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Abstract

The problem of estimating high-dimensional network models arises naturally in the analysis
of many biological and socio-economic systems. In this work, we aim to learn a network
structure from temporal panel data, employing the framework of Granger causal models
under the assumptions of sparsity of its edges and inherent grouping structure among its
nodes. To that end, we introduce a group lasso regression regularization framework, and
also examine a thresholded variant to address the issue of group misspecification. Further,
the norm consistency and variable selection consistency of the estimates are established, the
latter under the novel concept of direction consistency. The performance of the proposed
methodology is assessed through an extensive set of simulation studies and comparisons
with existing techniques. The study is illustrated on two motivating examples coming from
functional genomics and financial econometrics.

Keywords: Granger causality, high dimensional networks, panel vector autoregression
model, group lasso, thresholding

1. Introduction

We consider the problem of learning a directed network of interactions among a number of
entities from time course data. A natural framework to analyze this problem uses the no-
tion of Granger causality (Granger, 1969). Originally proposed by C.W. Granger this notion
provides a statistical framework for determining whether a time series X is useful in fore-
casting another one Y , through a series of statistical tests. It has found wide applicability
in economics, including testing relationships between money and income (Sims, 1972), gov-
ernment spending and taxes on economic output (Blanchard and Perotti, 2002), stock price
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and volume (Hiemstra and Jones, 1994), etc. More recently the Granger causal framework
has found diverse applications in biological sciences including functional genomics, systems
biology and neurosciences to understand the structure of gene regulation, protein-protein
interactions and brain circuitry, respectively.

It should be noted that the concept of Granger causality is based on associations be-
tween time series, and only under very stringent conditions, true causal relationships can
be inferred (Pearl, 2000). Nonetheless, this framework provides a powerful tool for under-
standing the interactions among random variables based on time course data.

Network Granger causality (NGC) extends the notion of Granger causality among two
variables to a wider class of p variables. Such extensions involving multiple time series are
handled through the analysis of vector autoregressive processes (VAR) (Lütkepohl, 2005).
Specifically, for p stationary time series Xt

1, . . . , X
t
p, with Xt = (Xt

1, . . . , X
t
p)
′, one considers

the class of models

Xt = A1Xt−1 + . . .+AdXt−d + εt, (1)

where A1, A2, . . . , Ad are p × p real-valued matrices, d is the unknown order of the VAR
model and the innovation process satisfies εt ∼ N(0, σ2I). In this model, the time series
{Xt

j} is said to be Granger causal for the time series {Xt
i} if Ahi,j 6= 0 for some h = 1, . . . , d.

Equivalently we can say that there exists an edge Xt−h
j → Xt

i in the underlying network

model comprising of (d + 1) × p nodes (see Figure 1). We call A1, . . . , Ad the adjacency
matrices from lags 1, . . . , d. Note that the entries Ahij of the adjacency matrices are not

binary indicators of presence/absence of edges between two nodes Xt
i and Xt−h

j . Rather,
they represent the direction and strength of influence from one node to the other.

TT-1T-2T-3

Group 1

Group 2

VAR(2) model with two non-overlapping groups
T = 4, d=2, p=6, G=2

T-2T-3 T-1T-2T-3 TT-1T-2T-3

Figure 1: An example of a Network Granger causal model with two non-overlapping groups
observed over T = 4 time points
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The temporal structure induces a natural partial order among the nodes of this network,
which in turn simplifies significantly the corresponding estimation problem (Shojaie and
Michailidis, 2010a) of a directed acyclic graph. Nevertheless, one still has to deal with
estimating a high-dimensional network (e.g., hundreds of genes) from a limited number of
samples.

The traditional asymptotic framework of estimating VAR models requires observing a
long, stationary realization {X1, . . . , XT , T → ∞ , p, d fixed} of the p-dimensional time
series. This is not appropriate in many biological applications for the following reasons.
First, long stationary time series are rarely observed in these contexts. Second, the number
of time series (p) being large compared to T , the task of consistent order (d) selection using
standard criteria (e.g., AIC or BIC) becomes challenging. Similar issues arise in many
econometric applications where empirical evidence suggests lack of stationarity over a long
time horizon, although the multivariate time series exhibits locally stable distributional
properties.

A more suitable framework comes from the study of panel data, where one observes
several replicates of the time series, with possibly short T , across a panel of n subjects. In
biological applications replicates are obtained from test subjects. In the analysis of macroe-
conomic variables, households or firms typically serve as replicates. After removing panel
specific fixed effects one treats the replicates as independent samples, performs regression
analysis under the assumption of common slope structure and studies the asymptotic prop-
erties under the regime n → ∞. Recent works of Cao and Sun (2011) and Binder et al.
(2005) analyze theoretical properties of short panel VARs in the low-dimensional setting
(n→∞, T, p fixed).

The focus of this work is on estimating a high-dimensional NGC model in the panel
data context (p, n large, T small to moderate). This work is motivated by two application
domains, functional genomics and financial econometrics. In the first application (presented
in Section 6) one is interested in reconstructing a gene regulatory network structure from
time course data, a canonical problem in functional genomics (Michailidis, 2012). The
second motivating example examines the composition of balance sheets of the n = 50
largest US banks by size, over T = 9 quarterly periods, which provides insight into their
risk profile.

The nature of high-dimensionality in these two examples comes from both estimation of
p2 coefficients for each of the adjacency matrices A1, . . . , Ad, but also from the fact that the
order of the time series d is often unknown. Thus, in practice, one must either “guess” the
order of the time series (often times, it is assumed that the data is generated from a VAR(1)
model, which can result in significant loss of information), or include all of the past time
points, resulting in significant increase in the number of variables in cases where d � T .
Thus, efficient estimation of the order of the time series becomes crucial.

Latent variable based dimension reduction techniques like principal component analysis
or factor models are not very useful in this context since our goal is to reconstruct a network
among the observed variables. To achieve dimension reduction we impose a group sparsity
assumption on the structure of the adjacency matrices A1, . . . , Ad. In many applications,
structural grouping information about the variables exists. For example, genes can be
naturally grouped according to their function or chromosomal location, stocks according to
their industry sectors, assets/liabilities according to their class, etc. This information can
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be incorporated to the Granger causality framework through a group lasso penalty. If the
group specification is correct it enables estimation of denser networks with limited sample
sizes (Bach, 2008; Huang and Zhang, 2010; Lounici et al., 2011). However, the group lasso
penalty can achieve model selection consistency only at a group level. In other words, if
the groups are misspecified, this procedure can not perform within group variable selection
(Huang et al., 2009), an important feature in many applications.

Over the past few years, several authors have adopted the framework of network Granger
causality to analyze multivariate temporal data. For example, Fujita et al. (2007) and
Lozano et al. (2009) employed NGC models coupled with penalized `1 regression methods
to learn gene regulatory mechanisms from time course microarray data. Specifically, Lozano
et al. (2009) proposed to group all the past observations, using a variant of group lasso
penalty, in order to construct a relatively simple Granger network model. This penalty
takes into account the average effect of the covariates over different time lags and connects
Granger causality to this average effect being significant. However, it suffers from significant
loss of information and makes the consistent estimation of the signs of the edges difficult
(due to averaging). Shojaie and Michailidis (2010b) proposed a truncating lasso approach
by introducing a truncation factor in the penalty term, which strongly penalizes the edges
from a particular time lag, if it corresponds to a highly sparse adjacency matrix.

Despite recent use of NGC in applications involving high dimensional data, theoretical
properties of the resulting estimators have not been fully investigated. For example, Lozano
et al. (2009) and Shojaie and Michailidis (2010b) discuss asymptotic properties of the re-
sulting estimators, but neither addresses in depth norm consistency properties, nor do they
examine under what vector autoregressive structures the obtained results hold.

In this paper, we develop a general framework that accommodates different variants of
group lasso penalties for NGC models. It allows for the simultaneous estimation of the order
of the times series and the Granger causal effects; further, it allows for variable selection
even when the groups are misspecified. In summary, the key contributions of this work
are: (i) investigate in depth sufficient conditions that explicitly take into consideration the
structure of the VAR(d) model to establish norm consistency, (ii) introduce the novel notion
of direction consistency, which generalizes the concept of sign consistency and provides
insight into the properties of group lasso estimates within a group, and (iii) use the latter
notion to introduce an easy to compute thresholded variant of group lasso, that performs
within group variable selection in addition to group sparsity pattern selection even when
the group structure is misspecified.

All the obtained results are non-asymptotic in nature, and hence help provide insight
into the properties of the estimates under different asymptotic regimes arising from varying
growth rates of T, p, n, group sizes and the number of groups.

2. Model and Framework

Notation. Consider a VAR model

Xt︸︷︷︸
p×1

= A1︸︷︷︸
p×p

Xt−1 + . . .+AdXt−d + εt, εt ∼ N(0p×1, σ
2Ip×p), (2)
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observed over T time points t = 1, . . . , T , across n panels. The index set of the variables
Np = {1, 2, . . . , p} can be partitioned into G non-overlapping groups Gg, i.e., Np = ∪Gg=1Gg
and Gg ∩ Gg′ = φ if g 6= g′. Also kg = |Gg| denotes the size of the gth group with kmax =
max

1≤g≤G
kg. In general, we use λmin and λmax to denote the minimum and maximum of a

finite collection of numbers λ1, . . . , λm.

For any matrix A, we denote the ith row by Ai:, j
th column by A:j and the collection of

rows (columns) corresponding to the gth group by A[g]: (A:[g]). The transpose of a matrix A
is denoted by A′ and its Frobenius norm by ||A||F . For a symmetric/Hermitian matrix Σ,
its maximum and minimum eigenvalues are denoted by Λmin(Σ) and Λmax(Σ), respectively.
The symbol A1:h is used to denote the concatenated matrix

[
A1 : · · · : Ah

]
, for any h > 0.

For any matrix or vector D, ‖D‖0 denotes the number of non-zero coordinates in D. For
notational convenience, we reserve the symbol ‖.‖ to denote the `2 norm of a vector and/or
the spectral norm of a matrix. For a pre-defined set of non-overlapping groups G1, . . . ,GG
on {1, . . . , p}, the mixed norms of vectors v ∈ Rp are defined as ‖v‖2,1 =

∑G
g=1 ‖v[g]‖ and

‖v‖2,∞ = max1≤g≤G ‖v[g]‖. Also for any vector β, we use βj to denote its jth coordinate

and β[g] to denote the coordinates corresponding to the gth group. We also use supp(v) to
denote the support of v, i.e., supp(v) = {j ∈ {1, . . . , p}|vj 6= 0}.

Network Granger causal (NGC) estimates with group sparsity. Consider n
replicates from the NGC model (2), and denote the n× p observation matrix at time t by
X t. In econometric applications the data on p economic variables across n panels (firms,
households etc.) can be observed over T time points. For time course microarray data
one typically observes the expression levels of p genes across n subjects over T time points.
After removing the panel specific fixed effects one assumes the common slope structure and
independence across the panels. The data are high-dimensional if either T or p is large
compared to n. In such a scenario, we assume the existence of an underlying group sparse
structure, i.e., for every i = 1, . . . , p, the support of the ith row of A1:T−1 =

[
A1 : · · · : AT−1

]
in the model (2) can be covered by a small number of groups si, where si � (T −1)G. Note
that the groups can be misspecified in the sense that the coordinates of a group covering
the support need not be all non-zero. Hence, for a properly specified group structure we
shall expect si � ‖A1:T

i: ‖0. On the contrary, with many misspecified groups, si can be of
the same order, or even larger than ‖A1:T

i: ‖0.

Learning the network of Granger causal effects {(i, j) ∈ {1, . . . , p} : Atij 6= 0 for some t}
is equivalent to recovering the correct sparsity pattern in A1:(T−1) and consistently estimat-
ing the non-zero effects Atij . In the high-dimensional regression problems this is achieved by
simultaneous regularization and selection operators like lasso and group lasso. The group
Granger causal estimates of the adjacency matrices A1, . . . , AT−1 are obtained by solving
the following optimization problem

Â1:T−1 = argmin
A1,··· ,AT−1

1

2n

∥∥∥∥∥X T −
T−1∑
t=1

X T−t
(
At
)′∥∥∥∥∥

2

F

+ λ

T−1∑
t=1

p∑
i=1

G∑
g=1

wti,g‖Ati:[g]‖, (3)

where X t is the n × p observation matrix at time t, constructed by stacking n replicates
from the model (2), wt is a p × G matrix of suitably chosen weights and λ is a common
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regularization parameter. The optimization problem can be separated into the following p
penalized regression problems:

Â1:T−1
i: = argmin

θ1,··· ,θT−1∈Rp

1

2n
‖X T:i −

T−1∑
t=1

X T−tθt‖2 + λ
T−1∑
t=1

G∑
g=1

wti,g‖θt[g]‖, i = 1, · · · , p. (4)

The order d of the VAR model is estimated as d̂ = max
1≤t≤T−1

{t : Ât 6= 0}.

Different choices of weights wti:g lead to different variants of NGC estimates. The regular

NGC estimates correspond to the choices wti,g = 1 or
√
kg, while for adaptive group NGC

estimates the weights are chosen as wti,g =
∥∥∥Âti:[g]∥∥∥−1

, where Ât are obtained from a regular

NGC estimation. For Âti:[g] = 0, the weight wti,g is infinite, which is interpreted as
discarding the variables in group g from the optimization problem.

Thresholded NGC estimates are calculated by a two-stage procedure. The first stage
involves a regular NGC estimation procedure. The second stage uses a bi-level thresholding
strategy on the estimates Ât. First, the estimated groups with `2 norm less than a threshold
(δgrp = cλ, c > 0) are set to zero. The second level of thresholding (within group) is applied
if the a priori available grouping information is not entirely reliable. Âtijwithin an estimated

group Âti:[g] is thresholded to zero if
∣∣∣Âtij∣∣∣ / ∥∥∥Âti:[g]∥∥∥ is less than a threshold δmisspec ∈ (0, 1).

So, for every t = 1, . . . , T − 1, if j ∈ Gg, the thresholded NGC estimates are

Ãtij = ÂtijI
{∣∣∣Âtij∣∣∣ ≥ δmisspec ∥∥∥Âti:[g]∥∥∥} I {∥∥∥Âti:[g]∥∥∥ ≥ δgrp} .

The tuning parameters λgrp and δmisspec are chosen via cross-validation. The rationale
behind this thresholding strategy is discussed in Section 4.

3. Estimation Consistency of NGC estimates

In this section we establish the norm consistency of regular group NGC estimates. The
regular NGC estimates in (3) are obtained by solving p separate group lasso programs
with a common design matrix Xn×p(T−1) = [X 1 : · · · : X T−1]. This design matrix has
p̄ = (T −1)p columns which can be partitioned into Ḡ = (T −1)G groups {G1, . . . ,GḠ}. We
denote the sample Gram matrix by C = X ′X/n. For the ith optimization problem, these
Ḡ = (T − 1)G groups are penalized by λ(t−1)G+g := λwti,g, 1 ≤ t ≤ T − 1, 1 ≤ g ≤ G, with
the choice of weights wti,g described in Section 2. Following Lounici et al. (2011) one can
establish a non-asymptotic upper bound on the `2 estimation error of the NGC estimates
Ât under certain restricted eigenvalue (RE) assumptions. These assumptions are common
in the literature of high-dimensional regression (Lounici et al., 2011; Bickel et al., 2009;
van de Geer and Bühlmann, 2009) and are known to be sufficient to guarantee consistent
estimation of the regression coefficients even when the design matrix is singular. Of main
interest, however, is to investigate the validity of these assumptions in the context of NGC
models. This issue is addressed in Proposition 3.2.
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For L > 0, we say that a Restricted Eigenvalue (RE) assumption RE(s, L) is satisfied
if there exists a positive number φRE = φRE(s) > 0 such that

min
J⊂NḠ, |J |≤s
∆∈Rp̄\{0}

 ‖X∆‖√
n‖∆[J ]‖

:
∑
g∈Jc

λg‖∆[g]‖ ≤ L
∑
g∈J

λg‖∆[g]‖

 ≥ φRE . (5)

The following proposition provides a non-asymptotic upper bound on the `2-estimation
error of the group NGC estimates under RE assumptions. The proof follows along the lines
of Lounici et al. (2011) and is delegated to Appendix C.

Proposition 3.1 Consider a regular NGC estimation problem (4) with smax = max1≤i≤p si
and s =

∑p
i=1 si. Suppose λ in (3) is chosen large enough so that for some α > 0,

λg ≥
2σ√
n

√∥∥C[g][g]

∥∥(√kg +
π√
2

√
α log Ḡ

)
for every g ∈ NḠ, (6)

Also assume that the common design matrix X = [X 1 : · · · : X T−1] in the p regression
problems (4) satisfy RE(2smax, 3). Then, with probability at least 1− 2pḠ1−α,∥∥∥Â1:T−1 −A1:T−1

∥∥∥
F
≤ 4

√
10

φ2
RE(2smax)

λ2
max

λmin

√
s. (7)

Remark. Consider a high-dimensional asymptotic regime where Ḡ � nB for some
B > 0, kmax/kmin = O(1), s = O(na1) and kmax = O(na2) with 0 < a1, a2 < a1 + a2 < 1 so
that the total number of non-zero effects is o(n). If {‖C[g][g]‖, g ∈ NḠ} are bounded above
(often accomplished by standardizing the data) and φ2

RE(2smax) is bounded away from zero
(see Proposition 3.2 for more details), then the NGC estimates are norm consistent for any
choice of α > 2 + a2/B.

Note that group lasso achieves faster convergence rate (in terms of estimation and pre-
diction error) than lasso if the groups are appropriately specified. For example, if all the
groups are of equal size k and λg = λ for all g, then group lasso can achieve an `2 estimation

error of order O
(√

s(
√
k +

√
log Ḡ)/

√
n
)

. In contrast, lasso’s error is known to be of the

order O
(√
‖A1:d‖0 log p̄/n

)
, which establishes that group lasso has a lower error bound if

s� ‖A1:d‖0. On the other hand, lasso will have a lower error bound if s � ‖A1:d‖0, i.e., if
the groups are highly misspecified.

Validity of RE assumption in Group NGC problems. In view of Theorem 3.1,
it is important to understand how stringent the RE condition is in the context of NGC
problems. It is also important to find a lower bound on the RE coefficient φRE , as it affects
the convergence rate of the NGC estimates. For the panel-VAR setting, we can rigorously
establish that the RE condition holds with overwhelming probability, as long as n, p grow
at the same rate required for `2-consistency.

The following proposition achieves this objective in two steps. Note that each row of the
design matrix X (common across the p regressions) is independently distributed as N(0,Σ)
where Σ is the variance-covariance matrix of the (T − 1)p-dimensional random variable
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(
(X1)′, . . . , (XT−1)′

)′
. First, we exploit the spectral representation of the stationary VAR

process to provide a lower bound on the minimum eigenvalue of Σ. In the next step, we
establish a suitable deviation bound on X−Σ to prove that X satisfies RE condition with
high probability for sufficiently large n.

Proposition 3.2 (a) Suppose the VAR(d) model of (2) is stable, stationary. Let Σ be the
variance-covariance matrix of the (T−1)p-dimensional random variable

(
(X1)′, . . . , (XT−1)′

)′
.

Then the minimum eigenvalue of Σ satisfies

Λmin(Σ) ≥ σ2

[
max

θ∈[−π,π]
‖A(e−iθ)‖

]−2

≥ σ2

[
1 +

d∑
t=1

‖At‖

]−2

≥ σ2

[
1 +

1

2
(vin + vout)

]−2

,

where A(z) := I − A1z − A2z2 − . . . − Adzd is the reverse characteristic polynomial of the
VAR(d) process, and vin, vout are the maximum incoming and outgoing effects at a node,
cumulated across different lags

vin =

d∑
t=1

max
1≤i≤p

p∑
j=1

|Atij |, vout =

d∑
t=1

max
1≤j≤p

p∑
i=1

|Atij |.

(b) In addition, suppose the replicates from different panels are i.i.d. Then, for any s > 0,
there exist universal positive constants ci such that if the sample size n satisfies

n >
Λ2

max(Σ)

Λ2
min(Σ)

(2 + Lλmax/λmin)4 c0s(kmax + c1 log(eḠ/2s)),

then X satisfies RE(s, L) with φ2
RE ≥ Λmin(Σ)/2 with probability at least 1− c2 exp(−c3 n).

Remark. Proposition 3.2 has two interesting consequences. First, it provides a lower
bound on the RE constant φRE which is independent of T . So if the high dimensionality
in the Granger causal network arises only from the time domain and not the cross-section
(T → ∞, p, G fixed), the stationarity of the VAR process guarantees that the rate of
convergence depends only on the true order (d), and not T . Second, this result shows that
the NGC estimates are consistent even if the node capacities vin and vout grow with n, p
at an appropriate rate.

4. Variable Selection Consistency of NGC estimates

In view of (4), to study the variable selection properties of NGC estimates it suffices to
analyze the variable selection properties of p generic group lasso estimates with a common
design matrix.

The problem of group sparsity selection has been thoroughly investigated in the litera-
ture (Wei and Huang, 2010; Lounici et al., 2011). The issue of selection and sign consistency
within a group, however, is still unclear. Since group lasso does not impose sparsity within
a group, all the group members are selected together (Huang et al., 2009) and it is not
clear which ones are recovered with correct signs. This also leads to inconsistent variable
selection if a group is misspecified, i.e., not all the members within a group have non-zero
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effect. Several alternate penalized regression procedures have been proposed to overcome
this shortcoming (Breheny and Huang, 2009; Huang et al., 2009). The main idea behind
these procedures is to combine `2 and `1 norms in the penalty to encourage sparsity at
both group and variable level. These estimators involve nonconvex optimization problems
and are computationally expensive. Also their theoretical properties in a high dimensional
regime are not well studied.

We take a different approach to deal with the issue of group misspecification. Although
the group lasso penalty does not perform exact variable selection within groups, it performs
regularization and shrinks the individual coefficients. We utilize this regularization to detect
misspecification within a group. To this end, we formulate a generalized notion of sign
consistency, henceforth referred as “direction consistency”, that provides insight into the
properties of group lasso estimates within a single group. Subsequently, these properties
are used to develop a simple, easy to compute, thresholded variant of group lasso which, in
addition to group selection, achieves variable selection and sign consistency within groups.

We consider a generic group lasso regression problem of the linear model y = Xβ0 + ε
with p variables partitioned into G non-overlapping groups {G1, . . . ,GG} of size kg, g =
1, . . . , G. Without loss of generality, we assume β0

[g] 6= 0 for g ∈ S = {1, 2, . . . , s} and

β0
[g] = 0 for all g /∈ S and consider the following group lasso estimate of β0:

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

G∑
g=1

λg‖β[g]‖, (8)

β0︸︷︷︸
p×1

= [β0
[1], . . . , β

0
[s]︸ ︷︷ ︸

k1+...+ks=q

,0, . . . ,0︸ ︷︷ ︸
p−q

] = [β0
(1) : β0

(2)], (9)

X︸︷︷︸
n×p

= [X(1)︸︷︷︸
n×q

: X(2)︸︷︷︸
n×(p−q)

], C =
1

n
X′X =

[
C11 C12

C21 C22

]
. (10)

Direction Consistency. For an m-dimensional vector τ ∈ Rm\{0} define its direc-
tion vector D(τ) = τ/‖τ‖ , D(0) = 0. In the context of a generic group lasso regression
(10), for a group g ∈ S of size kg, D(β0

[g]) indicates the direction of influence of β0
[g] at a

group level in the sense that it reflects the relative importance of the influential members
within the group. Note that for kg = 1 the function D(·) simplifies to the usual sgn(·)
function.

Definition. An estimate β̂ of a generic group lasso problem (8) is direction consis-
tent at a rate δn, if there exists a sequence of positive real numbers δn → 0 such that

P
(
‖D(β̂[g])−D(β0

[g])‖ < δn, ∀g ∈ S, β̂[g] = 0, ∀g /∈ S
)
→ 1 as n, p→∞. (11)

Now suppose β̂ is a direction consistent estimator. Consider the set S̃ng := {j ∈ Gg :

|β0
j | / ‖β0

[g]‖ > δn}. S̃ng can be viewed as a collection of influential group members within
a group Gg, which are “detectable” with a sample of size n. Then, it readily follows from
the definition that

P(sgn(β̂j) = sgn(βj), ∀j ∈ S̃ng , ∀g ∈ {1, . . . , s})→ 1 as n, p→∞. (12)
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The latter observation connects the precision of group lasso estimates to the accuracy of
a priori available grouping information. In particular, if the pre-specified grouping structure
is correct, i.e., all the members within a group have non-zero effects, then for a sufficiently
large sample size we have S̃ng = Gg for all g ∈ S. Hence, if the group lasso estimate is
direction consistent, it will correctly estimate the sign of all the variables in the support.
On the other hand, in case of a misspecified a priori grouping structure (numerous zero
coordinates in βg for g ∈ S), group lasso will correctly estimate only the signs of the
influential group members. This argument on zero vs. non-zero effects can be generalized
to strong vs. weak effects, as well.

Example. We demonstrate the property of direction consistency using a small exam-
ple. Consider a linear model with 8 predictors

y = 0.5x1 − 3x2 + 3x3 + x4 − 2x5 + 3x8 + e, e ∼ N(0, 1).

The coefficient vector β0 is partitioned into four groups of size 2, viz., (0.5,−3), (3, 1), (−2, 0)
and (0, 3). The last two groups are misspecified. We generated n = 25 samples from this
model and ran group lasso regression with the above group structure. Figure 2 shows the
true coefficient vectors (solid) and their estimates (dashed) from five iterations of the above
exercise. Note that even though the `2 errors between β0

[g] and β̂[g] vary largely across the

four groups, the distance between their projections on the unit circle,
∥∥∥D(β0

[g])−D(β̂[g])
∥∥∥,

are comparatively stable across groups. In fact, Theorem 4.1 shows that under certain ir-
representable conditions (IC) on the design matrix, it is possible to find a uniform (over all
g ∈ S) upper bound δn on the `2 gap of these direction vectors. This motivates a natural
thresholding strategy to correct for the misspecification in groups (cf. Proposition 4.2).
Even though a group β0

[g] is misspecified (i.e., lies on a coordinate axis), direction consis-

tency ensures, with high probability, that the corresponding coordinate in D(β̂[g]) will be
smaller than a threshold δn which is common across all groups in the support.

Group Irrepresentable Conditions (IC). Next, we define the IC required for di-
rection consistency of group lasso estimates. Irrepresentable conditions are common in the
literature of high-dimensional regression problems (Zhao and Yu, 2006; van de Geer and
Bühlmann, 2009) and are shown to be sufficient (and essentially necessary) for selection
consistency of the lasso estimates. Further these conditions are known to be satisfied with
high probability, if the population analogue of the Gram matrix belongs to the Toeplitz fam-
ily (Zhao and Yu, 2006; Wainwright, 2009). In NGC estimation the population analogue of
the Gram matrix Σ = V ar(X1:(T−1)) is block Toeplitz, so the irrepresentable assumptions
are natural candidates for studying selection consistency of the estimates. Consider the
notations of (8) and (10). Define K = diag (λ1Ik1 , λ2Ik2 , . . . , λsIks).

Uniform Irrepresentable Condition (IC) is satisfied if there exists 0 < η < 1 such
that for all τ ∈ Rq with ‖τ‖2,∞ = max

1≤g≤s
‖τ[g]‖2 ≤ 1,

1

λg

∥∥∥∥[C21(C11)−1Kτ
]

[g]

∥∥∥∥ < 1− η, ∀g /∈ S = {1, . . . , s}. (13)

Note that the definition reverts to the usual IC for lasso when all groups correspond are
singletons.
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β[4] = (0, 3)  

β[1] = (0.5, -3)  

β[2] = (3, 1)  

β[3] = (-2, 0)  D(β[1]) – D( β[1]) 

Figure 2: Example demonstrating direction consistency

The IC is more stringent than the RE condition and is rarely met if the underlying model
is not sparse. It can be shown that a slightly weaker version of this condition is necessary
for direction consistency. We refer the readers to Appendix D for further discussion on the
different irrepresentable assumptions and their properties. Numerical evidence suggests that
the group IC tends to be less stringent than the IC required for the selection consistency of
lasso. We illustrate this using three small simulated examples.
Simulation 1. We constructed group sparse NGC models with T = 5, p = 21, G = 7, kg = 3
and different levels of network densities, where the network edges were selected at random
and scaled so that ‖A1‖ = 0.1. For each of these models, we generated 100 samples of size
n = 150 and calculated the proportions of times the two types of irrepresentable conditions
were met. The results are displayed in Figure 3a.
Simulation 2. We selected a VAR(1) model from the above class and generated samples
of size n = 20, 50, . . . , 250. Figure 3b displays the proportions of times (based on 100
simulations) the two ICs were met.
Simulation 3. We generated n = 200 samples from the VAR(1) model of example 2
for T = 2, 3, 4, 5, 10, . . . , 40. Figure 3c displays the proportions of times (based on 100
simulations) the two ICs were met.
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Figure 3: Comparison of lasso and group irrepresentable conditions in the context of group
sparse NGC models. (a) group ICs tend to be met for dense networks where lasso
IC fails to meet. (b) For the same network group IC is met with smaller sample
size than required by lasso. (c) For longer time series group IC is satisfied more
often than lasso IC.

Selection consistency for generic group lasso estimates. For simplicity, we dis-
cuss the selection consistency properties of a generic group lasso regression problem with a
common tuning parameter across groups, i.e., λg = λ for every g ∈ NG. Similar results can
be obtained for more general choices of the tuning parameters.

Theorem 4.1 Assume that the group uniform IC holds with 1− η for some η > 0. Then,
for any choice of α > 0,

λ ≥ max
g/∈S

1

η

σ√
n

√∥∥∥(C22)[g][g]

∥∥∥(√kg +
π√
2

√
α log G

)
and

δn ≥ max
g∈S

1∥∥∥β0
[g]

∥∥∥
(
λ
√
s
∥∥(C11)−1

∥∥+
σ√
n

√∥∥∥(C11)−1
[g][g]

∥∥∥(√kg +
π√
2

√
α log G

))
,

with probability greater than 1− 4G1−α, there exists a solution β̂ satisfying

1. β̂[g] = 0 for all g /∈ S,

2.
∥∥∥β̂[g] − β0

[g]

∥∥∥ < δn

∥∥∥β0
[g]

∥∥∥, and hence
∥∥∥D(β̂[g])−D(β0

[g])
∥∥∥ < 2δn , for all g ∈ S. If

δn < 1, then β̂[g] 6= 0 for all g ∈ S.

Remark. The tuning parameter λ can be chosen of the same order as required for `2
consistency to achieve selection consistency within groups in the sense of (12). Further,
with the above choice of λ, δn can be chosen of the order of O(

√
s(
√
kmax +

√
log G)/

√
n).

Thus, group lasso correctly identifies the group sparsity pattern and is direction consistent
if
√
s(
√
kmax +

√
log G)/

√
n→ 0, the same scaling required for `2 consistency.
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Thresholding in Group NGC estimators. As described in Section 2, regular group
NGC estimates can be thresholded both at the group and coordinate levels. The first level of
thresholding is motivated by the fact that lasso can select too many false positives [cf. van de
Geer et al. (2011), Zhou (2010) and the references therein]. The second level of thresholding
employs the direction consistency of regular group NGC estimates to perform within group
variable selection with high probability. The following proposition demonstrates the benefit
of these two types of thresholding. The second result is an immediate corollary of Theorem
4.1. Proof of the first result (thresholding at group level) requires some additional notations
and is delegated to Appendix E.

Theorem 4.2 Consider a generic group lasso regression problem (8) with common tuning
parameter λg = λ.

(i) Assume the RE(s, 3) condition of (5) holds with a constant φRE and define β̂thgrp[g] =

β̂[g]1‖β̂[g]‖>4λ. If Ŝ = {g ∈ NG : β̂thgrp[g] 6= 0}, then |Ŝ\S| ≤ s
φ2
RE/12

, with probability at least

1− 2G1−α.
(ii) Assume that uniform IC holds with 1 − η for some η > 0. Choose λ and δn as in
Theorem 4.1 and define

β̂thgrpj = β̂j1{|β̂j |/‖β̂[g]‖ > 2 δn} for all j ∈ Gg.

Then sgn(β0
j ) = sgn(β̂thgrpj ) ∀ j ∈ Np with probability at least 1− 4G1−α, if min

j∈supp(β0)
|β0
j | >

2δn ‖β0
[g]‖ for all j ∈ Gg, i.e., if the effect of every non-zero member in a group is “visible”

relative to the total effect from the group.

5. Performance Evaluation

We evaluate the performances of regular, adaptive and thresholded variants of the group
NGC estimators through an extensive simulation study, and compare the results to those
obtained from lasso estimates. The R package grpreg (Breheny and Huang, 2009) was used
to obtain the group lasso estimates. The settings considered are:
(a) Balanced groups of equal size: i.i.d samples of size n = 60, 110, 160 are generated from
lag-2 (d = 2) VAR models on T = 5 time points, comprising of p = 60, 120, 200 nodes
partitioned into groups of equal size in the range 3-5.
(b) Unbalanced groups: We retain the same setting as before, however the corresponding
node set is partitioned into one larger group of size 10 and many groups of size 5.
(c) Misspecified balanced groups: i.i.d samples of size n = 60, 110, 160 are generated from lag-
2 (d = 2) VAR models on T = 10 time points, comprising of p = 60, 120 nodes partitioned
into groups of size 6. Further, for each group there is a 30% misspecification rate, namely
that for every parent group of a downstream node, 30% of the group members do not exert
any effect on it.

Using a 19 : 1 sample-splitting, the tuning parameter λ is chosen from an interval of
the form [C1λe, C2λe], C1, C2 > 0, where λe =

√
2 log p/n for lasso and

√
2 log G/n for

group lasso. The thresholding parameters are selected as δgrp = 0.7λσ at the group level
and δmisspec = n−0.2 within groups. These parameters are chosen by conducting a 20-fold
cross-validation on independent tuning data sets of same sizes, using intervals of the form
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Figure 4: Estimated adjacency matrices of a misspecified NGC model with p = 60, T =
10, n = 60: (a) True, (b) Lasso, (c) Group Lasso, (d) Thresholded Group Lasso.
The grayscale represents the proportion of times an edge was detected in 100
simulations.

[C3λ,C4λ] for δgrp and {n−δ, δ ∈ [0, 1]} for δmisspec. Finally, within group thresholding is
applied only when the group structure is misspecified.

The following performance metrics were used for comparison purposes: (i) Precision =
TP/(TP + FP ) , (ii) Recall = TP/(TP + FN) and (iii) Matthew’s Correlation coefficient
(MCC) defined as

(TP × TN)− (FP × FN)

((TP + FP )× (TP + FN)× (TN + FP )× (TN + FN))1/2
,

where TP , TN , FP and FN correspond to true positives, true negatives, false positives and
false negatives in the estimated network, respectively. The average and standard deviations
(over 100 replicates) of the performance metrics are presented for each setup.

The results for the balanced settings are given in Table 1. The Recall for p = 60 shows
that even for a network with 60× (5− 1) = 240 nodes and |E| = 351 true edges, the group
NGC estimators recover about 71% of the true edges with a sample size as low as n = 60,
while lasso based NGC estimates recover only 31% of the true edges. The three group NGC
estimates have comparable performances in all the cases. However thresholded lasso shows
slightly higher precision than the other group NGC variants for smaller sample sizes (e.g.,
n = 60, p = 200). The results for p = 60, n = 110 also display that lower precision of
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p = 60, |E| = 351 p = 120, |E| = 1404 p = 200, |E| = 3900
Group Size=3 Group Size=3 Group Size=5

n 160 110 60 160 110 60 160 110 60
P Lasso 80(2) 75(2) 66(4) 69(1) 62(2) 52(2) 52(1) 47(1) 38(1)

Grp 95(2) 91(4) 83(7) 91(3) 80(5) 68(7) 78(4) 72(3) 59(6)
Thgrp 96(1) 92(3) 86(6) 93(3) 83(5) 70(7) 82(4) 76(3) 64(6)
Agrp 96(2) 92(4) 83(7) 92(3) 82(5) 69(7) 81(3) 74(3) 60(6)

R Lasso 71(2) 54(2) 31(2) 54(1) 40(1) 22(1) 38(1) 28(1) 15(1)
Grp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(1) 70(2) 41(4)
Thgrp 99(1) 93(3) 71(7) 91(2) 81(2) 48(8) 84(2) 69(2) 41(3)
Agrp 99(1) 93(3) 71(7) 91(2) 81(2) 47(8) 84(1) 69(2) 40(4)

MCC Lasso 75(2) 63(2) 45(3) 60(1) 49(1) 33(1) 43(1) 35(1) 23(1)
Grp 97(1) 92(3) 76(5) 91(1) 80(2) 56(2) 81(2) 70(2) 48(2)
Thgrp 98(1) 93(2) 78(5) 92(1) 81(2) 57(3) 83(2) 72(2) 50(3)
Agrp 97(1) 92(3) 76(5) 91(1) 81(2) 56(3) 82(2) 71(2) 48(2)

ERR Lasso 10.5 11.3 13.9 16.63 17.37 16.69 19.79 20 18.52
LAG Grp 3.19 6.95 12.76 4.86 10.77 12.65 4.21 5.27 7.8

Thgrp 2.83 5.87 10.01 3.98 9.03 11.19 3.06 3.91 5.68
Agrp 3.13 6.89 12.59 4.63 10.37 12.34 3.58 4.87 7.59

Table 1: Performance of different regularization methods in estimating graphical Granger
causality with balanced group sizes and no misspecification; d = 2, T = 5,
SNR = 1.8. Precision (P ), Recall (R), MCC are given in percentages (numbers in
parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

lasso is caused partially by its inability to estimate the order of the VAR model correctly,
as measured by ERR LAG=Number of falsely connected edges from lags beyond the true
order of the VAR model divided by the number of edges in the network (|E|). This finding
is nicely illustrated in Figure 4 and Table 1. The group penalty encourages edges from the
nodes of the same group to be picked up together. Since the nodes of the same group are
also from the same time lag, the group variants have substantially lower ERR LAG. For
example, average ERR LAG of lasso for p = 200, n = 160 is 19.79% while the average ERR
LAGs for the group lasso variants are in the range 3.06%− 4.21%.

The results for the unbalanced networks are given in Table 2. As in the balanced group
setup, in almost all the simulation settings the group NGC variants outperform the lasso
estimates with respect to all three performance metrics. However the performances of the
different variants of group NGC are comparable and tend to have higher standard deviations
than the lasso estimates. Also the average ERR LAGs for the group NGC variants are
substantially lower than the average ERR LAG for lasso demonstrating the advantage of
group penalty. Although the conclusions regarding the comparisons of lasso and group NGC
estimates remain unchanged it is evident that the performances of all the estimators are
affected by the presence of one large group, skewing the uniform nature of the network. For
example the MCC measures of group NGC estimates in a balanced network with p = 60
and |E| = 351 vary around 97 − 98% which lowers to 89% − 90% when the groups are
unbalanced.

The results for misspecified groups are given in Table 3. Note that for higher sample
size n, the MCC of lasso and regular group lasso are comparable. However, the thresholded
version of group lasso achieves significantly higher MCC than the rest. This demonstrates
the advantage of using the directional consistency of group lasso estimators to perform
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p = 60, |E| = 450 p = 120, |E| = 1575 p = 200, |E| = 4150
Groups=1× 10, 11× 5 Groups=1× 10, 23× 5 Groups=1× 10, 39× 5

n 160 110 60 160 110 60 160 110 60
P Lasso 72(2) 69(3) 62(2) 51(1) 48(1) 41(1) 61(1) 53(1) 42(2)

Grp 84(4) 79(6) 76(9) 55(5) 47(5) 40(6) 86(3) 77(5) 66(7)
Thgrp 86(4) 82(7) 78(11) 60(6) 50(7) 40(5) 88(2) 79(6) 69(6)
Agrp 85(3) 81(5) 77(9) 59(5) 51(5) 42(6) 88(2) 78(5) 67(6)

R Lasso 45(2) 35(2) 22(2) 43(1) 34(1) 22(1) 23(1) 15(0) 7(0)
Grp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)
Thgrp 95(2) 88(4) 62(8) 89(3) 77(4) 50(5) 73(3) 50(6) 21(5)
Agrp 94(3) 87(5) 61(8) 88(2) 75(5) 48(6) 73(3) 49(6) 22(5)

MCC Lasso 56(2) 48(2) 35(2) 46(1) 39(1) 29(1) 36(1) 28(1) 17(1)
Grp 89(3) 82(4) 67(5) 68(3) 58(3) 42(3) 79(1) 61(3) 37(3)
Thgrp 90(3) 84(4) 68(6) 72(4) 61(4) 43(2) 80(1) 62(3) 37(3)
Agrp 89(3) 83(4) 67(6) 71(3) 60(3) 43(3) 79(1) 61(3) 37(3)

ERR Lasso 10.59 10.74 11.76 18.3 18.72 18.76 11.54 10.93 9.29
LAG Grp 7.04 9.85 13.04 12.53 14.71 13.06 4.8 6.41 6.85

Thgrp 6.58 8.98 11.1 9.6 11.9 10.9 4.06 5.65 5.7
Agrp 6.74 9.19 12.96 10.81 12.78 11.79 4.55 6.2 6.81

Table 2: Performance of different regularization methods in estimating graphical Granger
causality with unbalanced group sizes and no misspecification; d = 2, T = 5,
SNR = 1.8. Precision (P ), Recall (R), MCC are given in percentages (numbers in
parentheses give standard deviations). ERR LAG gives the error associated with
incorrect estimation of VAR order.

p = 60, |E| = 246 p = 120, |E| = 968
Group Size=6 Group Size=6

n 160 110 60 160 110 60
P Lasso 88(2) 85(3) 77(5) 59(1) 55(1) 49(2)

Grp 65(2) 66(2) 66(3) 43(3) 44(4) 38(4)
Thgrp 87(3) 88(3) 85(3) 56(6) 56(6) 51(7)
Agrp 65(2) 66(2) 66(3) 45(2) 45(4) 39(4)

R Lasso 80(3) 63(3) 37(2) 66(1) 54(1) 35(1)
Grp 100(0) 98(2) 82(6) 87(2) 78(3) 59(4)
Thgrp 100(0) 98(2) 79(6) 86(2) 79(3) 57(4)
Agrp 100(0) 98(2) 82(6) 86(2) 78(3) 58(3)

MCC Lasso 84(2) 73(2) 53(3) 62(1) 54(1) 41(1)
Grp 81(1) 80(2) 74(4) 61(2) 58(3) 47(2)
Thgrp 93(2) 93(2) 82(4) 69(4) 66(4) 53(3)
Agrp 81(1) 80(2) 74(4) 62(2) 59(2) 47(2)

ERR Lasso 12.63 17.05 22.41 45.09 49.68 53.4
LAG Grp 9.43 8.78 15.12 18.22 18.43 29.26

Thgrp 6.45 5.34 8.02 11.81 12.84 15.57
Agrp 9.11 8.78 14.96 16.32 16.9 27.69

Table 3: Performance of different regularization methods in estimating graphical Granger
causality with misspecified groups (30% misspecification); d = 2, T = 10,
SNR = 2. Precision (P ), Recall (R), MCC are given in percentages (numbers
in parentheses give standard deviations). ERR LAG gives the error associated
with incorrect estimation of VAR order.

432



NGC with Inherent Grouping

Lasso Grp Agrp Thgrp

mean 0.649 0.456 0.457 0.456
stdev 0.340 0.252 0.251 0.252

Table 4: Mean and standard deviation of MSE for different NGC estimates

within group variable selection. We would like to mention here that a careful choice of the
thresholding parameters δgrp and δmisspec via cross-validation improves the performance of
thresholded group lasso; however, we do not pursue these methods here as they require grid
search over many tuning parameters or an efficient estimator of the degree of freedom of
group lasso.

In summary, the results clearly show that all variants of group lasso NGC outperform the
lasso-based ones, whenever the grouping structure of the variables is known and correctly
specified. Further, their performance depends on the composition of group sizes. On the
other hand, if the a priori known group structure is moderately misspecified lasso estimates
produce comparable results to regular and adaptive group NGC ones, while thresholded
group estimates outperform all other methods, as expected.

6. Application

Example: T-cell activation. Estimation of gene regulatory networks from expression
data is a fundamental problem in functional genomics (Friedman, 2004). Time course data
coupled with NGC models are informationally rich enough for the task at hand. The data for
this application come from Rangel et al. (2004), where expression patterns of genes involved
in T-cell activation were studied with the goal of discovering regulatory mechanisms that
govern them in response to external stimuli. Activated T-cells are involved in regulation
of effector cells (e.g., B-cells) and play a central role in mediating immune response. The
available data comprising of n = 44 samples of p = 58 genes, measure the cells response at
10 time points, t = 0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hours after their stimulation with a T-cell
receptor independent activation mechanism. We concentrate on data from the first 5 time
points, that correspond to early response mechanisms in the cells.

Genes are often grouped based on their function and activity patterns into biological
pathways. Thus, the knowledge of gene functions and their membership in biological path-
ways can be used as inherent grouping structures in the proposed group lasso estimates of
NGC. Towards this, we used available biological knowledge to define groups of genes based
on their biological function. Reliable information for biological functions were found from
the literature for 38 genes, which were retained for further analysis. These 38 genes were
grouped into 13 groups with the number of genes in different groups ranging from 1 to 5.

Figure 5 shows the estimated networks based on lasso and thresholded group lasso
estimates, where for ease of representation the nodes of the network correspond to groups
of genes. In this case, estimates from variants of group NGC estimator were all similar,
and included a number of known regulatory mechanisms in T-cell activation, not present in
the regular lasso estimate. For instance, Waterman et al. (1990) suggest that TCF plays a
significant role in activation of T-cells, which may describe the dominant role of this group
of genes in the activation mechanism. On the other hand, Kim et al. (2005) suggest that
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Figure 5: Estimated Gene Regulatory Networks of T-cell activation. Width of edges rep-
resent the number of effects between two groups, and the network represents the
aggregated regulatory network over 3 time points.

activated T-cells exhibit high levels of osteoclast-associated receptor activity which may
attribute the large number of associations between member of osteoclast differentiation and
other groups. Finally, the estimated networks based on variants of group lasso estimator
also offer improved estimation accuracy in terms of mean squared error (MSE) despite
having having comparable complexities to their regular lasso counterpart (Table 4), which
further confirms the findings of other numerical studies in that paper.

Example: Banking balance sheets application. In this application, we examine
the structure of the balance sheets in terms of assets and liabilities of the n = 50 largest
(in terms of total balance sheet size) US banking corporations. The data cover 9 quarters
(September 2009-September 2011) and were directly obtained from the Federal Deposit In-
surance Corporation (FDIC) database (available at www.fdic.gov). The p = 21 variables
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Figure 6: Estimated Networks of banking balance sheet variables using (a) lasso and (b)
group lasso. The networks represent the aggregated network over 5 time points.

correspond to different assets (US and foreign government debt securities, equities, loans
(commercial, mortgages), leases, etc.) and liabilities (domestic and foreign deposits from
households and businesses, deposits from the Federal Reserve Board, deposits of other fi-
nancial institutions, non-interest bearing liabilities, etc.) We have organized them into four
categories: two for the assets (loans and securities) and two for the liabilities (Balances
Due and Deposits, based on a $250K reporting FDIC threshold). Amongst the 50 banks
examined, one discerns large integrated ones with significant retail, commercial and invest-
ment activities (e.g., Citibank, JP Morgan, Bank of America, Wells Fargo), banks primarily
focused on investment business (e.g., Goldman Sachs, Morgan Stanley, American Express,
E-Trade, Charles Schwab), regional banks (e.g., Banco Popular de Puerto Rico, Comerica
Bank, Bank of the West).
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Quarter Lasso Grp Agrp Thgrp

Dec 2010 1.59 (0.29) 0.36 (0.05) 0.36 (0.05) 0.37 (0.05)
Mar 2011 1.46 (0.30) 0.47 (0.23) 0.47 (0.23) 0.46 (0.22)
Jun 2011 1.33 (0.26) 0.36 (0.11) 0.36 (0.11) 0.35 (0.11)
Sep 2011 1.72 (0.32) 0.50 (0.18) 0.50 (0.18) 0.47 (0.16)

Table 5: Mean and standard deviation (in parentheses) of PMSE (MSE in case of Dec 2010)
for prediction of banking balance sheet variables.

The raw data are reported in thousands of dollars. The few missing values were imputed
using a nearest neighbor imputation method with k = 5, by clustering them according to
their total assets in the most recent quarter in the data collection period (September 2011)
and subsequently every missing observation for a particular bank was imputed by the median
observation on its five nearest neighbors. The data were log-transformed to reduce non-
stationarity issues. The data set was restructured as a panel with p = 21 variables and
n = 50 replicates observed over T = 9 time points. Every column of replicates was scaled
to have unit variance.

We applied the proposed variants of NGC estimates on the first T = 6 time points (Sep
2009 - Dec 2010) of the above panel data set. The parameters λ and δgrp were chosen
using a 19 : 1 sample-splitting method and the misspecification threshold δmisspec was set
to zero as the grouping structure was reliable. We calculated the MSE of the fitted model
in predicting the outcomes in the four quarters (December 2010 - September 2011). The
Predicted MSE (MSE for Dec 2010) are listed in Table 5. The estimated network structures
are shown in Figure 6.

It can be seen that the lasso estimates recover a very simple temporal structure amongst
the variables; namely, that past values (in this case lag-1) influence present ones. Given the
structure of the balance sheet of large banks, this is an anticipated result, since it can not
be radically altered over a short time period due to business relationships and past com-
mitments to customers of the bank. However, the (adaptive) group lasso estimates reveal a
richer and more nuanced structure. Examining the fitted values of the adjacency matrices
At, we notice that the dominant effects remain those discovered by the lasso estimates.
However, fairly strong effects are also estimated within each group, but also between the
groups of the assets (loans and securities) on the balance sheet. This suggests rebalancing
of the balance sheet for risk management purposes between relatively low risk securities
and potentially more risky loans. Given the period covered by the data (post financial
crisis starting in September 2009) when credit risk management became of paramount im-
portance, the analysis picks up interesting patterns. On the other hand, significant fewer
associations are discovered between the liabilities side of the balance sheet. Finally, there
exist relationships between deposits and securities such as US Treasuries and other domestic
ones (primarily municipal bonds); the latter indicates that an effort on behalf of the banks
to manage the credit risk of their balance sheets, namely allocating to low risk assets as
opposed to more risky loans.

It is also worth noting that the group lasso model exhibits superior predictive perfor-
mance over the lasso estimates, even 4 quarters into the future. Finally, in this case the
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thresholded estimates did not provide any additional benefits over the regular and adaptive
variants, given that the specification of the groups was based on accounting principles and
hence correctly structured.

7. Discussion

In this paper, the problem of estimating Network Granger Causal (NGC) models with in-
herent grouping structure is studied when replicates are available. Norm, and both group
level and within group variable selection consistency are established under fairly mild as-
sumptions on the structure of the underlying time series. To achieve the second objective
the novel concept of direction consistency is introduced.

The type of NGC models discussed in this study have wide applicability in different
areas, including genomics and economics. However, in many contexts the availability of
replicates at each time point is not feasible (e.g., in rate of returns for stocks or other
macroeconomic variables), while grouping structure is still present (e.g., grouping of stocks
according to industry sector). Hence, it is of interest to study the behavior of group lasso
estimates in such a setting and address the technical challenges emanating from such a pure
time series (dependent) data structure.
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Appendix A. Auxiliary Lemmas

Lemma A.1 (Characterization of the Group lasso estimate) A vector β̂ ∈ Rp is a
solution to the convex optimization problem

argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

G∑
g=1

λg‖β[g]‖ (14)

if and only if β̂ satisfies, for some τ ∈ Rp with max1≤g≤G
∥∥τ[g]

∥∥ ≤ 1, 1
n

[
X ′(Y −Xβ̂)

]
[g]

=

λg τ[g] ∀g. Further, τ[g] = D
(
β̂[g]

)
whenever β̂[g] 6= 0.

Proof Follows directly from the KKT conditions for the optimization problem (14).

Lemma A.2 (Concentration bound for multivariate Gaussian) Let Zk×1 ∼ N(0,Σ).
Then, for any t > 0, the following inequalities hold:

P (|‖Z‖ − E‖Z‖| > t) ≤ 2 exp

(
− 2t2

π2‖Σ‖

)
, E ‖Z‖ ≤

√
k
√
‖Σ‖.
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Proof The first inequality can be found in Ledoux and Talagrand (1991) (equation (3.2).
To establish the second inequality note that,

E‖Z‖ ≤
√
E‖Z‖2 =

√
E [tr (ZZ ′)] =

√
tr (Σ) ≤

√
k
√
‖Σ‖.

Lemma A.3 Let β, β̂ ∈ Rm\{0}. Let û = β̂ − β and r = D(β̂) −D(β). Then ‖r‖ < 2δ
whenever ‖û‖ < δ ‖β‖.

Proof It follows from ‖û‖ < δ ‖β‖ that

(1− δ)‖β‖ < ‖β‖ − ‖û‖ ≤ ‖β̂‖ ≤ ‖û‖+ ‖β‖ < (1 + δ)‖β‖ ,

which implies that
∣∣∣‖β‖ − ‖β̂‖∣∣∣ < δ‖β‖. Now,

‖β̂‖ ‖β‖‖r‖ =
∥∥∥ β̂‖β‖+ (û− β̂)‖β̂‖

∥∥∥ ≤ ∥∥∥β̂ (‖β‖ − ‖β̂‖)+ ‖β̂‖ û
∥∥∥ < ‖β̂‖ ‖β‖(δ + δ),

since
∣∣∣‖β‖ − ‖β̂‖∣∣∣ < δ‖β‖ and ‖û‖ < δ ‖β‖.

Lemma A.4 Let G1, . . . ,GG be any partition of {1, . . . , p} into G non-overlapping groups
and λ1, . . . , λG be positive real numbers. Define the cone sets C(J, L) = {v ∈ Rp :

∑
g/∈J λg‖v[g]‖

≤ L
∑

g∈J λg‖v[g]‖} for any subset of groups J ⊆ NG. Also define the set of group s-sparse
vectors D(s) := {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NG, |J | ≤ s}. Then⋃

J⊆NG,|J |≤s

C(J, L) ∩ Sp−1 ⊆ (2 + L′)cl{conv{D(s)}}, (15)

where L′ = Lλmax/λmin, Sp−1 = {v ∈ Rp : ‖v‖ = 1} is the ball of unit norm vectors in Rp
and cl{.}, conv{.} respectively denote the closure and convex hull of a set.

Proof Note that for any J ⊆ NG, |J | ≤ s, and v ∈ C(J, L) ∩ Sp−1, we have∑
g/∈J

‖v[g]‖ ≤ L
λmax

λmin

∑
g∈J
‖v[g]‖,

which implies

‖v‖2,1 ≤ (L′ + 1)
∑
g∈J
‖v[g]‖ ≤ (L′ + 1)

√
s‖v[J ]‖ ≤ (L′ + 1)

√
s.

Hence the union of the cone sets on the left hand side of (15) is a subset of A := {v ∈ Rp :
‖v‖ ≤ 1, ‖v‖2,1 ≤ (L′ + 1)

√
s}.
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We will show that the set A is a subset of B := (2 + L′)cl{conv{D(s)}}, the closed
convex hull on the right hand side of (15). Since both sets A and B are closed convex, it is
enough to show that the support function of A is dominated by the support function of B.

The support function of A is given by φA(z) = supθ∈A〈θ, z〉. For any z ∈ Rp, let
S ⊆ {1, . . . , G} be a subset of top s groups in terms of the `2 norm of z[g]. Thus, ‖z[Sc]‖2,∞ ≤
‖z[g]‖ for all g ∈ S. This implies ‖z[Sc]‖2,∞ ≤ (1/s)‖z[S]‖2,1 ≤ (1/

√
s)‖z[S]‖. So, we have

φA(z) = sup
θ∈A
〈θ, z〉 ≤ sup

‖θ[S]‖≤1
〈θ[S], z[S]〉+ sup

‖θ[Sc]‖2,1≤
√
s(L′+1)

〈θ[Sc], z[Sc]〉 (16)

≤ ‖z[S]‖+ (L′ + 1)
√
s‖z[Sc]‖2,∞ ≤ (L′ + 2)‖z[S]‖. (17)

On the other hand, support function of B := (L′ + 2)cl{conv{D(s)}} is given by

φB(z) = sup
θ∈B
〈θ, z〉 = (L′ + 2) max

|U |=s, U⊆NG

sup
‖θ[U ]‖≤1

〈θ[U ], z[U ]〉 = (L′ + 2)‖z[S]‖.

This concludes the proof.

Lemma A.5 Consider a matrix Xn×p with rows independently distributed as N(0,Σ),
Λmin(Σ) > 0. Let G1, . . . ,GG be any partition of {1, . . . , p} into G non-overlapping groups
of size k1, . . . , kg, respectively. Let C = X ′X/n denote the sample Gram matrix and D(s)
denote the set of group s-sparse vectors defined in Lemma A.4. Then, for any integer s ≥ 1
and any η > 0, we have

P

[
sup

v∈cl{conv{D(s)}}
|v′(C − Σ)v| > 6η‖Σ‖

]
≤ c0 exp

[
−nmin{η, η2}+ c1s(kmax + c2 log (eG/2s))

]
(18)

for some universal positive constants ci.

Proof We consider a fixed vector v ∈ Rp with ‖v‖ ≤ 1, the support of which can be covered
by a set J of at most s groups, i.e., supp(v) ⊆ GJ , J ⊆ NG, |J | ≤ s. Define Y = Xv. Then
each coordinate of Y is independently distributed as N(0, σ2

y), where σ2
y = v′Σv ≤ ‖Σ‖.

Then, for any η > 0, Hanson-Wright inequality of Rudelson and Vershynin (2013)
ensures

P
[∣∣v′(C − Σ)v

∣∣ > η‖Σ‖
]
≤ P

[
1

n

∣∣Y ′Y − EY ′Y
∣∣ > ησ2

y

]
≤ 2 exp

[
−cnmin{η, η2}

]
.

Next, we extend this deviation bound on all vectors v in the sparse set

D(2s) = {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NG, |J | ≤ 2s} . (19)

For a given J ⊆ NG, |J | = 2s, we define DJ = {v ∈ Rp : ‖v‖ ≤ 1, supp(v) ⊆ GJ} and note
that D(2s) = ∪|J |=2sDJ . For an ε > 0 to be specified later, we construct an ε-net A of DJ .
Since

∑
g∈J kg ≤ 2s kmax, it is possible to construct such a net A with cardinality at most

(1 + 2/ε)2s kmax (Vershynin, 2009).
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We want a tail inequality for M := supv∈DJ
|v′∆v|, where ∆ = C − Σ. Since A is an

ε-cover of DJ , for any v ∈ DJ , there exists v0 ∈ A such that w = v − v0 satisfies ‖w‖ ≤ ε.
Then

|v′∆v| = |(w + v0)′∆(w + v0)| ≤ |w′∆w|+ |v′0∆v0|+ 2|v′0∆w|.

Taking supremum over all v ∈ DJ , and noting that w/ε ∈ DJ , we obtain

M ≤ ε2M + max
v0∈A

|v′0∆v0|+ sup
u,v∈DJ

2ε|u′∆v|. (20)

To upper bound the third term, note that (u+ v)/2 ∈ DJ , and

2|u′∆v| ≤ |(u+ v)′∆(u+ v)|+ |u′∆u|+ |v′∆v|.

Hence
sup

u,v∈DJ

2ε|u′∆v| ≤ 4εM + εM + εM = 6εM.

From equation (20), we now have

M ≤ (1− 6ε− ε2)−1 max
v0∈A

|v′0∆v0|.

Choosing ε > 0 small enough so that (1− 6ε− ε2) > 1/2, we obtain

P

[
sup
v∈DJ

|v′∆v| > 2η‖Σ‖

]
≤ P

[
max
v0∈A

|v′0∆v0| > η‖Σ‖
]

≤ 2 (1 + 2/ε)2s kmax exp[−cnmin{η, η2}].

Taking supremum over

(
G
2s

)
≤ (eG/2s)2s choices of J , we get

P

[
sup

v∈D(2s)
|v′∆v| > 2η‖Σ‖

]
≤ 2 exp

[
−cnmin{η, η2}+ 2s log

(
eG

2s

)
+ 2s kmax log

(
1 +

2

ε

)]
.

In order to extend this deviation inequality to cl{conv{D(s)}}, we note that any v in the
convex hull of D(s) can be expressed as v =

∑m
i=1 αivi, where v1, . . . , vm are in D(s) and

0 ≤ αi ≤ 1,
∑
αi = 1. Then

|v′∆v| ≤
m∑
i=1

m∑
j=1

αiαj |v′i∆vj |.

Also, for every i, j, (vi + vj)/2 ∈ D(2s), and

|v′i∆vj | ≤
1

2

[
|(vi + vj)

′∆(vi + vj)|+ |v′i∆vi|+ |v′j∆vj |
]
.

Hence

sup
v∈conv{D(s)}

|v′∆v| ≤
m∑
i=1

m∑
j=1

αiαj
1

2
[4 + 1 + 1] sup

v∈D(2s)
|v′∆v|.
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Together with the continuity of quadratic forms, this implies

sup
v∈cl{conv{D(s)}}

|v′∆v| ≤ 3 sup
v∈D(2s)

|v′∆v|.

The result then readily follows from the above deviation inequality.

Appendix B. Proof of Main Results

Proof [Proof of Proposition 3.2] (a) Note that Σ is a p(T − 1) × p(T − 1) block Toeplitz
matrix with (i, j)th block (Σij)1≤i,j≤(T−1) := Γ(i− j), where Γ(`)p×p is the autocovariance

function of lag ` for the zero-mean VAR(d) process (2), defined as Γ(`) = E[Xt(Xt−`)′].
We consider the cross spectral density of the VAR(d) process (2)

f(θ) =
1

2π

∞∑
`=−∞

Γ(`)e−i`θ, θ ∈ [−π, π]. (21)

From standard results of spectral theory we know that Γ(`) =
∫ π
−π e

i`θ f(θ) dθ, for every `.
We want to find a lower bound on the minimum eigenvalue of Σ, i.e., inf‖x‖=1 x

′Σx.
Consider an arbitrary p(T − 1)-variate unit norm vector x, formed by stacking the p-tuples
x1, . . . , xT−1.

For every θ ∈ [−π, π], define G(θ) =
∑T−1

t=1 xt e−itθ and note that∫ π

−π
G∗(θ)G(θ) dθ =

T−1∑
t=1

T−1∑
τ=1

(xt)′(xτ )

∫ π

−π
ei(t−τ)θ dθ

=
T−1∑
t=1

T−1∑
τ=1

(xt)′(xτ ) (2π 1{t=τ}) = 2π
T−1∑
t=1

(xt)′(xt) = 2π ‖x‖2 = 2π.

Also let µ(θ) be the minimum eigenvalue of the Hermitian matrix f(θ). Following Parter
(1961) we have the result

x′Σx =

T−1∑
t=1

T−1∑
τ=1

(xt)′Γ(t− τ)xτ =

T−1∑
t=1

T−1∑
τ=1

(xt)′
(∫ π

−π
ei(t−τ)θf(θ)dθ

)
xτ

=

∫ π

−π

(
T−1∑
t=1

(xt)′eitθ

)
f(θ)

(
T−1∑
τ=1

xτe−iτθ

)
dθ =

∫ π

−π
G∗(θ) f(θ)G(θ) dθ

≥
∫ π

−π
µ(θ) (G∗(θ)G(θ)) dθ ≥

(
min

θ∈(−π,π)
µ(θ)

) ∫ π

−π
G∗(θ)G(θ) dθ = 2π min

θ∈(−π,π)
µ(θ).

So Λmin(Σ) ≥ 2π min
θ∈(−π,π)

µ(θ). Since A(z) = I − A1z − A2z2 − . . . − Adzd is the (matrix-

valued) characteristic polynomial of the VAR(d) model (2), we have the following represen-
tation of the spectral density (see Priestley, 1981, eqn 9.4.23):

f(θ) =
1

2π
σ2(A(e−iθ))−1(A∗(e−iθ))−1.
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Thus, 2πµ(θ) = 2πΛmin(f(θ)) = 2π/Λmax(f(θ)−1) ≥ σ2/
∥∥A(e−iθ)

∥∥2
. But

∥∥A(e−iθ)
∥∥ ≤

1 +
∑d

t=1

∥∥At∥∥ for every θ ∈ [−π, π]. The result then follows at once from the standard
matrix norm inequality (see e.g., Golub and Van Loan, 1996, Cor 2.3.2)

‖At‖2 ≤
√
‖At‖1‖At‖∞ ≤

‖At‖1 + ‖At‖∞
2

t = 1, . . . , d,

where

‖At‖1 = max
1≤i≤p

p∑
j=1

|Atij |, ‖At‖∞ = max
1≤j≤p

p∑
i=1

|Atij |.

(b) The first part of the proposition ensures that Λmin(Σ) ≥ σ2
[
1 + 1

2(vin + vout)
]−2

. If
the replicates available from different panels are i.i.d, each row of the design matrix is
independently and identically distributed according to a N(0,Σ) distribution.

To show that RE(s, L) of (5) holds with high probability for sufficiently large n, it is
enough to show that

min
v ∈ C(J, L)\{0}
J ⊂ NḠ, |J | ≤ s

1

n

‖Xv‖2

‖v‖2
≥ φ2

RE (22)

holds with high probability, where the cone sets C(J, L) are defined as

C(J, L) := {v ∈ Rp̄ :
∑
g/∈J

λg‖v[g]‖ ≤ L
∑
g∈J

λg‖v[g]‖} (23)

for all J ⊂ NḠ with |J | ≤ s. Denote the ball of unit norm vectors in Rp̄ by Sp̄−1. By scale
invariance of ‖Xv‖2/n‖v‖2, it is enough to show that with high probability

min
v ∈ Sp̄−1 ∩ C(J, L)
J ⊂ NḠ, |J | ≤ s

v′Cv ≥ φ2
RE , (24)

where C = X′X/n is the sample Gram matrix.
By part (a), we already know that v′Σv ≥ Λmin(Σ) > 0 for all v ∈ Sp̄−1. So we only

need to show that |v′ (C − Σ) v| ≤ Λmin(Σ)/2 with high probability, uniformly on the set⋃
J⊆NḠ,|J |≤s

C(J, L) ∩ Sp̄−1. (25)

The proof relies on two key parts. In the first part, we use an extremal representation to
show that the above union of the cone sets sits within the closed convex hull of a suitably
defined set of group s-sparse vectors. In particular, it follows from Lemma A.4 that⋃

J⊆NḠ, |J |≤s

C(J, L) ∩ Sp̄−1 ⊆ (L′ + 2)cl{conv{D(s)}}, (26)

where D(s) = {v ∈ Rp̄ : ‖v‖ ≤ 1, supp(v) ⊆ GJ for some J ⊆ NḠ, |J | ≤ s}, L′ =
Lλmax/λmin and cl{.}, conv{.} respectively denote the closure and convex hull of a set.
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The next part of the proof is an upper bound on the tail probability of v′(C − Σ)v,
uniformly over all v ∈ cl{conv{D(s)}}, presented in Lemma A.5. In particular, setting
η = Λmin(Σ)/12‖Σ‖(2 + L′)2 in the above lemma yields

P

[
sup

v∈(2+L′)cl{conv{D(s)}}
|v′(C − Σ)v| > Λmin(Σ)/2

]
≤ c0 exp[−c1 n] (27)

for the proposed choice of n. Together with the lower bound on Λmin(Σ) established in part
(a), this concludes the proof.

Proof [Proof of Theorem 4.1] Consider any solution β̂R ∈ Rq of the restricted regression

argmin
β∈Rq

1

2n

∥∥Y −X(1)β
∥∥2

2
+ λ

s∑
g=1

∥∥β[g]

∥∥
2

(28)

and set β̂ =
[
β̂′R : 01×(p−q)

]′
. We show that such an augmented vector β̂ satisfies the

statements of Theorem 4.1 with high probability.
Let û = β̂(1)− β0

(1) = β̂R − β0
(1). In view of lemmas A.1 and A.3, it suffices to show that

the following events happen with probability at least 1− 4G1−α:∥∥û[g]

∥∥ < δn

∥∥∥β0
[g]

∥∥∥ , for all g ∈ S, (29)

1

n

∥∥∥[X ′ (ε−X(1)û
)]

[g]

∥∥∥ ≤ λ, for all g /∈ S. (30)

Note that, in view of Lemma A.1, û = (C11)−1
(

1√
n
Z(1) − λτ

)
for some τ ∈ Rq with∥∥τ[g]

∥∥ ≤ 1 for all g ∈ S, and Z = 1√
n
X ′ε =

[
Z ′(1) : Z ′(2)

]′
. Thus, for any g ∈ S,

P
(∥∥û[g]

∥∥ > δn

∥∥∥β0
[g]

∥∥∥) ≤ P

(∥∥∥∥∥
[
(C11)−1

(
1√
n
Z(1) − λτ

)]
[g]

∥∥∥∥∥ > δn

∥∥∥β0
[g]

∥∥∥)

≤ P
(∥∥∥∥[(C11)−1 Z(1)

]
[g]

∥∥∥∥ > √n [δn ∥∥∥β0
[g]

∥∥∥− λ ∥∥∥∥[(C11)−1 τ
]

[g]

∥∥∥∥]) .
Note that V = (C11)−1 Z(1) ∼ N(0, σ2 (C11)−1). So V[g] ∼ N(0, σ2C

[g][g]
11 ), where Σ[g][g] :=

(Σ−1)[g][g]. Also, by the second statement of lemma A.2 we have E
∥∥V[g]

∥∥ ≤ σ√kg√∥∥∥C [g][g]
11

∥∥∥.

Therefore P
(∥∥û[g]

∥∥ > δn

∥∥∥β0
[g]

∥∥∥) is bounded above by

P

(∣∣∥∥V[g]

∥∥− E
∥∥V[g]

∥∥∣∣ > √n [δn ∥∥∥β0
[g]

∥∥∥− λ∥∥∥(C11)−1
∥∥∥√s]− σ√kg ∥∥∥C [g][g]

11

∥∥∥)

≤ 2 exp

[
− 2

π2σ2‖C [g][g]
11 ‖

(√
nδn‖β0

[g]‖ −
√
nλ‖C−1

11 ‖
√
s− σ

√
kg‖C [g][g]

11 ‖
)2
]
.
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For the proposed choice of δn, this expression is bounded above by 2G−α.
Next, for any g /∈ S, we get

P
(

1

n

∥∥∥[X ′ (ε−X(1)û
)]

[g]

∥∥∥ > λ

)
≤ P

(∥∥∥[Z(2) − C21C
−1
11 Z(1)

]
[g]

∥∥∥ > √nλ(1−
∥∥∥[C21C

−1
11 τ

]
[g]

∥∥∥)) .
Defining W = Z(2)−C21C

−1
11 Z(1) ∼ N(0, σ2(C22−C21C

−1
11 C12)), the uniform irrepresentable

condition implies that the above probability is bounded above by P
(∥∥W[g]

∥∥ > √nλη).
It can then be seen that W[g] ∼ N(0, σ2C̄[g][g]), where C̄ = C22 − C21C

−1
11 C12 denotes

the Schur complement of C22. As before, lemma A.2 establishes that

P
(∥∥W[g]

∥∥ > √nλη) ≤ P
(∣∣∥∥W[g]

∥∥− E
∥∥W[g]

∥∥∣∣ > √nλη − σ√kg‖C̄[g][g]‖
)

≤ 2 exp

[
− 2

π2‖σ2C̄[g][g]‖

(√
nλη − σ

√
kg‖C̄[g][g]‖

)2
]
,

and the last probability is bounded above by 2G−α for the proposed choice of λ.
The results in the proposition follow by considering the union bound on the two sets of the
probability statements made across all g ∈ NG.

Appendix C. Proof of results on `2-consistency

We first note that each of the p optimization problems in (4) is essentially a generic group
lasso regression on n independent samples from a linear model Y = Xβ0 + ε, ε ∼ N(0, σ2):

β̂ = argmin
β∈Rp

1

2n
‖Y −Xβ‖2 +

Ḡ∑
g=1

λg‖β[g]‖, (31)

where Yn×1 = X Ti , Xn×p̄ = [X 1 : · · · : X T−1], β0
p̄×1 = vec(A

1:(T−1)
i: ), {1, . . . , p̄} = ∪Ḡg=1Gg,

p̄ = (T −1)p, Ḡ = (T −1)G and λg = λwti,g. In Proposition C.1, we first establish the upper
bounds on estimation error in the context of a generic group lasso penalized regression
problem. The results for regular group NGC then readily follows by applying the above
Proposition on the p separate regressions.

Recall the Restricted Eigenvalue assumption required for the derivation of `2 estimation
and prediction error. Following van de Geer and Bühlmann (2009), we introduce a slightly
weaker notion called Group Compatibility (GC). For a constant L > 0 we say that GC(S,
L) condition holds, if there exists a constant
φcompatible = φcompatible(S,L) > 0 such that

min
∆∈Rp\{0}


(∑

g∈S λ
2
g

)1/2
‖X∆‖

√
n
∑
g∈S

λg‖∆[g]‖
:
∑
g/∈S

λg‖∆[g]‖ ≤ L
∑
g∈S

λg‖∆[g]‖

 ≥ φcompatible. (32)
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The fact that GC(S, L) holds whenever RE(s, L) is satisfied (and φRE ≤ φcompatible) follows
at once from Cauchy Schwarz inequality. We shall derive upper bounds on the prediction
and `2,1 estimation error of group lasso estimates involving the compatibility constant. This
notion will also be used later to connect the irrepresentable conditions to the consistency
results of group lasso estimators.

Proposition C.1 Suppose the GC condition (32) holds with L = 3. Choose α > 0 and
denote λmin = min1≤g≤G λg. If

λg ≥
2σ√
n

√∥∥C[g][g]

∥∥(√kg +
π√
2

√
α log G

)
for every g ∈ NG, then, the following statements hold with probability at least 1− 2G1−α,

1

n

∥∥∥X (β̂ − β0
)∥∥∥2
≤ 16

φ2
compatible

s∑
g=1

λ2
g, (33)

‖β̂ − β0‖2,1 ≤
16

φ2
compatible

∑s
g=1 λ

2
g

λmin
. (34)

If, in addition, RE(2s, 3) holds, then, with the same probability we get

‖β̂ − β0‖ ≤ 4
√

10

φ2
RE(2s)

∑s
g=1 λ

2
g

λmin
√
s
. (35)

Proof [Proof of Proposition (C.1)] Since β̂ is a solution of the optimization problem (31),
for all β ∈ Rp, we have

1

n
‖Y −Xβ̂‖2 + 2

G∑
g=1

λg‖β̂[g]‖ ≤
1

n
‖Y −Xβ‖2 + 2

G∑
g=1

λg‖β[g]‖.

Plugging in Y = Xβ0 + ε, and simplifying the resulting equation, we get

1

n
‖X(β̂ − β0)‖2 ≤ 1

n
‖X(β − β0)‖2 +

2

n

G∑
g=1

∥∥(X ′ε)[g]

∥∥∥∥∥(β̂ − β)[g]

∥∥∥
+2

G∑
g=1

λg

(
‖β[g]‖ − ‖β̂[g]‖

)
.

Fix g ∈ NG and consider the event Ag =
{
ε ∈ Rn : 2

n

∥∥∥(X ′ε)[g]

∥∥∥ ≤ λg}. Note that Z =
1√
n
X ′ε ∼ N(0, σ2C). So Z[g] ∼ N(0, σ2C[g][g]). Then,

P
(
Acg
)

= P
(∥∥Z[g]

∥∥ > 1

2
λg
√
n

)
≤ P

(∣∣Z[g] − E
∥∥Z[g]

∥∥∣∣ > λg
√
n

2
− σ

√
kg

√∥∥C[g][g]

∥∥) ,
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where the last inequality follows from the second statement of Lemma A.2. Now, let xg =
λg
√
n

2 − σ
√
kg

√∥∥C[g][g]

∥∥. Then, for xg > 0, if

2 exp

(
−

2x2
g

π2σ2
∥∥C[g][g]

∥∥
)
≤ 2G−α ,

we get

P
(
Acg
)
≤ 2G−α.

But this happens if,
√

2xg ≥
√
α log Gπσ

√∥∥C[g][g]

∥∥,
which is ensured by the proposed choice of λg.

Next, define A := ∩Gg=1Ag. Then, P (A) ≥ 1− 2G1−α, and on the event A, we have, for
all β ∈ Rp,

1

n
‖X(β̂ − β0)‖2 +

G∑
g=1

λg

∥∥∥β̂[g] − β[g]

∥∥∥ ≤ 1

n
‖X(β − β0)‖2

+2
G∑
g=1

λg

(∥∥∥β̂[g] − β[g]

∥∥∥+
∥∥β[g]

∥∥− ∥∥∥β̂[g]

∥∥∥) .
Note that

(∥∥∥β̂[g] − β[g]

∥∥∥+
∥∥β[g]

∥∥− ∥∥∥β̂[g]

∥∥∥) vanishes if g /∈ S and is bounded above by

min{2
∥∥β[g]

∥∥ , 2(∥∥∥β[g] − β̂[g]

∥∥∥)} if g ∈ S.

This leads to the following sparsity oracle inequality, for all β ∈ Rp,

1

n
‖X(β̂ − β0)‖2 +

G∑
g=1

λg

∥∥∥β̂[g] − β[g]

∥∥∥ ≤ 1

n
‖X(β − β0)‖2

+4
∑
g∈S

λg min
{∥∥β[g]

∥∥ , ∥∥∥β[g] − β̂[g]

∥∥∥} . (36)

The sparsity oracle inequality (36) with β = β0, and ∆ := β̂ − β0 leads to the following
two useful bounds on the prediction and `2,1-estimation errors:

1

n
‖X∆‖2 ≤ 4

∑
g∈S

λg
∥∥∆[g]

∥∥ , (37)

∑
g/∈S

λg
∥∥∆[g]

∥∥ ≤ 3
∑
g∈S

λg
∥∥∆[g]

∥∥ . (38)

Now, assume the group compatibility condition 32 holds. Then,

1

n
‖X∆‖2 ≤ 4

∑
g∈S

λg
∥∥∆[g]

∥∥ ≤√∑
g∈S

λ2
g

‖X∆‖√
n

4

φcompatible
, (39)
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which implies the first inequality of proposition C.1. The second inequality follows from

λmin

∥∥∥β̂ − β∥∥∥
2,1
≤

G∑
g=1

λg
∥∥∆[g]

∥∥ ≤ 4
∑
g∈S

λg
∥∥∆[g]

∥∥
≤ 4

√∑
g∈S

λ2
g

‖X∆‖√
n

1

φcompatible
≤ 16

φ2
compatible

∑
g∈S

λ2
g ,

where the last step uses (39).
The proof of the last inequality of proposition C.1, i.e., the upper bound on `2 estimation

error under RE(2s), is the same as in Theorem 3.1 in Lounici et al. (2011) and is omitted.

Proof [Proof of Proposition 3.1] Applying the `2-estimation error of (35) on the ith group
lasso regression problem of regular group NGC, we have

‖Â1:T−1
i: −A1:T−1

i: ‖ ≤ 4
√

10

φ2
RE(2si)

∑si
g=1 λ

2
g

λmin
√
si
≤ 4

√
10

φ2
RE(2smax)

λmax

λmin

√
si

with probability at least 1− 2Ḡ1−α. Combining the bounds for all i = 1, . . . , p and noting
that s =

∑p
i=1 si, we have the required result.

Appendix D. Irrepresentable assumptions and consistency

In this section, we discuss two results involving the compatibility and irrepresentable con-
ditions for group lasso. We first show that a stronger version of the uniform irrepresentable
assumption implies the group compatibility (32), and hence, consistency in `2,1 norm. Next
we argue that a weaker version of the irrepresentable assumption is indeed necessary for
the direction consistency of the group lasso estimates. These results generalize analogous
properties of lasso (van de Geer and Bühlmann, 2009; Zhao and Yu, 2006) to the group
penalization framework. The proofs are given under a special choice of tuning parameter
λg = λ

√
kg. Similar results can be derived for the general choice of λg, although their

presentation is more involved.

Proposition D.1 Assume uniform irrepresentable condition (13) holds with η ∈ (0, 1), and
Λmin(C11) > 0. Then group compatibility(S, L) (32) condition holds whenever L < 1

1−η .

Proof First note that with the above choice of λg the Group Compatibility (S,L) condition
simplifies to

φcompatible := min
∆∈Rp\{0}


√
q‖X∆‖

√
n
∑
g∈S

√
kg‖∆[g]‖

:
∑
g/∈S

√
kg‖∆[g]‖ ≤ L

∑
g∈S

√
kg‖∆[g]‖

 > 0.

(40)
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Also, the uniform irrepresentable condition guarantees that there exists 0 < η < 1 such
that ∀τ ∈ Rq with ‖τ‖2,∞ = max

1≤g≤s
‖τ[g]‖2 ≤ 1, we have,

1√
kg

∥∥∥∥[C21 (C11)−1K0τ
]

[g]

∥∥∥∥
2

< 1− η ∀g /∈ S.

HereK0 = K/λ is a q×q block diagonal matrix with diagonal blocks
√
k1 Ik1×k1 , . . . ,

√
ks Iks×ks .

Define

∆0 := argmin
∆∈Rp

 1

2n
‖X∆‖22 :

∑
g∈S

√
kg‖∆[g]‖2 = 1,

∑
g/∈S

√
kg‖∆[g]‖2 ≤ L

 . (41)

Note that 1
n‖X∆0‖22 = φ2

compatible/q, and introduce two Lagrange multipliers λ and λ′ cor-
responding to the equality and inequality constraints for solving the optimization problem

in (41). Also, partition ∆0 =
[
∆0

(1) : ∆0
(2)

]
and X =

[
X(1) : X(2)

]
into signal and nonsignal

parts as in (10). The first q linear equations of the KKT conditions imply that there exists
τ0 ∈ Rq such that

C11∆0
(1) + C12∆0

(2) = λK0τ0 (42)

and, for every g ∈ S,

τ0
[g] = D(∆0

[g]) if ∆0
[g] 6= 0,

‖τ0
[g]‖2 ≤ 1 if ∆0

[g] = 0.

It readily follows that (τ0)
T
K0∆0

(1) =
∑
g∈S

√
kg‖∆0

[g]‖2 = 1.

Multiplying both sides of (42) by (∆0
(1))

T we get(
∆0

(1)

)T
C11∆0

(1) +
(

∆0
(1)

)T
C12∆0

(2) = λ. (43)

Also, (42) implies
∆0

(1) + (C11)−1C12∆0
(2) = λ (C11)−1K0τ0. (44)

Multiplying both sides of the equation by
(
K0τ0

)T
=
(
τ0
)T
K0 we obtain

1 = −
(
τ0
)T
K0 (C11)−1C12∆0

(2) + λ
(
K0τ0

)T
(C11)−1 (K0τ0

)
. (45)

Note that the absolute value of the first term,∣∣∣∣∣∣
∑
g/∈S

(
∆0

[g]

)T [
C21(C11)−1K0τ0

]
[g]

∣∣∣∣∣∣ , (46)

is bounded above by

(1− η)

∑
g/∈S

√
kg‖∆0

[g]‖2

 ≤ (1− η)L (47)
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by virtue of the uniform irrepresentable condition and the Cauchy-Schwartz inequality.
Assuming the minimum eigenvalue of C11, i.e., Λmin (C11), is positive and considering
‖K0τ0‖2 ≤

√
q, the second term is at most λ q/Λmin (C11). So (45) implies

1 ≤ (1− η)L+
λq

Λmin (C11)
. (48)

In particular, λ ≥ Λmin (C11) (1− (1− η)L) /q is positive whenever L < 1/(1− η).
Next, multiply both sides of (44) by (∆0

(2))
TC21 to get(

∆0
(2)

)T
C21∆0

(1) +
(

∆0
(2)

)T
C21 (C11)−1C(12)∆

0
(2) = λ

(
∆0

(2)

)T
C21 (C11)−1K0τ0. (49)

Using the upper bound in (47), the right hand side is at least −λ(1− η)L.
Also a simple consequence of the block inversion formula of the non-negative definite matrix
C guarantees that the matrix C22 − C21 (C11)−1C12 is non-negative definite. Hence,(

∆0
(2)

)T [
C22 − C21 (C11)−1C12

]
∆0

(2) ≥ 0

and
(

∆0
(2)

)T
C22∆0

(2) ≥
(

∆0
(2)

)T
C21 (C11)−1C12∆0

(2).

Putting all the pieces together we get

φ2
compatible/q =

1

n
‖X∆0‖22

= ∆0
(1)

T
C11∆0

(1) + 2∆0
(2)

T
C21∆0

(1) + ∆0
(2)

T
C22∆0

(2)

= λ+ ∆0
(2)

T
C21∆0

(1) + ∆0
(2)

T
C22∆0

(2) , by (43)

≥ λ− λ(1− η)L , by (49)

= λ(1− (1− η)L).

Plugging in the lower bound for λ we obtain the result; namely,

φ2
compatible = Λmin(C11) (1− (1− η)L)2 > 0

for any L < 1
1−η .

In this section we investigate the necessity of irrepresentable assumptions for direction
consistency of group lasso estimates. To this end we first introduce the notion of weak
irrepresentability.

For a q-dimensional vector τ define the stacked direction vector

D̃(τ)︸ ︷︷ ︸
q×1

= [D(τ[1])
′︸ ︷︷ ︸

k1×1

, . . . , D(τ[s])
′︸ ︷︷ ︸

ks×1

]′.

Weak Irrepresentable Condition is satisfied if

1

λg

∥∥∥∥[C21(C11)−1KD̃(β0
(1))
]

[g]

∥∥∥∥ ≤ 1, ∀g /∈ S = {1, . . . , s}. (50)
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We argue the necessity of weak irrepresentable condition for group sparsity selection and
direction consistency under two regularity conditions on the design matrix, as n, p→∞:
(A1) The minimum eigenvalue of the signal part of the Gram matrix, viz. Λmin(C11), is
bounded away from zero.
(A2) The matrices C21 and C22 are bounded above in spectral norm.

As in the last proposition, we set λg = λ
√
kg and K0 = K/λ. Suppose that the weak

irrepresentable condition does not hold, i.e., for some g /∈ S and ξ > 0, we have,

1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β0
(1))
]

[g]

∥∥∥∥ > 1 + ξ

for infinitely many n. Also suppose that there exists a sequence of positive reals δn → 0
such that the event

En := {‖D(β̂[g])−D(β[g])‖2 < δn, ∀g ∈ S, and β̂[g] = 0∀ g /∈ S}

satisfies P(En)→ 1 as p, n→∞.
Note that for large enough n so that δn < ming ‖D(β[g])‖, we have β̂[g] 6= 0, ∀ g ∈ S on

the event En.
Then, as in the proof of Theorem 4.1, we have, on the event En,

û = (C11)−1

[
1√
n
Z(1) − λK0D̃(β̂(1))

]
(51)

and
1

n

∥∥∥[X(2)
T (ε−X(1)û)

]
[g]

∥∥∥ ≤ λ√kg, ∀g /∈ S. (52)

Substituting the value of û from (51) in (52), we have, on the event En,

1√
n

∥∥∥∥[Z(2) − C21(C11)−1Z(1) + λ
√
nC21(C11)−1K0D̃(β̂(1))

]
[g]

∥∥∥∥ ≤ λ√kg,
which implies that∥∥∥∥[Z(2) − C21 (C11)−1 Z(1)

]
[g]

∥∥∥∥
≥ λ
√
n
√
kg

[
1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β̂(1))
]

[g]

∥∥∥∥− 1

]
. (53)

Now note that for large enough n, if ‖C21‖ is bounded above, direction consistency guar-
antees that the expression on the right is larger than

1

2
λ
√
n
√
kg

[
1√
kg

∥∥∥∥[C21(C11)−1K0D̃(β(1))
]

[g]

∥∥∥∥− 1

]
,

which in turn is larger than 1
2 λ
√
n
√
kg ξ, in view of the weak irrepresentable condition.

This contradicts P(En)→ 1, since the left-hand side of (53) corresponds to the norm of a
centered Gaussian random variable with bounded variance structure

[
C22 − C21C

−1
11 C12

]
[g][g]

while λ
√
n
√
kg diverges with

√
log G.
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Appendix E. Thresholding Group Lasso Estimates.

Proof [Proof of Theorem 4.2] We use the notations developed in the proof of Proposi-
tion C.1. First note that, (ii) follows directly from Theorem 4.1. For (i), since the falsely
selected groups are present after the initial thresholding, we get ‖β̂[g]‖ > 4λ for every
such group. Next, we obtain an upper bound for the number of such groups. Specifically,
denoting ∆ = β̂ − β0, we get

∣∣∣Ŝ\S∣∣∣ ≤ ‖β̂Sc‖2,1
4λ

=

∑
g/∈S ‖∆[g]‖

4λ
. (54)

Next, note that from the sparsity oracle inequality (37), the following holds on the event
A, ∑

g/∈S

‖∆[g]‖ ≤ 3
∑
g∈S
‖∆[g]‖.

It readily follows that

4
∑
g/∈S

‖∆[g]‖ ≤ 3‖∆‖2,1 ≤
48

φ2
sλ,

where the last inequality follows from the `2,1-error bound of (34). Using this inequality
together with (54) gives the result.
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