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Abstract
We derive oracle inequalities for the problems of isotonic and convex regression using the
combination of Q-aggregation procedure and sparsity pattern aggregation. This improves
upon the previous results including the oracle inequalities for the constrained least squares
estimator. One of the improvements is that our oracle inequalities are sharp, i.e., with leading
constant 1. It allows us to obtain bounds for the minimax regret thus accounting for model
misspecification, which was not possible based on the previous results. Another improvement
is that we obtain oracle inequalities both with high probability and in expectation.
Keywords: aggregation, shape constraints, isotonic regression, convex regression, minimax
regret, sharp oracle inequalities, model misspecification

1. Introduction

Assume that we have the observations

Yi = µi + ξi, i = 1, ..., n, (1)

where µ = (µ1, ..., µn)T ∈ Rn is unknown, ξ = (ξ1, ..., ξn)T is a noise vector with n-
dimensional Gaussian distribution N (0, σ2In×n) where σ > 0. We observe y = (Y1, ..., Yn)T
and we want to estimate µ. We can interpret µi as the values f(Xi) of an unknown regression
function f : X → R at given non-random points Xi ∈ X , i = 1, . . . , n, where X is an abstract
set. Then, the equivalent setting is that we observe y along with (X1, . . . , Xn) but the values
of Xi are of no interest and can be replaced by their indices if we measure the loss in a
discrete norm. Namely, for any u ∈ Rn we consider the scaled (or the empirical) norm ‖ · ‖
defined by

‖u‖2 = 1
n

n∑
i=1

u2
i . (2)

We will measure the error of an estimator µ̂ of µ by the distance ‖µ̂− µ‖. Let S↑ be the
set of all non-decreasing sequences:

S↑ := {u = (u1, ..., un) ∈ Rn : ui ≤ ui+1, i = 1, ..., n− 1}. (3)

For a subset S of S↑, and any µ ∈ Rn the quantity minu∈S ‖u − µ‖ is the smallest
approximation error achievable by a sequence in the set S. This quantity defines a benchmark
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or oracle performance on S. The accuracy of an estimator µ̂ with respect to the oracle for any
µ, not necessarily µ ∈ S, can be characterized by the excess loss ‖µ̂−µ‖−minu∈S ‖u−µ‖.
This is a measure of performance of µ under model misspecification. One can also consider
the expected quantities R1(µ̂,µ) = Eµ‖µ̂ − µ‖ −minu∈S ‖u − µ‖ or R2(µ̂,µ) = Eµ‖µ̂ −
µ‖2 −minu∈S ‖u− µ‖2 known under the name of regret measures. Here, Eµ denotes the
expectation with respect to the distribution of y satisfying (1). The minimax regret is
defined as minµ̂ maxµ∈Rn Ri(µ̂,µ) for i = 1, 2, where minµ̂ denotes the minimum over all
estimators. We can characterize the performance of an estimator µ̃ by the closeness of
its maximal regret maxµ∈Rn Ri(µ̃,µ) to the minimax regret. This approach to measure
the performance of estimators under model misspecification was pioneered by Vapnik and
Chervonenkis who called it the criterion of minimax of the loss (Vapnik and Chervonenkis,
1974, Chapter 6). In this paper, we follow this approach and establish non-asymptotic
bounds for the maximal regret for some classes S of monotone and convex functions.

When the model is well-specified, i.e., the true function µ belongs to the class S, the
approximation error vanishes and instead of the minimax regret it is natural to consider
the minimax risk defined either as minµ̂ maxµ∈S Eµ‖µ̂−µ‖ or as minµ̂ maxµ∈S Eµ‖µ̂−µ‖2
(the minimax squared risk). It is easy to see that the minimax risk is not greater than the
minimax regret. A classical problem in nonparametric statistics is to study the behavior
of minimax risks for different classes S. In particular, there exist results concerning the
minimax risks for classes of monotone and convex functions in our setting. We review some of
them below. The behavior of the minimax regret is much less studied. For a recent overview
and some general results we refer to Rakhlin et al. (2013) where it is shown that the rate
of minimax regret can be different from that of the minimax risk. Note that Rakhlin et al.
(2013) studies the prediction problem with i.i.d. observations, which is a setting different
from ours.

A well-studied estimator under the monotonicity and convexity assumptions is the least
squares estimator

µ̂LS(S) ∈ argmin
u∈S

‖y− u‖2 . (4)

In Nemirovski et al. (1985) it was shown that µ̂LS(S) attains, up to logarithmic factors,
the rates n−2/3 and n−4/5 of the mean squared risk for classes S of monotone and convex
functions respectively and that these rates are optimal up to logarithmic factors when
the minimax squared risk is used as a criterion. Under monotonicity constraints, the rate
n−2/3 was later observed in different settings, see for instance Banerjee and Wellner (2001);
Balabdaoui and Wellner (2007).

One class of monotone functions we will be interested in here is defined as

S↑(V ) = {µ ∈ S↑ : V (µ) ≤ V }

where V (µ) = µn − µ1 for any µ = (µ1, . . . , µn) ∈ S↑, and V > 0 is a given constant. In
Meyer and Woodroofe (2000); Zhang (2002) it was shown that for any µ ∈ S↑ we have

Eµ ‖µ̂− µ‖2 ≤ cmax

(σ2V (µ)
n

)2/3

,
σ2 logn

n

 (5)
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for µ̂ = µ̂LS(S↑) and some absolute constant c > 0. This immediately implies an upper
bound on the minimax risk on S↑(V ). A recent paper Chatterjee et al. (2015) establishes
the oracle inequality

Eµ
∥∥∥µ̂LS(S↑)− µ

∥∥∥2
≤ C∗ min

u∈S↑

(
‖µ− u‖2 + c∗σ

2k(u)
n

log en

k(u)

)
(6)

valid for all µ ∈ S↑ where either C∗ = 6, c∗ = 1 (Chatterjee et al., 2015, inequality
(18)) or C∗ = 4, c∗ = 4 (Chatterjee et al., 2015, inequality (30)). Here, k(u) ≥ 1 for
u = (u1, . . . , un) ∈ S↑ is the integer such that k(u) − 1 is the number of inequalities
ui ≤ ui+1 that are strict for i = 1, . . . , n− 1 (number of jumps of u). Inequality (6) implies
(up to a logarithmic factor) a bound as in (5) and also gives some more insight into the
problem. For example, (6) shows that the fast rate logn

n is achieved if µ has only one jump
or a fixed, independent of n, number of jumps. This is not granted by (5).

Along with the least squares estimator, one may consider estimation of monotone functions
via penalized least squares with total variation penalty. The corresponding estimator µ̂TV
is defined as

µ̂TV ∈ argmin
u∈Rn

(
1
2 ‖u− y‖2 + λ

n−1∑
i=1
|ui+1 − ui|

)
, (7)

where λ > 0 is a tuning parameter. Statistical properties of this estimator were first studied
in Mammen and van de Geer (1997) where it was shown that ‖µ̂TV −µ‖ attains the optimal
rate n−1/3 in probability on the class of functions of bounded variation (and thus on S↑(V )).
Recently, the performance of µ̂TV was analyzed in Dalalyan et al. (2014) by considering µ̂TV
as a special instance of the Lasso estimator. If µ↑ is the projection of µ onto S↑, δ ∈ (0, 1)
is a constant, and the tuning parameter λ is given by

λ = σ

√
log(n/δ)
k∗n

where k∗ =
(
V (µ↑)2n log(n/δ)

σ2

)1/3

, (8)

the estimator µ̂TV satisfies with probability greater than 1−2δ the following oracle inequality
(Dalalyan et al., 2014, Proposition 6):

∥∥∥µ̂TV − µ∥∥∥2
≤

∥∥∥µ↑ − µ∥∥∥2
+ 6

(
σ2V (µ↑)

√
log(n/δ)

n

)2/3

(9)

+2σ2(1 + 2 log(1/δ))
n

for all µ ∈ Rn. It follows from (9) that if the tuning parameter is chosen correctly, the
estimator µ̂TV achieves, up to a logarithmic factor, the minimax rate n−2/3 in probability on
the class S↑(V ). Also, (9) implies a bound for the excess losses ‖µ̂TV −µ‖i−minu∈S↑(V ) ‖u−
µ‖i, i = 1, 2, corresponding to the class S↑(V ). However, (9) does not allow us to evaluate
the expected regrets Ri(µ̂TV ,µ) since µ̂TV depends on δ. It is also shown in (Dalalyan
et al., 2014, Proposition 4) that if λ = 2σ

√
(2/n) log(n/δ), the estimator µ̂TV satisfies

∥∥∥µ̂TV − µ∥∥∥2
≤ min
u∈Rn

(
‖u− µ‖2 + 4σ2k(u) log(n/δ)

n
rn(u)

)
(10)
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with probability greater than 1−2δ, where k(u)−1 for u ∈ Rn is the number of jumps of u, i.e.,
the cardinality of the set {i ∈ {1, ..., n− 1} : ui 6= ui+1}, rn(u) = 3 + 256(log(n) + (n/∆(u)))
and ∆(u) is the minimum distance between two jumps in the sequence u:

∆(u) = min {d ≥ 1 : ∃k ∈ {1, ..., n} with uk+1 6= uk and uk+d+1 6= uk+d} .

The expressions on the right hand sides of (6) and (10) are small if the unknown sequence
µ is well approximated by a piecewise constant sequence with not too many pieces. In
this regard, the two bounds have some similarity to sparsity oracle inequalities in high-
dimensional linear regression (cf. Rigollet and Tsybakov, 2011, 2012; Tsybakov, 2014). This
similarity can be easily explained as follows. Write (1) in the equivalent form

y = Xβ∗ + ξ,

with the matrix X = (Xij)i=1,...,n, j=1,...,n where Xij = 1 if j ≤ i and Xij = 0 otherwise, and
β∗ = (β∗1 , . . . , β∗n) where β∗1 = µ1 and β∗i = µi − µi−1 for i = 2, . . . , n. With this notation,
k(µ) ∈ {|β∗|0, 1 + |β∗|0}, where |β∗|0 denotes the number of non-zero components of β∗.
The value k(µ) is small when β∗ is sparse. Thus, the problem of estimation of piecewise
constant sequence µ with small number of pieces can be considered as the problem of
prediction in sparse linear regression with a specific design matrix X. Similarly, we may
write u = Xβ, for β with components β1 = u1 and βi = ui − ui−1 for i = 2, . . . , n. These
remarks suggest that we can apply the theory of sparsity oracle inequalities, in particular,
sparsity pattern aggregation (cf. Rigollet and Tsybakov, 2011, 2012; Tsybakov, 2014) in the
context of monotone estimation described above. Similar observation is valid for estimation
under convexity constraints (see Section 3 below). In the present paper, we develop this
argument using as a building block the Q-aggregation procedures Rigollet (2012); Dai et al.
(2012, 2014); Bellec (2014). In particular, we construct an estimator µ̂ such that

Eµ ‖µ̂− µ‖2 ≤ min
u∈S↑

(
‖µ− u‖2 + cσ2k(u)

n
log en

k(u)

)
, ∀ µ ∈ Rn, (11)

for some absolute constant c > 0. Note that (11) is a sharp oracle inequality (i.e., an
inequality with leading constant 1). It improves upon the oracle inequality (6) for the least
squares estimator where the leading constant C∗ is noticeably greater than 1 and the bound
is valid only for µ ∈ S↑. The advantage of having leading constant 1 and arbitrary µ in (11)
is that it allows us to derive bounds on the excess risk and on the minimax regret, which
was not possible based on the previous results. We also obtain sharp oracle inequalities with
high probability for the same estimator. In addition, we show that it satisfies stronger sharp
inequalities with the minimum minu∈S↑ on the right hand side of (11) replaced by minu∈Rn .
This implies that our results are invariant to the direction of monotonicity; they remain valid
if we replace everywhere monotone increasing by monotone decreasing functions. Finally, we
derive similar results for the problem of estimation under the convexity constraints improving
an oracle inequality obtained in Guntuboyina and Sen (2013).
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2. Sparsity Pattern Aggregation for Piecewise Constant Sequences

For any non-empty set J ⊆ {1, ..., n− 1}, let |J | denote the cardinality of J and define

πJ := exp(−|J |)
H
(n−1
|J |
) , H :=

n−1∑
i=0

exp(−i). (12)

Let PJ ∈ Rn×n be the projector on the linear subspace VJ of Rn defined by

VJ :=
{
u ∈ Rn : ∀i ∈ {1, ..., n− 1} \ J, ui+1 = ui

}
. (13)

In words, VJ is the space of all piecewise constant sequences that have jumps only at points
in J . Given a vector y of observations and θ = (θJ)J⊆{1,...,n−1} where each θJ ∈ R, let

µθ =
∑

J⊆{1,...,n−1}
θJPJy. (14)

Finally, let
µ̂Q = µθ̂ (15)

where θ̂ is the solution of the optimization problem

min
θ∈Λ

‖µθ − y‖2 +
∑

J⊆{1,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2 ‖µθ − PJy‖2 + 46σ2

n
log 1

πJ

)

where

Λ =

θ : θJ ≥ 0 for all J ⊆ {1, ..., n− 1}, and
∑

J⊆{1,...,n−1}
θJ = 1

 .
This optimization problem is a convex quadratic program with a simplex constraint. It
performs aggregation of the linear estimators (PJy)J⊆{1,...,n−1} using the Q-aggregation
procedure Dai et al. (2012, 2014); Bellec (2014) with the prior weights (12). As the size of
this quadratic program is of order 2n, it is a computationally hard problem. The estimator
µ̂Q satisfies the following sharp oracle inequalities.

Theorem 1 Let µ ∈ Rn, n ≥ 2, and assume that the noise vector ξ has distribution
N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that for all δ ∈ (0, 1/3), the
estimator µ̂Q satisfies with probability at least 1− 3δ,

∥∥∥µ̂Q − µ∥∥∥2
≤ min
u∈Rn

(
‖µ− u‖2 + cσ2k(u))

n
log en

k(u)

)
+ cσ2 log(1/δ)

n
, (16)

and

Eµ
∥∥∥µ̂Q − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2k(u)

n
log en

k(u)

)
. (17)
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Proof Let J ⊆ {1, ..., n − 1}. Denote by d = |J | + 1 the dimension of the subspace VJ .
Then, the projection estimator PJy satisfies with probability at least 1− δ (see, for example,
Hsu et al. (2012)):

‖PJy− µ‖2 ≤ ‖PJµ− µ‖2 + d+ 2
√
d log(1/δ) + 2 log(1/δ)

n

≤ min
u∈VJ

‖u− µ‖2 + 2(|J |+ 1) + 3 log(1/δ)
n

. (18)

The sharp oracle inequality from Bellec (2014) yields that with probability at least 1− 2δ
for all J ⊆ {1, ..., n− 1} we have∥∥∥µ̂Q − µ∥∥∥2

≤ ‖PJy− µ‖2 + Cσ2 log 1
πJ

+ Cσ2 log(1/δ), (19)

for some absolute constant C > 0. Combining (18) and (19) with the union bound and the
inequality (cf. (Rigollet and Tsybakov, 2012, (5.4))) log(1/πJ) ≤ 2(|J | + 1) log(en/(|J | +
1)) + 1/2, we find that with probability at least 1− 3δ,

∥∥∥µ̂Q − µ∥∥∥2
≤ min

J⊆{1,...,n−1}
min
u∈VJ

(
‖µ− u‖2 + cσ2(|J |+ 1)

n
log

(
en

|J |+ 1

))
+ cσ2 log(1/δ)

where c > 0 is an absolute constant. Since we have that |J | + 1 = k(u) for all u ∈ VJ
and also that minJ⊆{1,...,n−1}minu∈VJ

= minu∈Rn , the bound (16) follows. Finally, (17) is
obtained from (16) by integration.

We now discuss some corollaries of Theorem 1. First, it follows that (11) is satisfied for
µ̂ = µ̂Q, so the remarks after (11) apply. Next, in view of (17), for the class of monotone
sequences with at most k jumps S↑k = {u ∈ S↑ : k(u) ≤ k} we have the following bounds for
the maximal expected regrets

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖ − min

u∈S↑
k

‖u− µ‖
)
≤ c

√
σ2k

n
log

(
en

k

)
, (20)

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖2 − min

u∈S↑
k

‖u− µ‖2
)
≤ cσ2k

n
log

(
en

k

)
, (21)

where c > 0 is an absolute constant. The same bounds hold for the minimax risks over S↑k
since the minimax risk is smaller than the minimax regret. Theorem 4 below shows that the
bounds (20) and (21) are optimal up to logarithmic factors.

Finally, consider the consequences of Theorem 1 for the class S↑(V ). To this end, define
the integer k∗ such that

k∗ = min

m ∈ N : m ≥
(

V (µ)2n

σ2 log(en)

)1/3
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if the set
{
m ∈ N : m ≥

(
V (µ)2n
σ2 log(en)

)1/3}
is non-empty, and k∗ = 1 otherwise. We will need

the following lemma.

Lemma 2 Let µ ∈ S↑ and let 1 ≤ k ≤ n be an integer. Then there exists a sequence ū ∈ S↑k
such that

‖ū− µ‖ ≤ V (µ)
2k . (22)

Next, there exists a sequence ū ∈ S↑k∗ such that

‖ū− µ‖2 ≤ 1
4 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (23)

In addition,

σ2k∗

n
log en

k∗
≤ 2 max

(σ2V (µ) log(en)
n

)2/3

,
σ2 log(en)

n

 . (24)

Proof To construct the sequence ū, consider the k intervals

Ij =
[
µ1 + j − 1

k
V (µ), µ1 + j

k
V (µ)

)
, j = 1, ..., k − 1, (25)

and Ik = [µ1 + k−1
k V (µ), µn]. For all j = 1, ..., k, let

Jj = {i = 1, ..., n : µi ∈ Ij}. (26)

For any i ∈ {1, ..., n} there exists a unique j ∈ {1, ..., k} such that i ∈ Ij . Let ūi =
µ1 + j−1/2

k V (µ) for all i ∈ Ij . Then the sequence ū = (ū1, . . . , ūn) is non-decreasing, it has
at most k pieces, i.e., k(ū) ≤ k, and |ūi − µi| ≤ V (µ)

2k for i = 1, ..., n. Thus (22) follows.
Next, note that if k∗ = 1, then V (µ)2 ≤ σ2 log(en)/n. If k∗ > 1, then by definition of k∗,
V (µ)2/(k∗)2 ≤ (σ2V (µ) log(en)/n)2/3. Thus, (23) follows. The bound (24) is straightfor-
ward by studying the cases k∗ = 1 and k∗ > 1 separately.

We can now derive the following corollary of Theorem 1.

Corollary 3 Under the assumptions of Theorem 1, there exists an absolute constant c > 0
such that, for any µ ∈ S↑,

Eµ‖µ̂Q − µ‖2 ≤ c max

(σ2V (µ) logn
n

)2/3

,
σ2 logn

n

 . (27)

In addition, for any V > 0 and any µ ∈ Rn the expected regret of µ̂Q satisfies

Eµ‖µ̂Q − µ‖ − min
u∈S↑(V )

‖u− µ‖ ≤ c max

(σ2V logn
n

)1/3

, σ

√
logn
n

 (28)

where c > 0 is an absolute constant.
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Proof Inequality (27) is straightforward in view of (17), (23), and (24). To prove (28), fix
any µ ∈ Rn and consider

µ∗ ∈ argmin
µ′∈S↑(V )

‖µ′ − µ‖.

From (17) and the fact that the function x 7→ x log
(
en
x

)
is increasing for 1 ≤ x ≤ n we get

Eµ‖µ̂Q − µ‖ ≤ min
u∈S↑

k∗

‖u− µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)
≤ min
u∈S↑

k∗

‖u− µ∗‖+ ‖µ∗ − µ‖+
√
c′
σ2k∗

n
log

(
en

k∗

)

≤ ‖µ∗ − µ‖+ c′′ max

(σ2V logn
n

)1/3

, σ

√
logn
n


for an absolute constant c′′ > 0 where the last inequality follows from (23) and (24).

The estimator µ̂Q shown in Theorem 1 satisfies the sharp oracle inequalities both in
expectation and with high probability. Previous results for the least squares estimator
Chatterjee et al. (2015) were only obtained in expectation and the results on the `1-penalized
estimator (7) are only obtained with high probability.

Finally, the following result shows that the upper bounds (20) and (21) are optimal up
to logarithmic factors.

Proposition 4 Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants c, c′ > 0 such
that for any positive integer k ≤ n satisfying k3 ≤ 16nV 2/σ2 we have

inf
µ̂

sup
µ∈S↑

k
∩S↑(V )

Pµ

(
‖µ̂− µ‖2 ≥ cσ2k

n

)
> c′, (29)

where Pµ denotes the distribution of y satisfying (1) and inf µ̂ is the infimum over all
estimators.

For k = 1, ..., n, take any V > 0 large enough to satisfy k3 ≤ 16nV 2/σ2. Then, Theorem 4
and Markov’s inequality yield the following lower bounds on the minimax risks over the
class S↑k :

inf
µ̂

sup
µ∈S↑

k

Eµ‖µ̂− µ‖ ≥ c

√
c′σ2k

n
, inf

µ̂
sup
µ∈S↑

k

Eµ ‖µ̂− µ‖2 ≥
cc′σ2k

n
. (30)

As the minimax risk is smaller than the minimax regret, (30) also provides lower bounds for
the corresponding minimax regrets over S↑k . Combining this with (20) and (21) we find that
the estimator µ̂Q achieves up to logarithmic factors the optimal rate with respect to the
minimax regret.

Next, Proposition 4 implies the following lower bound on the minimax deviation risk on
S↑(V ).
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Corollary 5 Let n ≥ 2, V > 0 and σ > 0. There exist absolute constants c, c′ > 0 such that

inf
µ̂

sup
µ∈S↑(V )

Pµ

‖µ̂− µ‖2 ≥ cmax


(
σ2V

n

)2/3

,
σ2

n


 > c′. (31)

To prove this corollary it is enough to note that if 16nV 2/σ2 ≥ 1, by choosing k in
Proposition 4 as the integer part of (16nV 2/σ2)1/3, we obtain the lower bound corresponding
to
(
σ2V
n

)2/3
under the maximum in (31). On the other hand, if 16nV 2/σ2 < 1 the term σ2

n

is dominant, so that we need to have the lower bound of the order σ2

n , which is trivial (it
follows from a reduction to the bound for the class composed of two constant functions).

It follows from (31) and (27) that the estimator µ̂Q achieves, up to logarithmic factors,
the optimal rate with respect to the minimax risk on the class S↑(V ). Using (28) and the
fact that the minimax risk is smaller than the minimax regret, we conclude that it is also
the optimal rate up to logarithmic factors for the minimax regret.
Proof [Proof of Theorem 4] We assume for simplicity that n is a multiple of k. The general
case is treated analogously. For any ω,ω′ ∈ {0, 1}k, let dH(ω,ω′) = |{i = 1, ..., k : ωi 6= ω′i}|
be the Hamming distance between ω and ω′. By the Varshamov-Gilbert bound (Tsybakov,
2009, Lemma 2.9), there exists a set Ω ⊂ {0, 1}k such that

0 = (0, ..., 0) ∈ Ω, log(|Ω| − 1) ≥ k/8, and dH(ω,ω′) > k/8 (32)

for any two distinct ω,ω′ ∈ Ω. For each ω ∈ Ω, define a vector uω ∈ Rn with components

uωi = b(i− 1)k/nc V
2k + γωb(i−1)k/nc+1, i = 1, ..., n,

where γ = (1/8)
√
σ2k/n, and bxc denotes the maximal integer smaller than x. For any

ω ∈ Ω, uω is a piecewise constant sequence with k(uω) ≤ k, uω is a non-decreasing sequence
because γ ≤ V/(2k), and by construction V (uω) ≤ V . Thus, uω ∈ S↑k ∩S↑(V ) for all ω ∈ Ω.
Moreover, for any ω,ω′ ∈ Ω,

‖uω − uω′‖2 = γ2

k
dH(ω,ω′) ≥ γ2

8 = σ2k

512n. (33)

Set for brevity Pω = Puω . The Kullback-Leibler divergence K(Pω, Pω′) between Pω and Pω′
is equal to n

2σ2 ‖uω − uω
′‖2 for all ω,ω′ ∈ Ω. Thus,

K(Pω, P0) = γ2ndH(0,ω)
2kσ2 ≤ k

128 ≤
log(|Ω| − 1)

16 . (34)

Applying (Tsybakov, 2009, Theorem 2.7) with α = 1/16 completes the proof.

3. Estimation of Convex Sequences by Aggregation

Assume that n ≥ 3 and define the set of convex sequences SC as follows:

SC = {u = (u1, . . . , un) ∈ Rn : 2ui ≤ ui+1 + ui−1, i = 2, . . . , n− 1}. (35)
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For any u ∈ Rn, we introduce the integer q(u) ≥ 1 such that q(u) − 1 is the cardinality
of the set {i = 1, ..., n − 1 : 2ui 6= ui+1 + ui−1}. If u ∈ SC, q(u) − 1 is the number of
inequalities 2ui ≤ ui+1 + ui−1 that are strict for i = 2, ..., n− 1. The value q(u) is small if u
is a piecewise linear sequence with a small number of pieces.

The performance of the least squares estimator over convex sequences µ̂LS(SC) has been
recently studied in Guntuboyina and Sen (2013). If the unknown vector µ belongs to the set
SC, Guntuboyina and Sen (2013) shows that the estimator µ̂LS(SC) satisfies the risk bound

Eµ
∥∥∥µ̂LS(SC)− µ

∥∥∥2
≤ c log(en)5/4

(
σ2√R(µ)

n

)4/5

,

where R(µ) = max(1,min{‖τ − µ‖2 , τ is affine}) and c > 0 is an absolute constant. It is
proved in (Chatterjee et al., 2015, Example 2.3) that the least squares estimator µ̂LS(SC)
satisfies the oracle inequality

Eµ
∥∥∥µ̂LS(SC)− µ

∥∥∥2
≤ 6 min

u∈SC

‖u− µ‖2 +
cσ2q(u) log

(
en
q(u)

)5/4

n

 , (36)

where c > 0 is an absolute constant. The right hand side of (36) is small if the unknown
vector µ can be well approximated by a piecewise linear sequence in SC with not too many
pieces.

The leading constant in (36) is 6. We will show that sparsity pattern aggregation
achieves a substantially better performance. We obtain the sharp oracle inequality (39)
below, improving upon (36) not only in the fact that the leading constant is 1 but also in
the rate of the remainder term; we will see that the exponent 5/4 of the logarithmic factor
is reduced to 1.

For any set J ⊆ {2, ..., n− 1}, define

νJ := exp(−|J |)
HC

(n−2
|J |
) , HC :=

n−2∑
i=0

exp(−i). (37)

Let QJ ∈ Rn×n be the projector on the linear subspace WJ of Rn given by

WJ :=
{
u ∈ Rn : ∀i ∈ {2, ..., n− 1} \ J, 2ui = ui+1 + ui−1

}
.

Given a vector y of observations and θ = (θJ)J⊆{2,...,n−1} where each θJ belongs to R, let

µθ =
∑

J⊆{2,...,n−1}
θJQJy.

Finally, let
µ̂Q−conv = µθ̂

where θ̂ is the solution of the optimization problem

min
θ∈Λ′

‖µθ − y‖2 +
∑

J⊂{2,...,n−1}
θJ

(
2σ2|J |
n

+ 1
2 ‖µθ −QJy‖2 + 46σ2

n
log 1

νJ

)
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where

Λ′ =

θ : θJ ≥ 0 for all J ⊆ {2, ..., n− 1}, and
∑

J⊆{2,...,n−1}
θJ = 1

 .
The structure of this minimization problem is the same as of its analog introduced in Section
2. This is a quadratic program that aggregates the linear estimators (QJy)J⊆{2,...,n−1} using
the Q-aggregation procedure Dai et al. (2012, 2014); Bellec (2014) with the prior weights
(37).

Theorem 6 Let µ ∈ Rn, n ≥ 3, and assume that the noise vector ξ has distribution
N (0, σ2In×n). There exist absolute constants c, c′ > 0 such that for all δ ∈ (0, 1/3), the
estimator µ̂Q−conv satisfies with probability at least 1− 3δ,∥∥∥µ̂Q−conv − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + cσ2q(u)

n
log en

q(u)

)
+ cσ2 log(1/δ)

n
, (38)

and we have

Eµ
∥∥∥µ̂Q−conv − µ∥∥∥2

≤ min
u∈Rn

(
‖µ− u‖2 + c′σ2q(u)

n
log en

q(u)

)
. (39)

The proof of this theorem is the same as that of Theorem 1 with the only difference that J is
now a subset of {2, ..., n− 1} rather than that of {1, ..., n− 1}, and we replace the notation
PJ and VJ by QJ and WJ respectively.

The leading constant of the oracle inequality (39) is 1, and the remainder term is
proportional to q(u) log(en/q(u)). These are two improvements upon (36), where the
leading constant is 6 and the remainder term is proportional to q(u) log(en/q(u))5/4.

In view of (39), for the class of piecewise linear convex sequences with at most q linear
pieces, SC

q = {u ∈ SC : q(u) ≤ q} we have the following bounds for the maximal expected
regrets

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖ − min

u∈SC
q

‖u− µ‖
)
≤ c

√
σ2q

n
log

(
en

q

)
, (40)

max
µ∈Rn

(
Eµ‖µ̂Q − µ‖2 − min

u∈SC
q

‖u− µ‖2
)
≤ cσ2q

n
log

(
en

q

)
, (41)

where c > 0 is an absolute constant. The same bounds hold for the minimax risks over SC
q

since the minimax risk is smaller than the minimax regret.
The following proposition shows that the rates of convergence in (40) and (41) are

optimal up to logarithmic factors. We omit the discussion since it is similar to that after
Theorem 4.

Proposition 7 Let n ≥ 3. There exist absolute constants c, c′ > 0 such that, for any
positive integer q ≤ n,

inf
µ̂

sup
µ∈SC

q

Pµ

(
‖µ̂− µ‖2 ≥ cσ2q

n

)
> c′, (42)

where the infimum is taken over all estimators.
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Proof Assume that q ≥ 2 since for q = 1 the result is trivial. We also assume for simplicity
that n is a multiple of q. Let m = n/q and γ = (1/8)

√
σ2q/n. Set β0 = 0, α0 = 0 and define,

for all integers j ≥ 1,

βj = βj−1 + γ +mαj−1, αj = 2γ + αj−1. (43)

By the Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9) there exists Ω ⊂ {0, 1}q
such that (32) is satisfied, with k replaced by q. For each ω ∈ Ω, define a vector uω ∈ Rn
with components

uωjm+i = ωj+1γ + αj(i− 1) + βj , j = 0, ..., q − 1, i = 1, ...,m.

The sequence uω is piecewise linear. It is linear with slope αj on the set {jm+1, ..., (j+1)m}
for any j = 0, ..., q − 1. Thus, q(uω) = q. Next, we prove that uω ∈ SC for all ω ∈ Ω. It is
enough to check the convexity condition at the endpoints of the linear pieces:

2uωjm ≤ uωjm−1 + uωjm+1, 2uωjm+1 ≤ uωjm + uωjm+2, (44)

for all j = 1, ..., q − 1. Using (43) we get that, for all j = 1, ..., q − 1,

uωjm+1 − uωjm = ωj+1γ + βj − (ωjγ + αj−1(m− 1) + βj−1),
= (ωj+1 − ωj + 1)γ + αj−1,

= (ωj+1 − ωj − 1)γ + αj .

Hence, αj−1 ≤ uωjm+1 − uωjm ≤ αj . Since also αj−1 = uωjm − uωjm−1 and αj = uωjm+2 − uωjm+1,
it follows that the two inequalities (44) hold, for all j = 1, ..., q − 1. Thus, uω ∈ SC. In
summary, we have proved that uω ∈ SC

q for all ω ∈ Ω.
Now, from the Varshamov-Gilbert bound, cf. (32), for ω,ω′ ∈ Ω we have

‖uω − uω′‖2 = γ2

q
dH(ω,ω′) ≥ γ2

8 = σ2q

512n, (45)

where dH(·, ·) is the Hamming distance. Finally, similarly to (34), the Kullback-Leibler
divergence between Pω and P0 satisfies K(Pω, P0) ≤ log(|Ω|−1)

16 . Applying (Tsybakov, 2009,
Theorem 2.7) with α = 1/16 completes the proof.

4. Concluding Remarks and Discussion

In this short note, we have shown that the estimators µ̂Q and µ̂Q−conv based on sparsity
pattern aggregation (in its Q-aggregation version) achieve oracle inequalities that improve
on some previous results for isotonic and convex regression.

One of the improvements is that oracle inequalities (17) and (39) are sharp, i.e., with
leading constant 1 and they are valid for all µ ∈ Rn. It allows us to obtain bounds for the
minimax regret under arbitrary model misspecification, which was not possible based on
the previous results. We show that these bounds are rate optimal up to logarithmic factors.
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The question on whether the least squares estimators under monotonicity and convexity
constraints can achieve sharp oracle inequalities with correct rates remains open.

Another improvement is that we obtain oracle inequalities both with high probability
and in expectation, which was not the case in the previous work.

An advantage of the least squares estimator is that it requires no tuning parameters.
In particular, the knowledge of σ2 is not needed to construct the estimators µ̂LS(S↑) and
µ̂LS(SC). This is in contrast to the `1 penalized estimator (7) and the estimators µ̂Q and
µ̂Q−conv; their construction requires the knowledge of σ2. For the `1 penalized estimator (7),
the issue may be addressed by using a scale-free version of the Lasso Belloni et al. (2014);
Sun and Zhang (2012). For the Q-aggregation estimators µ̂Q and µ̂Q−conv, we can treat
the issue of unknown σ as in Bellec (2014). Namely, it is shown in Bellec (2014) that the
oracle inequalities for Q-aggregation procedures are essentially preserved after plugging in
an estimator σ̂2 of σ2 that satisfies |σ̂2/σ2 − 1| ≤ 1/8 with high probability, which is even
weaker than consistency.

Finally, note that instead of Q-aggregation we could have used sparsity pattern ag-
gregation by the Exponential Screening procedure of Rigollet and Tsybakov (2011). This
would lead to sharp oracle inequalities in expectation of the form (17) and (39) but not
to inequalities with high probability such as (16) and (38). This is the reason why we
have opted for Q-aggregation rather than for Exponential Screening in this paper. On
the other hand, Exponential Screening estimators are computationally more attractive
than Q-aggregation since they can be successfully approximated by MCMC algorithms (see
Rigollet and Tsybakov (2011, 2012) for details).
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