (2013) employ the extreme learning machine, a class of single-hidden layer feed-
forward neural network and apply both early and late fusion. In a late stage, they use the
geometric mean to fuse the classification outputs. Finally, Neverova et al. (2013) propose
a multiple-scale learning approach that is applied on both temporal and spatial dimension
while employing a recurrent neural network. Our contribution in the specific area of mul-
timodal gestures recognition concerns the employment of a late fusion scheme based on
multiple hypothesis rescoring. The proposed system, also employing multimodal activity
detectors, all in a HMM statistical framework, demonstrates improved performance over
the rest of the approaches that took part in the specific ChaLearn task.

From the visual processing aspect the first issue to be faced is hand detection and
tracking. Regardless of the boost offered after the introduction of depth sensors there
are unhandled cases as in the case of low quality video or resolution, in complex scene
backgrounds with multiple users, and varying illumination conditions. Features employed
are related to skin color, edge information, shape and motion for hand detection (Argyros
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and Lourakis, 2004; Yang et al., 2002), and learning algorithms such as boosting (Ong
and Bowden, 2004). Tracking is based on blobs (Starner et al., 1998; Tanibata et al.,
2002; Argyros and Lourakis, 2004), hand appearance (Huang and Jeng, 2001), or hand
boundaries (Chen et al., 2003; Cui and Weng, 2000), whereas modeling techniques include
Kalman filtering (Binh et al., 2005), the condensation method (Isard and Blake, 1998), or
full upper body pose tracking (Shotton et al., 2013). Others directly employ global image
features (Bobick and Davis, 2001). Finally, Alon et al. (2009) employ a unified framework
that performs spatial segmentation simultaneously with higher level tasks. In this work,
similarly to other authors, see works presented by Escalera et al. (2013b), we take advantage
of the Kinect-provided skeleton tracking.

Visual feature extraction aims at the representation of the movement, the position and
the shape of the hands. Representative measurements include the center-of-gravity of the
hand blob (Bauer and Kraiss, 2001), motion features (Yang et al., 2002), as well as features
related with the hand’s shape, such as shape moments (Starner et al., 1998) or sizes and
distances within the hand (Vogler and Metaxas, 2001). The contour of the hand is also
used for invariant features, such as Fourier descriptors (Conseil et al., 2007). handshape
representations are extracted via principal component analysis (e.g., Du and Piater, 2010),
or with variants of active shape and appearance models (Roussos et al., 2013). Other ap-
proaches (e.g. Dalal and Triggs, 2005) employ general purpose features as the Histogram
of Oriented Gradients (HOG) (Buehler et al., 2009), or the scale invariant feature trans-
form (Lowe, 1999). Li and Allinson (2008) present a review on local features. In this work,
we employ the 3D points of the articulators as extracted from the depth-based skeleton
tracking and the HOG descriptors for the handshape cue.

Temporal detection or segmentation of meaningful information concerns another impor-
tant aspect of our approach. Often the segmentation problem is seen in terms of gesture
spotting, that is, for the detection of the meaningful gestures, as adapted from the case of
speech (Wilcox and Bush, 1992) where all non-interesting patterns are modeled by a sin-
gle filler model. Specifically, Lee and Kim (1999) employ in similar way an ergodic model
termed as threshold model to set adaptive likelihood thresholds. Segmentation may be also
seen in combination with recognition as by Alon et al. (2009) or Li and Allinson (2007); in
the latter, start and end points of gestures are determined by zero crossing of likelihoods’
difference between gesture/non-gestures. There has also been substantial related work in
sign language tasks: Han et al. (2009) explicitly perform segmentation based on motion dis-
continuities, Kong and Ranganath (2010) segment trajectories via rule-based segmentation,
whereas others apply systematic segmentation as part of the modeling of sub-sign compo-
nents (sub-units) (Bauer and Kraiss, 2001); the latter can be enhanced by an unsupervised
segmentation component (Theodorakis et al., 2014) or by employing linguistic-phonetic in-
formation (Pitsikalis et al., 2011), leading to multiple subunit types. In our case, regardless
of the availability of ground truth temporal gesture annotations we employ independent
monomodal model-based activity detectors that share a common HMM framework. These
function independently of the ground truth annotations, and are next exploited at the
statistical modeling stage.

Multimodal gesture recognition concerns multiple dynamically varying streams, requir-
ing the handling of multiple variable time-duration diverse cues. Such requirements are
met by approaches such as hidden Markov models that have been found to efficiently model
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temporal information. The corresponding framework further provides efficient algorithms,
such as BaumWelch and Viterbi (Rabiner and Juang, 1993), for evaluation, learning, and
decoding. For instance, Nam and Wohn (1996) apply HMMs in gesture recognition, Lee and
Kim (1999) in gesture spotting, whereas parametric HMMs (Wilson and Bobick, 1999) are
employed for gestures with systematic variation. At the same time parallel HMMs (Vogler
and Metaxas, 2001) accommodate multiple cues simultaneously. Extensions include condi-
tional random fields (CRFs) or generalizations (Wang et al., 2006), while non-parametric
methods are also present in MGR tasks (Celebi et al., 2013; Hernández-Vela et al., 2013).
In this paper we build word-level HMMs, which fit our overall statistical framework, both
for audio and visual modalities, while also employing parallel HMMs for late fusion.

3. Proposed Methodology

To better explain the proposed multimodal gesture recognition framework let us first de-
scribe a use case. Multimodal gestures are commonly used in various settings and cul-
tures (Morris et al., 1979; Kendon, 2004). Examples include the “OK” gesture expressed
by creating a circle using the thumb and forefinger and holding the other fingers straight
and at the same time uttering “Okay” or “Perfect”. Similarly, the gesture “Come here”
involves the generation of the so-called beckoning sign which in Northern America is made
by sticking out and moving repeatedly the index finger from the clenched palm, facing the
gesturer, and uttering a phrase such as “Come here” or “Here”. We specifically address
automatic detection and recognition of a set of such spontaneously generated multimodal
gestures even when these are intermixed with other irrelevant actions, which could be ver-
bal, nonverbal or both. The gesturer may, for example, be walking in-between the gestures
or talking to somebody else.

In this context, we focus only on gestures that are always multimodal, that is, they are
not expressed only verbally or non-verbally, without implying however strictly synchronous
realizations in all modalities or making any related assumptions apart from expecting con-
secutive multimodal gestures to be sufficiently well separated in time, namely a few mil-
liseconds apart in all information streams. Further, no linguistic assumptions are made
regarding the sequence of gestures, namely any gesture can follow any other.

Let Vg = {gi}, i = 1, . . . , |Vg| be the vocabulary of multimodal gestures gi that are to
be detected and recognized in a recording and let S = {Oi}, i = 1, . . . , |S| be the set of
information streams that are concurrently observed for that purpose. In our experiments,
the latter set comprises three streams, namely audio spectral features, the gesturer’s skeleton
and handshape features. Based on these observations the proposed system will generate a
hypothesis for the sequence of gesture appearances in a specific recording/session, like the
following:

h = [bm, g1, sil, g5, . . . , bm, sil, g3].

The symbol sil essentially corresponds to inactivity in all modalities while bm represents any
other activity, mono- or multimodal, that does not constitute any of the target multimodal
gestures. This recognized sequence is generated by exploiting single stream-based gesture
models via the proposed fusion algorithm that is summarized in Figure 1 and described in
detail in Section 3.2. For the sake of clarity, the single stream modeling framework is first
presented in Section 3.1. Performance of the overall algorithm is found to depend on how
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Figure 1: Overview of the proposed multimodal fusion scheme for gesture recognition based
on multiple hypotheses rescoring. Single-stream models are first used to generate
possible hypotheses for the observed gesture sequence. The hypotheses are then
rescored by all streams and the best one is selected. Finally, the observed sequence
is segmented at the temporal boundaries suggested by the selected hypothesis and
parallel fusion is applied to classify the resulting segments. Details are given in
Section 3.2.

accurately the single stream models represent each gesture. This representation accuracy
can be significantly improved by the application of the multimodal activity detection scheme
described in Section 3.3.

3.1 Speech, Skeleton and Handshape Modeling

The underlying single-stream modeling scheme is based on Hidden Markov Models (HMMs)
and builds on the keyword-filler paradigm that was originally introduced for speech (Wilpon
et al., 1990; Rose and Paul, 1990) in applications like spoken document indexing and re-
trieval (Foote, 1999) or speech surveillance (Rose, 1992). The problem of recognizing a
limited number of gestures in an observed sequence comprising other heterogeneous events
as well, is seen as a keyword detection problem. The gestures to be recognized are the key-
words and all the rest is ignored. Then, for every information stream, each gesture gi ∈ Vg,
or, in practice, its projection on that stream, is modeled by an HMM and there are two
separate filler HMMs to represent either silence/inactivity (sil) or all other possible events
(bm) appearing in that stream.
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All these models are basically left-to-right HMMs with Gaussian mixture models (GMMs)
representing the state-dependent observation probability distributions. They are initialized
by an iterative procedure which sets the model parameters to the mean and covariance
of the features in state-corresponding segments of the training instances and refines the
segment boundaries via the Viterbi algorithm (Young et al., 2002). Training is performed
using the Baum-Welch algorithm (Rabiner and Juang, 1993), and mixture components are
incrementally refined.

While this is the general training procedure followed, two alternative approaches are in-
vestigated, regarding the exact definition and the supervised training process of all involved
models. These are described in the following. We experiment with both approaches and
we show that increased modeling accuracy at the single-stream level leads to better results
overall.

3.1.1 Training Without Employing Activity Detection

In this case, single-stream models are initialized and trained based on coarse, multimodal
temporal annotations of the gestures. These annotations are common for all streams and
given that there is no absolute synchronization across modalities they may also include
inactivity or other irrelevant events in the beginning or end of the target gestural expression.
In this way the gesture models already include, by default, inactivity segments. As a
consequence we do not train any separate inactivity (sil) model. At the same time, the
background model (bm) is trained on all training instances of all the gestures, capturing
in this way only generic gesture properties that are expected to characterize a non-target
gesture. The advantage of this approach is that it may inherently capture cross-modal
synchronicity relationships. For example, the waving hand motion may start before speech
in the waving gesture and so there is probably some silence (or other events) to be expected
before the utterance of a multimodal gesture (e.g. “Bye bye”) which is modeled implicitly.

3.1.2 Training With Activity Detection

On the other hand, training of single-stream models can be performed completely indepen-
dently using stream-specific temporal boundaries of the target expressions. In this direction,
we applied an activity detection scheme, described in detail in Section 3.3. Based on that,
it is possible to obtain tighter stream-specific boundaries for each gesture. Gesture models
are now trained using these tighter boundaries, the sil model is trained on segments of inac-
tivity (different for each modality) and the bm model is trained on segments of activity but
outside the target areas. In this case, single-stream gesture models can be more accurate
but any possible evidence regarding synchronicity across modalities is lost.

3.2 Multimodal Fusion of Speech, Skeleton and Handshape

Using the single-stream gesture models (see Section 3.1) and a gesture-loop grammar as
shown in Figure 2(a) we initially generate a list of N-best possible hypotheses for the
unknown gesture sequence for each stream. Specifically, the Viterbi algorithm (Rabiner
and Juang, 1993) is used to directly estimate the best stream-based possible hypothesis ĥm
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Algorithm 1 Multimodal Scoring and Resorting of Hypotheses

% N-best list rescoring
for all hypotheses do

% Create a constrained grammar
keep the sequence of gestures fixed
allow insertion/deletion of sil and bm occurrences between gestures
for all modalities do

by applying the constrained grammar and Viterbi decoding:
1) find the best state sequence given the observations
2) save corresponding score and temporal boundaries

% Late fusion to rescore hypotheses
final hypothesis score is a weighted sum of modality-based scores

the best hypothesis of the 1st-pass is the one with the maximum score

for the unknown gesture sequence as follows:

ĥm = arg max
hm∈G

logP (Om|hm, λm), m = 1, . . . , |S|

where Om is the observation1 sequence for modalitym, λm is the corresponding set of models
and G is the set of alternative hypotheses allowed by the gesture loop grammar. Instead
of keeping just the best scoring sequence we apply essentially a variation of the Viterbi
algorithm, namely the lattice N-best algorithm (Shwartz and Austin, 1991), that apart
from storing just the single best gesture at each node it also records additional best-scoring
gestures together with their scores. Based on these records, a list of N-best hypotheses for
the entire recording and for each modality can finally be estimated.

The N-best lists are generated independently for each stream and the final superset of
the multimodally generated hypotheses may contain multiple instances of the same gesture
sequence. By removing possible duplicates we end up with L hypotheses forming the set
H = {h1, . . . ,hL}; hi is a gesture sequence (possibly including sil and bm occurrences as
well). Our goal is to sort this set and identify the most likely hypothesis this time exploiting
all modalities together.

3.2.1 Multimodal Scoring and Resorting of Hypotheses

In this direction, and as summarized in Algorithm 1, we estimate a combined score for each
possible gesture sequence as a weighted sum of modality-based scores

vi =
∑
m∈S

wmv
s
m,i, i = 1 . . . L, (1)

where the weights wm are determined experimentally in a left-out validation set of multi-
modal recordings. The validation set is distinct from the final evaluation (test) set; more

1. For the case of video data an observation corresponds to a single image frame; for the case of audio
modality it corresponds to a 25 msec window.
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Figure 2: Finite-state-automaton (FSA) representations of finite state grammars: (a) an
example gesture-loop grammar with 3 gestures plus inactivity and background
labels. The “eps” transition represents an ε transition of the FSA, (b) an example
hypothesis, (c) a hypothesis-dependent grammar allowing varying sil and bm
occurrences between gestures.

Algorithm 2 Segmental Parallel Fusion

% Parallel scoring
for all modalities do segment observations based on given temporal boundaries

for all resulting segments do
estimate a score for each gesture given the segment observations
temporally align modality segments
for all aligned segments do

estimate weighted sum of modality-based scores for all gestures
select the best-scoring gesture (sil and bm included)

details on the selection of weights are provided in Section 5. The modality-based scores
vsm,i are standardized versions2 of vm,i which are estimated by means of Viterbi decoding
as follows:

vm,i = max
h∈Ghi

logP (Om|h, λm), i = 1, . . . , L, m = 1, . . . , |S| (2)

where Om is the observation sequence for modality m and λm is the corresponding set
of models. This actually solves a constrained recognition problem in which acceptable
gesture sequences need to follow a specific hypothesis-dependent finite state grammar Ghi

.
It is required that the search space of possible state sequences only includes sequences

2. That is, transformed to have zero mean and a standard deviation of one.
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corresponding to the hypothesis hi plus possible variations by keeping the appearances
of target gestures unaltered and only allow sil and bm labels to be inserted, deleted and
substituted with each other. An example of a hypothesis and the corresponding grammar
is shown in Figure 2(b,c). In this way, the scoring scheme accounts for inactivity or non-
targeted activity that is not necessarily multimodal, e.g., the gesturer is standing still but
speaking or is walking silently. This is shown to lead to additional improvements when
compared to a simple forced-alignment based approach.

It should be mentioned that hypothesis scoring via (2) can be skipped for the modalities
based on which the particular hypothesis was originally generated. These scores are already
available from the initial N-best list estimation described earlier.

The best hypothesis at this stage is the one with the maximum combined score as
estimated by (1). Together with the corresponding temporal boundaries of the included
gesture occurrences, which can be different for the involved modalities, this hypothesized
gesture sequence is passed on to the segmental parallel scoring stage. At this last stage,
only local refinements are allowed by exploiting possible benefits of a segmental classification
process.

3.2.2 Segmental Parallel Fusion

The segmental parallel fusion algorithm is summarized in Algorithm 2. Herein we exploit
the modality-specific time boundaries for the most likely gesture sequence determined in
the previous step, to reduce the recognition problem into a segmental classification one.
First, we segment the audio, skeleton and handshape observation streams employing these
boundaries. Given that in-between gestures, i.e., for sil or bm parts, there may not be one-
to-one correspondence between segments of different observation streams these segments
are first aligned with each other across modalities by performing an optimal symbolic string
match using dynamic programming. Then, for every aligned segment t and each information
stream m we compute the log probability

LLt
m,j = max

q∈Q
logP (Ot

m,q|λm,j), j = 1, . . . , |Vg|+ 2,

where λm,j are the parameters of the model for the gesture gj in the extended vocabulary
Vg ∪{sil, bm} and the stream m ∈ S; q is a possible state (∈ Q) sequence. These segmental
scores are linearly combined across modalities to get a multimodal gestural score (left hand
side) for each segment

LLt
j =

∑
m∈S

w′mLL
t
m,j , (3)

where w′m, is the stream-weight for modality m set to optimize recognition performance
in a validation data set.3 Finally, the gesture with the highest score is the recognized
one for each segment t. This final stage is expected to give additional improvements and
correct false alarms by seeking loosely overlapping multimodal evidence in support of each
hypothesized gesture.

3. The w′m are different from the weights in (1). Their selection is similarly based on a separate validation
set that is distinct from the final evaluation set; more details on the selection of weights are provided in
Section 5.
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Figure 3: Activity detection example for both audio and visual modalities for one utterance.
First row: The velocity of the hands (V ), their distance with respect to the rest
position (Dr) and the resulting initial estimation of gesture non-activity segments
(tna). Second row: The estimated gesture activity depicted on the actual video
images. Third row: The speech signal accompanied with the initial VAD, the
VAD+HMM and the gesture-level temporal boundaries included in the gesture
data set (ground truth).

3.3 Multimodal Activity Detection

To achieve activity detection for each one of visual and audio modalities, we follow a com-
mon model-based framework. This is based on two complementary models of “activity”
and “non-activity”. In practice, these models, have different interpretations for the dif-
ferent modalities. This is first due to the nature of each modality, and second due to
challenging data acquisition conditions. For the case of speech, the non-activity model may
correspond to noisy conditions, e.g., keyboard typing or fan noise. For the case of the vi-
sual modality, the non-activity model refers to the rest cases in-between the articulation of
gestures. However, these rests are not strictly defined, since the subject may not always
perform a full rest and/or the hands may not stop moving. All cases of activity, in both the
audio and the skeleton streams, such as out-of-vocabulary multimodal gestures and other
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spontaneous gestures are thought to be represented by the activity model. Each modality’s
activity detector is initialized by a modality-specific front-end, as described in the following.

For the case of speech, activity and non-activity models are initialized on activity and
non-activity segments correspondingly. These are determined by taking advantage for ini-
tialization of a Voice Activity Detection (VAD) method recently proposed by Tan et al.
(2010). This method is based on likelihood ratio tests (LRTs) and by treating the LRT’s
for the voice/unvoiced frames differently it gives improved results than conventional LRT-
based and standard VADs. The activity and non-activity HMM models are further trained
using an iterative procedure employing the Baum-Welch algorithm, better known as em-
bedded re-estimation (Young et al., 2002). The final boundaries of the speech activity and
non-activity segments are determined by application of the Viterbi algorithm.

For the visual modality, the goal is to detect activity concerning the dynamic gesture
movements versus the rest cases. For this purpose, we first initialize our non-activity models
on rest position segments which are determined on a recording basis. For these segments
skeleton movement is characterized by low velocity and the skeleton is close to the rest po-
sition xr. To identify non-active segments, we need to estimate a) the skeleton rest position
b) the hands velocity, and c) the distance of the skeleton to that position. Hands’ velocity
is computed as V (x) = ‖ẋ‖ where x(t) is the 3D hands’ centroid coordinate vector and t is
time. The rest position is estimated as the median skeleton position of all the segments for
which hands’ velocity V is below a certain threshold VTr = 0.2 · V̄ , where V̄ is the average
velocity of all segments. The distance of the skeleton to the rest position is determined as
Dr(x) = ‖x − xr‖. Initial non-activity segments tna are the ones for which the following
two criteria hold, namely tna = {t : Dr(x) < DTrand V (x) < VTr}. Taking as input these
tna segments we train a non-activity HMM model while an activity model is trained on all
remaining segments using the skeleton feature vector as described in Section 5.1.1. Further,
similar to the case of speech we re-train the HMM models using embedded re-estimation.
The final boundaries of the visual activity and non-activity segments are determined by
application of the Viterbi algorithm.

In Figure 3, we illustrate an example of the activity detection for both audio and visual
modalities for one utterance. In the first row, we depict the velocity of the hands (V ),
their distance with respect to the rest position (Dr) and the initial estimation of gesture
non-activity (tna) segments. We observe that in tna segments both V and Dr are lower
than the predefined thresholds (VTr = 0.6, DTr = 0.006)4 and correspond to non-activity.
In the second row, we illustrate the actual video frames images. These are marked with
the tracking of both hands and accompanied with the final model-based gesture activity
detection. In the bottom, we show the speech signal, with the initial VAD boundaries, the
refined, HMM-based ones (VAD+HMM) and the gesture-level boundaries included in the
data set (ground truth). As observed the refined detection (VAD+HMM) is tighter and
more precise compared to the initial VAD and the data set annotations.

To sum up, after applying the activity detectors for both audio and visual modalities
we merge the corresponding outputs with the gesture-level data set annotations in order
to obtain refined stream-specific boundaries that align to the actual activities. In this way,

4. These parameters are set after experimentation in a single video of the validation set, that was annotated
in terms of activity.
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(a) RGB (b) Depth (c) Mask (d) Skeleton

Figure 4: Sample cues of the multimodal gesture challenge 2013 data set.

we compensate for the fact that the data set annotations may contain non-activity at the
start/end of each gesture.

4. Multimodal Gestures’ Data set

For our experiments we employ the ChaLearn multimodal gesture challenge data set, intro-
duced by Escalera et al. (2013b). Other similar data sets are described by Ruffieux et al.
(2013, 2014). This data set focuses on multiple instance, user independent learning of ges-
tures from multi-modal data. It provides via Kinect RGB and depth images of face and
body, user masks, skeleton information, joint orientation as well as concurrently recorded
audio including the speech utterance accompanying/describing the gesture (see Figure 4).
The vocabulary contains 20 Italian cultural-anthropological gestures. The data set contains
three separate sets, namely for development, validation and final evaluation, including 39
users and 13858 gesture-word instances in total. All instances have been manually tran-
scribed and loosely end-pointed. The corresponding temporal boundaries are also provided;
these temporal boundaries are employed during the training phase of our system.

There are several issues that render multimodal gesture recognition in this data set
quite challenging as described by Escalera et al. (2013b), such as the recording of continu-
ous sequences, the presence of distracter gestures, the relatively large number of categories,
the length of the gesture sequences, and the variety of users. Further, there is no single
way to perform the included cultural gestures, e.g., “vieni qui” is performed with repeated
movements of the hand towards the user, with a variable number of repetitions (see Fig-
ure 5). Similarly, single-handed gestures may be performed with either the left or right
hand. Finally, variations in background, lighting and resolution, occluded body parts and
spoken dialects have also been introduced.

5. Experiments

We first provide information on the multimodal statistical modeling that includes feature
extraction and training. Then, we discuss the involved fusion parameters, the evaluation
procedure, and finally, present results and comparisons.
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(a) (b) (c) (d)

Figure 5: (a,b) Arm position variation (low, high) for gesture ‘vieni qui’; (c,d) Left and
right handed instances of ‘vattene’.

5.1 Parameters, Evaluation, Structure

Herein, we describe first the employed feature representations, and training parameters
for each modality, such as number of states and mixture components: as discussed in Sec-
tion 3.1 we statistically train separate gesture HMMs per each information stream: skeleton,
handshape and audio. Next, we describe the stream weight selection procedure, note the
best stream weights, and present indicative results of the procedure. After presenting the
evaluation metrics, we finally describe the overall rational of the experimental structure.

5.1.1 Multimodal Features, HMM and Fusion Parameters

The features employed for the skeleton cue include: the hands’ and elbows’ 3D position, the
hands 3D velocity, the 3D direction of the hands’ movement, and the 3D distance of hands’
centroids. For the handshape’s representation we employ the HOG feature descriptors.
These are extracted on both hands’ segmented images for both RGB and depth cues. We
segment the hands by performing a threshold-based depth segmentation employing the
hand’s tracking information. For the audio modality we intend to efficiently capture the
spectral properties of speech signals by estimating the Mel Frequency Cepstral Coefficients
(MFCCs). Our front end generates 39 acoustic features every 10 msec. Each feature vector
comprises 13 MFCCs along with their first and second derivatives. All the above feature
descriptors are well known in the related literature. The specific selections should not affect
the conclusions as related to the main fusion contributions, since these build on the level
of the likelihoods. Such an example would be the employment of other descriptors as for
instance in the case of visual (e.g., Li and Allinson, 2008) or speech related features (e.g.,
Hermansky, 1990).

For all modalities, we train separate gesture, sil and bm models as described in Sec-
tion 3.1. These models are trained either using the data set annotations or based on the
input provided by the activity detectors. The number of states, Gaussian components per
state, stream weights and the word insertion penalty in all modalities are determined ex-
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perimentally based on the recognition performance on the validation set.5 For skeleton, we
train left-right HMMs with 12 states and 2 Gaussians per state. For handshape, the models
correspondingly have 8 states and 3 Gaussians per state while speech gesture models have
22 states and 10 Gaussians per state.

The training time is on average 1 minute per skeleton and handshape model and 90
minutes per audio model. The decoding time is on average 4xRT (RT refers to real-time).6

A significant part of the decoding time is due to the generation of the N-best lists of
hypotheses. In our experiments N is chosen to be equal to 200. We further observed that
the audio-based hypotheses were always ranked higher than those from the other single-
stream models. This motivated us to include only these hypotheses in the set we considered
for rescoring.

5.1.2 Stream Weight Configuration

Herein, we describe the experimental procedure for the selection of the stream weights
wm, w

′
m,m ∈ S of (1) and (3), for the components of multimodal hypothesis rescoring

(MHS) and segmental parallel fusion (SPF). The final weight value selection is based on
the optimization of recognition performance in the validation data set which is completely
distinct from the final evaluation (test) data set.

Specifically, the wm’s are first selected from a set of alternative combinations to op-
timize gesture accuracy at the output of the MHS component. The SPF weights w′m’s
are subsequently set to optimize the performance of the overall framework. The best
weight combination for the multimodal hypothesis rescoring component is found to be
w∗SK,HS,AU = [63.6, 9.1, 27.3], where SK, HS and AU correspond to skeleton, handshape

and audio respectively.7 This leads to the best possible accuracy of MHS in the validation
set, namely 95.84%. Correspondingly, the best combination of weights for the segmental
fusion component is [0.6, 0.6, 98.8]. Overall, the best achieved gesture recognition accuracy
is 96.76% in the validation set.

In Figures 6(a), (b) and (c) we show the recognition accuracy of the MHS component
for the various combinations of the wm’s. For visualization purposes we show accuracy
when the weights vary in pairs and the remaining weight is set to its optimal value. For
example, Figure 6(a) shows recognition accuracy for various combinations of handshape
and audio weights when the skeleton weight is equal to 63.6. Overall, we should comment
that the skeleton’s contribution appears to be the most significant in the rescoring phase.
This is of course a first interpretation, since the list of original hypotheses is already audio-
based only, and the audio contribution cannot be directly inferred. As a consequence these
results should be seen under this viewpoint. In any case, given that audio-based recognition
leads to 94.1% recognition accuracy (in the validation set) it appears that both skeleton

5. Parameter ranges in the experiments for each modality are as follows. Audio: States 10-28, Gaussians:
2-32; Skeleton/handshape: States 7-15, Gaussians: 2-10.

6. For the measurements we employed an AMD Opteron(tm) Processor 6386 at 2.80GHz with 32GB RAM.
7. The weights take values in [0, 1] while their sum across the modalities adds to one; these values are then

scaled by 100 for the sake of numerical presentation. For the w stream weights we sampled the [0, 1]
with 12 samples for each modality, resulting to 1728 combinations. For the w′ case, we sampled the [0, 1]
space by employing 5, 5 and 21 samples for the gesture, handshape and speech modalities respectively,
resulting on 525 combinations.
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Figure 6: Gesture recognition accuracy of the Multiple hypothesis rescoring component
for various weight-pair combinations. From left to right, the handshape-audio,
skeleton-audio, skeleton-handshape weight pairs are varied. The remaining weight
is set to its optimal value, namely 63.6 for skeleton, 9.1 for handshape and 27.3
for audio.

and handshape contribute in properly reranking the hypotheses and improve performance
(which is again confirmed by the results in the test set presented in the following sections).

5.1.3 Evaluation

The presented evaluation metrics include the Levenshtein distance (LD)8 which is employed
in the ChaLearn publications (Escalera et al., 2013b) and the gesture recognition accuracy.
The Levenshtein distance LD(R, T ), also known as “edit distance’, is the minimum number
of edit operations that one has to perform to go from symbol sequence R to T , or vice versa;
edit operations include substitutions (S), insertions (I), or deletions (D). The overall score
is the sum of the Levenshtein distances for all instances compared to the corresponding
ground truth instances, divided by the total number of gestures. At the same time we
report the standard word recognition accuracy Acc = 1− LD = N−S−D−I

N , where N is the
total number of instances of words.

Finally, we emphasize that all reported results have been generated by strictly following
the original ChaLearn challenge protocol which means that they are directly comparable
with the results reported by the challenge organizers and other participating teams (Escalera
et al., 2013b; Wu et al., 2013; Bayer and Thierry, 2013).

5.1.4 Structure of Experiments

For the evaluation of the proposed approach we examine the following experimental aspects:

1. First, we present results on the performance of the single modality results; for these
the only parameter that we switch on/off is the activity detection, which can be
applied on each separate modality; see Section 5.2 and Table 1.

2. Second, we examine the performance in the multimodal cases. This main axis of
experiments has as its main reference Table 2 and concerns several aspects, as follows:

(a) Focus on the basic components of the proposed approach.

8. Note that the Levenshtein distance takes values in [0, 1] and is equivalent to the word error rate.
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AD
Single Modalities
Aud. Skel. HS

7 78.4 47.6 13.3

X 87.2 49.1 20.2

Table 1: Single modalities recognition accuracy %, including Audio (Aud.), Skeleton (Skel.),
and Handshape (HS). AD refers to activity detection.

(b) Focus on two stream modality combinations; this serves for both the analysis of
our approach, but also provides a more focused comparison with other methods
that employ the specific pairs of modalities.

(c) Finally, we provide several fusion based variation experiments, as competitive
approaches.

3. Third, we show an indicative example from the actual data, together with its decoding
results after applying the proposed approach, compared to the application of a couple
of subcomponents.

4. Fourth, we specifically focus on comparisons within the gesture challenge competition.
From the list of 17 teams/methods that submitted their results (54 teams participated
in total) we review the top-ranked ones, and list their results for comparison. More-
over, we describe the components that each of the top-ranked participants employ,
providing also focused comparisons to both our complete approach, and specific cases
that match the employed modalities of the other methods. Some cases of our com-
petitive variations can be seen as resembling cases of the other teams’ approaches.

5.2 Recognition Results: Single Modalities

In Table 1 we show the recognition results for each independent modality with and without
the employment of activity detection (AD). Note that AD is employed for model training,
as described in Sections 3.1, 3.3, for each modality. In both cases the audio appears to be
the dominant modality in terms of recognition performance. For all modalities, the model-
based integration of the activity detectors during training appears to be crucial: they lead
to refined temporal boundaries that better align to the actual single-stream activity. In this
way we compensate for the fact that the data set annotations may contain non-activity at
the start/end of a gesture. By tightening these boundaries we achieve to model in more
detail gesture articulation leading to more robustly trained HMMs. This is also projected
on the recognition experiments: In all modalities the recognition performance increases, by
8.8%, 1.5% and 6.9% in absolute for the audio, the skeleton and the handshape streams
respectively.
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Method/
Modality Segm. Method

Classifier/
Fusion

Acc.
LD

Exp. Code Modeling (%)
O

th
er

s O1: 1st Rank∗ SK, AU AU:time-domain HMM, DTW Late:w-sum 87.24 0.1280

O2: 2nd Rank† SK, AU AU:energy RF, KNN Late:posteriors 84.61 0.1540

O3: 3rd Rank‡ SK, AU AU:detection RF, Boosting Late:w-average 82.90 0.1710

2
S
tr

ea
m

s s2-A1 SK,AU HMM AD, HMM Late:SPF 87.9 0.1210
s2-B1 SK,AU - AD,HMM,GRAM Late:MHS 92.8 0.0720

s2-A2 HS,AU HMM AD, HMM Late:SPF 87.7 0.1230
s2-B2 HS,AU - AD,HMM,GRAM Late:MHS 87.5 0.1250

3
S
tr

ea
m

s

C1 SK,AU,HS HMM AD, HMM Late:SPF 88.5 0.1150
D1 SK,AU,HS - HMM Late:MHS 85.80 0.1420
D2 SK,AU,HS - AD,HMM Late:MHS 91.92 0.0808
D3 SK,AU,HS - AD,HMM,GRAM Late:MHS 93.06 0.0694
E1 SK,AU,HS HMM HMM Late:MHS+SPF 87.10 0.1290
E2 SK,AU,HS HMM AD,HMM Late:MHS+SPF 92.28 0.0772
E3 SK,AU,HS HMM AD,HMM,GRAM Late:MHS+SPF 93.33 0.0670

∗(Wu et al., 2013); † (Escalera et al., 2013b); ‡ (Bayer and Thierry, 2013).

Table 2: Comparisons to first-ranked teams in the multimodal challenge recognition Cha-
Learn 2013, and to several variations of our approach.

5.3 Recognition Results: Multimodal Fusion

For the evaluation of the proposed fusion scheme we focus on several of its basic components.
For these we refer to the experiments with codes D1-3,9 and E1-3 as shown in Table 2. These
experiments correspond to the employment of all three modalities, while altering a single
component each time, wherever this makes sense.

5.3.1 Main Components and Comparisons

First comes the MHS component (see D1-3), which rescores the multimodal hypotheses
list employing all three information streams and linearly combining their scores. Com-
paring with Table 1 the MHS component results in improved performance compared to
the monomodal cases, by leading to 38% relative Levenshtein distance reduction (LDR)10

on average. This improvement is statistically significant, when employing the McNemar’s
test (Gillick and Cox, 1989), with p < 0.001.11

Further, the employment of the activity detectors for each modality during training
also affects the recognition performance after employing the MHS component, leading to a
relative LDR of 38% which is statistically significant (p < 0.001); compare D1-D2, E1-E2.

For the N-best multimodal hypothesis rescoring we can either enforce each modality
to rescore the exact hypothesis (forced alignment), or allow certain degrees of freedom by

9. The D1-3 notation refers to the D1, D2 and D3 cases.
10. All relative percentages, unless stated otherwise, refer to relative LD reduction (LDR). LDR is equivalent

to the known relative word error rate reduction.
11. Statistical significance tests are computed on the raw recognition values and not on the relative improve-

ment scores.

273



Pitsikalis, Katsamanis, Theodorakis and Maragos

REF DACCORDO OOV OOV OK OOV OOV OOV SONOSTUFO

AUDIO DACCORDO BM PREDERE OK BM FAME BM SONOSTUFO

nAD-nGRAM DACCORDO BM BM OK BM BM OK SONOSTUFO

DACCORDO BM BM BM BM BM BM SONOSTUFO

AD-GRAM DACCORDO BM BM OK BM BM BM SONOSTUFO

AD-nGRAM

Figure 7: A gesture sequence decoding example. The audio signal is plotted in the top row
the and visual modalities (second row) are illustrated via a sequence of images for
a gesture sequence. Ground truth transcriptions are denoted by “REF”. Decoding
results are given for the single-audio modality (AUDIO) and the proposed fusion
scheme employing or not the activity detection (AD) or the grammar (GRAM).
In nAD-nGRAM we do not employ neither AD nor GRAM during rescoring, in
AD-nGRAM we only employ AD but not GRAM and in AD-GRAM both AD
and GRAM are employed. Errors are highlighted as: deletions, in blue color,
and insertions in green. A background model (bm) models the out-of-vocabulary
(OOV) gestures.

employing a specific grammar (GRAM) which allows insertions or deletions of either bm or
sil models: By use of the aforementioned grammar during rescoring (see D2-D3, E2-E3)
we get an additional 14% of relative Levenshtein distance reduction, which is statistically
significant (p < 0.001). This is due to the fact that the specific grammar accounts for
activity or non-activity that does not necessarily occur simultaneously across all different
modalities.

In addition, by employing the SPF component (E1-3) we further refine the gesture se-
quence hypothesis by fusing the single-stream models at the segmental level. By comparing
corresponding pairs: D1-E1, D2-E2 and D3-E3, we observe that the application of the SPF
component increases the recognition performance only slightly; this increase was not found
to be statistically significant. The best recognition performance, that is, 93.33%, is obtained
after employing the SPF component on top of MHS, together with AD and GRAM (see
E3).

On the side, we additionally provide results that account for pairs of modalities; see
s2-B1 (AU+SK) and s2-B2 (AU+HS), and for the case of the MHS component. These two
stream pair results, are comparable with the corresponding 3-stream case of D1 (plus D2-3
for additional components). The rest of the results and pairs are discussed in Section 5.4,
where comparisons with other approaches are presented.
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5.3.2 Example from the Results

A decoding example is shown in Figure 7. Herein we illustrate both audio and visual modal-
ities for a word sequence accompanied with the ground truth gesture-level transcriptions
(row:“REF”). In addition we show the decoding output employing the single-audio modality
(AUDIO) and the proposed fusion scheme employing or not two of its basic components:
activity detection (AD) and the above mentioned grammar (GRAM). In the row denoted
by nAD-nGRAM we do not employ either AD or GRAM during rescoring, in the row AD-
nGRAM we only employ AD but not GRAM and in AD-GRAM both AD and grammar
are used. As we observe there are several cases where the subject articulates an out-of-
vocabulary (OOV) gesture. This indicates the difficulty of the task as these cases should
be ignored. By focusing on the recognized word sequence that employs the single-audio
modality we notice two insertions (‘PREDERE’ and ‘FAME’). When employing either the
nAD-nGRAM or AD-nGRAM the above word insertions are corrected as the visual modal-
ity is integrated and helps identifying that these segments correspond to OOV gestures.
Finally, both nAD-nGRAM and AD-nGRAM lead to errors which our final proposed ap-
proach manages to deal with: nAD-nGRAM causes insertion of “OK”, AD-nGRAM of a
word deletion “BM”. On the contrary, the proposed approach recognizes the whole sentence
correctly.

5.4 Comparisons

Next, we first briefly describe the main components of the top-ranked approaches in Cha-
Learn. This description aims at allowing for focused and fair comparisons between 1) the
first-ranked approaches, and 2) variations of our approach.

5.4.1 ChaLearn First-Ranked Approaches

The first-ranked team (IV AMM) (Wu et al., 2013; Escalera et al., 2013b) uses a feature
vector based on audio and skeletal information. A simple time-domain end-point detection
algorithm based on joint coordinates is applied to segment continuous data sequences into
candidate gesture intervals. A HMM is trained with 39-dimension MFCC features and
generates confidence scores for each gesture category. A Dynamic Time Warping based
skeletal feature classifier is applied to provide complementary information. The confidence
scores generated by the two classifiers are firstly normalized and then combined to produce a
weighted sum for late fusion. A single threshold approach is employed to classify meaningful
gesture intervals from meaningless intervals caused by false detection of speech intervals.

The second-ranked team (WWEIGHT) (Escalera et al., 2013b) combines audio and
skeletal information, using both joint spatial distribution and joint orientation. They first
search for regions of time with high audio-energy to define time windows that potentially
contained a gesture. Feature vectors are defined using a log-spaced audio spectrogram
and the joint positions and orientations above the hips. At each time sample the method
subtracts the average 3D position of the left and right shoulders from each 3D joint position.
Data is down-sampled onto a 5Hz grid. There were 1593 features total (9 time samples x 177
features per time sample). Since some of the detected windows contain distracter gestures,
an extra 21st label is introduced, defining the “not in the dictionary” gesture category. For
the training of the models they employed an ensemble of randomized decision trees, referred
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Rank Approach Lev. Dist. Acc.% LDR

- Our 0.0667 93.33 -
1 iva.mm (Wu et al., 2013) 0.12756 87.244 +47.6
2 wweight 0.15387 84.613 +56.6
3 E.T. (Bayer and Thierry, 2013) 0.17105 82.895 +60.9
4 MmM 0.17215 82.785 +61.2
5 pptk 0.17325 82.675 +61.4

Table 3: Our approach in comparison with the first 5 places of the Challenge. We include
recognition accuracy (Acc.) %, Levenshtein distance (Lev. Dist., see also text) and
relative Levenshtein distance reduction (LDR) (equivalent to the known relative
error reduction) compared to the proposed approach (Our).

to as random forests (RF), (Escalera et al., 2013b), and a k-nearest neighbor (KNN) model.
The posteriors from these models are averaged with equal weight. Finally, a heuristic is used
(12 gestures maximum, no repeats) to convert posteriors to a prediction for the sequence
of gestures.

The third-ranked team (ET) (Bayer and Thierry, 2013; Escalera et al., 2013b) combine
the output decisions of two approaches. The features considered are based on the skeleton
information and the audio signal. First, they look for gesture intervals (unsupervised)
using the audio and extract features from these intervals (MFCC). Using these features,
they train a random forest (RF) and a gradient boosting classifier. The second approach
uses simple statistics (median, var, min, max) on the first 40 frames for each gesture to
build the training samples. The prediction phase uses a sliding window. The authors late
fuse the two models by creating a weighted average of the outputs.

5.4.2 Comparisons With Other Approaches and Variations

Herein we compare the recognition results of our proposed multimodal recognition and
multiple hypotheses fusion framework with other approaches (Escalera et al., 2013b) which
have been evaluated in the exact recognition task.12

First, let us briefly present an overview of the results (Table 3): Among the numerous
groups and approaches that participated we list the first four ones as well as the one we
submitted during the challenge, that is “pptk”. As shown in Table 3 the proposed approach
leads to superior performance with relative LD reduction of at least 47.6%. We note that
our updated approach compared to the one submitted during the challenge leads to an
improvement of 61.4%, measured in terms of relative LD reduction (LDR). Compared to
the approach we submitted during the challenge, the currently proposed scheme: 1) employs
activity detection to train single-stream models, 2) applies the SPF on top of the MHS step,
3) introduces the grammar-constrained decoding during hypothesis rescoring and further

12. In all results presented we follow the same blind testing rules that hold in the challenge, in which we
have participated (pptk team). In Table 3 we include for common reference the Levenshtein distance
(LD) which was also used in the challenge results (Escalera et al., 2013b).
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4) incorporates both validation and training data for the final estimation of the model
parameters.

Now let us zoom into the details of the comparisons by viewing once again Table 2. In
the first three rows, with side label “Others” (O1-3), we summarize the main components
of each of the top-ranked approaches. These employ only the two modalities (SK+AU).
The experiments with pairs of modalities s2-A1, s2-B1 can be directly compared with O1-3,
since they all take advantage of the SK+AU modalities. Their differential concerns 1) the
segmentation component, which is explicit for the O1-3; note that the segmentation of
s2-A1 is implicit, as a by-product of the HMM recognition. 2) The modeling and recogni-
tion/classification component. 3) The fusion component. At the same time, s2-A1/s2-B1
refer to the employment of the proposed components, that is, either SPF or MHS. Specif-
ically, s2-A1 and s2-B1 leads to at least 5% and 43.5% relative LD reduction respectively.
Of course our complete system (see rest of variations) leads to even higher improvements.

Other comparisons to our proposed approach and variations are provided after compar-
ing with the SPF-only case, by taking out the contribution of the rescoring component. In
the case of all modalities, 3 stream case, (see C1) this is compared to the corresponding
matching experiment E2; this (E2) only adds the MHS resulting to an improvement of
32.9% LDR. The GRAM component offers an improvement of 42% LDR (C1 vs. E3). Re-
duced versions compared to C1, with two-stream combinations can be found by comparing
C1 with s2-A1 or s2-A2.

6. Conclusions

We have presented a complete framework for multimodal gesture recognition based on multi-
ple hypotheses fusion, with application in automatic recognition of multimodal gestures. In
this we exploit multiple cues in the visual and audio modalities, namely movement, hands’
shape and speech. After employing state-of-the-art feature representations, each modality is
treated under a common statistical HMM framework: this includes model-based multimodal
activity detection, HMM training of gesture-words, and information fusion. Fusion is per-
formed by generating multiple unimodal hypotheses, which after constrained rescoring and
weighted combination result in the multimodally best hypothesis. Then, segmental parallel
fusion across all modalities refines the final result. On the way, we employ gesture/speech
background (bm) and silence (sil) models, which are initialized during the activity detec-
tion stage. This procedure allows us to train our HMMs more accurately by getting tighter
temporal segmentation boundaries.

The recognition task we dealt with contains parallel gestures and spoken words, articu-
lated freely, containing multiple sources of multimodal variability, and with on purpose false
alarms. The overall framework is evaluated in a demanding multimodal data set (Escalera
et al., 2013b) achieving 93.3% word accuracy. The results are compared with several ap-
proaches that participated in the related challenge (Escalera et al., 2013a), under the same
blind testing conditions, leading to at least 47.6% relative Levenshtein distance reduction
(equivalent to relative word error rate reduction) compared to the first-ranked team (Wu
et al., 2013).

The power of the proposed fusion scheme stems from both its uniform across modalities
probabilistic nature and its late character together with the multiple passes of monomodal
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decoding, fusion of the hypotheses, and then parallel fusion. Apart from the experimen-
tal evidence, these features render it appealing for extensions and exploitation in multiple
directions: First, the method itself can be advanced by generalizing the approach towards
an iterative fusion scheme, that gives feedback back to the training/refinement stage of
the statistical models. Moreover in the current generative framework, we ignore statistical
dependencies across cues/modalities. These could further be examined. Second, it can be
advanced by incorporating in the computational modeling specific gesture theories, e.g.,
from linguistics, for the gesture per se or in its multimodal version; taxonomies of gestures,
e.g., that describe deictic, motor, iconic and metaphoric cases. Such varieties of cases can
be systematically studied with respect to their role. This could be achieved via automatic
processing of multitudes of existing data sets, which elaborate more complex speech-gesture
issues, leading to valuable analysis results. Then, apart from the linguistic role of gesture,
its relation to other aspects, such as, psychological, behavioral socio-cultural, or commu-
nicative, to name but a few, could further be exploited. To conclude, given the potential of
the proposed approach, the acute interdisciplinary interest in multimodal gesture calls for
further exploration and advancements.
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