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Abstract

In modeling multivariate time series, it is important to allow time-varying smoothness in the
mean and covariance process. In particular, there may be certain time intervals exhibiting
rapid changes and others in which changes are slow. If such time-varying smoothness is not
accounted for, one can obtain misleading inferences and predictions, with over-smoothing
across erratic time intervals and under-smoothing across times exhibiting slow variation.
This can lead to mis-calibration of predictive intervals, which can be substantially too
narrow or wide depending on the time. We propose a locally adaptive factor process for
characterizing multivariate mean-covariance changes in continuous time, allowing locally
varying smoothness in both the mean and covariance matrix. This process is constructed
utilizing latent dictionary functions evolving in time through nested Gaussian processes and
linearly related to the observed data with a sparse mapping. Using a di↵erential equation
representation, we bypass usual computational bottlenecks in obtaining MCMC and online
algorithms for approximate Bayesian inference. The performance is assessed in simulations
and illustrated in a financial application.

Keywords: Bayesian nonparametrics, locally varying smoothness, multivariate time se-
ries, nested Gaussian process, stochastic volatility

1. Introduction

In analyzing multivariate time series data, collected in financial applications, monitoring of
influenza outbreaks and other fields, it is often of key importance to accurately characterize
dynamic changes over time in not only the mean of the di↵erent elements (e.g., assets,
influenza levels at di↵erent locations) but also the covariance. As shown in Figure 1, it
is typical in many domains to cycle irregularly between periods of rapid and slow change;
most statistical models are insu�ciently flexible to capture such locally varying smoothness
in assuming a single bandwidth parameter. Inappropriately restricting the smoothness to
be constant can have a major impact on the quality of inferences and predictions, with over-
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DAX30: Squared log returns

Figure 1: Squared log returns of DAX30. Weekly data from 19/07/2004 to 25/06/2012.

smoothing during times of rapid change. This leads to an under-estimation of uncertainty
during such volatile times and an inability to accurately predict risk of extremal events.

Let yt = (y
1t, . . . , ypt)T denote a random vector at time t, with µ(t) = E(yt) and

⌃(t) = cov(yt). Our focus is on Bayesian modeling and inference for the multivariate mean-
covariance stochastic process, � = {µ(t),⌃(t), t 2 T } with T ⇢ <+. Of particular interest
is allowing locally varying smoothness, meaning that the rate of change in the {µ(t),⌃(t)}
process is varying over time. To our knowledge, there is no previous proposed stochastic
process for a coupled mean-covariance process, which allows locally varying smoothness. A
key to our construction is the use of latent processes, which have time-varying smoothness.
This results in a locally adaptive factor (LAF) process. We review the relevant literature
below and then describe our LAF formulation.

1.1 Relevant Literature

There is a rich literature on modeling a p⇥ 1 time-varying mean vector µ(t), covering mul-
tivariate generalizations of autoregressive models (VAR) (see, e.g., Tsay, 2005), Kalman
filtering (Kalman, 1960), nonparametric mean regression via Gaussian processes (GP) (Ras-
mussen and Williams, 2006), polynomial spline (Huang et al., 2002), smoothing spline
(Hastie and Tibshirani, 1990) and kernel smoothing methods (Silverman, 1984). Such ap-
proaches perform well for slowly-changing trajectories with constant bandwidth parame-
ters regulating implicitly or explicitly global smoothness; however, our interest is allowing
smoothness to vary locally in continuous time. Possible extensions for local adaptivity in-
clude free knot splines (MARS) (Friedman, 1991), which perform well in simulations but
the di↵erent strategies proposed to select the number and the locations of knots via step-
wise knot selection (Friedman, 1991), Bayesian knot selection (Smith and Kohn, 1996) or
MCMC methods (George and McCulloch, 1993), prove to be computationally intractable
for moderately large p. Other flexible approaches include wavelet shrinkage (Donoho and
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Johnstone, 1995), local polynomial fitting via variable bandwidth (Fan and Gijbels, 1995)
and linear combination of kernels with variable bandwidths (Wolpert et al., 2011).

There is a separate literature on estimating a time-varying covariance matrix ⌃(t).
This is particularly of interest in applications where volatilities and co-volatilities evolve
through non constant paths. One popular approach estimates ⌃(t) via an exponentially
weighted moving average (EWMA); see, e.g., Tsay (2005). This approach uses a single
time-constant smoothing parameter 0 < � < 1, with extensions to accommodate locally
varying smoothness not straightforward due to the need to maintain positive semidefinite
⌃(t) at every time. To allow for higher flexibility in the dynamics of the covariances,
generalizations of EWMA have been proposed including the diagonal vector ARCH model
(DVEC), (Bollerslev et al., 1988) and its variant, the BEKK model (Engle and Kroner,
1995). These models are computationally demanding and are not designed for moderate to
large p. DCC-GARCH (Engle, 2002) improves the computational tractability of the previous
approaches through a two-step formulation. However, the univariate GARCH assumed for
the conditional variances of each time series and the higher level GARCH models with
the same parameters regulating the evolution of the time-varying conditional correlations,
restrict the evolution of the variance and covariance matrices. PC-GARCH (Ding, 1994;
Burns, 2005) and O-GARCH (Alexander, 2001) perform dimensionality reduction through
a latent factor formulation; see also van der Weide (2002). However, time-constant factor
loadings and uncorrelated latent factors constrain the evolution of ⌃(t).

Such models fall far short of our goal of allowing ⌃(t) to be fully flexible with the
dependence between ⌃(t) and ⌃(t+�) varying with not just the time-lag � but also with
time. In addition, these models do not handle missing data easily and tend to require long
series for accurate estimation (Burns, 2005). Accommodating changes in continuous time
is important in many applications, and avoids having the model be critically dependent on
the time scale, with inconsistent models obtained as time units are varied.

Wilson and Ghahramani (2010) join machine learning and econometrics e↵orts by propos-
ing a model for both mean and covariance regression in multivariate time series, improving
previous work of Bru (1991) on Wishart processes in terms of computational tractability and
scalability, allowing a more complex structure of dependence between ⌃(t) and ⌃(t + �).
Specifically, they propose a continuous time generalised Wishart process (GWP), which
defines a collection of positive semi-definite random matrices ⌃(t) with Wishart marginals.
Nonparametric mean regression for µ(t) is also considered via GP priors; however, the tra-
jectories of means and covariances inherit the smooth behavior of the underlying Gaussian
processes, limiting the flexibility of the approach across times exhibiting sharp changes.

Even for iid observations from a multivariate normal model with a single time stationary
covariance matrix, there are well known problems with Wishart priors motivating a rich lit-
erature on dimensionality reduction techniques based on factor and graphical models. There
has been abundant recent interest in applying such approaches to dynamic settings. Refer
to Lopes and Carvalho (2007), Nakajima and West (2013) and the references cited therein
for recent literature on Bayesian dynamic factor models for multivariate stochastic volatility.
The Markov switching assumption for the levels of the common factor volatilities in Lopes
and Carvalho (2007) improves flexibility, but may be restrictive in some applied fields and
requires the additional choice of the number of possible regimes. Nakajima and West (2013)
allow the factor loadings to evolve dynamically over time, while including sparsity through
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a latent thresholding approach, leading to apparently improved performance in portfolio al-
location. They assume a time-varying discrete-time autoregressive model, which allows the
dependence in the covariance matrices ⌃(t) and ⌃(t+�) to vary as a function of both t and
�. However, the result is a richly parameterized and computationally challenging model,
with selection of the number of factors proceeding by cross validation. Our emphasis is
instead on developing continuous time stochastic processes for ⌃(t) and µ(t), which accom-
modate locally varying smoothness and provide relatively e�cient MCMC computations
based on a Gibbs sampler.

Fox and Dunson (2011) propose an alternative Bayesian covariance regression (BCR)
model, which defines the covariance matrix as a regularized quadratic function of time-
varying loadings in a latent factor model, characterizing the latter as a sparse combination
of a collection of unknown Gaussian process dictionary functions. Although their approach
provides a continuous time and highly flexible model that accommodates missing data and
scales to moderately large p, there are two limitations motivating this article. Firstly, their
proposed covariance stochastic process assumes a stationary dependence structure, and
hence tends to under-smooth during periods of stability and over-smooth during periods of
sharp changes. Secondly, the well known computational problems with usual GP regression
are inherited, leading to di�culties in scaling to long series and issues in mixing of MCMC
algorithms for posterior computation.

1.2 Contribution and Outline

Our proposed LAF process instead includes dictionary functions that are generated from
nested Gaussian processes (nGP) (Zhu and Dunson, 2013), representing recently proposed
priors which exploit stochastic di↵erential equations (SDEs) to enforce GP priors for the
function’s mth order derivatives and favor local adaptivity by centering the latter on an
higher level GP instantaneous mean. Such nGP reduces the GP computational burden
involving matrix inversions from O(T 3) to O(T ), with T denoting the length of the time
series, while also allowing flexible locally varying smoothness. Marginalizing out the latent
factors, we obtain a stochastic process that inherits these advantages. We also develop a
di↵erent and more computationally e�cient approach under this new model and propose an
online implementation, which can accommodate streaming data. In Section 2, we describe
the LAF structure with particular attention to prior specification. Section 3 explores the
main features of the Gibbs sampler for posterior computation and outlines the steps for a fast
online updating approach. In Section 4 we compare our model to BCR and to some of the
most widely used models for multivariate stochastic volatility, through simulation studies.
Finally in Section 5 an application to National Stock Market Indices across countries is
examined.

2. Locally Adaptive Factor Processes

Our focus is on defining a novel locally adaptive factor process for � = {µ(t),⌃(t), t 2 T }.
In particular, taking a Bayesian approach, we define a prior � ⇠ P , where P is a probability
measure over the space P of p-variate mean-covariance processes on T . In particular, each
element of P corresponds to a realization of the stochastic process �, and the measure P
assigns probabilities to a �-algebra of subsets of P.
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Although the proposed class of LAF processes can be used much more broadly, in
conducting inferences in this article, we focus on the simple case in which data consist
of vectors yi = (y

1i, . . . , ypi)T collected at times ti, for i = 1, . . . , T . These times can be
unequally-spaced, or collected under an equally-spaced design with missing observations.
An advantage of using a continuous-time process is that it is trivial to allow unequal spacing,
missing data, and even observation times across which only a subset of the elements of yi
are observed. We additionally make the simplifying assumption that

yi ⇠ Np(µ(ti),⌃(ti)).

It is straightforward to modify the methodology to accommodate substantially di↵erent
observation models.

2.1 LAF Specification

A common strategy in modeling of large p matrices is to rely on a lower-dimensional fac-
torization, with factor analysis providing one possible direction. Sparse Bayesian factor
models have been particularly successful in challenging cases, while having advantages over
frequentist competitors in incorporating a probabilistic characterization of uncertainty in
the number of factors as well as the parameters in the loadings and residual covariance. For
recent articles on Bayesian sparse factor analysis for a single large covariance matrix, refer
to Bhattacharya and Dunson (2011), Pati et al. (2012) and the references cited therein.

In our setting, we are instead interested in letting the mean vector and the covariance
matrix vary flexibly over time. Extending the usual factor analysis framework to this setting,
we say that � = {µ(t),⌃(t), t 2 T } ⇠ LAFL,K(⇥,⌃

0

,⌃⇠,⌃A,⌃ ,⌃B) if

µ(t) = ⇥⇠(t) (t), (1a)

⌃(t) = ⇥⇠(t)⇠(t)T⇥T + ⌃
0

, (1b)

where ⇥ is a p⇥L matrix of constant coe�cients, ⌃
0

= diag(�2
1

, . . . ,�2p), while ⇠(t)L⇥K and
 (t)K⇥1

are matrices comprising continuous dictionary functions evolving in time via nGP,
⇠lk(t) ⇠ nGP([⌃⇠]lk = �2⇠lk , [⌃A]lk = �2Alk

) and  k(t) ⇠ nGP([⌃ ]k = �2 k
, [⌃B]k = �2Bk

).
Restricting our attention on the generic element ⇠lk(t) : T ! < of the matrix ⇠(t)L⇥K

(the same holds for  k(t) : T ! <), the nGP provides a highly flexible stochastic process on
the dictionary functions whose smoothness, explicitly modeled by their mth order deriva-
tives Dm⇠lk(t) via stochastic di↵erential equations, is expected to be centered on a local
instantaneous mean function Alk(t), which represents a higher-level Gaussian process, that
induces adaptivity to locally varying smoothing. Specifically, we let

Dm⇠lk(t) = Alk(t) + �⇠lkW⇠lk(t), m 2 N, m � 2, (2a)

DnAlk(t) = �AlkWAlk(t), n 2 N, n � 1, (2b)

where �⇠lk 2 <+, �Alk 2 <+, W⇠lk(t) : T ! < and WAlk(t) : T ! < are independent
Gaussian white noise processes with mean E[W⇠lk(t)] = E[WAlk(t)] = 0, for all t 2 T , and
covariance function E[W⇠lk(t)W⇠lk(t

⇤)] = E[WAlk(t)WAlk(t
⇤)] = 1 if t = t⇤, 0 otherwise.

This formulation naturally induces a stochastic process for ⇠lk(t) with varying smoothness,
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where E[Dm⇠lk(t)|Alk(t)] = Alk(t), and initialization at t
1

based on the assumption

[⇠lk(t1), D
1⇠lk(t1), . . . , D

m�1⇠lk(t1)]
T ⇠ Nm(0,�2µlk

Im),

[Alk(t1), D
1Alk(t1), . . . , D

n�1Alk(t1)]
T ⇠ Nn(0,�

2

↵lk
In).

The Markovian property implied by SDEs in (2a) and (2b) represents a key advantage
in terms of computational tractability as it allows a simple state space formulation. In
particular, referring to Zhu and Dunson (2013) for m = 2 and n = 1 (this can be easily
extended for higher m and n), and for �i = ti+1

� ti su�ciently small, the process for ⇠lk(t)
along with its first order derivative ⇠0lk(t) and the local instantaneous mean Alk(t) follow
the approximated state equation

"
⇠lk(ti+1

)
⇠0lk(ti+1

)
Alk(ti+1

)

#
=

"
1 �i 0
0 1 �i
0 0 1

#"
⇠lk(ti)
⇠0lk(ti)
Alk(ti)

#
+

"
0 0
1 0
0 1

# h
!i,⇠lk
!i,Alk

i
, (3)

where [!i,⇠lk ,!i,Alk ]
T ⇠ N

2

(0, Vi,lk), with Vi,lk = diag(�2⇠lk�i,�
2

Alk
�i).

Similarly to the nGP specification for the elements in ⇠(t), we can represent the nested
Gaussian process for  k(t) with the following state equation:

"
 k(ti+1

)
 0
k(ti+1

)
Bk(ti+1

)

#
=

"
1 �i 0
0 1 �i
0 0 1

#"
 k(ti)
 0
k(ti)

Bk(ti)

#
+

"
0 0
1 0
0 1

# h
!i, k
!i,Bk

i
, (4)

for k = 1, . . . ,K, where [!i, k
,!i,Bk ]

T ⇠ N
2

(0, Si,k), with Si,k = diag(�2 k
�i,�2Bk

�i). Simi-
larly to ⇠lk(t), we let

[ k(t1), D
1 k(t1), . . . , D

m�1 k(t1)]
T ⇠ Nm(0,�2µk

Im),

[Bk(t1), D
1Bk(t1), . . . , D

n�1Bk(t1)]
T ⇠ Nn(0,�

2

↵k
In).

There are two crucial aspects to highlight. Firstly, this formulation is defined at every
point over a subset of the real line and allows an irregular grid of observations over t by
relating the latent states at i + 1 to those at i through the distance between ti+1

and ti
where i represents a discrete order index and ti 2 T the time value related to the ith
observation. Secondly, compared to Zhu and Dunson (2013) our approach represents an
important generalization in: (i) extending the analysis to the multivariate case (i.e. yi is a
p-dimensional vector instead of a scalar) and (ii) accommodating locally adaptive smoothing
not only on the mean but also on the time-varying covariance functions.

2.2 LAF Interpretation

Model (1a)–(1b) can be induced by marginalizing out the K-dimensional latent factors
vector ⌘i, in the model

yi = ⇤(ti)⌘i + ✏i, ✏i ⇠ Np(0,⌃0

), (5)

where ⌘i =  (ti) + ⌫i with ⌫i ⇠ NK(0, IK) and elements  k(t) ⇠ nGP(�2 k
,�2Bk

) for k =
1, . . . ,K. In LAF formulation we assume moreover that the time-varying factor loadings
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matrix ⇤(t) is a sparse linear combination, with respect to the weights of the p⇥ L matrix
⇥, of a much smaller set of continuous nested Gaussian processes ⇠lk(t) ⇠ nGP(�2⇠lk ,�

2

Alk
)

comprising the L⇥K, with L << p, matrix ⇠(t). As a result

⇤(ti) = ⇥⇠(ti). (6)

Such a decomposition plays a crucial role in further reducing the number of nested
Gaussian processes to be modeled from p⇥K to L⇥K leading to a more computationally
tractable formulation in which the induced � = {µ(t),⌃(t), t 2 T } follows a locally adaptive
factor LAFL,K(⇥,⌃

0

,⌃⇠,⌃A,⌃ ,⌃B) process where

µ(ti) = E(yi | t = ti) = ⇥⇠(ti) (ti), (7a)

⌃(ti) = cov(yi | t = ti) = ⇥⇠(ti)⇠(ti)
T⇥T + ⌃

0

. (7b)

There is a literature on using Bayesian factor analysis with time-varying loadings, but
essentially all the literature assumes discrete-time dynamics on the loadings while our focus
is instead on allowing the loadings, and hence the induced � = {µ(t),⌃(t), t 2 T } processes,
to evolve flexibly in continuous time. Hence, we are most closely related to the literature
on Gaussian process latent factor models for spatial and temporal data; refer, for example,
to Lopes et al. (2008) and Lopes et al. (2011). In these models, the factor loadings matrix
characterizes spatial dependence, with time-varying factors accounting for dynamic changes.

Fox and Dunson (2011) instead allow the loadings matrix to vary through a continuous
time stochastic process built from latent GP(0, c) dictionary functions independently for all
l = 1, . . . , L and k = 1, . . . ,K, with c the squared exponential correlation function having
c(t, t⇤) = exp(�||t � t⇤||2

2

). In our work we follow the lead of Fox and Dunson (2011) in
using a nonparametric latent factor model as in (5)–(6), but induce fundamentally di↵erent
behavior on � = {µ(t),⌃(t), t 2 T } by carefully modifying the stochastic processes for the
dictionary functions.

Note that the above decomposition of � = {µ(t),⌃(t), t 2 T } is not unique. Potentially
we could constrain the loadings matrix to enforce identifiability (Geweke and Zhou, 1996),
but this approach induces an undesirable order dependence among the responses (Aguilar
and West, 2000; West, 2003; Lopes and West, 2004; Carvalho et al., 2008). Given our
focus on estimation of � we follow Ghosh and Dunson (2009) in avoiding identifiability
constraints, as such constraints are not necessary to ensure identifiability of the induced
mean µ(t) and covariance ⌃(t). The characterization of the class of time-varying covariance
matrices ⌃(t) is proved by Lemma 2.1 of Fox and Dunson (2011) which states that for K
and L su�ciently large, any covariance regression can be decomposed as in (1b). Similar
results are obtained for the mean process.

2.3 Prior Specification

We adopt a hierarchical prior specification approach to induce a prior P on � = {µ(t),⌃(t), t 2
T } with the goal of maintaining simple computation and allowing both covariances and
means to evolve flexibly over continuous time. Specifically

• �|⇥,⌃
0

,⌃⇠,⌃A,⌃ ,⌃B ⇠ LAFL,K(⇥,⌃
0

,⌃⇠,⌃A,⌃ ,⌃B).
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• Recalling the assumption ⇠lk(t) ⇠ nGP(�2⇠lk ,�
2

Alk
) within LAF representation, we

assume for each each element [⌃⇠]lk and [⌃A]lk of the L ⇥ K matrices ⌃⇠ and ⌃A

respectively, the following priors

�2⇠lk ⇠ InvGa(a⇠, b⇠),

�2Alk
⇠ InvGa(aA, bA),

independently for each (l, k); where InvGa(a, b) denotes the Inverse Gamma distribu-
tion with shape a and scale b.

• Similarly, the variances [⌃ ]k = �2 k
and [⌃B]k = �2Bk

in the state equation represen-

tation of the nGP for each  k(t) ⇠ nGP(�2 k
,�2Bk

) are assumed

�2 k
⇠ InvGa(a , b ),

�2Bk
⇠ InvGa(aB, bB),

independently for each k.

• To address the issue related to the selection of the number of dictionary elements a
shrinkage prior is proposed for ⇥. In particular, following Bhattacharya and Dunson
(2011) we assume

✓jl|�jl, ⌧l ⇠ N(0,��1

jl ⌧
�1

l ), �jl ⇠ Ga(3/2, 3/2),

#
1

⇠ Ga(a
1

, 1), #h ⇠ Ga(a
2

, 1), h � 2, ⌧l =
lY

h=1

#h. (8)

Note that if a
2

> 1 the expected value for #h is greater than 1. As a result, as l
goes to infinity, ⌧l tends to infinity, shrinking ✓jl towards zero. This leads to a flexible
prior for ✓jl with a local shrinkage parameter �jl and a global column-wise shrinkage
factor ⌧l which allows many elements of ⇥ being close to zero as L increases. Our
formulation can be easily generalized to allow shrinkage over K; see Fox and Dunson
(2011). However we found reasonable to fix K to relatively small values and learn L
with the shrinkage approach, to avoid higher computational complexity in sampling
the K-variate vector  (ti), i = 1, . . . , T .

• Finally for the variances of the error terms in vector ✏i, we assume the usual inverse
gamma prior distribution. Specifically

��2

j ⇠ Ga(a�, b�)

independently for each j = 1, . . . , p.

3. Posterior Computation

For a fixed truncation level L⇤ and a latent factor dimension K⇤, the algorithm for posterior
computation alternates between a simple and e�cient simulation smoother step (Durbin
and Koopman, 2002) to update the state space formulation of the nGP in LAF prior, and
standard Gibbs sampling steps for updating the parametric component parameters from
their full conditional distributions. See Bhattacharya and Dunson (2011) for a method
adaptively choosing the truncation levels.
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3.1 Gibbs Sampling

We outline here the main features of the algorithm for posterior computation based on
observations (yi, ti) for i = 1, . . . , T , while the complete algorithm is provided in Appendix
A. Note that, since data are in practice observed at a finite number of times, the continuous
time model is approximated in conducting inferences. This issue arises in analyzing data
with any continuous time model.

A. Given ⇥ and {⌘i}Ti=1

, a multivariate version of the MCMC algorithm proposed by Zhu
and Dunson (2013) draws posterior samples from each dictionary element’s function
{⇠lk(ti)}Ti=1

, its first order derivative {⇠0lk(ti)}Ti=1

, the corresponding instantaneous
mean {Alk(ti)}Ti=1

, the variances in the state equations �2⇠lk , �
2

Alk
and the variances of

the error terms in the observation equation �2j with j = 1, . . . , p.

B. Given⇥, {��2

j }pj=1

, {yi}Ti=1

and {⇠(ti)}Ti=1

we implement a block sampling of { k(ti)}Ti=1

,

{ 0
k(ti)}Ti=1

, {Bk(ti)}Ti=1

, �2 k
, �2Bk

and ⌫i following a similar approach as in step A.

C. Conditioned on {yi}Ti=1

, {⌘i}Ti=1

, {��2

j }pj=1

and {⇠(ti)}Ti=1

, and recalling the shrinkage
prior for the elements of ⇥ in (8), we update ⇥, each local shrinkage hyperparameter
�jl and the global shrinkage hyperparameters ⌧l following the standard conjugate
analysis.

D. Given the posterior samples from ⇥, ⌃
0

, {⇠(ti)}Ti=1

and { (ti)}Ti=1

the realization of
LAF process for {µ(ti),⌃(ti), ti 2 T } conditioned on the data {yi}Ti=1

is

µ(ti) = ⇥⇠(ti) (ti),

⌃(ti) = ⇥⇠(ti)⇠(ti)
T⇥T + ⌃

0

.

3.2 Hyperparameters Interpretation

We now focus our attention on the priors hyperparameters for �2⇠lk , �
2

Alk
, �2 k

and �2Bk
. These

quantities play an important role in facilitating local adaptivity and carefully tuning such
values may improve mixing and convergence speed of our MCMC algorithm. Simulation
studies have shown that the higher the variances in the latent state equations, the better
our formulation accommodates locally adaptivity for sudden changes in �. A theoretical
support for this data-driven consideration can be identified in the connection between the
nGP and the nested smoothing splines. It has been shown by Zhu and Dunson (2013) that
the posterior mean of the trajectory U with reference to the problem of nonparametric mean
regression under the nGP prior can be related to the minimizer of the equation

1

T

TX

i=1

(yi � U(ti))
2 + �U

Z

T
(DmU(t)� C(t))2dt+ �C

Z

T
(DnC(t))2dt,

where C is the locally instantaneous function and �U 2 <+ and �C 2 <+ regulate the
smoothness of the unknown functions U and C respectively, leading to less smoothed pat-
terns when fixed at low values. The resulting inverse relationship between these smoothing
parameters and the variances in the state equation, together with the results in the simula-
tion studies, suggest to fix the hyperparameters in the Inverse Gamma prior for �2⇠lk , �

2

Alk
,
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�2 k
and �2Bk

so as to allow high variances in the case in which the time series analyzed are
expected to have strong changes in their covariance (or mean) dynamic. A further confir-
mation of the previous discussion is provided by the structure of the simulation smoother
required to update the dictionary functions in our Gibbs sampling for posterior computa-
tion. More specifically, the larger the variances of {!i,⇠lk}Ti=1

, {!i,Alk}Ti=1

and {!i, k
}Ti=1

,
{!i,Bk}Ti=1

in the state equations, with respect to those of the vector of observations {yi}Ti=1

,
the higher is the weight associated to innovations in the filtering and smoothing techniques,
allowing for less smoothed patterns both in the covariance and mean structures (see Durbin
and Koopman, 2002).

In practical applications, it may be useful to obtain a first estimate of �̃ = {µ̃(t), ⌃̃(t)}
to set the hyperparameters. More specifically, µ̃j(ti) can be the output of a standard moving
average on each time series yj = (yj1, . . . , yjT )T , while ⌃̃(ti) can be obtained by a simple
estimator, such as the EWMA procedure. With these choices, the recursive equation

⌃̃(ti) = (1� �){[yi�1

� µ̃(ti�1

)][yi�1

� µ̃(ti�1

)]T }+ �⌃̃(ti�1

),

become easy to implement.

3.3 Online Updating

The problem of online updating represents a key point in multivariate time series with high
frequency data. Referring to our formulation, we are interested in updating an approximated
posterior for �T+H = {µ(tT+h),⌃(tT+h), h = 1, . . . , H} once a new vector of observations
{yi}T+H

i=T+1

is available, instead of rerunning posterior computation for the whole time series.
Using the posterior estimates of the Gibbs sampler based on observations available up

to time T , it is easy to implement (see Appendix B) a highly computationally tractable
online updating algorithm which alternates between steps A, B and D outlined in the
previous section for the new set of observations, and that can be initialized at T + 1 using
the one step ahead predictive distribution for the latent state vectors in the state space
formulation. Such initialization procedure for latent state vectors in the algorithm depends
on the sample moments of the posterior distribution for the latent states at T . As is
known for Kalman smoothers (see, e.g., Durbin and Koopman, 2001), this could lead to
computational problems in the online updating due to the larger conditional variances of
the latent states at the end of the sample (i.e., at T ). To overcome this problem, we replace
the previous assumptions for the initial values with a data-driven initialization scheme. In
particular, instead of using only the new observations for the online updating, we run the
algorithm for {yi}T+H

i=T�k, with k small. As a result the distribution of the smoothed states
at T is not anymore a↵ected by the problem of large conditional variances leading to better
online updating performance.

It is important to notice that the algorithm is not fully online in updating only the
time-varying dictionary functions, while fixing the time-constant model parameters at their
posterior mean. An alternative for properly propagating uncertainties while maintaining
computational tractability may be to add a further step in the online updating procedure
sampling the time-constant quantities conditionally on the updated dictionary functions
and the quantities stored during the initial sampling. Such an approach may be reasonable
if the initial time window considered is not enough large to ensure a consistent estimate
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of the time-constant parameters and if the number of time series analyzed p is tractable.
Since we search for a relatively fast procedure, and provided that for moderately large T the
posterior for the time-stationary parameters rapidly becomes concentrated, we preferred our
initially proposed algorithm in order to avoid the p draws from an L⇤ dimensional Gaussian
in the sampling of ⇥, which may slow down the online updating procedure for large p.

4. Simulation Studies

The aim of the following simulation studies is to compare the performance of our pro-
posed LAF with respect to BCR, and to the models for multivariate stochastic volatility
most widely used in practice, specifically: EWMA, PC-GARCH, GO-GARCH and DCC-
GARCH. In order to assess whether and to what extent LAF can accommodate, in practice,
even sharp changes in the time-varying means and covariances and to evaluate the costs of
our flexible approach in settings where the mean and covariance functions do not require
locally adaptive estimation techniques, we focus on two di↵erent sets of simulated data.
The first is based on an underlying structure characterized by locally varying smoothness
processes, while the second has means and covariances evolving in time through smooth
processes. In the last subsection we also analyze the performance of the proposed online
updating algorithm.

4.1 Simulated Data

A. Locally varying smoothness processes: We generate a set of 5-dimensional observations
yi for each ti in the discrete set To = {1, 2, . . . , 100}, from the latent factor model
in (5) with ⇤(ti) = ⇥⇠(ti). To allow sharp changes of means and covariances in
the generating mechanism, we consider a 2 ⇥ 2 (i.e. L = K = 2) matrix {⇠(ti)}100i=1

of time-varying functions adapted from Donoho and Johnstone (1994) with locally
varying smoothness (more specifically we choose ‘bumps’ functions). The latent mean
dictionary elements in { (ti)}100i=1

are simulated from a Gaussian process GP(0, c) with
length scale  = 10, while the elements in matrix ⇥ can be obtained from the shrinkage
prior in (8) with a

1

= a
2

= 10. Finally the elements of the diagonal matrix ⌃�1

0

are
sampled independently from Ga(1, 0.1).

B. Smooth processes: We consider the same data set of 10-dimensional observations yi
with ti 2 To = {1, 2, . . . , 100} investigated in Fox and Dunson (2011, Section 4.1).
The settings are similar to the previous with exception of {⇠(ti)}100i=1

which are 5 ⇥ 4
matrices of smooth GP dictionary functions with length scale  = 10.

4.2 Estimation Performance

A. Locally varying smoothness processes:
Posterior computation for LAF is performed by using truncation levels L⇤ = K⇤ = 2
(at higher level settings we found that the shrinkage prior on ⇥ results in posterior
samples of the elements in the additional columns concentrated around 0). We place a
Ga(1, 0.1) prior on the precision parameters ��2

j and choose a
1

= a
2

= 2. As regards
the nGP prior for each dictionary element ⇠lk(t) with l = 1, . . . , L⇤ and k = 1, . . . ,K⇤,
we choose di↵use but proper priors for the initial values by setting �2µlk

= �2↵lk
= 100
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and place an InvGa(2, 108) prior on each �2⇠lk and �2Alk
in order to allow less smooth

behavior according to a previous graphical analysis of ⌃̃(ti) estimated via EWMA.
Similarly we set �2µk

= �2↵k
= 100 in the prior for the initial values of the latent state

equations resulting from the nGP prior for  k(t), and consider a = aB = b = bB =
0.005 to balance the rough behavior induced on the nonparametric mean functions by
the settings of the nGP prior on ⇠lk(t), as suggested from previous graphical analysis.
Note also that for posterior computation, we first scale the predictor space to (0, 1],
leading to �i = 1/100, for i = 1, . . . , 100.

For inference in BCR we consider the same previous hyperparameters setting for ⇥
and ⌃

0

priors as well as the same truncation levels K⇤ and L⇤, while the length scale
 in GP prior for ⇠lk(t) and  k(t) has been set to 10 using the data-driven heuristic
outlined in Fox and Dunson (2011). In both cases we run 50,000 Gibbs iterations
discarding the first 20,000 as burn-in and thinning the chain every 5 samples.

As regards the other approaches, EWMA has been implemented by choosing the
smoothing parameter � that minimizes the mean squared error (MSE) between the
estimated covariances and the true values. PC-GARCH algorithm follows the steps
provided by Burns (2005) with GARCH(1,1) assumed for the conditional volatilities
of each single time series and the principal components. GO-GARCH and DCC-
GARCH recall the formulations provided by van der Weide (2002) and Engle (2002)
respectively, assuming a GARCH(1,1) for the conditional variances of the processes
analyzed, which proves to be a correct choice in many financial applications and also in
our setting. Note that, di↵erently from LAF and BCR, the previous approaches do not
model explicitly the mean process {µ(ti)}100i=1

but work directly on the innovations {yi�
µ(ti)}100i=1

. Therefore in these cases we first model the conditional mean via smoothing
spline and in a second step we estimate the models working on the innovations. The
smoothing parameter for spline estimation has been set to 0.7, which was found to be
appropriate to best reproduce the true dynamic of {µ(ti)}100i=1

.

B. Smooth processes:
We mainly keep the same setting of the previous simulation study with few di↵erences.
Specifically, L⇤ and K⇤ has been fixed to 5 and 4 respectively (also in this case the
choice of the truncation levels proves to be appropriate, reproducing the same results
provided in the simulation study of Fox and Dunson (2011) where L⇤ = 10 and
K⇤ = 10). Moreover the scale parameters in the Inverse Gamma prior on each �2⇠lk
and �2Alk

has been set to 104 in order to allow a smoother behavior according to a

previous graphical analysis of ⌃̃(ti) estimated via EWMA, but without forcing the
nGP prior to be the same as a GP prior. Following Fox and Dunson (2011) we
run 10,000 Gibbs iterations which proved to be enough to reach convergence, and
discarded the first 5,000 as burn-in.

In the first set of simulated data, we analyzed mixing by the Gelman-Rubin procedure (see,
e.g., Gelman and Rubin, 1992), based on potential scale reduction factors computed for
each chain by splitting the sampled quantities in 6 pieces of same length. The analysis
shows slower mixing for BCR compared with LAF. Specifically, in LAF 95% of the chains
have a potential reduction factor lower than 1.35, with a median equal to 1.11, while in
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Figure 2: For locally varying smoothness simulation (top) and smooth simulation (bottom),
plots of truth (black) and posterior mean respectively of LAF (solid red line) and
BCR (solid green line) for selected components of the variance (left), covariance
(middle), mean (right). For both approaches the dotted lines represent the 95%
highest posterior density intervals.

BCR the 95% quantile is 1.44 and the median equals 1.18. Less problematic is the mixing
for the second set of simulated data, with potential scale reduction factors having median
equal to 1.05 for both approaches and 95% quantiles equal to 1.15 and 1.31 for LAF and
BCR, respectively.

Figure 2 compares, in both simulated samples, true and posterior mean of the process
� = {µ(ti),⌃(ti), i = 1, . . . , 100} over the predictor space To together with the point-wise
95% highest posterior density (hpd) intervals for LAF and BCR. From the upper plots we
can clearly note that our approach is able to capture conditional heteroscedasticity as well as
mean patterns, also in correspondence of sharp changes in the time-varying true functions.
The major di↵erences compared to the true values can be found at the beginning and at
the end of the series and are likely to be related to the structure of the simulation smoother
which also causes a widening of the credibility bands at the very end of the series; for
references regarding this issue see Durbin and Koopman (2001). However, even in the most
problematic cases, the true values are within the bands of the 95% hpd intervals. Much
more problematic is the behavior of the posterior distributions for BCR which over-smooth
both covariance and mean functions leading also to many 95% hpd intervals not containing
the true values. Bottom plots in Figure 2 show that the performance of our approach is
very close to that of BCR, when data are simulated from a model where the covariances
and means evolve smoothly across time and local adaptivity is not required. This happens
even if the hyperparameters in LAF are set in order to maintain separation between nGP
and GP prior, suggesting large support property for the proposed approach.
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Mean 90% Quantile 95% Quantile Max
Covariance {⌃(ti)}

EWMA 1.37 2.28 5.49 85.86
PC-GARCH 1.75 2.49 6.48 229.50
GO-GARCH 2.40 3.66 10.32 173.41
DCC-GARCH 1.75 2.21 6.95 226.47
BCR 1.80 2.25 7.32 142.26
LAF 0.90 1.99 4.52 36.95

Mean {µ(ti)}
SPLINE 0.064 0.128 0.186 2.595
BCR 0.087 0.185 0.379 2.845
LAF 0.062 0.123 0.224 2.529

Table 1: LOCALLY VARYING SMOOTHNESS PROCESSES: Summaries of the standard-
ized squared errors between true values {µ(ti)}100i=1

and {⌃(ti)}100i=1

and estimated
quantities {⌃̂(ti)}100i=1

and {µ̂(ti)}100i=1

computed with di↵erent approaches.

Mean 90% Quantile 95% Quantile Max
Covariance {⌃(ti)}

EWMA 0.030 0.081 0.133 1.119
PC-GARCH 0.018 0.048 0.076 0.652
GO-GARCH 0.043 0.104 0.202 1.192
DCC-GARCH 0.022 0.057 0.110 0.466
BCR 0.009 0.019 0.039 0.311
LAF 0.009 0.022 0.044 0.474

Mean {µ(ti)}
SPLINE 0.007 0.019 0.027 0.077
BCR 0.005 0.015 0.024 0.038
LAF 0.005 0.017 0.026 0.050

Table 2: SMOOTH PROCESSES: Summaries of the standardized squared errors between
true values {µ(ti)}100i=1

and {⌃(ti)}100i=1

and estimated quantities {⌃̂(ti)}100i=1

and
{µ̂(ti)}100i=1

computed with di↵erent approaches.

The comparison of the summaries of the squared errors between true process � =
{µ(ti),⌃(ti), i = 1, . . . , 100} and the estimated quantities �̂ = {µ̂(ti), ⌃̂(ti), i = 1, . . . , 100}
standardized with the range of the true processes rµ = maxi,j{µj(ti)}�mini,j{µj(ti)} and
r
⌃

= maxi,j,k{⌃j,k(ti)}�mini,j,k{⌃j,k(ti)} respectively, once again confirms the overall bet-
ter performance of our approach relative to all the considered competitors. Table 1 shows
that, when local adaptivity is required, LAF provides a superior performance having stan-
dardized residuals lower than those of the other approaches. EWMA seems to provide quite
accurate estimates, but it is important to underline that we choose the optimal smoothing
parameter � in order to minimize the MSE between estimated and true parameters, which
are clearly not known in practical applications. Di↵erent values of � reduces significantly
the performance of EWMA, which shows also lack of robustness. The closeness of the sum-
maries of LAF and BCR in Table 2 confirms the flexibility of LAF even in settings where
local adaptivity is not required and highlights the better performance of the two approaches
with respect to the other competitors also when smooth processes are investigated.

To better understand the improvement of our approach in allowing locally varying
smoothness and to evaluate the consequences of the over-smoothing induced by BCR on the
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Figure 3: For 4 selected simulated series: time-varying mean µj(ti) and 2.5% and 97.5%
quantiles of the marginal distribution of yji with true mean and variance (black),
mean and variance from posterior mean of LAF (red), mean and variance from
posterior mean of BCR (green). Black points represent the simulated data.

distribution of yi with i = 1, . . . , 100 consider Figure 3 which shows, for some selected series
{yji}100i=1

in the first simulated data set, the time-varying mean together with the point-wise
2.5% and 97.5% quantiles of the marginal distribution of yji induced respectively by the
true mean and true variance, the posterior mean of µj(ti) and ⌃jj(ti) from our proposed
approach and the posterior mean of the same quantities from BCR. We can clearly see
that the marginal distribution of yji induced by BCR is over-concentrated near the mean,
leading to incorrect inferences. Note that our proposal is also able to accommodate heavy
tails, a typical characteristic in financial series.

4.3 Online Updating Performance

To analyze the performance of the online updating algorithm in LAF model, we simulate
50 new observations {yi}150i=101

with ti 2 T ⇤
o = {101, . . . , 150}, considering the same ⇥ and

⌃
0

used in the generating mechanism for the first simulated data set and taking the 50
subsequent observations of the bumps functions for the dictionary elements {⇠(ti)}150i=101

;
finally the additional latent mean dictionary elements { (ti)}150i=101

are simulated as before
maintaining the continuity with the previously simulated functions { (ti)}100i=1

. According to
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Figure 4: Plots of truth (black) and posterior mean of the online updating procedure (solid
red line) for selected components of the covariance (top), variance (middle), mean
(bottom). The dotted lines represent the 95% highest posterior density intervals.

the algorithm described in Subsection 3.3, we fix ⇥, ⌃
0

, ⌃⇠, ⌃A,⌃ and ⌃B at their posterior
mean from the previous Gibbs sampler and consider the last three observations y

98

, y
99

and
y
100

(i.e. k = 3) to initialize the simulation smoother in i = 101 through the proposed data-
driven initialization approach. Posterior computation shows good performance in terms of
mixing, and convergence is assessed after 5,000 Gibbs iterations with a small burn-in of 500.

Figure 4 compares true mean and covariance to posterior mean of a selected set of
components of �⇤ = {µ(ti),⌃(ti), i = 101, . . . , 150} including also the 95% hpd intervals.
The results clearly show that the online updating is characterized by a good performance
which allows to capture the behavior of new observations conditioning on the previous
estimates. Note that the posterior distribution of the approximated mean and covariance
functions tends to slightly over-estimate the patterns of the functions at sharp changes,
however also in these cases the true values are within the bands of the credibility intervals.
Finally note that the data-driven initialization ensures a good behavior at the beginning of
the series, while the results at the end have wider uncertainty bands as expected.

5. Application Study

Spurred by the recent growth of interest in the dynamic dependence structure between
financial markets in di↵erent countries, and in its features during the crises that have
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followed in recent years, we applied our LAF to the multivariate time series of the main
National Stock Market Indices.

5.1 National Stock Market Indices, Introduction and Motivation

National Stock Market Indices represent technical tools that allow, through the synthesis
of numerous data on the evolution of the various stocks, to detect underlying trends in the
financial market, with reference to a specific basis of currency and time. More specifically,
each Market Index can be defined as a weighted sum of the values of a set of national stocks,
whose weighting factors is equal to the ratio of its market capitalization in a specific date
and overall of the whole set on the same date.

In this application we focus our attention on the multivariate weekly time series of the
main 33 (i.e. p = 33) National Stock Market Indices from 12/07/2004 to 25/06/2012.
Figure 5 shows the main features in terms of stationarity, mean patterns and volatility
of two selected National Stock Market Indices downloaded from http://finance.yahoo.

com/. The non-stationary behavior, together with the di↵erent bases of currency and time,
motivate the use of logarithmic returns yji = log(Iji/Iji�1

), where Iji is the value of the
Stock Market Index j at time ti. Beside this, the marginal distribution of log returns
shows heavy tails and irregular cyclical trends in the nonparametric estimation of the mean,
while EWMA estimates highlight rapid changes of volatility during the financial crises
observed in the recent years. All these results, together with large p settings and high
frequency data typical in financial fields, motivate the use of our approach to obtain a
better characterization of the time-varying dependence structure among financial markets.

5.2 LAF for National Stock Market Indices

We consider the heteroscedastic model yi ⇠ N
33

(µ(ti),⌃(ti)) for i = 1, . . . , 415 and ti in the
discrete set To = {1, 2, . . . , 415}, where the elements of � = {µ(ti),⌃(ti), i = 1, . . . , 415},
defined by (7a)-(7b), are induced by the dynamic latent factor model outlined in (5)-(6).

Posterior computation is performed by first rescaling the predictor space To to (0, 1] and
using the same setting of the first simulation study, with the exception of the truncation
levels fixed at K⇤ = 4 and L⇤ = 5 (which we found to be su�ciently large from the fact
that the last few columns of the posterior samples for ⇥ assumed values close to 0) and
the hyperparameters of the nGP prior for each ⇠lk(t) and  k(t) with l = 1, . . . , L⇤ and k =
1, . . . ,K⇤, set to a⇠ = aA = a = aB = 2 and b⇠ = bA = b = bB = 5⇥ 107 to capture also
rapid changes in the mean functions according to Figure 5. Missing values in our data set
do not represent a limitation since the Bayesian approach allows us to update our posterior
considering solely the observed data. We run 10,000 Gibbs iterations with a burn-in of 2,500.
Examination of trace plots of the posterior samples for � = {µ(ti),⌃(ti), i = 1, . . . , 415}
showed no evidence against convergence.

Posterior distributions for the variances in Figure 6 demonstrate that we are clearly
able to capture the rapid changes in the dynamics of volatility that occur during the world
financial crisis of 2008, in early 2010 with the Greek debt crisis and in the summer of 2011
with the financial speculation in government bonds of European countries together with the
rejection of the U.S. budget and the downgrading of the United States rating. Moreover,
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Figure 5: Plots of the main features of USA NASDAQ (left) and ITALY FTSE MIB (right).
Specifically: observed time series (top), log returns series with nonparametric
mean estimation via 12 week Equally Weighted Moving Average (red) in the
middle, EWMA volatility estimates (bottom).

the resulting marginal distribution of the log returns induced by the posterior mean of µj(t)
and ⌃jj(t), shows that we are also able to accommodate heavy tails as well as mean patterns
cycling irregularly between slow and more rapid changes.

Important information about the ability of our model to capture the evolution of world
geo-economic structure during di↵erent finance scenarios is provided in Figures 7 and 8.
From the correlations between NASDAQ and the other National Stock Market Indices
(based on the posterior mean {⌃̂(ti)}415i=1

of the covariances function) in Figure 7, we can
immediately notice the presence of a clear geo-economic structure in world financial markets
(more evident in LAF than in BCR), where the dependence between the U.S. and European
countries is systematically higher than that of South East Asian Nations (Economic Tigers),
showing also di↵erent reactions to crises. Plots at the top of the Figure 8 confirms the above
considerations showing how Western countries exhibit more connection with countries closer
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Figure 6: Top: Plot for 2 National Stock Market Indices, respectively USA NASDAQ (left)
and ITALY FTSE MIB (right), of the log returns (black) and the time-varying
estimated mean {µ̂j(ti)}415i=1

together with the time-varying 2.5% and 97.5% quan-
tiles (red) of the marginal distribution of yji from LAF. Bottom: posterior mean
(black) and 95% hpd (dotted red) for the variances {⌃jj(ti)}415i=1

.

in terms of geographical, political and economic structure; the same holds for Eastern
countries where we observe a reversal of the colored curves. As expected, Russia is placed
in a middle path between the two blocks. A further element that our model captures about
the structure of the markets is shown in the plots at the bottom of Figure 8. The time-
varying regression coe�cients obtained from the standard formulas of the conditional normal
distribution based on the posterior mean of � = {µ(ti),⌃(ti), i = 1, . . . , 415} highlight
clearly the increasing dependence of European countries with higher crisis in sovereign debt
and Germany, which plays a central role in Eurozone as expected.

The flexibility of the proposed approach and the possibility of accommodating varying
smoothness in the trajectories over time, allow us to obtain a good characterization of the
dynamic dependence structure according with the major theories on financial crisis. The top
plot in Figure 7 shows how the change of regime in correlations occurs exactly in correspon-
dence to the burst of the U.S. housing bubble (A), in the second half of 2006. Moreover we
can immediately notice that the correlations among financial markets increase significantly
during the crises, showing a clear international financial contagion e↵ect in agreement with
other theories on financial crisis (see, e.g., Baig and Goldfajn, 1999; Claessens and Forbes,
2001). As expected the persistence of high levels of correlation is evident during the global
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Figure 7: Black line: For USA NASDAQ median of correlations with the other 32 National
Stock Market Indices based on posterior mean of {⌃(ti)}415i=1

. Red lines: 25%,
75% (dotted lines) and 50% (solid line) quantiles of correlations between USA
NASDAQ and European countries (without considering Greece and Russia which
present a specific pattern). Green lines: 25%, 75% (dotted lines) and 50% (solid
line) quantiles of correlations between USA NASDAQ and the countries of South-
east Asia (Asian Tigers and India). Timeline: (A) burst of U.S. housing bubble;
(B) risk of failure of the first U.S. credit agencies (Bear Stearns, Fannie Mae and
Freddie Mac); (C) world financial crisis after the Lehman Brothers’ bankruptcy;
(D) Greek debt crisis; (E) financial reform launched by Barack Obama and E.U.
e↵orts to save Greece (the two peaks represent respectively Irish debt crisis and
Portugal debt crisis); (F) worsening of European sovereign-debt crisis and the
rejection of the U.S. budget; (G) crisis of credit institutions in Spain and the
growing financial instability of the Eurozone.

financial crisis between late-2008 and end-2009 (C), at the beginning of which our approach
also captures a sharp variation in the correlations between the U.S. and Economic Tigers,
which lead to levels close to those of Europe. Further rapid changes are identified in cor-
respondence of Greek crisis (D), the worsening of European sovereign-debt crisis and the
rejection of the U.S. budget (F) and the recent crisis of credit institutions in Spain to-
gether with the growing financial instability Eurozone (G). Finally, even in the period of
U.S. financial reform launched by Barack Obama and E.U. e↵orts to save Greece (E), we
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Figure 8: Top: For 3 selected National Stock Market Indices, plot of the median of the
correlation based on posterior mean of {⌃(ti)}415i=1

with the other 32 world stock
indices (black), the European countries without considering Greece and Russia
(red) and the Asian Tigers including India (green). Bottom: For 3 of the Eu-
ropean countries more subject to sovereign debt crisis, plot of 25%, 50% and
75% quantiles of the time-varying regression parameters based on posterior mean
{⌃̂(ti)}415i=1

with the other countries (black) and Germany (red).

can notice two peaks representing respectively Irish debt crisis and Portugal debt crisis.
Note also that BCR, as expected, tends to over-smooth the dynamic dependence structure
during the financial crisis, proving to be not able to model the sharp change in the corre-
lations between USA NASDAQ and Economic Tigers during late-2008, and the two peaks
representing respectively Irish and Portugal debt crisis at the beginning of 2011.

5.3 National Stock Market Indices, Updating and Predicting

The possibility to quickly update the estimates and the predictions as soon as new data
arrive, represents a crucial aspect to obtain quantitative informations about the future
scenarios of the crisis in financial markets. To answer this goal, we apply the online updating
algorithm presented in Subsection 3.3, to the new set of weekly observations {yi}422i=416

from
02/07/2012 to 13/08/2012 conditioning on posterior estimates of the Gibbs sampler based
on observations {yi}415i=1

available up to 25/06/2012. We initialized the simulation smoother
algorithm with the last 8 observations of the previous sample.
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Figure 9: Top: For 3 selected National Stock Market Indices, respectively USA NASDAQ
(left), INDIA BSE30 (middle) and FRANCE CAC40 (right), plot of the ob-
served log returns (black) together with the mean and the 2.5% and 97.5% quan-
tiles of the marginal distribution (red) and conditional distribution given the
other 32 National Stock Market Indices (green) based on the posterior mean of
�⇤ = {µ(ti),⌃(ti), i = 416, . . . , 422} from the online updating procedure for the
new observations from 02/07/2012 to 13/08/2012. Bottom: boxplots of the one
step ahead prediction errors for the 33 National Stock Market Indices, where
the predicted values are respectively: (a) unconditional mean {ỹi+1

}421i=415

= 0,
(b) marginal mean of the one step ahead predictive distribution, (c) conditional
mean given the log returns of the other 32 NSI at i + 1 of the one step ahead
predictive distribution. Predictions for (b) and (c) are induced by the posterior
mean of {µ(ti+1|i),⌃(ti+1|i), i = 415, . . . , 421} of LAF.

Plots at the top of Figure 9 show, for 3 selected National Stock Market Indices, the new
observed log returns {yji}422i=416

(black) together with the mean and the 2.5% and 97.5%

quantiles of the marginal distribution (red) and conditional distribution (green) of yji|y�j
i

with y�j
i = {yqi, q 6= j}. We use standard formulas of the multivariate normal distribution

based on the posterior mean of the updated �⇤ = {µ(ti),⌃(ti), i = 416, . . . , 422} after 5,000
Gibbs iterations with a burn in of 500. This is su�cient for convergence based on examining
trace plots of the time-varying mean and covariance matrices. From these results, we can
clearly notice the good performance of our proposed online updating algorithm in obtaining
a characterization for the distribution of new observations. Also note that the multivariate
approach together with a flexible model for the mean and covariance, allow for significant
improvements when the conditional distribution of an index given the others is analyzed.
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To obtain further informations about the predictive performance of our LAF, we can
easily use our online updating algorithm to obtain h step-ahead predictions for �T+H|T =
{µ(tT+h|T ),⌃(tT+h|T ), h = 1, . . . , H}. In particular, referring to Durbin and Koopman

(2001), we can generate posterior samples of �T+H|T merely by treating {yi}T+H
i=T+1

as missing
values in the proposed online updating algorithm. Here, we consider the one step ahead
prediction (i.e. H = 1) problem for the new observations. More specifically, for each i from
415 to 421, we update the mean and covariance functions conditioning on informations up
to ti through the online algorithm and then obtain the predicted posterior distribution for
⌃(ti+1|i) and µ(ti+1|i) by adding to the sample considered for the online updating a last
column yi+1

of missing values.

Plots at the bottom of Figure 9, show the boxplots of the one step ahead prediction errors
for the 33 National Stock Market Indices obtained as the di↵erence between the predicted
value ỹj,i+1

and, once available, the observed log return yj,i+1

with i + 1 = 416, . . . , 422
corresponding to weeks from 02/07/2012 to 13/08/2012. In (a) we forecast the future
log returns with the unconditional mean {ỹi+1

}421i=415

= 0, which is what is often done
in practice under the general assumption of zero mean, stationary log returns. In (b) we
consider ỹi+1

= µ̂(ti+1|i), the posterior mean of the one step ahead predictive distribution of
µ(ti+1|i), obtained from the previous proposed approach after 5,000 Gibbs iteration with a
burn in of 500. Finally in (c) we suppose that the log returns of all National Stock Market
Indices except that of country j (i.e., yj,i+1

) become available at ti+1

and, considering
yi+1|i ⇠ Np(µ̂(ti+1|i), ⌃̂(ti+1|i)) with µ̂(ti+1|i) and ⌃̂(ti+1|i) posterior mean of the one step
ahead predictive distribution respectively for µ(ti+1|i) and ⌃(ti+1|i), we forecast yj,i+1

with
the conditional mean of yj,i+1|i given the other log returns at time ti+1

. Comparing boxplots
in (a) with those in (b) we can see that our model allows to obtain improvements also in
terms of prediction. Furthermore, by analyzing the boxplots in (c) we can notice how our
ability to obtain a good characterization of the time-varying covariance structure can play
a crucial role also in improving forecasting, since it enters into the standard formula for
calculating the conditional mean in the normal distribution.

6. Discussion

In this paper, we have presented a continuous time multivariate stochastic process for
time series to obtain a better characterization for mean and covariance temporal dynamics.
Maintaining simple conjugate posterior updates and tractable computations in moderately
large p settings, our model increases significantly the flexibility of previous approaches as it
captures sharp changes both in mean and covariance dynamics while accommodating heavy
tails. Beside these key advantages, the state space formulation enables development of a
fast online updating algorithm particularly useful for high frequency data.

The simulation studies highlight the flexibility and the overall better performance of
LAF with respect to the models for multivariate stochastic volatility most widely used
in practice, both when adaptive estimation techniques are required, and also when the
underlying mean and covariance structures do not show sharp changes in their dynamic.

The application to the problem of capturing temporal and geo-economic structure be-
tween the main financial markets demonstrates the utility of our approach and the im-
provements that can be obtained in the analysis of multivariate financial time series with
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reference to (i) heavy tails, (ii) locally adaptive mean regression, (iii) sharp changes in co-
variance functions, (iii) high dimensional data set, (iv) online updating with high frequency
data (v) missing values and (vi) predictions. Potentially further improvements are possible
using a stochastic di↵erential equation model that explicitly incorporates prior information
on dynamics.
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Appendix A. Posterior Computation

For a fixed truncation level L⇤ and a latent factor dimension K⇤ the detailed steps of the
Gibbs sampler for posterior computations are:

1. Define the vector of the latent states and the error terms in the state space equation
resulting from nGP prior for dictionary elements as

⌅i = [⇠
11

(ti), ⇠21(ti), . . . , ⇠L⇤K⇤(ti), ⇠
0
11

(ti), . . . , ⇠
0
L⇤K⇤(ti), A11

(ti), . . . , AL⇤K⇤(ti)]
T ,

⌦i,⇠ = [!i,⇠11 ,!i,⇠21 , . . . ,!i,⇠L⇤K⇤ ,!i,A11 ,!i,A21 , . . . ,!i,AL⇤K⇤ ]
T .

Given ⇥, {⌘i}Ti=1

, {yi}Ti=1

, ⌃
0

and the variances in latent state equations {�2⇠lk},
{�2Alk

}, with l = 1, . . . , L⇤ and k = 1, . . . ,K⇤; update {⌅i}Ti=1

by using the simulation
smoother in the following state space model

yi = [⌘Ti ⌦⇥, 0p⇥(2⇥K⇤⇥L⇤
)

]⌅i + ✏i, (9)

⌅i+1

= Ti⌅i +Ri⌦i,⇠, (10)

where the observation equation in (9) results by applying the vec operator in the latent
factor model yi = ⇥⇠(ti)⌘i + ✏i. More specifically recalling the property vec(ABC) =
(CT ⌦A)vec(B) we obtain

yi = vec(yi) = vec{⇥⇠(ti)⌘i + ✏i}
= vec{⇥⇠(ti)⌘i}+ vec(✏i)

= (⌘Ti ⌦⇥)vec{⇠(ti)}+ ✏i.

The state equation in (10) is a joint representation of the equations resulting from the
nGP prior on each ⇠lk(t) defined in (3). As a result, the (3⇥L⇤⇥K⇤)⇥(3⇥L⇤⇥K⇤) ma-
trix Ti together with the (3⇥L⇤⇥K⇤)⇥(2⇥L⇤⇥K⇤) matrix Ri reproduce, for each dic-
tionary element the state equation in (3) by fixing to 0 the coe�cients relating latent
states with di↵erent (l, k) (from the independence between the dictionary elements).
Finally, recalling the assumptions on !i,⇠lk and !i,Alk , ⌦i,⇠ is normally distributed with
E[⌦i,⇠] = 0 and E[⌦i,⇠⌦T

i,⇠] = diag(�2⇠11�i, . . . ,�
2

⇠L⇤K⇤ �i,�
2

A11
�i, . . . ,�2AL⇤K⇤ �i).
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2. Given {⌅i}Ti=1

sample each �2⇠lk and �2Alk
respectively from

�2⇠lk |{⌅i} ⇠ InvGa

 
a⇠ +

T

2
, b⇠ +

1

2

T�1X

i=1

(⇠0lk(ti+1

)� ⇠0lk(ti)�Alk(ti)�i)2

�i

!
,

�2Alk
|{⌅i} ⇠ InvGa

 
aA +

T

2
, bA +

1

2

T�1X

i=1

(Alk(ti+1

)�Alk(ti))2

�i

!
.

3. Similarly to ⌅i and ⌦i,⇠ let

 i = [ 
1

(ti), 2

(ti), . . . , K⇤(ti), 
0
1

(ti), . . . , 
0
K⇤(ti), B1

(ti), . . . , BK⇤(ti)]
T ,

⌦i, = [!i, 1 ,!i, 2 , . . . ,!i, K⇤ ,!i,B1 ,!i,B2 , . . . ,!i,BK⇤ ]
T ,

be the vectors of the latent states and error terms in the state space equation resulting
from nGP prior for  (t). Conditional on ⇥, {⇠(ti)}Ti=1

, {yi}Ti=1

, ⌃
0

, and the variances
in latent state equations {�2 k

}, {�2Bk
}, with k = 1, . . . ,K⇤; sample { i}Ti=1

from the
simulation smoother in the following state space model

yi = [⇥⇠(ti), 0p⇥(2⇥K⇤
)

] i +$i, (11)

 i+1

= Gi i + Fi⌦i, , (12)

$i ⇠ N(0,⇥⇠(ti)⇠(ti)T⇥T+⌃
0

). The observation equation in (11) results by marginal-
izing out ⌫i in the latent factor model with nonparametric mean regression yi =
⇥⇠(ti) (ti) + ⇥⇠(ti)⌫i + ✏i. Analogously to ⌅i, the state equation in (12) is a joint
representation of the state equation induced by the nGP prior on each  k(t) defined in
(4); where the (3⇥K⇤)⇥(3⇥K⇤) matrix Gi and the (3⇥K⇤)⇥(2⇥K⇤) matrix Fi are
constructed with the same goal of the matrices Ti and Ri in the state space model for
⌅i. Finally, ⌦i, ⇠ N

2⇥K⇤(0, diag(�2 1
�i,�2 2

�i, . . . ,�2 K⇤ �i,�
2

B1
�i,�2B2

�i, . . . ,�2BK⇤ �i)).

4. Given { i}Ti=1

update each �2 k
and �2Bk

respectively from

�2 k
|{ i} ⇠ InvGa

 
a +

T

2
, b +

1

2

T�1X

i=1

( 0
k(ti+1

)�  0
k(ti)�Bk(ti)�i)2

�i

!
,

�2Bk
|{ i} ⇠ InvGa

 
aB +

T

2
, bB +

1

2

T�1X

i=1

(Bk(ti+1

)�Bk(ti))2

�i

!
.

5. Conditioned on ⇥, ⌃
0

, yi, ⇠(ti) and  (ti), and recalling ⌫i ⇠ NK⇤(0, IK⇤); the standard
conjugate posterior distribution ⌫i|⇥,⌃0

, ỹi, ⇠(ti), (ti) is

NK⇤
�
(I + ⇠(ti)

T⇥T⌃�1

0

⇥⇠(ti))
�1⇠(ti)

T⇥T⌃�1

0

ỹi, (I + ⇠(ti)
T⇥T⌃�1

0

⇥⇠(ti))
�1

�
,

with ỹi = yi �⇥⇠(ti) (ti).
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6. Conditioned on ⇥, {⌘i}Ti=1

, {yi}Ti=1

, and {⇠(ti)}Ti=1

(obtained from ⌅i), the standard
conjugate posterior from which to update ��2

j is

��2

j |⇥, {⌘i}, {yi}, {⇠(ti)} ⇠ Ga

 
a� +

T

2
, b� +

1

2

TX

i=1

(yji � ✓j·⇠(ti)⌘i)
2

!
.

Where ✓j· = [✓j1, . . . , ✓jL⇤ ]

7. Given {⌘i}Ti=1

, {yi}Ti=1

, {⇠(ti)}Ti=1

and the hyperparameters � and ⌧ the shrinkage prior
on ⇥ combined with the likelihood for the latent factor model lead to the Gaussian
posterior

✓j·|{⌘i}, {yi}, {⇠(ti)},�, ⌧ ⇠ NL⇤

 
⌃̃✓⌘̃

T��2

j

" yj1
.
.
.

yjT

#
, ⌃̃✓

!
,

where ⌘̃T = [⇠(t
1

)⌘
1

, ⇠(t
2

)⌘
2

, . . . , ⇠(tT )⌘T ] and

⌃̃�1

✓ = ��2

j ⌘̃T ⌘̃ + diag(�j1⌧1, . . . ,�jL⇤⌧L⇤).

8. The Gamma prior on the local shrinkage hyperparameter �jl implies the standard
conjugate posterior given ✓jl and ⌧l

�jl|✓jl, ⌧l ⇠ Ga

 
2,

3 + ⌧l✓2jl
2

.

!

9. Conditioned on ⇥ and ⌧ , sample the global shrinkage hyperparameters from

#
1

|⇥, ⌧ (�1) ⇠ Ga

0

@a
1

+
pL⇤

2
, 1 +

1

2

L⇤X

l=1

⌧ (�1)

l

pX

j=1

�jl✓
2

jl

1

A ,

#h|⇥, ⌧ (�h) ⇠ Ga

0

@a
2

+
p(L⇤ � h+ 1)

2
, 1 +

1

2

L⇤X

l=h

⌧ (�h)
l

pX

j=1

�jl✓
2

jl

1

A ,

where ⌧ (�h)
l =

Ql
t=1,t 6=h #t for h = 1, . . . , L⇤.

10. Given the posterior samples from ⇥, ⌃
0

, {⇠(ti)}Ti=1

and { (ti)}Ti=1

the realization of
the LAF process for {µ(ti),⌃(ti), ti 2 T } conditioned on the data {yi}Ti=1

is

µ(ti) = ⇥⇠(ti) (ti),

⌃(ti) = ⇥⇠(ti)⇠(ti)
T⇥T + ⌃

0

.
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Appendix B. Online Updating Algorithm

Consider ⇥, ⌃
0

, {�2⇠lk}, {�
2

Alk
}, {�2 k

} and {�2Bk
} fixed at their posterior mean ⇥̂, ⌃̂

0

, {�̂2⇠lk},
{�̂2Alk

}, {�̂2 k
}, {�̂2Bk

} respectively, and let ⌅̂T , ⌃̂⌅T and  ̂T , ⌃̂ T be the sample mean and
covariance matrix of the posterior distribution respectively for ⌅T and  T obtained from
the posterior estimates of the Gibbs sampler conditioned on {yi}Ti=1

.

1. Given ⇥̂, ⌃̂
0

, {�̂2⇠lk}, {�̂
2

Alk
}, {⌘i}T+H

i=T+1

and {yi}T+H
i=T+1

update {⌅i}T+H
i=T+1

by using the
simulation smoother in the following state space model

yi = [⌘Ti ⌦ ⇥̂, 0p⇥(2⇥K⇤⇥L⇤
)

]⌅i + ✏i,

⌅i+1

= Ti⌅i +Ri⌦i,⇠,

where ⌅T+1

can be initialized from the standard one step ahead predictive distribution
for the state space model ⌅T+1

⇠ N(TT ⌅̂T , TT ⌃̂⌅T T
T
T +RTE[⌦T,⇠⌦T

T,⇠]R
T
T ).

2. Conditioned on ⇥̂, ⌃̂
0

, {�̂2 k
}, {�̂2Bk

}, {⇠(ti)}T+H
i=T+1

and {yi}T+H
i=T+1

sample { i}T+H
i=T+1

through the simulation smoother in the state space model

yi = [⇥̂⇠(ti), 0p⇥(2⇥K⇤
)

] i +$i,

 i+1

= Gi i + Fi⌦i, .

Similarly to ⌅T+1

,  T+1

⇠ N(GT  ̂T , GT ⌃̂ TG
T
T + FTE[⌦T, ⌦T

T, ]F
T
T ).

3. Given ⇥̂, ⌃̂
0

, {yi}, ⇠(ti) and  (ti), for i = T + 1, . . . , T + H, sample ⌫i from the
standard conjugate posterior distribution for ⌫i|⇥̂, ⌃̂0

, ỹi, ⇠(ti), (ti):

NK⇤

⇣
(I + ⇠(ti)

T ⇥̂T ⌃̂�1

0

⇥̂⇠(ti))
�1⇠(ti)

T ⇥̂T ⌃̂�1

0

ỹi, (I + ⇠(ti)
T ⇥̂T ⌃̂�1

0

⇥̂⇠(ti))
�1

⌘
,

with ỹi = yi � ⇥̂⇠(ti) (ti).

4. Compute the updated covariance {⌃(ti)}T+H
i=T+1

and mean {µ(ti)}T+H
i=T+1

from the usual
equations

⌃(ti) = ⇥̂⇠(ti)⇠(ti)
T ⇥̂T + ⌃̂

0

,

µ(ti) = ⇥̂⇠(ti) (ti).
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