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Abstract

In a very strong positive result for passive learning algorithms, Bshouty et al. showed that
DNF expressions are efficiently learnable in the uniform random walk model. It is natural
to ask whether the more expressive class of thresholds of parities (TOP) can also be learned
efficiently in this model, since both DNF and TOP are efficiently uniform-learnable from
queries. However, the time bounds of the algorithms of Bshouty et al. are exponential
for TOP. We present a new approach to weak parity learning that leads to quasi-efficient
uniform random walk learnability of TOP. We also introduce a more general random walk
model and give two positive results in this new model: DNF is efficiently learnable and
juntas are efficiently agnostically learnable.

Keywords: computational learning theory, Fourier analysis of Boolean functions, random
walks, DNF learning, TOP learning

1. Introduction

Positive results in learning theory have often assumed that the learner has access to a mem-
bership oracle. Such a learner is active, actively choosing examples for which it would like
information. Here we consider passive models where the examples are chosen randomly. A
commonly studied passive model is the model where the learner has access to independently
random labeled samples. In this document, we consider a model with intermediate power.
We study the random walk model, where the learner has access to labeled samples drawn
from a random walk on the Boolean cube.

Our work is another step in the line of successful Fourier-based algorithms for learning
with respect to the uniform distribution. Although many of these algorithms have been ac-
tive, the Low Degree Algorithm of Linial et al. (1993), the first major Fourier-based learner,
was a passive learning algorithm. This algorithm uses only random examples to estimate all
of the “low degree” Fourier coefficients of a target function. By showing that AC0 circuits
(and hence DNF expressions) are well-approximated by their Fourier coefficients of degree
logarithmic in the learning parameters, Linial et al. proved that the Low Degree Algorithm
can be used to learn AC0 in quasi-polynomial time. Another recent passive algorithm is
in a new model motivated by the smoothed analysis of algorithms initiated by Spielman
and Teng (2004). In particular, Kalai et al. (2009) show how to learn DNF—and, agnosti-
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cally, decision trees—with respect to so-called smoothed product distributions, essentially
random perturbations of arbitrary product distributions.

When the learner is active and has access to membership queries, the learner has sub-
stantially more power. Kushilevitz and Mansour (1993) gave an algorithm for learning
decision trees in polynomial time. The algorithm, based on earlier work of Goldreich and
Levin (1989), uses membership queries to find the “heavy” (large magnitude) Fourier coef-
ficients, and uses this information to construct a hypothesis. Gopalan et al. (2009) showed
that this algorithm can be made to be efficient and return a hypothesis equivalent to the
decision tree. Jackson (1997) gave the first polynomial-time algorithm for learning DNF
formulas with membership queries. The algorithm combines the Fourier search of Kushile-
vitz and Mansour (1993) with the boost-by-majority algorithm of Freund (1995). Various
improvements have been made to Jackson’s algorithm. Recently, Kalai et al. (2009) showed
how to improve this algorithm to not use boosting, but to find all heavy coefficients of
one function and run an intricate procedure to construct a good hypothesis. Also, Feld-
man (2012) gave a simplified algorithm for this construction. In terms of agnostic learning,
Gopalan et al. (2008) gave an algorithm for agnostically learning decision trees using mem-
bership queries. The possibility of agnostically learning DNF formulas with respect to the
uniform distribution is left open.

A significant step forward in learning in the random walk model (and, in our opinion,
a significant step in learning in any nontrivial passive model) was given by Bshouty et al.
(2005). They showed that, in the random walk model, it is possible to efficiently learn the
class of DNF expressions with respect to the uniform distribution. We define the oracle for
the random walk model here.

Definition 1 The random walk oracle proceeds as follows: the first example generated by
the oracle is 〈x, f(x)〉 for a uniformly random x in {0, 1}n, and the initial internal state of
the oracle is set to x. Every subsequent example is generated as follows:

1. Select i ∈ [n] uniformly at random and select b ∈ {0, 1} uniformly at random.

2. Letting x be the internal state, set the new internal state x′ to be x′j = xj for j 6= i
and x′i = b.

3. Return 〈i, x′, f(x′)〉.

This transition of internal state is known as updating x. A more natural definition
involves flipping rather than updating bits, where “x′i = b” in the second item above is
replaced with “x′i = 1−xi”. As Bshouty et al. (2005) point out, the definitions are essentially
interchangeable for uniform random walks, and the updating oracle turns out to be more
convenient to analyze. The accuracy of hypothesis h is assessed with respect to the uniform
distribution over {0, 1}n, which is the stationary distribution of this random walk. We call
learning in this setting the uniform random walk model.

However, Bshouty et al. left the efficient learnability of polynomial-weight threshold-of-
parity (TOP) functions as an open problem for the uniform random walk model; we will
refer to this problem as learning TOP ; we define the class here.
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Definition 2 A function f : {0, 1}n → {−1, 1} can be expressed as a TOP of weight W if
it can be represented as the sign of a weighted sum of parity functions, where the weights
are integers, and the sum of the magnitudes of the weights is bounded by W . The TOP
weight of f is the minimum weight over all TOP representations of f .

We will be mostly interested in the case that the weight is bounded by a polynomial in
n. This class is equivalent to polynomial-weight polynomial threshold functions of arbitrary
degree over {−1, 1}n. Additionally, Krause and Pudlák (1998) showed that a polynomial
threshold function of weight w over {0, 1}n can be represented as a polynomial threshold
function of weight n2w4 over {−1, 1}n, so this class includes polynomial-weight polyno-
mial threshold functions over {0, 1}n (and this latter class includes polynomial-size DNF
formulas). We remark that the parity function on n variables has TOP weight 1, which
is minimal, while any DNF representation of this function requires 2n−1 terms, which is
maximal (Lupanov, 1961). The efficient learnability of TOP is an intriguing question both
because TOP is a much more expressive class than is DNF and because the membership
query algorithm for efficiently learning DNF, the Harmonic Sieve (Jackson, 1997), can also
efficiently learn TOP. We add that Roch (2007) showed that TOP is learnable from a mod-
ified random walk oracle that updates the bits repeatedly in some fixed order; this type of
oracle is well-suited to the same analysis as Jackson’s Harmonic Sieve.

Unfortunately, as Bshouty et al. point out, their approach does not seem to be capable
of producing a positive TOP learning result. Actually, they give two algorithms, one using
a random walk oracle and a second using a weaker oracle that can be viewed as making
statistical queries to estimate noise sensitivity (which is, roughly, the probability that cor-
rupting an input to a function changes the output). A proof due to Roch (2007) shows
that time 2Ω(n) is required for the latter approach, and Bshouty et al.’s time bound for the
former approach also becomes exponential when applied to learning even a single parity
function on Ω(n) bits.

In somewhat more detail, the Bshouty et al. weak learning algorithm is loosely based
on the algorithm of Goldreich and Levin (1989)—adopted for learning purposes by Kushile-
vitz and Mansour (1993) and therefore often referred to in learning papers as the KM
algorithm—for locating all of the Fourier coefficients of a function whose magnitude ex-
ceeds some threshold. Bshouty et al. replace the influence-like estimates made by KM
with noise sensitivity estimates, and they also employ a breadth-first search rather than
KM’s depth-first approach. Each of these changes makes the modified KM unsuitable for
finding a weak-approximating parity on Ω(n) bits: such an algorithm is essentially search-
ing for a large-magnitude high-order Fourier coefficient, but high-order Fourier coefficients
contribute only negligibly to low-order noise sensitivity estimates, which are the only esti-
mates made by Bshouty et al.; and employing breadth-first search for a high-degree parity
using the original KM influence-like estimates would lead to computing an exponential in
n number of estimates before locating the parity.

We are aware of only one approach to weakly learning parity that differs fundamentally
from KM. This approach is based on a clever algorithm due to Levin (1993) that randomly
partitions the set of 2n Fourier coefficients into polynomially many bins and succeeds in
finding a weak approximator if one of the bins is dominated by a single coefficient, which
happens with non-negligible probability. Variants of Levin’s algorithm have been proposed
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and analyzed by others (Bshouty et al., 2004; Feldman, 2007). But it is not at all clear how
Levin’s original algorithm or any of the variants could be adapted to use a random walk
oracle rather than a membership oracle.

1.1 Our Results

Thus, it seems that a fundamentally new approach to weakly learning parity functions is
needed in order to efficiently learn TOP in the random walk model. Our main result is the
following:

Theorem 3 In the uniform random walk model, there is an algorithm that learns TOP in
time polynomial in n but exponential in log(s/ε), where s is the minimal TOP-weight of the
target function and ε is the desired accuracy of the approximation.

Virtually every Fourier-based learning algorithm uses the following two procedures (pos-
sibly interleaving their operation):

1. Fourier detection: A procedure for finding appropriate (typically heavy) Fourier co-
efficients of some function (not necessarily the target function).

2. Hypothesis construction: A procedure for constructing a hypothesis given the identi-
fied Fourier coefficients and their estimated values.

In particular, the random walk algorithm of Bshouty et al. (2005) relies on two such
procedures. Specifically, it employs the hypothesis construction method of the Harmonic
Sieve (Jackson, 1997) as a black box but replaces the Sieve’s Fourier detection algorithm
with an algorithm that implements the Bounded Sieve (Bshouty and Feldman, 2002) using
a random walk oracle. Although this bounded Fourier detection approach is sufficient for
learning DNF, it is inadequate for learning TOP. Specifically, the parity function on all
variables (which has TOP weight 1) has no nonzero Fourier coefficients among those that
the Bounded Sieve considers, and the Fourier detection phase fails.

Our algorithm also borrows its hypothesis construction step from the Harmonic Sieve,
but it introduces a new Fourier detection algorithm that uses a random walk oracle to lo-
cate heavy coefficients of arbitrary degree in quasipolynomial time. Our Fourier detection
algorithm borrows some underlying Fourier ideas from KM, but differs markedly in how it
employs these ideas. A key feature is that our algorithm can be viewed as an elimination
algorithm: it locates a good approximating parity function by eliminating all other possi-
bilities. The core of our algorithm can also be viewed as an agnostic learner for parity in
the random walk model; it is efficient if the optimal parity is an O(1)-approximator to the
target. With uniform random examples alone, the best algorithms for this problem run in
time 2O(n/ logn) (Feldman et al., 2009).

Finally, we introduce a more general random walk model based on p-biased distributions.
We briefly show why Fourier-based methods cannot efficiently learn TOP in this model.
On a positive note, we generalize existing efficient learning results for DNF and juntas,
showing that these classes are also efficiently learnable (juntas agnostically and properly,
quite similarly to the analysis in Gopalan et al. (2008)) in the product random walk model.
Roch (2007) has shown a similar result for learning DNF from random walks over the
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domain [b]n equipped with the uniform distribution. We also mention the work of Kalai
et al. (2009) regarding the smoothed analysis model introduced by Spielman and Teng
(2004). In their model, the product distribution itself is a randomly chosen perturbation
of a product distribution. In the smoothed analysis model, DNF is efficiently learnable,
although our random walk model and the smoothed analysis model are of incomparable
strength.

We will assume that the hypothesis construction procedure of Gopalan et al. (2008)
is used in our product distribution algorithm, although the subsequent improved version
of their algorithm due to Feldman (2012) or even the boosting-based approach used in
Jackson’s Harmonic Sieve could also be used. All of these methods have comparable run-
ning times in this model. For the Fourier detection procedure, we generalize the method
of Bshouty et al. (2005) to the product distribution setting, a setting they did not consider.
We use an analysis similar to that of Bshouty et al. to show that the heavy low-degree
Fourier coefficients of real-valued functions will, with high probability, be found by this
procedure.

2. Preliminaries

All of our results are for versions of the well-known PAC model. In this model, the learner’s
goal is to recover an unknown target function f : {0, 1}n → {−1, 1}, where f is a member
of some known class of functions F . The class F is typically equipped with a size measure,
such as minimum TOP weight or minimum number of terms in DNF representation or
minimum decision tree size. The learner is given some sort of oracle access to f in the form
of labeled examples 〈x, f(x)〉, and the accuracy of the hypothesis is measured with respect
to a distribution D (that is related to the oracle).

Definition 4 We say that F is learnable if there is an algorithm that, for every ε, δ > 0,
and every target function f ∈ F , given some sort of oracle access to f , produces a hypothesis
h : {0, 1}n → {−1, 1} such that

Pr
x∼D

[h(x) 6= f(x)] ≤ ε.

with probability 1 − δ. The randomness is over the oracle and the algorithm. We say that
such an algorithm learns F .

In this paper, we consider the case where the oracle access is a random walk oracle as
described in Definition 1. In this case, the accuracy of the hypothesis is measured with
respect to the stationary distribution of the random walk.

Definition 5 If F is learnable for all ε ≥ 1/2 − γ for some γ > 0, we say that F is γ-
weakly learnable. Further, if Prx∼D[h(x) 6= f(x)] ≤ 1/2 − γ, we say that h is a γ-weak
approximation to f .

The run time dependence on δ for our algorithms, like virtually all PAC algorithms,
is logarithmic. As is standard to simplify the exposition, we will ignore the analysis of
δ parameter, and simply assume that all estimates are correct. The δ parameter is then
subsumed in O() notation and will henceforth be ignored.
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The more interesting and challenging case is the case where there are no restrictions
on the target function. In this model, our goal is to develop an algorithm that returns a
function h that is “competitive” with the best function from some fixed class F ; this is
called agnostic learning.

Definition 6 We say that F is agnostically learnable if there is an algorithm that, for
every ε > 0 and every target function f : {0, 1}n → {−1, 1}, given some sort of oracle
access to f , produces a hypothesis h : {0, 1}n → {−1, 1} such that

Pr
x∼D

[h(x) 6= f(x)] ≤ min
g∈F

Pr
x∼D

[g(x) 6= f(x)] + ε

We say that such an algorithm agnostically learns F .

We will make extensive use of discrete Fourier analysis. For every vector a ∈ {0, 1}n,
we define the function χa : {0, 1}n → {−1, 1} such that χa(x) = (−1)

∑n
i=1 aixi = (−1)a·x.

On any fixed input x, χa(x) returns the parity (1 for even parity, −1 for odd) of the
subset of components of x indexed by 1’s in a. The set of functions {χa}a∈{0,1}n forms
an orthonormal basis for real-valued functions over {0, 1}n, where the inner product of
two functions g and h is taken to be Ex∼U [g(x)h(x)]. Here, U represents the uniform
distribution on {0, 1}n. For a function g : {0, 1}n → R, we define the Fourier coefficient
ĝ(a) = Ex∼U [g(x)χa(x)]. If g is Boolean (meaning that the codomain of g is {−1, 1}) then
it is not hard to see that ĝ(a) = 1 − 2Prx[χa(x) 6= g(x)], where again the probability is
taken with respect to the uniform distribution over {0, 1}n. Thus, if |ĝ(a)| ≥ γ, then either
Prx[χa(x) 6= g(x)] ≤ 1/2 − γ/2 or Prx[−χa(x) 6= g(x)] ≤ 1/2 − γ/2, which implies that
either χa or −χa is a (γ/2)-weak approximation to g.

Our primary algorithms focus on finding heavy Fourier coefficients—finding a such that
|ĝ(a)| ≥ γ for some threshold value γ > 0 that will be clear from context. As has just been
shown, such algorithms can be viewed as γ/2-weak learning algorithms with respect to the

uniform distribution. We use ‖̂g‖̂
2

2 to denote
∑

a ĝ
2(a) and ‖g‖∞ to represent maxx |g(x)|.

Parseval’s identity tells us that ‖̂g‖̂
2

2 = E[g2(x)], where the expectation is over uniform

random choice of x; this implies that if g is Boolean, ‖̂g‖̂
2

2 = 1. The notation x ⊕ y
represents the bitwise exclusive-OR of the binary vectors x and y (assumed to be of the
same length). In later sections, instead of f̂(a), it will be more convenient to write f̂(A),
where A ⊂ {1, . . . , n} is the set of coordinates at which a is 1.

We will call a string in {0, 1, ∗}n a restriction (we use such strings to represent certain
subsets, which can be viewed as restrictions of larger sets). For example, 0 ∗ ∗1∗ represents
the restriction and could be viewed as representing the set of all 5-bit strings where the first
bit is 0 and the fourth is 1. The bits of a restriction are those symbols that are not ∗’s.
Note that an n-bit string is considered to be a restriction. For 1 ≤ i ≤ n and b ∈ {0, 1, ∗},
we use the notation α + (i, b) to represent the restriction α′ that is identical to α except
that its ith symbol α′i is b. We say that a restriction a is consistent with a restriction α if
and only if for all i such that αi 6= ∗ it is the case that ai = αi. A Fourier coefficient f̂(c)
is consistent with restriction a if c is consistent with a. A sum over a ∈ α represents a sum
over the set of all bit-strings a consistent with α. We use |α| to denote the number of non-∗
characters in α.
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As mentioned in the introduction, the Fourier detection portion of our algorithm will be
a variation of the Kushilevitz-Mansour KM algorithm (Kushilevitz and Mansour, 1993).
The KM algorithm proceeds as follows. The goal is, for a given θ > 0 and g : {0, 1}n → R,
to find all a ∈ {0, 1}n such that |ĝ(a)| ≥ θ. The number of such coefficients is clearly at

most ‖̂g‖̂
2

2/θ
2. The KM algorithm builds a binary tree with variables at each non-leaf node

and restrictions at each leaf. The restriction at the leaf v is consistent with the variable
assignments on the path from the root to v. The key idea is to estimate

∑
a∈α ĝ(a)2. When

α = ∗n, we have
∑

a∈α ĝ(a)2 = ‖̂g‖̂
2

2. If we find
∑

a∈α ĝ(a)2 < θ2, then we know that every
desired Fourier coefficient is inconsistent with α. If

∑
a∈α ĝ(a)2 ≥ θ2 and αi = ∗ for some i,

we can refine our partition by replacing α with α+ (i, 0) and α+ (i, 1). Continuing in this
fashion, we find all the heavy Fourier coefficients. This algorithm is efficient because the

number of “active” restrictions at any time is ‖̂g‖̂
2

2/θ
2, so the number of leaves is at most

2‖̂g‖̂
2

2/θ
2. This algorithm can efficiently learn polynomial size decision trees, but cannot

efficiently learn polynomial size DNF formulas.

3. Finding a Heavy Parity

In this section we present and analyze our core algorithm, which given a threshold value
θ and a uniform random walk oracle for a function g : {0, 1}n → R finds the index a of
a Fourier coefficient such that |ĝ(a)| (nearly) exceeds θ, if such a coefficient exists. The
algorithm’s time bound is exponential in log(‖g‖∞/θ) but is otherwise polynomial. In later
sections we use this algorithm to obtain other random walk results, agnostically learning
parity (in polynomial time if the accuracy ε is constant) and learning TOP (in polynomial
time for TOPs of constant size and given constant ε and with significantly better run-time
bound than the previous algorithms of Bshouty et al. in the general case).

3.1 Utility Fourier Algorithms

Our algorithm will depend on two utility algorithms that are described now.

We first require an easy lemma, which will allow us to get uniform random examples
given a uniform random walk oracle:

Lemma 7 Let x be an arbitrary initial internal state of the random walk oracle. Then with
probability at least 1− 1/t, after n ln(nt) examples have been drawn from the oracle, every
bit of x will have been updated at least once.

Proof The probability that the ith bit is not updated after r = n ln(nt) examples is
(1− 1/n)n ln(nt) ≤ exp(− ln(nt)) = 1/(nt). By the union bound, the probability that there
is a bit not updated after n ln(nt) examples is at most 1/t.

By making t sufficiently small, we can fold the failure probability of this “reset to
random” procedure into the δ parameter with only polynomial impact on the algorithm’s
run time. We will therefore assume in the sequel that we can, whenever needed, reset the
random walk to a uniform random internal state. Among other things, this implies that
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an algorithm with access to a random walk oracle can efficiently draw independent random
examples.

Our first utility algorithm is FC(g, a, τ) (an abbreviation of Fourier Coefficient), an
algorithm that takes a uniform random walk oracle for g : {0, 1}n → R, a vector a ∈ {0, 1}n,
and τ > 0 as input, and uses a uniform random set of examples to estimate the Fourier
coefficient ĝ(a) = Ex[g(x)χa(x)] within an additive error τ of the true value. By a standard
Hoeffding argument (Hoeffding, 1963), given a set of polynomial in n, ‖g‖∞, and 1/τ such
examples, the mean of g · χa over the sample provides a sufficiently accurate estimate.
Therefore, FC can be implemented (with high probability) in time polynomial in n, ‖g‖∞,
and 1/τ .

Second, we will use SSF(g, α, τ) (an abbreviation of Sum of Squared Fourier coeffi-
cients) to represent an algorithm that takes a random walk oracle for g : {0, 1}n → R, a
restriction α, and τ > 0 as input, and returns a value σ such that |

∑
a∈α ĝ

2(a)− σ| ≤ τ . If
α contains exactly k bits (or equivalently, k non-∗ entries), then it follows from the analysis
of the KM algorithm (Kushilevitz and Mansour, 1993) that

∑
a∈α ĝ

2(a) = Ex,y,z[g(x +
y)g(x+z)χd(y⊕z)], where the expectation is over uniform choice of x from {0, 1}n−k and
y and z from {0, 1}k, where we use x+ y to mean the n-bit string formed by interleaving
in the obvious way bits from x in positions where there are ∗’s in α with bits from y in
non-∗ positions, and where d is the k-bit string obtained by removing all of the ∗’s from α.
Thus, SSF could be implemented given a membership oracle for g by randomly sampling
the random variable g(x + y)g(x + z)χd(y ⊕ z) and computing the sample mean. Using
Hoeffding’s bound, a sample of size polynomial in 1/τ and ‖g‖∞ suffices to ensure a sample
mean within τ of the true mean, and therefore the time bound for SSF is polynomial in n,
1/τ , and ‖g‖∞. However, when using a random walk rather than membership oracle, we
have a somewhat weaker result:

Lemma 8 The random walk algorithm SSF(g, α, τ) can be implemented using poly(n|α|, ‖g‖∞, 1/τ)
time and samples.

Proof The algorithm uses examples to estimate g(x + y)g(x + z)χd(y ⊕ z). We begin
by resetting the oracle to a random internal state. We then draw from the oracle until
we observe a sequence of consecutive steps that collectively update all of and only the bits
corresponding to non-∗ characters in α (some of these bits might be updated more than
once). The inputs before and after this sequence of steps give us the x+y and x+z values
we need in order to obtain a sample from the random variable. For simplicity of analysis, we
can imagine waiting for a sequence of consecutive steps that update the bits corresponding
to non-∗ characters in order, each being updated exactly once (this gives an upper bound
on the time required for the actual algorithm, which will allow repeats and any ordering
of updates). Then the probability that we see a sequence of |α| updates in order on the
appropriate bits is exactly 1/n|α|, and thus the running time is polynomial in 1/τ , n|α|, and
‖g‖∞.
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3.2 Intuitive Description

Given access to SSF and FC, we next describe the intuition behind our algorithm PT that
finds a parity function weakly approximating the target, if such a function exists. If we
could call SSF with arbitrary restrictions α, then in order to find a weak-approximating
parity function we could simply employ SSF as in the KM algorithm, which operates in
levels as follows (we also assume for simplicity of exposition in this intuition section that
SSF computes the sum of squares of coefficients exactly). At the first level, KM calls (a
membership-oracle based version of) SSF with the restrictions 0∗n−1 and 1∗n−1. Taking
θ to be the magnitude of the desired coefficient, if either of the values returned by SSF is
less than the threshold value θ2 then we know that all coefficients with indices consistent
with the corresponding restriction have magnitude less than θ. For instance, if SSF on
0∗n−1 returns a value below the threshold, we know that, if any Fourier coefficient f̂(a) has
magnitude exceeding θ, it must be the case that a1 = 1. In this case, we can then continue
by calling SSF on 10∗n−2 and 11∗n−2. If both returned values are above threshold, we could
continue with computing the sums of squares of Fourier coefficients on the four restrictions
100∗n−3, 101∗n−3, 110∗n−3 and 111∗n−3. KM continues in this way, computing (estimates
of) sums of squares of coefficients at level k for a set of restrictions each of which contains

k bits. It is not hard to see that, at any level of this recursion, at most ‖̂g‖̂
2

2/θ
2 restrictions

will survive the threshold test. Finally, after running its SSF on the set of restrictions at
the n − 1 level and thresholding, KM can run FC on any surviving restrictions (now full
n-bit vectors) to locate the desired Fourier coefficient, if it exists.

The problem with this approach in our random walk setting is that our implementation
of SSF has a running time exponential in the level, so we cannot afford to run SSF at all
of the levels required by KM. This suggests that rather than adopting the depth-oriented
approach of KM, we might be better served by a breadth-oriented approach.

For instance, imagine that there is one especially heavy coefficient f̂(c) and that the sum
of squares of all other coefficients is very small. Then running SSF on the pair of restrictions
0∗n−1 and 1∗n−1 would reveal the first bit of c (0 if SSF run on the first restriction returns
a large value and 1 otherwise), running the algorithm on the pair ∗0∗n−2 and ∗1∗n−2 reveals
the second bit, and so on. Each of these calls to SSF is, in KM terms, at the first level,
and therefore each can be run in time polynomial in n.

Of course, in general, the Fourier spectrum will not be so accommodating. For instance,
we might be able to fix the first bit of any heavy coefficient as above, but perhaps when
we call SSF on the pair of restrictions ∗0∗n−2 and ∗1∗n−2, both calls return values that
exceed the threshold. In this case, we will further explore the coefficients consistent with
one of these restrictions—let us say those consistent with ∗0∗n−2—by making second-level
calls to SSF, beginning with calls on the pair of restrictions ∗00∗n−3 and ∗01∗n−3. If both
of these calls return values below threshold, we know that any heavy coefficient f̂(c) must
have c2 = 1, so we can proceed with a breadthwise search at the first level. On the other
hand, if exactly one of these restrictions—say ∗01∗n−3—returns a value above threshold,
then we can continue a breadthwise search at the second level, next computing the sums of
squares of coefficients consistent with ∗0∗0∗n−4 and ∗0∗1∗n−4.

If this breadthwise search succeeds at fixing a single bit for each of the remaining bit
positions, then we will have a candidate vector c on which we can run FC. If c is rejected,

3823



Jackson and Wimmer

or if at any point in the second-level search both of a pair of returned values are below
threshold, then we will as before be able to fix c2 = 1 and will continue a breadthwise
search at the first level. Finally, if at any point in the second-level search we encounter
a pair of above-threshold return values from SSF, we will begin a third-level breadthwise
search over the coefficients consistent with one of these restrictions. And so on.

What we have not specified thus far is which restriction we choose to further explore
when both restrictions in a pair produce above-threshold values. The answer is that we
choose the restriction corresponding to the smaller of the two sums of squares. This is
perhaps somewhat counter-intuitive; after all, we are seeking a heavy coefficient, so it
might seem that our search efforts should be focused on those sets of coefficients that
are most likely to contain such a coefficient. However, to a large extent our algorithm
attempts to locate a heavy coefficient by eliminating certain sets of coefficients from further
consideration. Viewed this way, choosing to focus on sets of coefficients with small sums
of squares makes good sense, as these are the sets most likely to be eliminated by refined
searches. What is more, we are guaranteed that every time we increase the level of our
search, we are searching on a set of coefficients that has sum of squares at most one half of
the sum at the previous search level. Thus, the sums decrease exponentially quickly with
increases in level, which allows us to limit our calls on SSF to relatively shallow levels.

With this background, we are ready to formally present our algorithm.

3.3 PT Algorithm

PT and its recursive helper function PTH, which performs the bulk of the work, are
presented as Algorithms 1 and 2. The α parameter of PTH represents the bits that have
been fixed (for purposes of further exploration) by earlier search levels. The a parameter is
a restriction that is consistent with α and that further incorporates information learned to
this point in the breadthwise search at the current level. In particular, a is a string of bits
followed by a string of ∗’s, and it essentially tells us that the index of any heavy coefficient
consistent with α must also be consistent with (begin with the bits of) a.

In this paper, we use the control flow statement throw, which takes a value as input.
As used in this algorithm, “throw x” has the effect of returning the value x to the user, and
the entire algorithm is terminated, regardless of the level of recursion at which the throw
statement occurs. (throw will be used in a more general way in a later section.)

We prove the correctness of our algorithm using several lemmas.

Input: θ, ε > 0
Output: thrown value, if any, is a ∈ {0, 1}n such that |ĝ(a)| ≥ θ − ε/2; normal return

guarantees that there is no a such that |ĝ(a)| ≥ θ + ε/2.
1: if θ ≤ ε/2 then {any coefficient will do}
2: throw 0n

3: else
4: PTH(∗n, ∗n, 1, θ, ε)
5: return
6: end if

Algorithm 1: PT
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Input: α ∈ {0, 1, ∗}n; a ∈ {0, 1, ∗}n, where a is consistent with α; 1 ≤ i ≤ n; θ > 0;
0 < ε < 2θ

Output: thrown value, if any, is c ∈ {0, 1}n such that |ĝ(c)| ≥ θ − ε/2; normal return
guarantees that there is no c consistent with a such that |ĝ(c)| ≥ θ + ε/2.

1: while i ≤ n do
2: s0 ← SSF(g, α+ (i, 0), ε2/16)
3: s1 ← SSF(g, α+ (i, 1), ε2/16)
4: if s0 < θ2 and s1 < θ2 then
5: return
6: else if s0 < θ2 then
7: a← a+ (i, 1)
8: else if s1 < θ2 then
9: a← a+ (i, 0)

10: else
11: b← argminb(sb)
12: PTH(α+ (i, b), a+ (i, b), i+ 1, θ, ε)
13: a← a+ (i, 1− b)
14: end if
15: i← i+ 1
16: end while
17: if |FC(g, a, ε/2)| ≥ θ then
18: throw a
19: else
20: return
21: end if

Algorithm 2: PTH
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Lemma 9 Algorithm PT always either throws a vector or returns normally (it does not
loop infinitely).

Proof Clearly, PT eventually terminates if PTH does. It is also easy to see that PTH
terminates if called with parameter value i such that i > n. Assume, for induction, that for
some fixed k ≥ −1, PTH terminates when called with i such that n− i ≤ k, and consider
a call to PTH with i such that n − i = k + 1. Then every recursive call to PTH will be
made with an argument value i such that n−i ≤ k and will therefore either return normally
or throw a value, terminating PH. It is thus clear that, even if all recursive calls to PTH
return normally, the while loop of PTH will eventually terminate, as will the call to PTH
having n− i = k + 1.

Lemma 10 For any execution of PT, in every call to PTH the α and i argument values
will be such that the characters in locations i through n of α will all be ∗.

Proof This is simple to verify.

Lemma 11 The restriction on PTH that the a parameter value be consistent with the α
value will be satisfied throughout any execution of PT. Furthermore, all values that a takes
on during any given execution of PTH will be consistent with the value of the α parameter
passed to this instantiation of PTH.

Proof The call to PTH from PT clearly satisfies the restriction. Let us then assume, for
induction, that the restriction on a is satisfied as long as the level of recursion never exceeds
some fixed integer k, and consider an instance of PTH executing at recursion level k. Then
since the value of i in the while loop of PTH is never less than i’s initial parameter value,
by Lemma 10 any bit restrictions applied to a at lines 7, 9, and 13 will be consistent with
α. It follows that if PTH is called at line 12, initiating execution at recursion level k + 1,
a+ (i, b) will be consistent with α+ (i, b).

Lemma 12 For any execution of PT, in every call to PTH with argument values α, a, i,
θ, and ε, the depth of recursion at which the call is made will be exactly |α|.

Proof The only line for a recursive call to PTH is in line 12, and this is also the only line
where α is modified. As noted in the proof of the previous lemma, the i and α parameter
values within PTH will always be such that position i in α will be a ∗. Therefore, whenever
this line is executed, the value of the α argument in the call—that is, the value of α+ (i, b);
call it α1—will be such that |α1| = |α|+ 1. Thus, each recursive call to PTH increases |α|
by exactly 1.

Lemma 13 For any given execution of PT, no two distinct calls to PTH will have the
same value for the α argument.
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Proof Suppose the claim is false and let α′ be a restriction that is passed to PTH mul-
tiple times such that |α′| is as small as possible. By Lemma 10 every recursive call to
PTH adds a non-∗ bit to the α argument, so α′ cannot be ∗n. Thus, there is a maximum
value—call it j—such that position j of α′ is not a ∗. Also by Lemma 10, the multiple calls
to PTH with argument value α′ must have been such that the value of their α parame-
ter was α′′ = α′+(j, ∗). This is a contradiction to the minimality of α′ since |α′′| = |α′|−1.

Lemma 14 For every fixed g : {0, 1}n → R and θ, ε > 0, if PT run with these parameters
throws a vector c, then |ĝ(c)| ≥ θ − ε/2.

Proof There are only two places in the algorithm that a value can be thrown. The first is
at line 2 in PT, which is called only if θ ≤ ε/2. In this case, θ − ε/2 ≤ 0, so any vector c
will have a corresponding Fourier coefficient satisfying the requirement of the lemma. The
other throw is at line 18 of PTH. In order for this statement to throw a vector c, it must
be the case that |FC(g, c, ε/2)| ≥ θ, which implies |ĝ(c)| ≥ θ − ε/2.

We now need to show that a normal return implies that all the Fourier coefficients have
low magnitude. We show an equivalent statement:

Lemma 15 For any valid fixed g, θ, and ε, if there exists c′ ∈ {0, 1}n such that |ĝ(c′)| ≥
θ+ ε/2, then PT executed on θ and ε and with access to a uniform random walk oracle for
g throws some vector c such that |ĝ(c)| ≥ θ − ε/2.

Proof
Let us for the moment consider a function g for which there is one c′ such that |ĝ(c′)| ≥

θ + ε/2 and all other coefficients c 6= c′ are such that |ĝ(c)| < θ − ε/2. By Lemmas 9 and
14, PT run on an oracle for such g either throws c′ or returns. By Lemma 11, if PTH
is called with a parameter α with which c′ is not consistent, PTH will return normally.
On the other hand, if c′ is consistent with the α parameter of some call to PTH, then
each time s0 and s1 are computed at lines 2 and 3 with some value assigned to i, c′ will
be consistent with α + (i, c′i). Thus, when we compute sc′i , we get a value that is at least

(θ + ε/2)2 − ε2/16 ≥ θ2.
Therefore, a call to PTH for which c′ is consistent with the α parameter of the call

will never execute the normal return at line 5. Furthermore, for such an instantiation of
PTH, if any and all recursive calls to PTH at line 12 are made with α+ (i, b) with which
c′ is not consistent, then all will return normally. In this case, the instance of PTH under
consideration will eventually throw c′ at line 18. On the other hand, if this instance makes
a recursive call at line 12 using a α + (i, b) with which c′ is consistent, then it can be seen
(inductively) that that call must result in c′ being thrown, either directly by the recursively
called PTH itself or indirectly as a result of further recursion.

Next, consider the case in which multiple coefficients have magnitude of at least θ− ε/2
and at least one coefficient has magnitude at least θ + ε/2. Fix the index c′ of one such
coefficient and consider a call to PTH with a parameter α with which c′ is consistent.
The only point at which the above argument used the assumption of a single coefficient
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heavier than θ − ε/2 was in inferring that a recursive call to PTH at line 12 would return
normally given that c′ was not consistent with the argument value α + (i, b). However,
if this assumption of a normal return fails, by Lemmas 9 and 14 it must fail because the
recursive call causes a vector c to be thrown such that |ĝ(c)| ≥ θ − ε/2.

Summarizing, we have argued that whenever PTH is called with a restriction α such
that (θ+ ε/2)-heavy c′ is consistent with α, the algorithm will throw some (θ− ε/2)-heavy
vector c (which is not necessarily c′). Putting this together with the fact that c′—and every
other vector—is consistent with the value ∗n assigned to α in the initial call to PTH gives
the lemma.

Theorem 16 For any g : {0, 1}n → R, given a uniform random walk oracle for g, PT(g, θ, ε)
runs in time polynomial in nlog(‖g‖∞/θ) and 1/ε, throws a value c′ such that |ĝ(c′)| ≥ θ− ε/2
if there exists c such that |ĝ(c)| ≥ θ+ ε/2, and returns normally if |ĝ(c)| < θ− ε/2 for all c.

Proof By Lemma 15, the theorem follows by establishing the run time bound. This, in
turn, depends primarily on bounding the depth of recursion of the algorithm, which we do
now.

Lemma 17 The maximum depth of the recursion when PT is called with fixed parameter
value θ and access to random walk oracle for fixed real-valued function g is O(log(‖g‖∞/θ)).

Proof Consider an arbitrary instance of PTH that is executing at line 11. For b ∈ {0, 1},
define tb =

∑
a∈α+(i,b) ĝ(a)2. In line 11, ideally we would like to assign the value for b that

minimizes tb/(tb + t1−b). If we could replace the ε2/16 in SSF with 0, then the recursion at
line 12 would always be called with this minimizing b and we would have tb/(tb+t1−b) ≤ 1/2.
Thus, for any call to PTH, it would always be the case that∑

c∈α
ĝ(c)2 ≤ ‖̂g‖̂

2

22−|α|,

where we are using the fact (Lemma 12) that the recursion depth is |α|. If the right hand side
of this inequality were less than θ2, then no more recursive calls would be made. Therefore,

we have that |α| is at most dlog2(‖̂g‖̂
2

2/θ
2)e. By Parseval’s, ‖̂g‖̂

2

2 ≤ L2
∞(g), which implies

that the maximum depth of recursion is O(log(‖g‖∞/θ)) as required.
Of course, when using the actual SSF we can have estimation error. Since the error

tolerance is ε2/16, if we reach line 11 then we can only assume for each b ∈ {0, 1} that
tb ≥ θ2 − ε2/16. Recalling that θ ≥ ε/2, we have tb ≥ (3/4)θ2. Furthermore, it could be
that the value assigned to b at line 11 would actually correspond to the larger of the two
sums of squares; the most we can say is that tb ≤ t1−b+ε2/8. Combining these observations
yields that for the value of b chosen at line 11

tb
tb + t1−b

≤ tb
2tb − ε2/8

≤ tb
2tb − θ2/2

≤ (3/4)θ2

2(3/4)θ2 − θ2/2
=

3

4

and it follows that
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∑
a∈α

ĝ(a)2 ≤ ‖̂g‖̂
2

2(4/3)−|α|.

The same reasoning as in the error-free case gives the lemma.

From Lemma 13 we know that each time PTH is called it is passed a distinct value
for the α argument. From Lemma 17 we also know that the maximum depth of the re-
cursion is O(log(‖g‖∞/θ)), so it follows that the number of recursive calls made is at most
nO(log(‖g‖∞/θ)). Each recursive call uses at most one call to FC, which runs in polynomial
time, and two calls to SSF, which run in time polynomial in nlog(‖g‖∞/θ) and 1/ε. The
theorem follows.

4. TOP Learning

The Harmonic Sieve (Jackson, 1997) learns—from a membership oracle and with accuracy
measured with respect to the uniform distribution—Threshold of Parity (TOP) functions
in time polynomial in their weight w as well as in n and 1/ε (recall from Definition 2 that
the TOP weight of a function f is the minimum weight representation of that function
as a threshold of an integer-weighted sum of parity functions). The algorithm’s proof of
correctness is based in part on the following fact (Jackson, 1997):

Fact 18 For every f of TOP weight w and every distribution D over {0, 1}n, there exists
a parity χa such that

|ED[fχa]| ≥
1

2w + 1
.

Defining g ≡ 2nfD, it follows that for any TOP of weight w, there exists a such that
|ĝ(a)| ≥ 1/(2w+1). The original Sieve uses its membership queries in two ways: 1) to obtain
uniform random examples for purposes of estimating hypothesis accuracy; 2) to implement
KM in order to locate heavy a’s for D’s (and hence g’s) defined by a certain boosting
algorithm. The original Sieve boosting algorithm (and some other boosting algorithms
which could be used instead and give asymptotically better bounds) has the property that,
when learning with respect to the uniform distribution, the D’s it defines all have the
property that 2n maxxD(x) is polynomial in 1/ε. It follows that any g defined using such
a D has ‖g‖∞ that is also polynomial in 1/ε.

It is a simple matter, then, to replace the membership-query KM algorithm in the Sieve
with the random-walk PT algorithm. Since 1/θ is O(w) (we can assume w is known, since
a simple binary search technique can be used otherwise), in the context of TOP learning
PT will run in time polynomial in nlog(w/ε). And as noted earlier, the uniform random
examples required by the Sieve can be obtained using a uniform random walk oracle with
Õ(n) run-time cost per example. We therefore obtain the following:

Theorem 19 TOP is learnable in the uniform random walk model in time nO(log(w/ε)).
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When employing certain boosting algorithms, the Harmonic Sieve produces a TOP as
its hypothesis. Thus, TOP is actually properly learnable in the uniform random walk model
in the stated time.

Input: ε > 0
Output: throws a such that |f̂(o)| − |f̂(a)| ≤ 2ε
1: θl ← 1
2: try
3: loop
4: PT(θl, ε)
5: θl ← θl/2
6: end loop
7: catch a
8: end try-catch
9: if θl = 1 or θl ≤ ε then

10: throw a
11: end if
12: θu ← 2θl
13: while θu − θl > ε do
14: try
15: PT((θl + θu)/2, ε)
16: θu ← (θl + θu)/2
17: catch a
18: θl ← (θl + θu)/2
19: end try-catch
20: end while
21: throw a

Algorithm 3: AGPARITY

5. Agnostic Parity Learning

It is straightforward to employ PT to agnostically learn parity in the uniform random walk
model. First, some analysis. Let o ≡ argmaxa |f̂(a)|. That is, either χo or−χo is the optimal
approximating parity; let ±χo represent the optimal. We will use PT to give a agnostic
learning that is proper ; that is, we will actually output a parity function as our hypothesis.
Thus, we want an a ∈ {0, 1}n such that Pr[±χa 6= f ] ≤ Opt + ε = Pr[±χo 6= f ] + ε,
where ±χa represents either χa or −χa, depending on which better approximates f . Since
for any a, Pr[χa 6= f ] = (1 − f̂(a))/2, we can achieve our goal if we find an a such that
|f̂(o)| − |f̂(a)| ≤ 2ε.

The AGPARITY algorithm (Algorithm 3) achieves this goal, as proved in the following
lemma. Note that this algorithm uses try-catch blocks. Any throw occurring within such
a block is “caught” by the catch statement ending the block, and execution proceeds
normally from that point with the thrown value assigned to the variable specified in the
catch statement. On the other hand, if normal sequential execution encounters a catch
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statement, the catch is ignored and execution continues immediately after the next end
try-catch statement. throw statements occurring outside a try-catch block behave as
before, returning the specified value to the user and terminating the entire procedure.

Lemma 20 For any ε > 0 and any f : {0, 1}n → {−1, 1}, Algorithm 3 throws a vector a
such that |f̂(o)| − |f̂(a)| ≤ 2ε. Thus, AGPARITY agnostically learns parity.

Proof Recall (Lemma 15) that if PT(θu, ε) returns normally then there is no a such that
|f̂(a)| ≥ θu+ε/2. Thus, in the case of a normal return, |f̂(o)| < θu+ε/2. On the other hand,
if a call to PT(θl, ε) throws a vector a, then |f̂(a)| ≥ θl − ε/2 by Lemma 14. Therefore, if
we are able to find two threshold values 0 < θl < θu such that θu− θl ≤ ε, PT(θl, ε) throws
a vector a, and PT(θu, ε) returns normally, then we will have that |f̂(o)| − |f̂(a)| ≤ 2ε, as
desired. Algorithm 3 consists for the most part of a search for such threshold values.

The algorithm begins (lines 2 through 8) by searching for a value θl at which PT(θl, ε)
throws some vector, beginning with θl = 1 and halving until a suitable threshold value
is found. This search must terminate after O(log(1/ε)) iterations, since PT will certainly
throw a vector once θl ≤ ε/2. If the first call (with θl = 1) throws a vector a, then
AGPARITY can in turn also throw a without any further search, since in this case
|f̂(a)| ≥ 1− ε/2 and, for any Boolean f , |f̂(o)| can be at most 1. Similarly, if θl ≤ ε when a
vector a is first thrown, then the previous call to PT used a threshold value (call it θu) that
was at most ε greater than θl (since θu = 2θl), and this call returned normally. Therefore,
by the analysis of the previous paragraph, a can safely be thrown by AGPARITY.

On the other hand, if ε < θl < 1 when a is thrown, then we will set θu to 2θl (line 12).
Throughout the remainder of the algorithm, θl will be the largest threshold value at which
PT has thrown a vector, and θu will be the smallest value at which PT has returned
normally. AGPARITY uses binary search to refine these values until they are within ε
of one another. That is, it will call PT on the midpoint between the threshold values,
updating θl if PT throws a vector and updating θu otherwise. Once the threshold values
are sufficiently near one another, AGPARITY will throw the final vector a that it has
caught from PT. It follows immediately from the earlier analysis that this a satisfies the
requirements of the lemma.

We next analyze the run time. Clearly, the second loop of Algorithm 3, like the first,
makes O(log(1/ε)) calls to PT, since the initial difference θu − θl is less than 1 and the
difference is halved each iteration. Therefore, the total number of calls to PT is O(log(1/ε)),
and these calls obviously dominate the run time. Since the threshold value in each call is
at least ε/4 and f is Boolean, the runtime of each call to PT is O(nlog(1/ε)) by Theorem 16.
Therefore, we have shown:

Theorem 21 The class of all parity functions can be agnostically learned in the uniform
random walk model in time O(nlog(1/ε)).
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6. Product Random Walk Model

We next turn to results for a generalization of the uniform random walk model to certain
non-uniform walks. In this section, we give definitions and some preliminary observations.
Subsequent sections generalize existing learning results to this model. We study product
distributions, whose study in the context of learning began with Furst et al. (1991).

From this point forward, we will slightly change notation: we will index Fourier coef-
ficients by subsets of [n] rather than vectors in {0, 1}n; identifying the string a ∈ {0, 1}n
with the set S = {i|ai = 1}. Further, we will take the domain of our functions over the
hypercube to be {−1, 1}n instead of {0, 1}n.

6.1 Properties of Product Distributions

A product distribution over {−1, 1}n with parameter µ = [−1, 1]n is a distribution D where
ED[xi] = PrD[xi = 1]−PrD[xi = −1] = µi for all i, and the bits {xi}ni=1 are independent.
We will denote such a distribution as Dµ. With respect to Dµ, we define the inner product
of two functions f and g to be Ex∼Dµ [f(x)g(x)].

Given a vector µ ∈ [−1, 1]n, a string x ∈ {−1, 1}n, and an index i ∈ [n], define the
function

zi(x) =
xi − µi√

1− µ2
i

and for a set S ⊆ [n], define φS =
∏
i∈S

zi. The work of Bahadur (1961) shows that

the 2n functions φS form an orthonormal basis on real valued functions on {−1, 1}n with
respect to the inner product defined in this section. We define the Fourier coefficient of
f : {−1, 1}n → R as

f̃(S) = E
x∼Dµ

[f(S)φS ].

Notice that when µ = 0n, we recover the uniform distribution. Indeed, many theorems
from Fourier analysis with respect to the uniform distribution are true in arbitrary product
distributions, such as Parseval’s identity:

E
x∼Dµ

[f(x)2] =
∑
S

f̃(S)2.

We will frequently need to bound the maximum absolute value of these φS functions,
so we will assume that the product distribution Dµ is such that µ is in [−1 + c, 1− c]n; we
refer to such a product distribution as c-bounded. The uniform distribution is the unique
1-bounded product distribution.

With the standard Fourier coefficients, if f̂(S) is heavy then the corresponding parity χS
(or its negation) is a weak approximator to f . But φS is not a Boolean function, so it cannot
necessarily be directly used as a hypothesis if f̃(S) is heavy. However, Jackson (1997) shows
how to efficiently produce a weak approximating Boolean function from a heavy f̃(S) as
long as |S| is logarithmic and we are working in a c-bounded product distribution with c
bounded away from 0, which will be the case for our results.
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We can still estimate Fourier coefficients using a modified version of FC. Specifically,
when given g : {−1, 1}n → R as input with tolerance parameter τ , we simply estimate
E[g(x)φS(x)] to within ±τ . A simple application of a Hoeffding bound tells us that we can
do this from a random walk oracle, but the number of samples required to ensure confidence
in our estimate is poly(c−k, 1/τ) for a c-bounded product distribution. Thus, the factor c−k

will often show up in our time complexity bounds. We will refer to this procedure as FCµ.

6.2 Product Random Walk Oracle

It is not immediately clear how one would even define a random walk oracle with respect to
product distributions. Fortunately for us, a very straightforward random walk has desirable
properties. We use the same updating steps as before. Regardless of µ, we pick a coordinate
i uniformly at random and replace it with a bit chosen from the one-dimensional product
distribution with mean µi. For µi = 1/2, we replace the ith coordinate with a uniform
random bit as in the previous sections.

It is straightforward to show that the stationary distribution of this random walk is the
Dµ:

Lemma 22 The stationary distribution of the aforementioned random walk is Dµ, and the
mixing time of this random walk is O(n log n), independent of µ.

Proof
It is easy to compute that with respect to Dµ, we have Prx∼Dµ [xi = b] = 1

2 + 1
2bµi for

b ∈ {−1, 1}. For a string x ∈ {−1, 1}n, we let Dµ(x) denote the probability mass assigned
to x. Further, let x(i) be x with the ith bit flipped. Let α be the current state of the
random walk, and β the next state. It is easy to see that

Dµ(x(i))

Dµ(x)
=

1
2 −

1
2xiµi

1
2 + 1

2xiµi

using the fact that Dµ is a product distribution. Also, we have Pr[β = x(i)|α = x] =
1
n(1

2 −
1
2xiµi), since the random walk step must update bit i and update that bit to −xi.

We have a similar expression when x(i) and x are reversed, and ultimately we have

Dµ(x(i))Pr[β = x|α = x(i)] = Dµ(x(i))
1

n

(
1

2
+

1

2
xiµi

)
= Dµ(x)

1

n

(
1

2
− 1

2
xiµi

)
= Dµ(x)Pr[β = x(i)|α = x)].

It follows that the chain is reversible with respect to Dµ, and this Dµ is the stationary
distribution of the Markov chain.

The mixing follows since we are updating coordinates uniformly at random, so just as in
the previous sections, all n coordinates are (with high probability) updated after O(n log n)
steps.
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6.3 The Noise Sensitivity Model

We will actually prove our product random walk results in a weaker learning model. The
product ρ-noise sensitivity model is defined similarly to the ρ-noise sensitivity model intro-
duced by Bshouty et al. (2005). Specifically, each call to the oracle for this model will return
a 5-tuple 〈x, f(x),y, f(y), U〉, where x is generated at random from Dµ-biased distribution
and y is constructed from x as follows: for each i ∈ n, independently and with probability
1− ρ update each xi by choosing a new value from the distribution with parameter µi for
it (if a bit of x is not updated, it is unchanged in y). U is the set of coordinates of the
bits updated. The accuracy of the hypothesis produced will be measured with respect to
Dµ. We refer to this model as pρNS for short. The following lemma is a generalization of
Proposition 10 of Bshouty et al. (2005).

Lemma 23 For any fixed 0 < ρ < 1, any algorithm in the pρNS model can be simulated in
the pRW model at the cost of a O(n log n) factor in run time.

Proof Our random walk can be described in the following way: given the current string
α, the next string β is α with probability Dµ(α) := (1/n)

∑
(1

2 + 1
2αiµi), and β = α(i)

with probability (1/n)(1
2 −

1
2αiµi) for all i. Under this distribution, we can assign a bit

that got updated according to µi. If β 6= α, then the updated bit must be the unique bit
where βi 6= αi. Otherwise, we randomly choose a bit that was updated (but was updated
to its original value). Here, we choose i with probability (1

2 + 1
2αiµi)/Dµ(α) . The total

probability that i is selected is (1/n)(1
2 −

1
2µi) + (1/n)(1

2 + 1
2µi) = 1/n, regardless of the

value of α. Thus, we can treat our distribution as uniformly choosing a bit, and updating.

Fix ρ ∈ (0, 1). To simulate an oracle for pρNS from pRW , we first draw a Dµ random
labeled example 〈x, f(x)〉 by updating every bit, which happens after O(n log n) samples.
To get 〈y, f(y)〉, we first select a random number u from Binomial(n, 1 − ρ), and update
precisely u of the bits of x. We then repeatedly draw examples from the pRW oracle until
exactly u distinct bits have been updated. The resulting point is as if a random subset of
u bits had been updated. We take this point to be y, its label to be f(y), and U to be the
set of bits updated. The resulting 5-tuple 〈x, f(x), y, f(y), U〉 is consistent with the distri-
bution given by the pρNS oracle. Note that we achieve a slowdown of at most O(n log n);
the worst case is when u = n, and we need a new example from Dµ.

7. Positive and Negative Results in pRW

Having introduced the pRW model, we would like to transfer our uniform random walk
result for agnostically learning parity to the pRW model. Unfortunately, this is not possible
using Fourier methods, due to the “smearing” of the Fourier spectrum of parity under
product distributions where the bits are not uniformly distributed. Here, we think of parity
as a function from {−1, 1}n into {−1, 1}, where χ[n](x) =

∏
xi. We also define χi(x) = xi

for any 1 ≤ i ≤ n. We will restrict ourselves to distributions where µi = µj for all
1 ≤ i ≤ j ≤ n, so the only parameter is µ1.
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Claim 24 Let χ[n] be the parity function on n bits. With respect to Dµ where µ1 = µj for

1 ≤ j ≤ n, the Fourier coefficient f̃(S) of f = χ[n] is

µ
n−|S|
1 (

√
1− µ2

1)|S|.

Proof Assume we are working under Dµ where µ1 = µj for all 1 ≤ j ≤ n; all expectations
here are with respect to this distribution. Then

f̃(S) = E[χ[n]φS ]

= E[
∏
i∈[n]

χi
∏
i∈S

φi]

= E[
∏
i∈S

χiφi
∏
i/∈S

χi]

=
∏
i∈S

E[χiφi]
∏
i/∈S

E[χi].

It is straightforward to check that E[χi] = µ1 and E[χiφi] = 1√
1−µ21

((1 +µ1)(1
2 −

1
2µ1) +

(1− µ1)(1
2 + 1

2µ1)) =
√

1− µ2
1, proving the claim.

When µ1 is bounded away from −1, 0 and 1 by a constant, the expression
√

1− µ2
1 is

bounded away from 0 and 1 by a constant, so every f̃(S) is exponentially small. Thus, our
agnostic parity algorithm, which relies on finding heavy Fourier coefficients, cannot succeed
in the product random walk model (for most values of µ). Although there is a simple
algorithm in the case of learning parities, this “smearing” will still happen for functions
with all high-degree terms when written as a multilinear polynomial; equivalently, when all
the Fourier coefficients with respect to the uniform distribution occur on vectors of high
Hamming weight.

Despite this negative beginning, we are able to obtain two positive results for pRW .
We begin by observing that many of the algorithms used in learning under the uniform dis-
tribution using Fourier analysis techniques work by estimating certain (possibly weighted)
sums of squares of Fourier coefficients. Often, the algorithm efficiently estimates these sums
by estimating expectations, and the correctness of these expectations depends only on the
orthogonality of the χS functions. When only orthogonality is used, it is straightforward
to extend the algorithm to product distributions. However, the structural theorems used
to prove correctness may not follow, as we have just seen in the case of parity. In addition,
the complexity of the algorithm may increase when extending to product distributions.

We will show two positive learning results in pRW (via results in pρNS): DNF formulas
can be efficiently learned in the pRW model, and juntas can be efficiently agnostically
properly learned in the pRW model. The efficiency of these algorithms degrades as c
decreases. The proofs are given in the next two sections. Both of these results rely on
using Fourier detection to find heavy Fourier coefficients of low degree; such an algorithm
is known as the Bounded Sieve.
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8. Bounded Sieve

We begin this section with the definition of the Bounded Sieve, first appearing in Bshouty
and Feldman (2002):

Definition 25 Let f : {−1, 1}n → R. An algorithm with some form of oracle access to f is
said to perform the Bounded Sieve (with respect to D) if, given input parameters θ > 0 and
` ∈ [n], it outputs a list of subsets of [n] such that every set S ⊆ [n] satisfying |S| ≤ ` and
f̃(S)2 ≥ θ appears in the list. Further, every set in the list satisfies |S| ≤ ` and f̃(S)2 ≥ θ/2.

In short, an algorithm that performs the Bounded Sieve (which we will simply refer to
as the Bounded Sieve) is a Fourier detection algorithm that is only required to detect heavy
low-degree Fourier coefficients. While access to the Bounded Sieve isn’t enough to even
learn constant-size TOP, Bshouty and Feldman (2002) showed that it is sufficient to learn
polynomial-size DNF formulas with respect to the uniform distribution.

The approach taken by Bshouty and Feldman (2002) is boosting-based as is the Har-
monic Sieve of Jackson (1997), so the actual implementation involves a interleaving of the
Fourier detection phase (which is the weak learner) with the hypothesis construction phase
(which is the boosting algorithm). Feldman (2012) gives an algorithm that runs each stage
only once: it is sufficient to find all heavy low-degree Fourier coefficients of the target func-
tion; this corresponds to running the Bounded Sieve once. The contribution of Feldman
(2012) is a hypothesis construction procedure that uses no extra training examples. We
also note that Feldman (2012) gives a membership query algorithm for learning DNF un-
der product distributions and claims that the algorithm also succeeds in the random walk
model, although no random walk model for product distributions is clearly defined. We
proceed to verify that the Bounded Sieve indeed can be performed in the product random
walk model that we have defined.

Theorem 26 (essentially Bshouty and Feldman (2002), see also Feldman (2012))
Let A be an algorithm performing the Bounded Sieve (with respect to a c-bounded product dis-
tribution Dµ) which runs in time poly(n, ‖f‖∞, θ, `). Then there is a poly(n, slog(2/(2−c)), ε− log(2/(2−c)), c− log(2/(2−c)))-
time algorithm which learns n-variable, s-term DNF formulas to error ε using A as a black
box and independent uniform random examples.

We note that Bshouty and Feldman (2002) do not mention product distributions, but
combining the work of Jackson (1997) on product distributions with their work almost
immediately yields the above theorem.

Our proofs use the even weaker pρNS oracle, As in Bshouty et al. (2005), our first goal
is to estimate quantities of the form

T (I) :=
∑
S:S⊇I

ρ|S|f̃(S)2.

Since we only care about finding heavy Fourier coefficients f̃(S) with |S| ≤ `, each
such Fourier coefficient contributes at least ρ`θ to T (I) when S ⊇ I. For applications to
learning DNF we take ` to be O(log n) and θ to be inverse polynomial, so ρ|S|f̃(S)2 is at
least inverse polynomial in n for the indices of Fourier coefficients that we are interested
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in. As an aside, the algorithm is an approximate, low-degree version of the Kushilevitz-
Mansour (Kushilevitz and Mansour, 1993) algorithm applied to the “noisy” version of f ;

specifically, the function
∑
S⊆[n]

ρ|S|f̃(S)φS .

We now work towards efficiently estimating T (I). Given a pρNS oracle and a set I ⊆ [n],

let D(I)
ρ be the distribution of pairs (x,y) as follows: x is a random string from Dµ (we will

suppress the dependence on µ for clarity), and y is formed from x by updating each bit in
I with probability 1 and updating each bit not in I with probability 1− ρ. Using a pρNS
oracle, we can simulate this distribution. We simply keep drawing 〈x, f(x),y, f(y), U〉
until we get a 5-tuple with I ⊆ U . With high probability, we need at most poly((1− ρ)|I|)

examples until this happens. Then (x,y) is our desired draw from D(I)
ρ .

Define T ′(I) = E
(x,y)∼D(I)

ρ
[f(x)f(y)]. It is easy to see that with a pρNS oracle we can

estimate T ′(I) (with a poly((1 − ρ)|I|) slowdown). Now we prove the analog of Claim 12
from Bshouty et al. (2005) in the product setting. Our proof will demonstrate that we only
use orthonormality of the φS functions to achieve this result.

Input: θ > 0, ` > 0
Output: The returned list contains all indices of heavy or almost-heavy Fourier

coefficients S with |S| ≤ `.
1: return EST(θ, `, ∅, ∅)

Algorithm 4: BOUNDED-SIEVE

Input: θ > 0, ` > 0, I ⊆ [n],L ⊆ 2[n]

Output: The list L is augmented with indices of heavy or almost-heavy Fourier
coefficients S with S ⊇ I and |S| ≤ `.

1: Estimate f̃(I)2 to within ±θ/4.
2: if the estimate is at least 3θ/4 then
3: L ← L ∪ {I}
4: end if
5: if |I| ≥ ` then
6: return L
7: end if
8: Estimate T (I) =

∑
S:S⊇I ρ

|S|f̃(S)2 to within ±ρ`θ/4.

9: if the estimate is at least 3ρ`θ/4 then
10: for all i ∈ ([n] \ I) do
11: L ← L ∪EST(θ, `, I ∪ {i},L)
12: end for
13: end if
14: return L

Algorithm 5: EST

Claim 27 T ′(I) =
∑

S
⋂
I=∅ ρ

|S|f̃(S)2.
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Proof All expectations in this proof are over (x,y) ∼ D(I)
ρ .

E[f(x)f(y)] = E[(
∑
S

f̃(S)φS(x))(
∑
T

f̃(T )φT (y))]

=
∑
S

∑
T

f̃(S)f̃(T )E[φS(x)φT (y)]

=
∑
S

∑
T

f̃(S)f̃(T )E[
∏
i∈S

zi(x)
∏
j∈T

zj(y)],

where the second equality holds because the φS functions are orthonormal. Because we are
working over product distributions, zi(x) and zj(x) are independent when i 6= j, and x
can be replaced with y in either or both cases. Notice that if S \ T or T \ S is nonempty,
the expectation is 0. We will assume without loss of generality that T \ S is nonempty and
j ∈ T \ S. Then zj(y) is independent of every other term in the expectation, and E[zj(y)]
is 0. So the only nonzero terms in the sum occur when S = T , and the sum becomes∑

S

f̃(S)2E[
∏
i∈S

zi(x)zi(y)] =
∑
S

f̃(S)2
∏
i∈S

E[zi(x)zi(y)] (1)

using independence again.

Recall that we are trying to show T ′(I) =
∑

S
⋂
I=∅ ρ

|S|f̃(S)2, and the distribution with

which we are taking expectations respect to is D(I)
ρ . To evaluate the expectation, we will

consider two cases. If i ∈ I, then the ith bit is updated with certainty. In this case, zi(x)
and zi(y) are independent and thus E[zi(x)zi(y)] = E[zi(x)]E[zi(y)] = 0. For i /∈ I, we see
that yi is updated with probability 1− ρ. The probability distribution on zi(x)zi(y) is as
follows:

zi(x)zi(y) =


1− µi
1 + µi

with probability (1
2 + 1

2µi)(ρ+ (1− ρ)(1
2 + 1

2µi))

1 + µi
1− µi

with probability (1
2 −

1
2µi)(ρ+ (1− ρ)(1

2 −
1
2µi))

−1 with probability 2(1
2 + 1

2µi)(
1
2 −

1
2µi)(1− ρ)

The first case corresponds to both bits being 1, the second for both bits being−1, and the
third for when the bits are different. It is straightforward to verify that E[zi(x)zi(y)] = ρ.
So the sum in Equation 1 reduces to∑

S

f̃(S)2
∏
i∈S

E[zi(x)zi(y)] =
∑

S:S
⋂
I=∅

ρ|S|f̃(S)2

as claimed.

Equipped with the Fourier interpretation of T ′(I), we can now prove that T (I) can be
efficiently estimated.

Lemma 28 In Step 8, T (I) can be efficiently estimated.
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Proof Define T ′′(I) =
∑

S:S
⋂
I 6=∅ ρ

|S|f̃(S)2. This quantity is easy to estimate, as T ′′(I) +

T ′(I) =
∑

S ρ
|S|f̃(S)2 = T ′(∅). To estimate T (I) =

∑
S:S⊇I ρ

|S|f̃(S)2 within γ, we can

estimate T ′′(J) for every J ⊆ I to within γ/2|I|. We apply inclusion-exclusion, resulting in

T (I) =
∑

J⊆I;J 6=∅

(−1)|J |−1T ′′(J).

There are 2|I| many subsets, and the coefficients of T ′′(J) above are at most 1 in abso-
lute value, so the error is at most γ.

Given that we can estimate T (I), our algorithm will perform a breadth-first search,
similar to Kushilevitz and Mansour (1993). We think of the set 2[n] as a graph in the natural
way; the nodes are identified with subsets of [n], and two nodes T and U are adjacent if
the symmetric difference of T and U has cardinality 1. We will refer to a node I as active
when the recursive procedure is called with I as the third parameter. We remark that in
a breadth-first search of this graph starting at the empty set, the previously undiscovered
nodes are supersets of the current node.

Starting at I = ∅, at each active node, the algorithm estimates f̃(I)2 to within θ/4
and T (I) to within ρ`θ/4. The second estimate uses our procedure outlined in Lemma 28
and takes time poly(n, (1− ρ)`, 2|I|, ρ`θ/2, c−`). The first estimate is performed via FCµ as
described earlier; the required running time can be bounded by poly(n, ‖f‖∞, 1/θ, c−|I|) by
applying the Hoeffding bound (Hoeffding, 1963). The c−|I| term comes from the fact that

under a c-bounded product distribution Dµ, |φI(x)| ≤
(√

2−c
c

)|I|
= poly(c−|I|) for every x.

If FCµ returns that f̃(I)2 has magnitude at least θ/2 then the algorithm adds I to the list

of f ’s heavy Fourier coefficients. Thus if f̃(I)2 ≥ θ then I will certainly be added to the
list.

The breadth-first search proceeds to the neighbors of I only if |I| < ` and the estimate
of T (I) is at least 3ρ`θ/4. The proof is complete given two claims: first, we claim the
algorithm finds all Fourier coefficients f̃(S)2 ≥ θ and |S| ≤ `; and second, we claim the
algorithm ends its search after visiting at most poly(‖f‖∞, 1/θ, (1− ρ)−`) sets I.

For the first claim, note that if |S| ≤ ` and f̃(S)2 ≥ θ, then for I ⊆ S, we have

T (I) =
∑
T :T⊇I

ρ|T |f̃(T )2 ≥ ρ|S|f̃(S)2 ≥ ρ`θ.

It follows that the breadth-first search will reach S. The algorithm will estimate f̃(S)2,
and the set S is added to the list L.

For the second claim, we give an upper bound on the number of active nodes that the
algorithm considers. First, a lemma:

Lemma 29 For any f : {−1, 1}n → R, 0 ≤ j ≤ n, and ρ ∈ (0, 1), we have
∑
|I|=j T (I) ≤

‖f‖2∞ρj(1− ρ)−(j+1).

Proof We straightforwardly calculate:
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∑
|I|=j

T (I) =
∑
|I|=j

∑
S⊇I

ρ|S|f̃(S)2

=
∑
|S|≥j

(
|S|
j

)
ρ|S|f̃(S)2

≤

∑
|S|≥j

f̃(S)2

 ∞∑
t=j

(
t

j

)
ρt

=

∑
|S|≥j

f̃(S)2

 (1/ρ)(
ρ

1− ρ
)j+1

≤ ‖f‖22(1/ρ)(
ρ

1− ρ
)j+1

≤ ‖f‖2∞ρj(1− ρ)−(j+1),

where the third equality follows from generating function identities and the fact that
ρ ∈ (0, 1).

This implies that the number of active nodes at layer j in the breadth-first search can
be at most: ∑

|I|=j

T (I)

ρjθ/2
=
‖f‖2∞ρj(1− ρ)−(j+1)

ρjθ/2
= 2‖f‖2∞(1/θ)(1− ρ)−(j+1).

Since j ≤ `, the total number of nodes the breadth-first search ever encounters is at
most (`+ 1) · 2‖f‖2∞(1/θ)(1− ρ)−(`+1) = poly(n, ‖f‖∞, 1/θ, (1− ρ)−`), as claimed.

Now that the Bounded Sieve is established, we get the following result, which is a
restatement of Theorem 26:

Theorem 30 The class of s-term DNF formulas over n variables can be learned with error
in the pρNS and pRW models in time poly(n, slog(2/(2−c)), ε− log(2/(2−c)), c− log(2/2−c)).

For the Fourier detection phase, we also remark that it seems difficult to transfer the
running time guarantee of the EKM algorithm of Kalai et al. (2009). Although their
paper does not specifically address membership query algorithms, their EKM procedure
can be used as a membership query algorithm for finding heavy Fourier coefficients in
product distributions with a running time independent of c. However, in our product
random walk model, methods as rejection sampling would incur a slowdown on the order
of poly(2/(2− c)`), where ` is the size of the sets of Fourier coefficients we consider. In the
case that c is bounded away from 0, these extra factors are virtually constant compared to
the other factors in the running time.
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9. Agnostically Learning Juntas

In the case of agnostically learning juntas, we can use the Bounded Sieve, but we have to
do slightly more work to show that this is useful. The overall complexity with our imple-
mentation of the Bounded Sieve yields a running time of poly(n, kk, ε−k, c−k) for properly
agnostically learning juntas with respect to a c-bounded product distribution Dµ.

Input: ε, k > 0
Output: returned function is a k-junta with error ε in computing f
1: Use Algorithm 4 to find L, all Fourier coefficients f̂(S) such that |S| ≤ ` = k and
f̂(S)2 ≥ θ = ε22−k.

2: Use FCµ to estimate f̃(S) to within ±θ/4 for each S ∈ L, and call the estimate ĝ(S).
3: Let g be the function such that g(x) =

∑
S∈S ĝ(S)φS(x).

4: Let R = {i|
∑

S:S3i |S|g̃(S)2 ≥ ε2/k}, and let g′(x) =
∑

S⊆R ĝ(S)φS(x).
5: For every K ⊆ R of size k, let h′K = sgn(g′K) and estimate errf (h′K).
6: Return h′K which minimizes errf (h′K).

Algorithm 6: JUNTAS

Our proof is very similar to the proof of Gopalan et al. (2008). In fact, our algorithm is
virtually the same. However, rather than working in the model of uniform distribution plus
membership queries, we extend this algorithm to product distributions as well as restricting
our oracle access to a pρNS oracle.

The algorithm of Gopalan et al. (2008) makes use of its membership queries by using
KM to identify all Fourier coefficients f̂(S) of heavy magnitude with |S| ≤ k. Since the
size of S is bounded for their purposes, it suffices to use the Bounded Sieve, just as we have
already done. In showing above that DNF is efficiently learnable in the pρNS model, we
have effectively also shown that the Bounded Sieve works even in the pρNS model. The
Fourier methods used in their algorithm again only use orthogonality and are not specific to
the uniform distribution. Therefore, after translating expectations to the correct product
distribution, the algorithm is almost immediate.

Suppose we wish to agnostically learn a k-junta. We will start by running the Bounded
Sieve in pρNS, stopping at level k and setting the threshold θ = ε22−k. In this fashion, we
find all heavy Fourier coefficients S of f with |S| ≤ k. Let S be the set of heavy Fourier
coefficients found, and set g(x) =

∑
S∈S g̃(S)φS(x). Note that we can only estimate g,

so we use ĝ(S) to denote our estimate of g̃(S). Following the argument of Gopalan et al.
(2008), let R be the set of coordinates with high “low-degree influences”; we have i ∈ R iff∑

S∈S,S3i g̃(S)2 ≤ ε2/k. Finally, for every set K ⊆ R of size k, estimate the error of sgn(g′K)
on f , where g′K =

∑
S⊆K g̃(S)φS(x). The function sgn(g′K) of least error over choices of

K ⊆ R is our hypothesis.

We will now prove the correctness of this algorithm. We remind the reader that for a
function g : {−1, 1} → R we define ‖g‖1 to be Ex[|g(x)|]; in this section, the expectation is
over the relevant product distribution Dµ. We will prove a sequence of lemmas very similar
to those of Gopalan et al. (2008). First, an analog of their Lemma 13:
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Lemma 31 Given K ⊂ [n], and f : {−1, 1}n → {−1, 1}, let fK(x) =
∑

S⊆K f̃(S)φS(x).
The K-junta that minimizes errf (·) is given by hK(x) := sgn(fK(x)). Also, errf (hK) =
1
2(1− ‖fK‖1).

Proof The proof indeed follows similarly to Lemma 13 of Gopalan et al. (2008). The major
difference is that in the {φS} basis, xi is not a unbiased bit. However, the φS functions are
orthonormal, which is the property used to derive (in the φ basis) that E[φS(x)|xK = u] =
1[S ⊆ K]φS(u). The rest of the argument follows nearly directly by changing f̂ to f̃ . We
provide the details here.

Let us fix a value u ∈ {−1, 1}k. As in the work of Gopalan et al. (2008), by x|xK = u we
denote the random variable x where the indices in K are set according to u and the rest are
uniformly random. This identifies a sub-cube CK(u) of {−1, 1}n. Note that any function
depending only on the coordinates inK will be a constant function when restricted to CK(u).
Hence, the agreement with f is maximized by the function gK : {−1, 1}k → {−1, 1}, where

gK(u) = sgn(E[f(x)|xK = u]) = sgn(
∑
S⊆[n]

f̃(S)E[φS(x)|xK = u].

Using the fact that we are working in a product distribution, the expected value of
φ{i}(x) is 0 if i /∈ K. Thus,

E[φS(x)|xK = u] =

{
φS(u) if S ⊆ K
0 otherwise

Hence E[f(x)|xK = u] =
∑

S⊆K f̃(S)φS(u), which implies that gK(u) = sgn(fK(u)) =
hK(u). Since E[f(x)|xK = u] = fK(u) and f(x) ∈ {−1, 1}, we have

Pr[f(x) = sgn(fK(x))|xK = u] = 1
2 + 1

2(|fK(u)|) and

Pr[f(x) 6= sgn(fK(x))|xK = u] = 1
2 −

1
2(|fK(u)|).

Averaging over all u ∈ {−1, 1}k with respect to the underlying product distribution
and observing that the product distribution induces the appropriate product distribution
on xK , we obtain errf (hK) = Pr[hK(x) 6= f(x)] = 1

2 −
1
2E[|fK(x)] = 1

2(1− ‖fK‖1).

Their Lemma 14 is also easily generalized:

Lemma 32 Let gK : {−1, 1}n → R be such that ‖fK(x) − gK(x)‖1 < ε, and let h′K =
sgn(gK). Writing hK = sgn(fK), we have errf (h′K) ≤ errf (hK) + 2ε.

Proof
Fix xk = u. Then from the previous lemma, we have

errf (h′K |xK = u) =

{
errf (hK |xK = u) if sgn(gK(u)) = hK(u)

errf (hK |xK = u) + 2|fK(u)| if sgn(gK(u)) 6= hK(u)

We claim that in both cases,
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errf (h′K |xK = u) ≤ errf (hK |xK = u) + 2|fK(u)− gK(u)|.

The first case is easy to see; in the second case, we use the fact that sgn(gK) 6= hK =
sgn(fK), so |fK(u)| ≤ |fK(u)− gK(u)|.

Averaging over all choices of u with respect to the underlying product distribution, we
get

errf (h′K |xK = u) ≤ errf (hK) + 2E[|fK(x)− gK(x)|] ≤ errf (hK) + 2ε.

And finally, we can prove correctness of the algorithm by proving an analogue of Theorem
15 in the work of Gopalan et al. (2008):

Theorem 33 The described algorithm agnostically learns k-juntas to error Opt + 6ε in
the pρNS model in time poly(n, kk, ε−k, ((2 − c)/c)k) with respect to a c-bounded product
distribution Dµ.

Proof Let K be the set such that hK = sgn(fK) has the least error Opt. After we search for
heavy Fourier coefficients using the Bounded Sieve, we are guaranteed that |ĝ(S)−f̃(S)| ≤ θ
for all S ⊆ K. Hence E[gK(x)−fK(x))2] =

∑
S⊆K(f̃(S)2− ĝ(S))2 ≤ 2kθ ≤ ε2. The running

time of the Bounded Sieve is certainly bounded by poly(n, kk, ε−k, ((2− c)/c)k).
In the next step of the algorithm, we restrict ourselves to considering variables in the

set R, where i ∈ R iff
∑

i∈S,|S|≤k ĝ(S)2 ≥ ε2/k. Note that even if all k variables from the

set K are dropped, the total Fourier mass involving these variables is at most k(ε2/k) = ε2.
Hence, E[gK(x)− g′K(x))2] ≤ ε2.

Finally, we can bound E[|fK(x)− g′K(x)|] in the following manner:

E[|fK(x)− g′K(x)|] ≤ E[|fK(x)− gK(x)|] + E[|gK(x)− g′K(x)|]
≤ (E[(fK(x)− gK(x))2])1/2 + (E[gK(x)− g′K(x))2])1/2

≤ ε+ ε

= 2ε.

Thus by the previous lemma, errf (g′K) ≤ Opt + 4ε. We estimate errf (h′K) for every
K ⊆ R to within ±ε. There must be at least one choice such that our error estimate is at
most Opt + 5ε, it follows that the true error is at most Opt + 6ε as required.

To bound the running time, we show that |R| = O(k2/ε2). Recall that we estimate
each Fourier coefficient so that our estimate of f̃(S)2 (which we called ĝ(S)2) for S ∈ S is
correct to within ±θ/4. The Bounded Sieve will only return Fourier coefficients such that
f̃(S)2 ≥ θ/2, so it follows that ĝ(S)2 ≤ (3θ/4)/(θ/2)f̃(S)2 = (3/2)f̃(S)2 ≤ 2f̃(S)2 for each
S ∈ S.

Now we observe that
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∑
i∈[n]

(
∑

i∈S,|S|≤k

̂̃g(S)2) ≤
∑
i∈[n]

(
∑

i∈S,|S|≤k

2g̃(S)2) ≤
∑
|S|≤k

2|S|g̃(S)2 ≤ 2k
∑
S

g̃(S)2 ≤ 2k.

Thus, at most 2k/(ε2/k) = 2k2/ε2 variables can satisfy
∑

i∈S,|S|≤k
̂̃g(S)2 ≥ ε2/k. Hence

|R| ≤ 2k2/ε2. It follows that there are at most
(|R|
k

)
≤ (2ek2/ε2)k many choices for K. Each

estimation in Step 2 of the algorithm can be done in poly(n, 1/ε, c−k) time, so the overall
running time beyond the Bounded Sieve is poly(n, ε−k, kk, c−k).

10. Further Work

Although we have made progress on learning TOP in the uniform random walk model, it
would of course be preferable to have a polynomial-time algorithm. In the product model,
parity of a logarithmic number of bits can be agnostically learned, and it is obvious that
n-bit parity is learnable by a “statistical query-like” algorithm that simply observes which
bits are relevant during a random walk. Can TOP be learned (quasi)-efficiently in this
model? Can we remove the condition that the product distribution is c-bounded in the
product random walk model?
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