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Abstract
High density clusters can be characterized by the connectedcomponents of a level setL(λ) =
{x : p(x) > λ} of the underlying probability density functionp generating the data, at some ap-
propriate levelλ ≥ 0. The complete hierarchical clustering can be characterized by a cluster tree
T =

⋃
λ L(λ). In this paper, we study the behavior of a density level set estimateL̂(λ) and cluster

tree estimatêT based on a kernel density estimator with kernel bandwidthh. We define two no-
tions of instability to measure the variability ofL̂(λ) andT̂ as a function ofh, and investigate the
theoretical properties of these instability measures.
Keywords: clustering, density estimation, level sets, stability, model selection

1. Introduction

A common approach to identifying high density clusters is based on using levelsets of the density
function (see, for instance, Hartigan, 1975; Rigollet and Vert, 2009).Let X1, . . . ,Xn be a random
sample from a distributionP on R

d with density p. For λ > 0 define the level setL(λ) = {x :

p(x) > λ}. Assume thatL(λ) can be decomposed into disjoint, connected setsL(λ) =
⋃N(λ)

j=1 Cj .
Following Hartigan (1975), we refer toCλ = {C1, . . . ,CN(λ)} as thedensity clustersat levelλ. We
call the collection of clusters

T =
⋃
λ≥0

Cλ

the cluster treeof the densityp. Note thatT does indeed have a tree structure: ifA,B ∈ T then
either, A ⊂ B, or B ⊂ A or A∩B = /0. The cluster tree summarizes the cluster structure of the
distribution; see Stuetzle and Nugent (2009).
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It is also possible to index the level sets by probability content. For 0< α < 1, define the level
setM(α) = L(λα), where

λα = sup{λ : P(L(λ))≥ α}.

If the density does not contain any jumps or flat parts, then there is a one-to-one correspondence
between the level sets indexed by the density level and the probability content. The cluster tree
obtained from the clusters ofM(α) for 0≤ α ≤ 1 is equivalent toT . Relabeling the tree in terms
of α may be convenient becauseα is more interpretable thanλ, but the tree is the same. Figure 1
shows the cluster tree for a density estimate of a mixture of three normals (usinga reference rule
bandwidth). The cluster tree’s two splits and subsequent three leaves correspond to the density
estimate’s modes. The tree is also indexed byλ, the density estimate’s height, on the left andα,
the probability content, on the right. For example, the second split corresponds toλ = 0.086 and
α = 0.257. We note here that determining the true clusters for even this seemingly simple univariate
distribution is not trivial for allλ; in particular, values ofλ near 0.04 and 0.09 will give ambiguous
results.

Figure 1: The cluster tree for a Gaussian kernel density estimate (normal reference rule bandwidth)
of a sample from the mixture(4/7)N(0,1)+ (2/7)N(3.5,1)+ (1/7)N(7,1); the tree is
indexed by bothλ (left) andα (right). The dashed curve indicates the true underlying
density. The gray lines indicateL(0.04), L(0.09).

In this paper we study some properties of clusters defined by density levelsets and cluster trees.
In particular, we consider their estimators based on a kernel density estimateand show how the
bandwidthh of the kernel affects the risk of these estimators. Then we investigate the notion of
stability for density-based clustering. Specifically, we propose two measures of instability. The
first, denoted byΞλ,n(h), measures the instability of a given level set. The second, denoted by
Γn(h), is a more global measure of instability.

906



STABILITY OF DENSITY-BASED CLUSTERING

Investigation of the stability properties of density clusters is the main focus of the paper. Stabil-
ity has become an increasingly popular tool for choosing tuning parametersin clustering; see von
Luxburg (2009), Lange et al. (2004), Ben-David et al. (2006), Ben-Hur et al. (2002), Carlsson and
Memoli (2010), Meinshausen and Bühlmann (2010), Fischer and Buhmann (2003), and Rinaldo
and Wasserman (2010). The basic idea is this: clustering procedures inevitably depend on one or
more tuning parameters. If we choose a good value of the tuning parameter,then we expect that
the clusters from different subsets of the data should be similar. While this idea sounds simple, the
reality is rather complex. Figure 2 shows a plot ofΞn andΓn for our example. We see thatΞλ,n(h)
is a complicated function ofh while Γn(h) is much simpler. Our results will explain this behavior.

Figure 2: Plots of the fixed-λ instability (top)Ξλ,n(h) for λ= 0.09 and of the total variation instabil-
ity Γn(h) (bottom) for the mixture distribution in Figure 1 as functions of the bandwidth
h.

Below we briefly describe our contributions.

• We consider plug-in estimates of the level setsL(λ) corresponding to fixed density levelsλ
and also to the level setsL(λα) corresponding to fixed probability contentsα using kernel
density estimators. We analyze the statistical properties of these plug-in estimates and for-
mulate conditions on the density of the data generating distribution and on the kernel that
guarantee accurate recovery of the level sets asn becomes large.
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• We formulate a notion of cluster stability of the level sets based on a splitting of thethe data
that quantifies the variability of the level set estimators we consider. We construct an esti-
mator of the cluster instability and analyze its performance asn become large, and argue that
stability can provide a guidance on the optimal choice of the bandwidth parameter. As a result
of our analysis, we are able to provide a rigorous characterization of thelevels sets for which
the the uncertainty is larger and, therefore, for which the cluster tree canbe estimated with
a smaller degree of accuracy. Our results suggest that the sample complexity for successful
reconstruction of the cluster tree may vary significantly depending on whether we estimating
a portion of the tree that is far removed from a branching region or not, and for those portion
of the tree we provide some rates.

• We formulate and analyze a stronger notion of cluster stability that is based onthe total
variation distance between kernel density estimates computed over different data subsamples.
This second kind of stability is more global and has natural and interesting connections with
the problem of optimally estimating a density inL1 norm.

After the writing of the first draft of this paper we learned of the interestingand relevant contri-
butions by Chaudhuri and Dasgupta (2010), Kpotufe and von Luxburg (2011) and Steinwart (2011)
who all consider the problem of estimating the cluster tree. Our results provide a different per-
spective on this issue as we concern ourselves with quantifying, based on stability criteria, the
uncertainty of the cluster tree estimate. Furthermore, these papers only characterize the optimal
scaling of parameters to guarantee cluster tree recovery and do not provide a data-driven way to
choose these parameters. In this paper, we investigate stability as a means for data-adaptive choice
of parameters such as the kernel bandwidth.

The paper is organized as follows. In Section 2 we describe the assumptions on the density
and recall some facts about kernel density estimation. In Section 3 we construct plug-in estimates
L̂(λ) of the level setL(λ), T̂ of the cluster treeT , andM̂(α) of the level set indexed by probability
contentM(α). In Section 4 we define and study a notion of the stability ofL̂(λ) and extend it tôT .
We also consider an alternative version of our results when the level setsare indexed by probability
content. We then describe another notion of stability of cluster trees based on total variation that
leads to a constructive procedure for selecting the kernel bandwidth. In Section 5 we consider some
numerical examples. Section 6 contains a discussion of the results and the proofs are in Section
A. Throughout, we use symbols likec,c1,c2, . . . ,C,C1,C2, . . . , to denote various positive constants
whose value can change in different expressions.

2. Preliminaries

In this section we introduce some notation, state the assumptions on the density wewill be using
throughout and review some useful facts about kernel density estimation.

2.1 Notation

For x∈ R
d, let ‖x‖ denote its Euclidean norm. LetB(x,ε) = {y : ||x−y|| ≤ ε} ⊂ R

d denote a ball
centered atx with radiusε. For two setsA andB in R

d, their Hausdorff distance is

d∞(A,B) = inf{ε : A⊂ (B⊕ ε) and B⊂ (A⊕ ε)},
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whereA⊕ ε =
⋃

x∈AB(x,ε), and

A∆B= (A∩Bc)
⋃

(Ac∩B)

denotes the symmetric set difference. Finally, we letvd =
πd/2

Γ( d
2+1)

be the volume of thed-dimensional

Euclidean unit ball.
For sequences of real numbers{an} and{bn}, we writean = O(bn) if there exists aC> 0 such

that |an| ≤ C|bn| for all n large enough, and we will writean = ω(bn) if there exists a constant
C > 0 such that|an| ≥C|bn| for all n large enough. When{an} and{bn} are sequences of random
variables described by a probability measureP, we will write an = OP(bn) if, for any ε > 0, there
exists a constantC> 0 such that|an| ≤C|bn| with P-probability at least 1−ε for all n large enough.

We will be considering samples ofn independent and identically distributed random vectors
from an unknown probability measureP on R

d with Lebesgue densityp. If X andY are such
samples, we will denote withPX,Y the probability measures associated to them and withEX,Y the
corresponding expectation operator. Thus, ifA is an event depending onX andY, we will write
PX,Y(A) for its probability. Finally, for a sampleX = (X1, . . . ,Xn), we will denote withP̂X the
empirical measure associated with it; explicitly, for any measurable setA⊂ R

d,

P̂X(A) =
1
n

n

∑
i=1

I(Xi ∈ A).

2.2 Assumptions

We will use the following assumptions on the densityp and its local behavior around a given density
level λ.

(A0) Compact Support -The supportSof p is compact.

(A1) Lipschitz Density -Assume that

p∈ Σ(A)≡
{

p : |p(x)− p(y)| ≤ A||x−y||, for all x,y∈ S

}

for someA> 0.

(A2) Local density regularity atλ- For a given density level of interestλ, there exist constants
0< κ1 ≤ κ2 < ∞ and 0< ε0 such that, for allε < ε0,

κ1ε ≤ P({x: |p(x)−λ| ≤ ε})≤ κ2ε.

It is possible to formulate condition (A2) more generally in terms of powers ofε, that isεa.
However, as argued in Rinaldo and Wasserman (2010), the above statement typically holds with
a= 1 for almost allλ.

Assumptions (A1) and (A2) impose some mild regularity conditions on the density:(A1) im-
plies that the density cannot change drastically anywhere, while (A2) impliesthat the density cannot
be too flat or steep locally around the level set. In particular, (A2) is necessary to ensure that small
error in estimating the density level does not translate into a huge error in localizing the level set.
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We remark that this assumption is an extension of the Tsybakov noise-margin condition for classifi-
cation (see Mammen and Tsybakov, 1999; Tsybakov, 2004) to the densitylevel set context and has
been used in other work on density level-set estimation, such as Polonik (1995), Tsybakov (1997),
Cuevas et al. (2006), Rigollet and Vert (2009), Singh et al. (2009) and Rinaldo and Wasserman
(2010). Finally notice that (A0) and (A1) together imply that the densityp is bounded by some
positive constantpmax < ∞. These assumptions are stronger than necessary, but they simplify the
proofs. Notice in particular, that assumptions (A1) and (A2) each rule out the case of sharp clusters,
in which S is the disjoint union of a finite number of compact sets over whichp is bounded from
below by a positive constant. Finally, we remark that some of our results will only require a subset
of these assumptions.

2.3 Estimating the Density

To estimate the densityp based on the i.i.d. sampleX = (X1, . . . ,Xn), we use the kernel density
estimator

p̂h,X(u) =
1
n

n

∑
i=1

1
hd K

(
u−Xi

h

)
, u∈ R

d,

where the kernelK is a symmetric, non-negative function with compact support such that∫
Rd K(z)dz= 1 andh> 0 is the bandwidth. In some results we will consider specifically thespher-

ical kernel K(u) =
IB(0,1)(u)

vd
, u∈ R

d, whereIB(0,1)(·) denotes the indicator function of the Euclidean
ball B(0,1).

For h > 0, let ph(u) = EX[p̂h,X(u)]. Note thatph is the Lebesgue density of the probability
measure

Ph = P∗Kh,

where∗ denotes convolution of probability measures andKh denotes the probability measure of a
random variable with densityKh(z) = h−dK(z/h), z∈ R

d.
We note that the compactness ofK and assumption (A0) onp imply that the support ofPh is

compact, while assumption (A1) onp further yields thatph ∈ Σ(A), both statements holding for all
h≥ 0 (for a formal proof of the second claim, see the end of the proof of Lemma5). Below, we will
be concerned with given values of the density levelλ and of the probability parameterα ∈ (0,1)
and will impose the following assumptions.

(B2) Local density regularity atλ- For a given density levelλ, there exist positive constantsκ′
1 ≤

κ′
2, ε0 andH bounded away from 0 and∞, such that, for all 0≤ ε < ε0,

κ′
1ε ≤ inf

0≤h≤H
P({x: |ph(x)−λ| ≤ ε})≤ sup

0≤h≤H
P({x: |ph(X)−λ| ≤ ε})≤ κ′

2ε.

(B3) Local density regularity atα- For a given probability valueα, there exist positive constants
κ3, η0 andH bounded away from 0 and∞, such that, for all 0≤ η < |η0|,

sup
0≤h≤H

d∞(Mh(α),Mh(α+η))≤ κ3|η|,

whereMh(α) = {u : ph(u)> λα}.
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Conditions (B2) and (B3) are used only for some specific results from Section 4.1 and Section
3.2, respectively. This will be explicitly mentioned in the statement of such results. In particular,
condition (B2) is needed in order to explicitly state the behavior of the instability measure we define
below. We conjecture that (B2) follows from condition (A2) on the true density p and using kernels
with compact support. This assumption holds for all density levels that are not too close to a local
maxima or minima of the density. Assumption (B3) characterizes the regularity of the level sets of
ph and essentially states that the boundary of these level sets is well-behavedand not space-filling
(see Tsybakov, 1997; Singh et al., 2009, for analogous conditions).Both assumptions (B2) and (B3)
could be stated more generally by assuming some uniformity overλ andα respectively, but for the
sake of readability we state them as point-wise conditions.

Our analysis depends crucially on the quantity‖p̂h,X − ph‖∞ = supu∈Rd |p̂h,X(u)− ph(u)|, for
which we use a probabilistic upper established by Giné and Guillou (2002), to which the reader is
referred for details. To this end, we will make the following assumption on the kernelK:

(VC) The class of functions

F =

{
K

(
x−·

h

)
,x∈ R

d,h> 0

}

satisfies, for some positive numbersV andv,

sup
P

N(Fh,L2(P),ε‖F‖L2(P))≤
(

V
ε

)v

,

whereN(T;d;ε) denotes theε-covering number of the metric space(T,d), F is the envelope
function ofF and the supremum is taken over the set of all probability measuresP on R

d.
The quantitiesV andv are called the VC characteristics ofF .

Assumption (VC) holds for a large class of kernels, including, any compactly supported polynomial
kernel and the Gaussian kernel. The lemma below follows from Giné and Guillou (2002) (see also
Rinaldo and Wasserman, 2010).

Lemma 1 Assume that the kernel satisfies the VC property, and that

sup
t∈Rd

sup
h>0

∫
Rd

K2
h(t −x)dP(x)< B< ∞.

There exist positive constants K1, K2 and C, which depends on B and the VC characteristic of K
such that the following hold:

1. For everyε > 0 and h> 0, there exists n(ε,h) such that, for all n≥ n(ε,h)

PX (‖p̂h,X − ph‖∞ > ε)≤ K1e−K2nε2hd
. (1)

2. Let hn → 0 as n→ ∞ in such a way that

nhd
n

logn
→ ∞. (2)

Then, there exist a constant K3 and a number n0 ≡ n0(d,K3) such that, settingεn =
√

K3 logn
nhd

n
,

PX (‖p̂hn,X − phn‖∞ > εn)≤
1
n
, (3)

for all n ≥ n0(d,K3).
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The numbers n(ε,h) and n0 depend also on the VC characteristic of K and on B. Furthermore,
n(ε,h) is decreasing in bothε and h.

This result requires virtually no assumptions onp and only minimal assumptions on the kernel,
which are satisfied by the most commonly used kernels.

The constraint in Equation (2), which in general cannot be dispensed with, has a subtle but
important implication for our later results on instability. In fact, it implies that the bandwidth pa-

rameterhn is only allowed to vanish at a slower rate than
(

logn
n

)1/d
. As a result, our measures

of instability defined in Sections 4.1 and 3.2 can be reliably estimated for values of the bandwidth

h ≫
(

logn
n

)1/d
. Indeed, the threshold value

(
logn

n

)1/d
is of the same order of magnitude of the

maximal spacing among the points in a sample of sizen from P (see, for instance, Penrose, 2003).

3. Estimating the Level Set and Cluster Tree

For a given density levelλ and kernel bandwidthh, the estimated level set iŝLh,X(λ)= {x : p̂h,X(x)>
λ}. The clusters (connected components) ofL̂h,X(λ) are denoted bŷCh,λ and the estimated cluster
tree is

T̂h =
⋃
λ≥0

Ĉh,λ.

3.1 Fixedλ

We measure the quality of̂Lh,X(λ) as an estimator ofL(λ) using the loss function

L(h,X,λ) =
∫

L(λ)∆L̂h,X(λ)
p(u)du,

where we recall that∆ denotes the symmetric set difference. The performance of plug-in estimators
of density level sets has been studied earlier, but we state the results herein a form that provides
insights into the performance of instability measures proposed in the next section.

Theorem 2 Assume that the density p satisfies conditions (A0) and (A1) and let D=
∫ ‖z‖K(z)dz

(which is finite by compactness of K). For any sequence hn = ω((logn/n)1/d), let

εn =

√
K3 logn

nhd
n

and
rhn,εn,λ = P({u: |p(u)−λ|< ADhn+ εn}) .

Then, for all n≥ n(n0,λ,A,D,d),

PX
(
L(hn,X,λ)≤ rhn,εn,λ

)
≥ 1− 1

n
.

If assumption (A2) holds for the density levelλ, then for all n≥ n(n0,λ,A,D,ε0,d),

PX

(
L(hn,X,λ)≤ κ2(ADhn+ εn)

)
≥ 1− 1

n
.
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The following corollary characterizes the optimal scaling of the bandwidth parameterhn that
balances the approximation and estimation errors.

Corollary 3 The value of h that minimizes the bound onL is

h∗n = c

(
n

logn

)− 1
d+2

,

where c> 0 is an appropriate constant.

3.2 Fixedα

Often it is more natural to index the density clusters by the probability mass contained in the cor-
responding high-density regions, instead of the associated density levels. The level set estimator
indexed by the probability contentα ∈ (0,1) is given as

M̂h,X(α) = L̂h,X (̂λh,α,X),

where

λ̂h,α,X = sup

{
λ : P̂X({u : p̂h,X(u)> λ})≥ α

}
(4)

and p̂h,X is the kernel density estimate computed using the dataX with bandwidthh. This estimator
was studied by Cadre et al. (2009), though using different techniquesand in different settings than
ours.

Let α ∈ (0,1) be fixed and define

λh,α = sup{λ : P(ph(X)> λ)≥ α}.

We first show that the deviation|λh,α −λα| is of orderh, uniformly overα, under the very general
assumption that the true densityp is Lipschitz.

Lemma 4 Assume the true density p satisfies the conditions (A0) and (A1). Then, forany h> 0,

sup
α∈(0,1)

|λh,α −λα| ≤ ADh,

where D=
∫
Rd ‖z‖K(z)dz.

Remark: More generally, ifp is assumed to be Ḧolder continuous with parameterβ then, under
additional mild integrability conditions onK, it can be shown that|λh,α −λα| = O(hβ), uniformly
in α.

The following lemma bounds the deviation of|̂λh,α,X −λh,α|.

Lemma 5 Assume that the true density satisfies (A0)-(A1) and the density level setsof ph corre-
sponding to probability contentα satisfy (B3). Then, for any0< h≤ H, anyε < η0−1/n, and all
n≥ n(ε,h),

PX

(
|̂λh,α,X −λh,α| ≥ ε(Aκ3+1)+Aκ3/n

)
≤ K1e−K2nhdε2

+8ne−nε2/32, (5)

where A is the Lipschitz constant andκ3 is the constant in (B3).
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Using Lemma 4 and Lemma 5, we immediately obtain the following bound on the deviation of
the estimated level̂λh,α,X from the true density levelλα corresponding to probability contentα.

Corollary 6 Under the same conditions of Lemma 5,

PX

(
|̂λh,α,X −λα| ≥ ADh+ ε(Aκ3+1)+Aκ3/n

)
≤ K1e−K2nhdε2

+8ne−nε2/32.

We now study the performance of the level set estimator indexed by probability content using
the following loss function

L∗(h,X,α) = P(M(α)∆M̂h,X(α)) =
∫

M(α)∆M̂h,X(α)
p(u)du.

Theorem 7 Assume that the density p satisfies conditions (A0) and (A1) and the level set of ph

indexed by probability contentα satisfies (B3). For any sequence hn = ω((logn/n)1/d), let

εn =

√
K3 logn

nhd
n

and set
C1,n = ADhn+ εn, C2,n = ADhn+(Aκ3+1)εn+Aκ3/n

and
rhn,εn,α = P({u: |p(u)−λα| ≤C1,n+C2,n}) .

Then, for hn = ω((logn/n)1/d) and hn ≤ H, we have for all n≥ n(n0,η0,K3,d),

PX(L
∗(hn,X,α)≤ rhn,εn,α)≥ 1− 2

n
.

In particular, if assumption (A2) also holds for density levelλα, then, for all n≥ n(n0,η0,K3),

PX (L
∗(hn,X,α)≤ κ2(C1,n+C2,n))≥ 1− 2

n
.

Corollary 8 The value of h that minimizes the upper bound onL is

h∗n,α = c

(
n

logn

)− 1
d+2

where c> 0 is a constant.

4. Stability

The lossL is a useful theoretical measure of clustering accuracy. Balancing the terms in the upper
bound on the loss gives an indication of the optimal scaling behavior ofh. But estimating the loss
is difficult and the value of the constantc in the expression forh∗n is unknown. Thus, in practice,
we need an alternative method to determineh. Instead of minimizing the loss, we consider using
the stability ofL̂h,X(λ) andT̂h to chooseh. As we discussed in the introduction, stability ideas have
been used for clustering before. But the behavior of stability measures can be quite complicated. For
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example, in the context of k-means clustering and related methods, Ben-David et al. (2006) showed
that minimizing instability leads to poor clustering. On the other hand, Rinaldo and Wasserman
(2010) showed that, for density-based clustering, stability-based methods can sometimes lead to
good results. This motivates us to take a deeper look at stability for density clustering. In this
section, we investigate two measures of cluster stability.

The first measure of cluster stability we analyze is thelevel set stability, which we denote, for a
fixed density levelλ and a varying bandwidth valueh, with Ξλ,n(h). Assuming for convenience that
the sample size is 3n, we randomly split the data into three pieces(X,Y,Z) each of sizen. Let p̂h,X

be the density estimator constructed fromX and p̂h,Y be the density estimator constructed fromY.
The sample instability statistic is

Ξλ,n(h) = P̂Z(L̂h,X(λ)∆L̂h,Y(λ)), (6)

whereP̂Z denote the empirical measure induced byZ. The measureΞλ,n(h) is the stability of a fixed
level set, as a function ofh. We will see thatΞn has surprisingly complex behavior. See Figure
2. First of all,Ξn(0) = 0. This is an artifact and is due to the fact that the level sets get small as
h→ 0. Ash increases,Ξλ,n(h) first increases and then gets smaller. Once it gets small enough, the
level sets have become stable and we have reached a good value ofh. However, after this point,
Ξλ,n(h) continues to rise and fall. The reason is that, ash gets larger,ph(x) decreases. Every time
we reach a value ofh such that a mode ofph has heightλ, Ξλ,n(h) will increase. Ξλ,n(h) is thus
a non-monotonic function whose mean and variance become large at particular values ofh. This
behavior will be described explicitly in the theory and simulations that follow. Asa practical matter,
sinceΞλ,n(h) vanishes for very small values ofh, we recommend to exclude all values ofh before
the first local maximum ofΞλ,n(h). Then, a reasonable choice ofh is the smallest valueh∗ for
which Ξλ,n(h) remains less than some maximal pre-specified probability valueβ for the empirical
instability, such as 5% or 10%, for allh≥ h∗. The parameterβ is an entirely subjective quantity to
be chosen by the practitioner, akin to the type-I-error parameter in standard hypothesis testing, and
quantifies the maximal amount of empirical instability that one is willing to accept.

The second measure of cluster stability we consider is thetotal variationstability, denoted, for a
varying value of the bandwidthh, asΓn(h). Assuming again for simplicity that the sample is of size
2n, we randomly split the data into two parts(X,Y) of equal sizesn. Then, for a given bandwidth
h, we compute separately on each of the two samplesX andY the kernel density estimateŝph,X and
p̂h,Y, respectively. The total variation stability is defined to be the quantity

Γn(h)≡ sup
B∈B

∣∣∣∣
∫

B
p̂h,X(u)du−

∫
B

p̂h,Y(u)du

∣∣∣∣=
1
2

∫
|p̂h,X(u)− p̂h,Y(u)|du, (7)

where the supremum is over all Borel setsB. Note that the total variation stability is a function ofh.
Unlike the level set stability, the total variation stability is a global measure of cluster stability in the
sense that it takes into account the difference betweenp̂h,X and p̂h,Y overall all measurable sets, not
just over the level sets. Thus, total variation stability is a much stronger notionof cluster stability.
In fact, whenΓn(h) is small, the whole cluster tree is stable. It turns out that the behavior ofΓn(h)
is much simpler. It is monotonically decreasing as a function ofh. In this case we recommend
choosingh to be the smallest bandwidth valueh∗ for which the instability is no larger than a pre-
specified probability valuesβ ∈ (0,1), that isΓn(h∗)≤ β.

The motivation for choosing the bandwidth parameterh in the way described above is as follows.
We cannot estimate loss exactly. But we can use the instability to estimate variability.Our choice of
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h corresponds to making the bias as small as possible while maintaining control over the variability.
This is very much in the spirit of the Neyman-Pearson approach to hypothesis testing where one tries
to make the power of a test as large as possible while controlling the probability of false positives.
Put another way,Ph = P∗Kh has a blurred version of the shape information inP. We are choosing
the smallest h such that the shape information in Ph can be reliably recovered.

Before getting into the details, which turn out to be somewhat technical, here isa very loose
description of the results. For largeh, Γn(h)≈ 1/

√
nhd. On the other hand,Ξλ,n(h) tends to oscillate

up and down corresponding to the presence of modes of the density. In regions where it is small, it
also behaves like 1/

√
nhd.

4.1 Level Set Stability

For the analysis of the level set stability we focus on a single level set indexed by some density level
valueλ ≥ 0. Consider two independent samplesX = (X1, . . . ,Xn) andY = (Y1, . . . ,Yn) and set

ξλ,n(h) = EXY

(
P
(

L̂h,X(λ)∆L̂h,Y(λ)
))

.

The quantityξλ,n(h) measures the expected disagreement between level sets based on two samples
as a function of the bandwidthh.

The definition ofξλ,n depends onP which, of course, we do not know. To estimateξλ,n(h) we
use the sample instability statistic defined above in Equation (6), where it was assumed for simplicity
that the sample size is 3n and the data were randomly split into three pieces(X,Y,Z) each of sizen.
It is immediate to see that the expectation of the sample instability statistic is preciselyξλ,n(h), that
is

ξλ,n(h) = EX,Y,Z[Ξλ,n(h)].

Note that since we are using the empirical distributionP̂Z, the sample instability can be rewritten
as

Ξλ,n(h) =
1
n

n

∑
i=1

I(Zi ∈ (L̂h,X(λ)∆L̂h,Y(λ)))

=
1
n

n

∑
i=1

I(sign(p̂h,X(Zi)−λ) 6= sign(p̂h,Y(Zi)−λ)).

The above equation show that, for a fixedλ, Ξλ,n(h) is obtained as the fraction of the observations
in Z wherep̂h,X(Zi)< λ < p̂h,Y(Zi) or p̂h,X(Zi)> λ > p̂h,Y(Zi). This representation is closely tied to
the use of thesample level setsto construct the cluster tree (Stuetzle and Nugent, 2009) where each
level set is represented only by the observations associated with its connected components rather
than the feature space. Using the empirical distributionP̂Z also removes the need to determine the
exact shape of the level sets of the density estimate. The top graph of Figure 2 shows the sample
instability as a function ofh for λ = 0.09 for our example distribution depicted in Figure 1. Note
that the instability initially drops and then oscillates before dropping to zero ath= 7.08, indicating
the multi-modality seen in Figure 1. More discussion of this example is in Section 5.

As mentioned at the end of section 2.3, for values ofh≪
(

logn
n

)1/d
, the kernel density estimate

p̂h is no longer a reliable estimate ofph. The following simple but important boundary properties of
Ξn andξ describes the behavior of the empirical and expected instability whenh is either too small
or too large.
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Lemma 9 For fixed n andλ > 0,

lim
h→0

ξλ,n(h) = lim
h→∞

ξλ,n(h) = lim
h→0

Ξλ,n(h) = lim
h→∞

Ξλ,n(h) = 0,

where the last two limits occurs almost surely. In particular,ξλ,n(h) = O(hd), as h→ 0.

We now study the behavior of the mean functionξλ,n(h). Let u ∈ R
d, h > 0 andε > 0, and

define
πh(u) = PX(p̂h,X(u)> λ) and Uh,ε = {u: |ph(u)−λ|< ε}. (8)

Theorem 10 Let u∈ R
d, h> 0 andε > 0.

1. The following identity holds:

ξλ,n(h) = 2
∫
Rd

πh(u)(1−πh(u))dP(u).

2. Also, for all n≥ n(ε,h),

rh,ε Ah,ε ≤ ξλ,n(h)≤ rh,ε Ah,ε +2K1e−K2nhdε2
,

where rh,ε = P(Uh,ε),

Ah,ε = sup
u∈Uh,ε

2πh(u)(1−πh(u))

and
Ah,ε = inf

u∈Uh,ε
2πh(u)(1−πh(u)).

Part 2 of the previous theorem implies that the behavior ofξ is essentially captured by the
behavior of the probability contentrh,ε. This quantity is, in general, a complicated function of both
h andε. While it is easy to see that, for fixedh and a sufficiently well-behaved densityp, rh,ε → 0 as
ε → 0, for fixedε, rh,ε can instead be a non-monotonic function ofh. See, for example, the bottom
right plot in Figure 3, which displays the valuesrh,ε as a function ofh ∈ [0,4.5] and forε equal
to 0.02, 0.05 and 0.1 for the mixture density of Figure 1. In particular, the fluctuations ofrh,ε as
a function ofh are related to the values ofh for which the critical points ofph are in the interval
[λ− ε,λ+ ε]. The main point to notice is thatrh,ε is a complicated, non-monotonic function ofh.
This explains whyΞn(h) is non-monotonic inh.

We now provide an upper and lower bound on the values ofAh,ε andAh,ε, respectively, under the
simplifying assumption thatK is the spherical kernel. Notice that, whileAh,ε remains bounded away
from ∞ for any sequenceεn → 0 andhn = ω(n−1/d), the same is not true forAh,ε, which remains
bounded away from 0 as long asεn = Θ( 1

nhd
n
) andhn = ω(n−1/d).

Lemma 11 Assume that K is the spherical kernel and let0< ε ≤ λ/2. For a givenδ ∈ (0,1), let

h(δ,ε) = sup
{

h : sup
u∈Uh,ε

P(B(u,h))≤ 1−δ
}
.
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Figure 3: Top plots and left bottom plot: two densitiesph corresponding to the mixture distribution
of Figure 1 forh= 0, the true density (in black) andh= 4.5 (in red); the horizontal lines
indicate the level set value ofλ = 0.09,λ+ ε andλ− ε, for ε equal to 0.02, 0.05 and 0.1.
Right bottom plot: probability content valuesrh,ε as a function ofh∈ [0,4.5] for the three
values ofε.

Then, for all h≤ h(δ,ε),

Ah,ε ≤ 2

(
1−Φ

(
−
√

nhdε
2vd

3λ

)
+

C(δ,λ)√
nhd

)2

,

and

Ah,ε ≥ 2

(
1−Φ

(√
nhdε

2vd

δλ

)
− C(δ,λ)√

nhd

)2

,

whereΦ denote the cumulative distribution function of a standard normal random variable and

C(δ,λ) =
33
4

√
2

δvdλ
.
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The dips in Figure 2 correspond to values for whichph does not have a mode at heightλ. In this
case, (B2) holds and we haverh,ε = Θ(ε). Now choosingε ≈

√
logn/(nhd) for the upper bound

andε ≈
√

1/(nhd) for the lower bound, we have thatAh,ε andAh,ε are bounded, and the theorem
yields √

C1

nhd ≤ ξλ,n(h)≤
√

C2 logn
nhd .

Next we investigate the extent to whichΞλ,n(h) is concentrated around its meanξλ,n(h) =
E[Ξλ,n(h)]. We first point out that, for any fixedh, the variance of the instability can be bounded by
ξλ,n(h)(1/2−ξλ,n(h)).

Lemma 12 For any h> 0,

Var[Ξλ,n(h)]≤ ξλ,n(h)

(
n+1
2n

−ξλ,n(h)

)
≈ ξλ,n(h)

(
1
2
−ξλ,n(h)

)
.

The previous results highlight the interesting feature that the empirical instability will be less
variable around the values ofh for which the expected instability is very small (close to 0) or very
large (close to 1/2).

Lemma 13 Suppose that h> 0, ε > 0, η ∈ (0,1) and t> 0 are such that

t(1−η)≥ rh,ε +2K1e−K2nε2hd
, (9)

where rh,ε = P(Uh,ε). Then, for all n≥ n(ε,h),

PX,Y,Z
(∣∣Ξλ,n(h)−ξλ,n(h)

∣∣> t
)
≤ e−ntCη +2K1e−nK2hdε2

where

Cη = 9(1−η)

(
3−2η

3(1−η)
−
√

3−η
3(1−η)

)
.

4.2 Stability of Level Sets Indexed by Probability Content

As in the fixed-λ case, we assume for simplicity that the sample has size 3n and split it equally in
three parts:X, Y andZ. We now define the fixed-α instability as

Ξα,n(h) = P̂Z(M̂h,X(α)∆M̂h,Y(α)),

where
M̂h,X(α) = {x: p̂h,X(x)> λ̂h,α,X},

with λ̂h,α,X estimated as in (4) using the points inX; we similarly estimateM̂h,Y(α). As before,P̂Z

denote the empirical measure arising fromZ. Again, we use the observations to representM̂h,X,
M̂h,Y as done forΞλ,n(h) for a fixedλ. Examples ofΞα,n(h) as a function ofh,α can be seen in
Section 5.

The expected instability is
ξα,n(h) = EX,Y,Z[Ξα,n(h)].

We begin by studying the behavior of the expected instability.
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Theorem 14 Let u∈ R
d, h> 0 andε > 0, and set

πh,α(u) = PX(p̂h,X(u)> λ̂h,α,X) and Uh,2ε,α = {u: |ph(u)−λα,h| ≤ 2ε}.
1. The expected instability can be expressed as

ξα,n(h) = EX,Y,Z[Ξα,n(h)] = 2
∫
Rd

πh,α(u)(1−πh,α(u))dP(u).

2. Letε < η0−1/n andε̃ = ε(Aκ3+1)+Aκ3/n. Then, for all n≥ n(ε,h),

P(Uh,2̃ε,α)Ah,ε,α ≤ ξλ,n(h)≤ P(Uh,2̃ε,α)Ah,ε,α +4K1e−K2nhdε2
+16ne−nε2/32,

where
Ah,ε,α = sup

u∈Uh,2̃ε,α

2πh,α(u)(1−πh,α(u))

and
Ah,ε,α = inf

u∈Uh,2̃ε,α
2πh,α(u)(1−πh,α(u)).

3. Assume in addition that K is the spherical kernel and thatε̃ ≤ infh
λh,α

4 . For a givenδ ∈ (0,1),
let

h(δ,ε,α) = sup
{

h : sup
u∈Uh,̃ε,α

P(B(u,h))≤ 1−δ
}
.

Then, for all h≤ h(δ,ε,α),

Ah,ε,α ≤ 2

(
1−Φ

(
−3

√
nhdε̃

2vd

3λh,α

)
+

C(δ,λh,α)√
nhd

+4K1e−K2nhdε2
+16ne−nε2/32

)2

,

and

Ah,ε,α ≥ 2

(
1−Φ

(
3
√

nhdε̃
2vd

δλh,α

)
− C(δ,λh,α)√

nhd
−4K1e−K2nhdε2 −16ne−nε2/32

)2

,

whereΦ denote the cumulative distribution function of a standard normal random variable
and

C(δ,λh,α) =
33
4

√
2

δvdλh,α
.

As for the fluctuations ofΞα,n(h) around its mean, we can easily obtain a result similar to the
one we obtain in Lemma 13.

Lemma 15 Let h> 0, ε > 0, η ∈ (0,1) and t be such that

t(1−η)≥ rh,ε,α +4K1e−K2nhdε2
+16ne−nε2/32,

where rh,ε,α = P({u: |ph(u)−λh,α| ≤ 2̃ε}), with ε̃ = ε(Aκ3+1)+Aκ3/n. Then, for all n≥ n(ε,h),

PX,Y,Z (|Ξα,n(h)−ξα,n(h)|> t)≤ e−ntCη +4K1e−K2nhdε2
+16ne−nε2/32,

where

Cη = 9(1−η)

(
3−2η

3(1−η)
−
√

3−η
3(1−η)

)
.

The proof is basically the same as the proof of Lemma 13, except that we have to restrict our
analysis to the event described in Equation (29). We omit the details.
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4.3 Stability for Density Cluster Trees

The stability properties of the cluster tree can be easily derived from the results we have established
so far. To this end, for a fixedh> 0, define the level set ofph

Lh(λ) = {u : ph(u)> λ}

and recall its estimator based on the kernel density estimatorp̂h,X:

L̂h,X(λ) = {u: p̂h,X(u)> λ}.

Let Nh(λ), N̂h,X(λ) be the number of connected components of the setsLh(λ) andL̂h,X(λ), respec-
tively. Notice that̂Lh,X(λ) is a random set. Also, denote withC1, . . . ,CNh(λ) andĈ1, . . . ,ĈN̂h,X(λ) the

connected components ofLh(λ) andL̂h,X(λ), respectively.
When building cluster trees, the value of the bandwidthh is kept fixed and the values of the

level λ vary instead. It has been observed empirically (see, for instance Stuetzle and Nugent, 2009)
that the uncertainty of cluster tree estimators depend on the particular value of λ at which the tree
is observed. In order to characterize the behavior of the cluster tree, we propose the following
definition, which formalize the case in which the clustersC1, . . . ,CNh(λ′) persist for eachλ′ in a
neighborhood ofλ.

Definition 16 A level set valueλ is (h,ε)-stable, withε > 0 and h> 0, if

Nh(λ) = Nh(λ′), ∀λ′ ∈ (λ− ε,λ+ ε)

and, for anyλ− ε < λ1 < λ2 < λ+ ε,

Ci(λ2)⊆Ci(λ1), ∀i = 1, . . . ,Nh(λ).

If the levelλ is (h,ε)-stable, then the cluster tree estimate at levelλ is an accurate estimate of the
true cluster tree, in a sense made precise by the following result, whose proof follows easily from
the proofs of our previous results and Lemma 2 in Rinaldo and Wasserman (2010).

Lemma 17 If λ is (h,ε)-stable, then, for all large n≥ n(ε,λ), with probability at least1− 1
n,

1. Nh(λ) = N̂h,X(λ);

2. there exists a permutationσ on {1, . . . ,Nh(λ)} such that, for every connected component Cj

of Lh(λ− ε) there exists onêCσ( j) for which

Cj ⊆ Ĉσ( j);

3. P(L̂h,X(λ)∆Lh(λ))≤ P({u : |ph(u)−λ|< ε}).
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Remarks.

1. If ph is smooth (which is the case if, for instance, the kernel orp are smooth), the values of
λ which are not(h,ε)-stable are values for which the setUλ′,h,ε contains critical points ofph,
that is

inf
u∈Uλ′,h,ε

‖∇ph(u)‖= 0 for someλ′ ∈ (λ− ε,λ+ ε),

where∇ph denotes the gradient ofp. For those values, the probability ofNh(λ) 6= N̂h,X(λ)
can be quite large, since the setL̂h,X∆Lh(λ) may have a relatively largeP-mass.

2. Conversely, ifph is smooth (which is the case if, for instance, the kernel orp are smooth) and
infu∈Uλ,h,ε ‖∇ph(u)‖> δ, thenλ is (h,ε)-stable for a small enoughε.

The above result has a somewhat limited practical value, because the notionof a (h,ε)-stableλ
depends on the unknown densityph. In order to get a better sense of whichλ’s are(h,ε)-stable or
not, we once again resort to evaluate the instability of the clustering solution viadata splitting. In
fact, essentially all of our previous results about instability from section 4.1carry over to these new
settings by treatingh fixed and lettingλ vary. To express this changes explicitly, we will adopt a
slightly different notation for quantities we have already considered. In particular, we let

Uλ,ε = {u: |ph(u)−λ|< ε},
rλ,ε = P(Uλ,ε),

πλ(u) = PX(p̂h,X(u)> λ),
Aλ,ε = supu∈Uλ,ε

2πλ(u)(1−πλ(u))

and
Aλ,ε = inf

u∈Uλ,ε
2πλ(u)(1−πλ(u)).

We divide the sample size into three distinct groups,X, Y andZ, of equal sizesn. For a fixed
bandwidthh, we define the instability of the density cluster tree as the random functionTh,n : R≥0 7→
[0,1] given by

λ → P̂Z(L̂h,X(λ)∆L̂h,Y(λ))

and denote its expectation by
τh,n(λ) = EX,Y,Z[Th,n(λ)].

For any fixedh, the behavior ofTh,n(λ) andτh,n(λ) is essentially governed byrλ,ε. The following
result describes some of the properties of the density tree instability. We omit itsproof, because it
relies essentially on the same arguments from the proofs of the results described in section 4.1.

Corollary 18

1. For anyλ > 0, the expected cluster tree instability can be expressed as

τh,n(λ) = 2
∫

πλ(u)(1−πλ(u))dP(u).

2. For anyε > 0 andλ > 0,

Aλ,εrλ,ε ≤ τh,n(λ)≤ Aλ,εrλ,ε +2K1e−K2nhdε2
,

for all n large enough.
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3. Assume that K is the spherical kernel. For anyλ > 0, let 0< ε ≤ λ
2 and let

δ = 1−sup
u

P(B(u,h)).

Then,

Aλ,ε ≤ 2

(
1−Φ

(
−
√

nhdε
2vd

3λ

)
+

C(δ,λ)√
nhd

)2

,

and

Aλ,ε ≥ 2

(
1−Φ

(√
nhdε

2vd

δλ

)
− C(δ,λ)√

nhd

)2

,

whereΦ denote the cumulative distribution function of a standard normal random variable
and

C(δ,λ) =
33
4

√
2

δvdλ
.

4. For any h> 0, ε > 0, η ∈ (0,1) let t by such that

t(1−η)≥ rλ,ε +2K1e−K2nε2hd
,

Then, for all n≥ n(ε,h),

PX,Y,Z (|Th,n(λ)− τh,n(λ)|> t)≤ e−ntCη +2K1e−nK2hdε2
.

with

Cη = 9(1−η)

(
3−2η

3(1−η)
−
√

3−η
3(1−η)

)
.

Collectively, the results above results show that the cluster tree ofph can be estimated more
accurately for values ofλ for which the quantityrλ,ε remain small, withε a term vanishing inn. In
particular, the level setsλ with larger instability are then the ones that are close to a critical level
of ph or for which the gradient ofph is not defined, vanishes of has infinite norm for some points
in {x: ph(x) = λ}. This suggests that the sample complexity for accurately reconstructing of the
cluster tree may vary significantly depending on the particular level of the tree, with levels closer to
a branching point exhibiting a higher degree of uncertainty and, therefore, requiring larger sample
sizes.

4.4 Total Variation Stability

In the previous section, we established stability of the cluster tree for a fixedh and all levelsλ
that are(h,ε)-stable. A more complete measure of stability would be to establish stability of the
entire cluster tree. However, it appears that this is not feasible. Here weinvestigate an interesting
alternative: we compare the entire distributionp̂h,X to the entire distribution̂ph,Y. The idea is that
if these two distributions are stable over all measurable sets, then this implies it is stable over any
class of subsets, including all clusters.

More precisely, we consider the stronger notion of instability corresponding to the total variation
stability as defined in (7). Recall that we assume that the data have sample size2n and we randomly

923



RINALDO , SINGH, NUGENT AND WASSERMAN

split them into two sets of sizen, X andY, with which we compute the he kernel density estimates
p̂h,X and p̂h,Y, for a given value of the bandwidthh. Then, the total variation stability is defined as

Γn(h)≡ sup
B∈B

∣∣∣∣
∫

B
p̂h,X(u)du−

∫
B

p̂h,Y(u)du

∣∣∣∣=
1
2

∫
|p̂h,X(u)− p̂h,Y(u)|du

where where the supremum is over all Borel setsB and the second equality is a standard identity.
RequiringΓn(h) to be small is a more demanding type of stability. In particular,B includes all
level sets for allλ. Thus, whenΓn(h) is small, the entire cluster tree is stable. Note thatΓn(h) is
easy to interpret: it is the maximum difference in probability between the two density estimators.
And of course 0≤ Γn(h)≤ 1. The bottom graph in Figure 2 shows the total variation instability for
our example distribution in Figure 1. Note thatΓn(h) first drops drastically ash increases and then
continues to smoothly decrease.

We now discuss the properties ofΓn(h). Note first thatΓn(h)≈ 1 for smallh so the behavior as
h gets large is most relevant.

Theorem 19 LetHn be a finite set of bandwidths such that|Hn| = Hna, for some positive H and
a∈ (0,1). Fix a δ ∈ (0,1).

1. (Upper bound.) There exists a constant C such that, for all n≥ n0 ≡ n0(δ,H,a), and such
that δ > H/n,

PX,Y (Γn(h)≤ th for all h∈Hn)> 1−δ,

where th =
√

C logn
nhd .

2. (Lower bound.) Suppose that K is the spherical kernel and that the probability distribution P
satisfies the conditions

a1hdvd ≤ inf
u∈S

P(B(u,h))≤ sup
u∈S

P(B(u,h))≤ hdvda2, ∀h> 0, (10)

for some positive constants a1 < a2, where S denotes the support of P. Let h∗ be such that
supuP(B(u,h∗)) < 1− δ. There exists a t, depending onδ but not on h, such that, for all
h< h∗ and for n≥ n0 ≡ n0(a,a1,a2,h,delta)

PX,Y

(
Γn(h)≥ t

√
1

nhd

)
> 1−δ.

3. Γn(0) = 1 andΓn(∞) = 0.

Remarks.

1. Note that the upper bound is uniform inh while the lower bound is pointwise inh. Making
the lower bound uniform is an open problem. However, if we place a nonzero lower bound on
the bandwidths inHn then the bound could be made uniform. The latter approach was used
in Chaudhuri and Marron (2000).
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2. Conditions (10) are quite standard in support set estimation. In particular, when the lower
bound holds, the supportS is said to bestandard. See, for instance, Cuevas and Rodrı́guez-
Casal (2004).

In low dimensions, we can computeΓn(h) by numerically evaluating the integral

1
2

∫
|p̂h,X(u)− p̂h,Y(u)|du.

In high dimensions it may be easier to use importance sampling as follows. Letg(u) =
(1/2)(p̂h,X(u)+ p̂h,Y(u)). Then,

Γn(h) =
1
2

∫ |p̂h,X(u)− p̂h,Y(u)|
g(u)

g(u)du≈ 1
N

N

∑
i=1

|p̂h,X(Ui)− p̂h,Y(Ui)|
|p̂h,X(Ui)+ p̂h,Y(Ui)|

,

whereU1, . . . ,UN is a random sample fromg. We can thus estimateΓn(h) with the following algo-
rithm:

1. Draw Bernoulli(1/2) random variablesZ1, . . . ,ZN.
2. DrawU1, . . . ,UN as follows:

(a) If Zi = 1: drawX randomly fromX1, . . . ,Xn. DrawW ∼ K. SetUi = X+hW.

(b) If Zi = 0: drawY randomly fromY1, . . . ,Yn. DrawW ∼ K. SetUi =Y+hW.

3. Set

Γ̂n(h) =
1
N

N

∑
i=1

|p̂h,X(Ui)− p̂h,Y(Ui)|
|p̂h,X(Ui)+ p̂h,Y(Ui)|

.

It is easy to see thatUi has densityg and that̂Γn(h)−Γn(h) = OP(1/
√

N) which is negligible
for largeN.

5. Examples

We present results for two examples where, although the dimensionality is low,estimating the con-
nected components of the true level sets is surprisingly difficult. For the first example, we begin
by illustrating how the instability changes for given values ofλ,α and then split each data set 200
times to find point-wise confidence bands forΞλ,n(h) for fixed λ,α and forΓn(h). We then present
selected results for a bivariate example.

5.1 Instability as Function of h for Fixed λ

Returning to the example distribution in Section 1, 600 observations were sampled from the fol-
lowing mixture of normals:(4/7)N(0,1)+ (2/7)N(3.5,1)+ (1/7)N(7,1). The original sample is
randomly split into three samples of 200. All kernel density estimates use the Epanechnikov kernel
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Figure 4: ComparinĝLh,X(0.02) and L̂h,Y(0.02) with h = 0.15 (top left), h = 0.35 (top right),
h = 0.75 (bottom left) andh = 0.95 (bottom right) for data sampled from the mixture
distribution of Figure 1. The two kernel density estimates are obtained using the X sam-
ple (solid line) and theY sample (dotted line). Points in theZ sample are showed as short
vertical lines on thex-axis, and are colored in red when they belong toL̂h,X(λ)∆L̂h,Y(λ).

(Scott, 1992). We examine the stability atλ = 0.02, a height at which the true density’s connected
components should be unambiguous, andλ = 0.09, the height used in our earlier motivating graphs.

We start by illustrating the instability for selected values ofh in Figures 4, 5. In each subfigure,
p̂h,X, p̂h,Y are graphed for theZ set of observations. Levelsλ = 0.02,0.09 are marked respectively
with a horizontal line. Those observations inZ that belong tôLh,X(λ) and not toL̂h,Y(λ) (or vice
versa) are marked in red; the overall fraction of these observations isΞλ,n(h). In general, we can
see that ash increases, the number of the redZ observations decreases. Forλ = 0.02, note that the
location that most contributes to the instability is the valley aroundZ = 5. Onceh is large enough to
smooth this valley to have height aboveλ = 0.02, the instability is negligible. Turning toλ = 0.09
(Figure 5), even for larger values ofh, the differences between the two density estimates can be
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Figure 5: ComparinĝLh,X(0.09) andL̂h,Y(0.09) for h= 0.5 (top left),h= 1.75 (top right),h= 3.75
(bottom left) andh= 6 (bottom right) for data sampled from the mixture distribution of
Figure 1. The two kernel density estimates are obtained using theX sample (solid line)
and theY sample (dotted line). Points in theZ sample are showed as short vertical lines
on thex-axis, and are colored in red when they belong toL̂h,X(λ)∆L̂h,Y(λ).

quite large. Whenh is large enough such that both density estimates lie entirely belowλ = 0.09,
our instability drops to and remains at zero.

Figure 6 shows the overall behavior ofΞλ,n(h) as a function ofh. As expected, forλ = 0.02,
Ξλ,n(h) jumps for the first non-zeroh and then quickly drops to almost zero byh= 1 (Figure 6, left).
At λ = 0.09, a height with a wide range of possible level sets (depending on the density estimate
and the value ofh), Ξλ,n(h) first drops and then oscillates as previously described ash increases,
indicating multi-modality (Figure 6, right).
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Figure 6: Ξλ,n(h) as a function of the bandwidthh for λ = 0.02 (left) and 0.09 (right) for data
sampled from the mixture distribution of Figure 1.

5.2 Instability as Function h for Fixed α

In Section 4.2 we consider the sample instabilityΞα,n(h) as a function ofh andα. As done before,
we showΞα,n(h) for selected values ofh andα = 0.50 and 0.95 in Figure 7. In each subfigure,
p̂h,X, p̂h,Y again are graphed for theZ set of observations. The probability content of the density
estimates are respectively indicated on the left and right axes. The valuesα = 0.50,0.95 are also
marked with solid and dashed horizontal lines for the two density estimates. Those observations in
Z that belong toM̂h,X(α) and not toM̂h,Y(α) (or vice versa) are marked in red; the overall fraction
of these observations isΞα,n(h). In general, we can see that ash increases (for both values ofα),
the number of redZ observations decreases. This decrease happens more quickly for higher values
of α (as expected).

In Figure 8, we displayΞn(h,α) as a function ofh for α = 0.50,0.95. For level sets that contain
at least 50% probability content, such asM̂h,X(0.50), the instability quickly drops ash increases
and then oscillates ash approaches values that correspond to density estimates with uncertainty at
those levels. Again, this ambiguity occurs due to the presence of the secondmode (we would see
similar behavior with respect to the smallest mode ifα ≈ 0.80). As h continues to increase, the
density estimates become smooth enough that there is very little difference between Mh,X(0.50),
Mh,Y(0.50). This behavior also occurs whenα = 0.95 albeit more quickly (Figure 8, top right)
since level sets that contain at least 95% probability content occur at lower heights and are more
stable.

Figure 8c is the corresponding heat map forα = 0,0.01, . . . ,1.0 andh= 0,0.01, . . . ,10. White
sections indicateΞα,n(h) ≈ 0; black sections indicate higher instability values. In this particular
example, the maximum instability of 0.425 is found ath = 0.03,α = 0.46. Note that aroundh =
3, we have very low instability values for almost all values ofα, and hence this value of kernel
bandwidth would be a good choice that yields stable clustering.
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Figure 7: Top: comparinĝMh,X(0.50) andM̂h,Y(0.50) for h = 2 (left) andh = 5 right). Bottom:
comparingM̂h,X(0.95) andM̂h,Y(0.95) for h = 0.4 (left) andh = 3.5 (right). The data
were sampled from the mixture distribution of Figure 1. The two kernel densityestimates
are obtained using theX sample (solid line) and theY sample (dotted line). Points in the
Z sample are showed as short vertical lines on thex-axis, and are colored in red when
they belong toM̂h,X(α)∆M̂h,Y(α).

5.3 Instability Confidence Bands

The results in the previous subsections were for splitting the original sample one time into three
groups of 200 observations. Here we briefly include a snapshot of what the distribution of our
instability measures look like over repeated splits. For computational reasons, we used the binned
kernel density estimate, again with the Epanechnikov kernel, and discretizethe feature space over
200 bins; see Wand (1994). Increasing the number of bins improves the approximation to the kernel
density estimate; the use of two hundred bins was found to give almost identicalresults to the
original kernel density estimate (results not shown). We split the original sample 200 times and
find 95% point-wise confidence intervals forΞλ,n(h), Γn(h), andΞα,n(h) for α = 0.50,0.95 and as
a function ofh. The results are depicted in Figure 9. The confidence bands are plotted inred, the
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Figure 8: Top:Ξn(h,α = 0.50) (left) andΞn(h,α = 0.95) (right) as a function ofh. Bottom: heat
map ofΞα,n(h) as function ofh,α for the example of Figure 1. The data were sampled
from the mixture distribution of Figure 1.

medians in black. The distribution of the instability measures for each value ofh is also plotted
using density strips (see Jackson, 2008); on the grey-scale, darkercolors indicate more common
instability values. The density strips allow us to see how the distribution changes(not just the 50,
95% percentiles). For example, for the plot on the top left in Figure 9, note that right beforeh= 2,
the upper half of the distribution ofΞλ,n(h) is more concentrated. This shift corresponds to the
increase in instability in the presence of the additional modes.

5.4 Bivariate Moons

We also include a bivariate example with two equal-sized moons; this data set withseemingly simple
structure can be quite difficult to analyze. The scatterplot of the data on theleft in Figure 10 show
two clusters, each shaped like a half moon. Each cluster contains 300 data points. The plot on the
right in Figure 10b shows a two-dimensional kernel density estimate using a Epanechnikov kernel
with h= 0.60 (for illustrative purposes) and 10,000 evaluation points. We can see that while levels
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Figure 9: 95% point-wise confidence bands forΞλ,n(h) (top left),Γn(h) (top right),Ξn(h,α = 0.50)
(bottom left) andΞn(h,α = 0.95) (bottom right) for data sampled from the mixture dis-
tribution of Figure 1.

aroundλ = 0.012 show clear multi-modality, the connectedness of the level sets aroundλ = 0.01 is
less clear.

To examine instability, we use a product Epanechnikov kernel density estimate with the same
bandwidthh for both dimensions. Figure 11 shows the sample instabilityΞλ,n(h) as a function ofh
for λ= 0.10,0.20,0.30 as well as the total variation instabilityΓn(h) as a function ofh. As expected,
the higher theλ, the more quickly the sample instability drops. We also see the possible presence of
multi-modality for all three values ofλ in Ξλ,n(h). On the other hand, the total variation instability
drops smoothly ash increases.

Figure 12 contains the instability as a function ofh and probability contentα for all values of
h, α (Figure 12d) and specifically forα = 0.50,0.075,0.95. Again, as expected,Ξn(h,α) drops
ash increases for smaller values ofα. Note that forα = 0.95, the instability remains relatively
low regardless of the value ofh. When examining the heat map, we see that for small values of
h, level sets corresponding to probability content around 0.4-0.6 are very unstable. This behavior
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Figure 10: Bivariate moons (left) and contours of a Epanechnikov kernel density estimate (right)
for the example discussed in Section 5.4.

is not unexpected given that the moons are of equal sizes and difficult toseparate due to sampling
variability. We would expect to have difficulty finding stable level sets “in the middle”.

6. Discussion

We have investigated the properties of the density level set and cluster treeestimator based on kernel
density estimates, and we have proposed and analyzed various measuresof instability for these
quantities. We believe these measures of instability can be of guidance in choosing the bandwidth
parameter and also as exploratory tools to gain insights into the properties andshape of the data-
generating distribution.

Our analysis leaves some some open questions that we think deserve further attention. First,
we have focused on kernel density estimators but the same ideas can be used with other density
estimators or more, generally, with other clustering methods for which underlying tuning parameters
have to be chosen in a data-driven fashion. See, for instance, Meinshausen and B̈uhlmann (2010)
for a related stability-based approach to clustering.

We have assumed the existence of the Lebesgue densityp but this assumption can be relaxed
using methods in Rinaldo and Wasserman (2010) to allow for distributions supported on lower-
dimensional, well-behaved subsets. This extension is potentially important because it would allows
us to include cases where the distribution has positive mass on lower dimensional structures such as
points and manifolds.

We have formulated our assumptions and results about stability of the level sets and of the cluster
tree in a point-wise manner, for given values ofλ andα. As suggested by a reviewer, it would be
desirable to extend them to hold uniformly across level sets. This can be achieved by requiring (A2),
(B2) and (B3) to hold uniformly over values ofλ andα. In fact, we believe that it is likely that,
for most densities, such uniform assumptions hold for a wide range ofλ’s but certainly they cannot
hold for all λ’s. Indeed, our results indicate that these uniformity assumptions are reasonable only
for level setsλ for which the functionrh,ε(λ) remains small and does not fluctuate too wildly.
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Figure 11: Ξλ,n(h) as a function ofh for λ = 0.10 (top left) 0.20 (top right) and 0.30 (bottom left).
Γn(h) as a function ofh (bottom right) for the data depicted in Figure 10.

Finally, in computing the various measures of instability, we have considered just a single split
of the data into non-overlapping sub-samples. In fact, one can randomly repeat the splitting process
and combine over many splits, which is how we obtained the confidence bandsof Figure 9. Though
the increase in the computational costs may be significant, repeated sub-sampling would yield a
reliable estimate of the uncertainty of the chosen instability measures and would therefore be highly
informative about the sample. We believe that the properties ofΞn can be established using the
theory of U-statistics.
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Figure 12: Ξα,n(h) as a function ofh for α = 0.50 (top left) 0.75 (top right) and 0.95 (bottom left).
Heat Map ofΞα,n(h) as function ofh andα; for readability, values ofΞα,n(h) smaller
than 0.045 are displayed in white (bottom right).

Appendix A. Proofs

Proof of Theorem 2: LetAhn,εn denote the event that‖p̂hn,X − phn‖∞ ≤ εn. Then, for alln≥ n0, by
Equation (3),PX(Ahn,εn) ≥ 1− 1

n. Also observe that Assumption (A1) implies that, for anyh> 0,
the sup-norm density approximation error can be bounded as

‖ph− p‖∞ = sup
x

∣∣∣∣
∫

1
hd K

(
x−y

h

)
p(y)dy− p(x)

∣∣∣∣

≤ sup
x

∫
1
hd K

(
x−y

h

)
A‖x−y‖dy

= ADh. (11)

The second step in the previous display follows since
∫

K(z)dz= 1 and using the Lipschitz as-
sumption (A1) on the density, and the last step since

∫ ‖z‖K(z)dz= D. Putting the estimation and

934



STABILITY OF DENSITY-BASED CLUSTERING

approximation error together, and using the triangle inequality, we obtain that,on the eventAhn,εn,

‖p̂hn,X − p‖∞ ≤ ADhn+ εn, (12)

for all n≥ n0. Using Equation (12), we have that, onAhn,εn and for alln≥ n1(n0,λ) so thatADhn+
εn < λ, the set

L(λ)∆L̂hn,X(λ) = {u: p(u)> λ, p̂hn,X(u)≤ λ}∪{u: p(u)≤ λ, p̂hn,X(u)> λ}

is contained in

{u: p(u)> λ, p(u)≤ λ+ADhn+ εn}∪{u: p(u)≤ λ, p(u)> λ−ADhn− εn},

which is equal to
{u: |p(u)−λ|< ADhn+ εn}.

Then, onAhn,εn and for alln≥ n1(n0,λ) large enough

L(hn,X,λ) = P(L(λ)∆L̂hn,X(λ))≤ rhn,εn,λ,

so that,PX (L(hn,X,λ)≤ rn)≥ PX (Ahn,εn)≥ 1− 1
n, as claimed.

If (A2) is in force for the density levelλ, then for alln≥ n2(n0,λ,A,D,ε0) so thatADhn+ εn ≤
ε0, we haverhn,εn,λ ≤ κ2(ADhn+ εn), which proves the second claim.
Proof of Lemma 4: Using (A1) and the fact that

∫
Rd K(z)dz= 1, Equation (11) states that for any

h> 0
‖ph− p‖∞ ≤ ADh.

Then, for anyα ∈ (0,1) andh> 0,

{u: p(u)> λh,α +ADh} ⊆ {u: ph(u)> λh,α} ⊆ {u: p(u)> λh,α −ADh}.

And as a result,

P({u: p(u)> λh,α +ADh})≤ P({u: ph(u)> λh,α})≤ P({u: p(u)> λh,α −ADh}).

SinceP({u: p(u)> λα}) = α = P({u: ph(u)> λh,α}), we have

P({u: p(u)> λh,α +ADh})≤ P({u: p(u)> λα})≤ P({u: p(u)> λh,α −ADh}).

Consequently,
λh,α +ADh≥ λα ≥ λh,α −ADh.

It follows that for anyα ∈ (0,1) andh> 0

|λh,α −λα| ≤ ADh.

Proof of Lemma 5: Let Ch =
{
{u: ph(u) > λ},λ > 0

}
denote the class of level sets ofph and

define the events

Ph,ε =

{
sup
C∈Ch

|P̂X(C)−P(C)| ≤ ε

}
and Ah,ε = {||p̂h,X − ph||∞ ≤ ε} .
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Then, since then-th shatter coefficients (see, for instance, Devroye et al., 1996) ofCh is n,

PX(P
c
h,ε)≤ 8ne−nε2/32 and PX(A

c
h,ε)≤ K1e−K2nε2hd

, (13)

where the first inequality follows from the VC inequality (see, for instance,Devroye et al., 1996)
and the second inequality is just (1). Then, onAh,ε, we obtain

{u: ph(u)> λ+ ε} ⊆ {u: p̂h,X(u)> λ} ⊆ {u: ph(u)> λ− ε}, ∀λ > 0.

Thus, onAh,ε,

P̂X({u: ph(u)> λ+ ε})≤ P̂X({u: p̂h,X(u)> λ})≤ P̂X({u: ph(u)> λ− ε}),

uniformly over allλ > 0. In particular, the previous inequality hold also forλ̂α,h,X (which is positive
with probability one) for anyα ∈ (0,1) andh> 0.

Recalling that, by definition,

|P̂X({u: p̂h,X(u)> λ̂h,α,X})−α| ≤ 1/n,

we obtain, on the eventsPh,ε andAh,ε,

P({u: ph(u)> λ̂h,α,X + ε})− 1
n
− ε ≤ α ≤ P{u: ph(u)> λ̂h,α,X − ε})+ 1

n
+ ε. (14)

Sinceα = P({u: ph(u)> λh,α}), the first inequality in (14) can be written as

α+
1
n
+ ε = P({u: ph(u)> λh,α+ 1

n+ε})≥ P({u: ph(u)> λ̂h,α,X + ε})

and the second one as

α− 1
n
− ε = P({u: ph(u)> λh,α− 1

n−ε})≤ P{u: ph(u)> λ̂h,α,X − ε}),

both holding on the eventsPh,ε andAh,ε. Combining the last two expressions, we obtain, on the
same events, for anyα ∈ (0,1) andh> 0,

λh,α+ 1
n+ε − ε ≤ λ̂h,α,X ≤ λh,α− 1

n−ε + ε. (15)

We will now show that, for level sets ofph indexed byα satisfying (B3), and for anyη ∈ (−η0,η0)
and 0< h≤ H,

|λh,α+η −λh,α| ≤ Aκ3|η|. (16)

Recalling thatε+1/n< η0, Equations (15) and (16) will then imply

λh,α −Aκ3

(
ε+

1
n

)
− ε ≤ λ̂h,α,X ≤ λh,α +Aκ3

(
ε+

1
n

)
+ ε,

on the eventsPh,ε andAh,ε, for level sets ofph indexed byα satisfying (B3) and with 0< h≤ H.
Finally, using (13), the claim will follow.
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In order to show (16), for a setA ⊂ R
d, let ∂A denote its boundary. Then, notice that, be-

causeph is Lipschitz and hence continuous, for everyx ∈ ∂Mh(α), ph(x) = λh,α and, for every
y ∈ ∂Mh(α + η), ph(y) = λh,α+η. Furthermore, for any pointx ∈ ∂Mh(α), there exists a point
y= y(x) = infz∈∂Mh(α+η) ‖x−z‖. Thus, for|η|< η0,

‖x−y‖ ≤ d∞(Mh(α),Mh(α+η))≤ κ3|η|,

where the last inequality follows for level sets ofph indexed byα that satisfy (B3) and 0< h≤ H.
Therefore,

|λh,α+η −λh,α|= |ph(y)− ph(x)| ≤ A‖x−y‖ ≤ Aκ3|η|,

where in the first inequality we used the fact that, by (A1),ph is Lipschitz with constantA. Indeed,
for anyx 6= y, using the Lipschitz assumption (A1) onp,

|ph(x)− ph(y)| ≤
∫
Rd

|p(x+zh)− p(y+zh)|K(z)dz≤ A‖x−y‖
∫
Rd

K(z)dz= A‖x−y‖.

Proof of Theorem 7: Let Ahn,εn be event defined in the proof of Theorem 2, and recall that for all
n≥ n0, by Equation (3),PX(A

c
hn,εn

)≤ 1/n and that, Equation (12) states that

‖p̂h,X − p‖∞ ≤C1,n (17)

on that event, for alln≥ n0. Also, letPhn,εn be the event defined in Lemma 5 such thatPX(P
c
hn,εn

)≤
8ne−nε2

n/32. Then from the proof of Lemma 5, we have that on the eventAhn,εn ∩Phn,εn, for hn =
ω((logn/n)1/d) andhn ≤ H,

|̂λhn,α,X −λα| ≤C2,n (18)

for all n≥ n3(n0,η0,K3). Also, sincen is large enough, we have

8ne−nε2
n/32 ≤ 1

n
.

Therefore, for all such largen, both (17) and (18) hold with probability at least

PX (Ahn,εn ∩Phn,εn)≥ 1− 2
n
.

Thus, onAhn,εn∩Phn,εn, for hn =ω((logn/n)1/d) andhn ≤H, we have that, for alln≥ n3(n0,η0,K3),
the set

M(α)∆M̂h,X(α) = {u: p(u)> λα, p̂h,X(u)≤ λ̂h,α,X}∪{u: p(u)≤ λα, p̂h,X(u)> λ̂h,α,X}.

is contained in

{u: p(u)> λα, p(u)≤ λ̂h,α,X +C1,n}∪{u: p(u)≤ λα, p(u)> λ̂h,α,X −C1,n}.

which, in turn, is a subset of

{u: p(u)> λα, p(u)≤ λα +C1,n+C2,n}∪{u: p(u)≤ λα, p(u)> λα −C1,n−C2,n}.
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The final set is just{u: |p(u)− λα| ≤ C1,n +C2,n}. Therefore, for forhn = ω((logn/n)1/d) and
hn ≤ H, we have, for alln≥ n3(n0,η0,K3),

PX (L
∗(hn,X,α)≤ rhn,εn,α)≥ PX (Ahn,εn ∩Phn,εn)≥ 1− 2

n
.

Proof of Lemma 9: We only prove the second claim, since the proof of the limits is straightforward.
For simplicity, we will provide the proof for the case of a spherical kernel:K(x) = 1‖x‖≤1, x∈ R

d.
The extension to other compactly supported kernels is analogous.

Let h be strictly smaller than

min

{
min
i 6= j

||Xi −Xj ||,min
i 6= j

||Yi −Yj ||,min
i, j

||Xi −Yj ||
}
.

For many distributions, this occurs almost surely forh = O
(
1/nd

)
(see, e.g., Penrose, 2003; De-

heuvels et al., 1988). By the compactness of the support ofK, for any suchh, the sets

B(X1,h), . . . ,B(Xn,h),B(Y1,h), . . . ,B(Yn,h)

are disjoint. Therefore,̂ph,X(u) = 1/(nhd) if and only if u ∈ B(Xi ,h) for one i and, similarly,
p̂h,Y(u) = 1/(nhd) if and only if u∈ B(Yj ,h) for one j. Furthermore,

L̂h,X∆L̂h,Y =

(⋃
i

B(Xi ,h)

)⋃(⋃
j

B(Yj ,h)

)
.

As a result,Ξλ,n(h) is the fraction ofZi ’s contained in(∪iB(Xi ,h))
⋃
(∪iB(Yi ,h)). Thus,

Ξλ,n(h) = P̂Z(L̂h,X∆L̂h,Y|X,Y)
d
= B/n,

where
d
= denotes equality in distribution andB∼ Binomial(n, p0), with 0≤ p0 ≤ 2n pmaxvdhd and

pmax= ‖p‖∞. Therefore,EZ[Ξλ,n(h)|X,Y]≤ 2pmaxvdnhd and hence it follows that

ξλ,n(h) = EX,Y,Z[Ξλ,n(h)]≤ 2pmaxvdnhd = O(hd),

ash→ 0.
Proof of Theorem 10:

1. SinceX, Y andZ are independent samples from the same distribution,p̂h,X(u) and p̂h,Y(u)
are independent and identically distributed, for anyu ∈ R

d andh > 0. Also, notice that for
every measurable setA, EZ(P̂Z(A)) = P(A). Thus,

ξλ,n(h) = EX,Y,Z[P̂Z({u: p̂h,X(u)> λ}∆{u: p̂h,Y(u)> λ})]
= EX,Y[P({u: p̂h,X(u)> λ, p̂h,Y(u)≤ λ})+P({u: p̂h,X(u)≤ λ, p̂h,Y(u)> λ})]
= 2EX,Y [P({u: p̂h,X(u)> λ, p̂h,Y(u)≤ λ})]

= 2
∫
Rd

PX,Y (p̂h,X(u)> λ, p̂h,Y(u)≤ λ)dP(u), (19)
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where the last identity follows from Fubini theorem. The integrand in the last equation can
be written as

PX,Y (p̂h,X(u)> λ, p̂h,Y(u)≤ λ) = PX (p̂h,X(u)> λ)PY (p̂h,Y(u)≤ λ)
= PX (p̂h,X(u)> λ)PX (p̂h,X(u)≤ λ)
= πh(u)(1−πh(u)),

from which (8) follows.

2. LetAh,ε denote the event

‖ph− p̂h,X‖∞ ∨‖ph− p̂h,Y‖∞ ≤ ε. (20)

By (1), PX,Y(A
c
h,ε) ≤ 2K1e−K2nhdε2

. Letting 1Ah,ε denote the indicator function of the event
Ah,ε,

ξλ,n(h)≤ EX,Y,Z[P̂Z({u: p̂h,X(u)> λ}∆{u: p̂h,Y(u)> λ})1Ah,ε(X,Y)]+PX,Y(A
c
h,ε),

and, using the same reasoning that led to (19),

ξλ,n(h)≤ 2
∫
Rd

PX,Y ({p̂h,X(u)> λ, p̂h,Y(u)≤ λ}∩Ah,ε)dP(u)+PX,Y(A
c
h,ε)

Notice that, onAh,ε,

{u: p̂h,X(u)> λ, p̂h,Y(u)≤ λ} ⊆ {u: λ− ε ≤ ph(u)≤ λ+ ε}=Uh,ε,

and therefore, sign(p̂h,X(u)− λ) = sign(ph(u)− λ) for all u 6∈ Uh,ε. Thus, the previous ex-
pression forξλ,n(h) is upper bounded by

2
∫

Uh,ε

PX,Y ({p̂h,X(u)> λ, p̂h,Y(u)≤ λ}∩Ah,ε)dP(u)+2K1e−K2nhdε2

which, using independence, is no larger than

2
∫

Uh,ε

πh(u)(1−πh(u))dP(u)+2K1e−K2nhdε2 ≤ P(Uh,ε)Ah,ε +2K1e−K2nhdε2
.

As for the lower bound, from (19) we obtain, trivially,

ξλ,n(h)≥ 2
∫

Uh,ε

πh(u)(1−πh(u))dP(u)≥ P(Uh,ε)Ah,ε.

Proof of Lemma 11. If K is the spherical kernel, note thatp̂h,X(u) = n−1 ∑n
i=1Bi(u), where

Bi = h−dK

(
u−Xi

h

)
=

IB(u,h)(Xi)

(hdvd)
,

with IB(u,h)(·) denoting the indicator function of the ballB(u,h). Let σ2(u,h) = Var(Bi(u)) and
µ3(u,h) = E|Bi(u)− µ(u,h)|3 whereµ(u,h) = E(Bi(u)) = ph(u). Finally, let pu,h = P(B(u,h)).
Then,

σ2(u,h) =
pu,h(1− pu,h)

(hdvd)2 (21)
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and

µ3(u,h) =
pu,h(1− pu,h)

[
(1− pu,h)

2+ p2
u,h

]

(hdvd)3 ≤ pu,h(1− pu,h)

(hdvd)3 ,

where the last inequality holds since(1− pu,h)
2+ p2

u,h ≤ 1, for all u andh. As a result,

µ3(u,h)
σ3(u,h)

≤ (pu,h(1− pu,h))
−1/2 .

By assumption,h < h(δ,ε) and ε ≤ λ/2. In order to avoid trivialities, we further assume that
P(Uh,ε)> 0. Then, uniformly over allu in Uh,ε,

(λ− ε)vdhd ≤ pu,h ≤ (λ+ ε)vdhd

and
(1− pu,h)≥ δ.

Thus,
µ3(u,h)
σ3(u,h)

≤
√

1
δvdhd(λ− ε)

≤
√

2
hdδvdλ

,

with the last inequality holding because of our assumptionε ≤ λ/2. From (21), we then obtain

δ(λ− ε)
vdhd ≤ σ2(u,h)≤ (λ+ ε)

vdhd .

Thus,
a1

hd ≤ σ2(u,h)≤ a2

hd ,

where

a1 =
δλ
2vd

and a2 =
3λ
2vd

, (22)

uniformly overu∈Uh,ε.
Writing σ2(u,h) = a(u,h)/hd and using the Berry-Esséen bound (Wasserman, 2004, p. 78), we

obtain

sup
t

∣∣∣∣∣P
(√

nhd(p̂h,X(u)− ph(u))
a(u,h)

≤ t

)
−Φ(t)

∣∣∣∣∣≤
33
4

µ3(u,h)
σ3(u,h)

√
n
=

√
C(δ,λ)

nhd ,

whereΦ is the cumulative distribution function of the standard Normal distribution.
Now,

πh(u) = PX(p̂h,X(u)> λ) = PX

(√
nhd(p̂h,X(u)− ph(u))

a(u,h)
>

√
nhd(λ− ph(u))

a(u,h)

)
.

Hence,

1−Φ

(√
nhd(λ− ph(u))

a(u,h)

)
− C(δ,λ)√

nhd
≤ πh(u)≤ 1−Φ

(√
nhd(λ− ph(u))

a(u,h)

)
+

C(δ,λ)√
nhd

.
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Using the fact thatu ∈ Uh,ε, and taking advantage of the uniform boundsa1 ≤ a(u,h) ≤ a2, the
previous inequalities imply

1−Φ

(√
nhdε
a1

)
− C(δ,λ)√

nhd
≤ πh(u)≤ 1−Φ

(
−
√

nhdε
a2

)
+

C(δ,λ)√
nhd

.

Using the inequalities

1−Φ

(√
nhdε
a1

)
= Φ

(
−
√

nhdε
a1

)
≥ Φ

(
−
√

nhdε
a2

)

and

1−Φ

(
−
√

nhdε
a2

)
= Φ

(√
nhdε
a2

)
≤ Φ

(√
nhdε
a1

)
,

we obtain the bounds

Φ

(
−
√

nhdε
a2

)
− C(δ,λ)√

nhd
≤ πh(u)≤ 1−Φ

(
−
√

nhdε
a2

)
+

C√
nhd

(23)

and

1−Φ

(√
nhdε
a1

)
− C(δ,λ)√

nhd
≤ πh(u)≤ Φ

(√
nhdε
a1

)
+

C√
nhd

, (24)

respectively. Thus, uniformly over allε ≤ λ/2 and allh< h(δ,ε), Equations (23) and (24) yield

Ah,ε = 2 sup
u∈Uh,ε

πh(u)(1−πh(u)) ≤ 2

(
1−Φ

(
−
√

nhdε
a2

)
+

C(δ,λ)√
nhd

)2

,

and

Ah,ε = 2 inf
u∈Uh,ε

πh(u)(1−πh(u)) ≥ 2

(
1−Φ

(√
nhdε
a1

)
− C(δ,λ)√

nhd

)2

,

respectively, wherea1 anda2 are given in (22).

Proof of Lemma 12.Letting 1i = 1{Zi∈L̂X,h∆L̂Y,h}, we have

Ξλ,n(h) =
1
n

n

∑
i=1

1i .

where, conditionally onX andY, the 1i ’s are independent and identically distributed Bernoulli
random variables withEZ[1i |X,Y] = P(L̂h,X∆L̂h,Y). Thus

V
[
Ξλ,n(h)

]
= EX,Y,Z

[
Ξ2

n(h)
]
−ξ2(h)

= 1
n2EXY[EZ

[
(∑n

i=11i +∑ j 6=k 1 j1k)|X,Y]
]
−ξ2(h)

=
ξλ,n(h)

n + n−1
2n EX,Y

[
P2(L̂h,X∆L̂h,Y)

]
−ξ2(h)

≤ ξλ,n(h)
n + n−1

2n EX,Y

[
P(L̂h,X∆L̂h,Y)

]
−ξ2(h)

=
ξλ,n(h)

n + n−1
2n ξλ,n(h)−ξ2(h)

= ξλ,n(h)
(

n+1
2n −ξλ,n(h)

)
.
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Proof of Lemma 13.
Let ξ(h,X,Y) = EZ[Ξλ,n(h)|X,Y] and letAh,ε be the event given in (20), whereε,h> 0, so that

PX,Y(A
c
h,ε)≤ 2K1exp

{
−nK2hdε2

}
by (1). Then, we can write

PX,Y,Z
(∣∣Ξλ,n(h)−ξλ,n(h)

∣∣> t
)
= PX,Y,Z

(∣∣Ξλ,n(h)−ξ(h,X,Y)+ξ(h,X,Y)−ξλ,n(h)
∣∣> t

)
,

which is therefore upper bounded by

PX,Y,Z
(∣∣Ξλ,n(h)−ξ(h,X,Y)+ξ(h,X,Y)−ξλ,n(h)

∣∣> t;Ah,ε
)
+2K1exp

{
−nK2hdε2

}
.

The first term in the previous expression is no larger than the sum of

EX,Y

[
PZ

(∣∣Ξλ,n(h)−ξ(h,X,Y)
∣∣> tη

∣∣∣X,Y
)

;Ah,ε

]
, (25)

and
PX,Y

(∣∣ξ(h,X,Y)−ξλ,n(h)
∣∣> t(1−η);Ah,ε

)
, (26)

for anyη ∈ (0,1). We will first show that, if (9) is satisfied, the probability (26) is zero. Indeed, first
observe that

EZ[Ξλ,n(h)|X,Y] = P(L̂h,X∆L̂h,Y)

and that, onAh,ε,

L̂h,X∆L̂h,Y = {u: p̂h,X(u)> λ, p̂h,Y(u)≤ λ}∪{u: p̂h,X(u)≤ λ, p̂h,Y(u)> λ}
⊆ {u: ph(u)> λ− ε, ph(u)≤ λ+ ε}
= {u: |ph(u)−λ| ≤ ε}
= Uh,ε,

Therefore, onAh,ε,
ξ(h,X,Y) = EZ[Ξλ,n(h)|X,Y]≤ rh,ε ≤ t(1−η). (27)

By part 2 of Theorem 10, (9) further implies thatt(1 − η) ≥ ξλ,n(h). As a result, on
Ah,ε,

∣∣ξ(h,X,Y)−ξλ,n(h)
∣∣≤ t(1−η), which yields

PX,Y
(∣∣ξ(h,X,Y)−ξλ,n(h)

∣∣> t(1−η);Ah,ε
)
= 0,

as claimed.
We now proceed to bound from above (25). Since

Ξλ,n(h) =
1
n

n

∑
i=1

1{Zi∈L̂h,X∆L̂h,Y},

Bernstein’s inequality (see, for instance, Massart, 2006, Proposition 2.9) yields that, for anyt > 0
and conditionally onX andY,

PZ

(∣∣Ξλ,n(h)−ξ(h,X,Y)
∣∣> tη

∣∣∣X,Y
)
≤ exp

{
−9σ2(X,Y,h)g

(
ntη

3σ2(X,Y,h)

)}
(28)
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whereg(u) = 1+u−
√

1+2u for all u> 0, and

σ2(X,Y,h) = VarZ[Ξλ,n(h)|X,Y].

It is easy to see that
σ2(X,Y,h)≤ EZ

[
Ξλ,n(h)|X,Y

]
= nξ(h,X,Y)

and, therefore, restricting to the eventAh,ε, σ2(X,Y,h)≤ nt(1−η), just like in (27).

Using the fact thate−9xg( nt
3x) is increasing inx for x> 0, we conclude that, on the eventAh,ε, the

right hand side of (28) is bounded from above by

exp

{
−9nt(1−η)g

(
η

3(1−η)

)}
,

which is independent ofX andY. Thus, the previous expression is an upper bound for (25) and,
therefore, forPX,Y,Z

(∣∣Ξλ,n(h)−ξλ,n(h)
∣∣> t

)
. The claim now follows from simple algebra.

Proof of Theorem 14.

1. The proof is almost the same as the proof of part 1 of Theorem 10 and istherefore omitted.

2. LetAh,̃ε denote the event

max
{
||p̂h,X − ph||∞, |λh,α − λ̂h,α,X|, ||p̂h,Y − ph||∞, |λh,α − λ̂h,α,Y|

}
≤ ε̃, (29)

whereε̃ = ε(Aκ3+1)+Aκ3/n. Then, using (1), (5) and the fact thatε < ε̃, the union bound
yields

PX,Y(A
c
h,̃ε)≤ 4K1e−K2nhdε2

+16ne−nε2/32 ≡C(h,ε,n) (30)

Now, onAh,̃ε, {u : p̂h,X(u)> λ̂h,α,X, p̂h,Y(u)≤ λ̂h,α,Y} is a subset of

{u : ph(u)> λ̂h,α,X − ε̃, ph(u)≤ λ̂h,α,Y + ε̃},

which is equal to
{u : |ph(u)−λh,α| ≤ 2̃ε}=Uh,̃ε,α.

Therefore, sign(p̂h,X(u)− λ̂h,α,X) = sign(ph(u)−λh,α) for all u /∈ Uh,2̃ε,α. Next, just like in
the proof of part 2 of theorem 10, using this fact and the result of the first part we have that
ξα,n(h) is no larger than

EX,Y,Z[P̂Z({u: p̂h,X(u)> λ̂h,α,X}∆{u: p̂h,Y(u)> λ̂h,α,Y})1Ah,̃ε(X,Y)]+PX,Y(A
c
h,̃ε).

The previous expression can be written as

2
∫
Rd

PX,Y({p̂h,X(u)> λ̂h,α,X, p̂h,Y(u)≤ λ̂h,α,Y}∩Ah,̃ε)dP(u)+PX,Y(A
c
h,̃ε),

which is less than

2
∫

Uh,2̃ε,α

PX,Y({p̂h,X(u)> λ̂h,α,X, p̂h,Y(u)≤ λ̂h,α,Y}∩Ah,̃ε)dP(u)+C(h,ε,n).
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This quantity is bounded from above by

2
∫

Uh,2̃ε,α

PX,Y(p̂h,X(u)> λ̂h,α,X, p̂h,Y(u)≤ λ̂h,α,Y)dP(u)+C(h,ε,n),

which is finally smaller than

2
∫

Uh,2̃ε,α

πh,α(u)(1−πh,α(u))dP(u)+C(h,ε,n)≤ P(Uh,2̃ε,α)Ah,ε,α +C(h,ε,n).

As for the lower bound, from the result of first part we obtain, trivially,

ξα,n(h) ≥ 2
∫
Uh,2̃ε,α

πh,α(u)(1−πh,α(u))dP(u)

≥ P(Uh,2̃ε,α)Ah,ε,α.

3. To compute an upper bound forAh,ε,α and a lower bound forAh,ε,α, we use the Berry-Esséen
bound and the stated assumptions. The proof is very similar to the proof of lemma11, except
that the result holds only on the eventAh,̃ε. Therefore, we only provide a sketch of the
arguments.

The assumptions thatε̃ ≤ infh
λα,h

4 , implies that, for anyu∈Uh,2̃ε,α,

1
hd

δλα,h

2vd
≤ δ(λα,h− 2̃ε)

hdvd
≤ σ2(u,h)≤ (λα,h+ 2̃ε)

hdvd
≤ 1

hd

3λα,h

2vd
.

Because of this and the fact that, onAh,̃ε, |ph(u)− λ̂h,α,X| ≤ 3̃ε for all u ∈ Uh,2̃ε,α, the same
Berry-Esseen arguments used in the proof of lemma 11 yield

1−Φ

(
3̃ε
√

nhd

a1

)
− C(δ,λh,α)√

nhd
≤ πh,α,̃ε(u)≤ 1−Φ

(
− 3̃ε

√
nhd

a2

)
+

C(δ,λh,α)√
nhd

.

whereπh,α,̃ε(u) = PX

(
{p̂h,X(u)> λ̂h,α,X}∩Ah,̃ε

)
, a1 = δλh,α/(2vd), a2 = 3λh,α/(2vd), and

C(δ,λh,α) =
33
4

√
2

δvdλh,α
. Now notice that

πh,α(u)≥ πh,α,̃ε(u)≥ 1−Φ

(
3̃ε
√

nhd

a1

)
− C(δ,λh,α)√

nhd

and

πh,α(u)≤ πh,α,̃ε(u)+P(Ac
h,̃ε)≤ 1−Φ

(
− 3̃ε

√
nhd

a2

)
+

C(δ,λh,α)√
nhd

+C(h,ε,n).

whereC(h,ε,n) is defined in (30). Therefore,

Ah,ε,α ≤ 2

(
1−Φ

(
− 3̃ε

√
nhd

a2

)
+

C(δ,λh,α)√
nhd

+C(h,ε,n)

)2

,

and

Ah,ε,α ≥ 2

(
1−Φ

(
3̃ε
√

nhd

a1

)
− C(δ,λh,α)√

nhd
−C(h,ε,n)

)2

.
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Proof of Theorem 19. (1) Since the sample space is compact,µ(S) < ∞, whereS denotes the
support ofP andµ denotes the Lebesgue measure. Therefore, we obtain the inequality

Γn(h) ≤ µ(S)
2

||p̂h,X − p̂h,Y||∞ ≤ µ(S)
2

||p̂h,X − ph||∞ +
µ(S)

2
||p̂h,Y − ph||∞

d
= µ(S)||p̂h,X − ph||∞.

Next, letC= (µ(S))2(a+2)
K2

, so that forn> K1

th >

√
µ(S)2 log(na+1K1)

K2nhd .

Then,

PX,Y (Γn(h)> th for someh∈Hn) ≤ PX

(
||p̂h,X − ph||∞ >

th
µ(S)

for someh∈Hn

)

≤ ∑
h∈Hn

PX

(
||p̂h,X − ph||∞ >

th
µ(S)

)

≤ ∑
h∈Hn

K1exp{−K2nt2hhd/(µ(S)2)}

≤ Hna 1
na+1 =

H
n

≤ δ,

where the third inequality stems from (1) and the assumption thatn≥ n0 is large enough, and the
last inequality follows from the assumed condition onδ.
(2) Consider anyh≤ h∗. Note that

Γn(h)≥ Γn,S(h)≡
1
2

∫
S
|p̂h,X(u)− p̂h,Y(u)|du.

Let
D(u) =

√
nhd(p̂h,X(u)− p̂h,Y(u)).

The variance ofD(u) is

Var
(√

nhd(p̂h,X(u)− p̂h,Y(u))
)

= nhd (Var(p̂h,X(u))+Var(p̂h,Y(u)))

= 2nhdVar(p̂h,X(u))

= 2nhdVar

(
1

nhdvd

n

∑
i=1

I(||Xi −u|| ≤ h)

)

=
2n2hd

n2h2dv2
d

Var(I(||Xi −u|| ≤ h))

=
2

v2
dhd

P(B(u,h))(1−P(B(u,h))).
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Now, for u∈ S, by (10),

P(B(u,h))(1−P(B(u,h)))≤ P(B(u,h))≤ a2hdvd

and
P(B(u,h))(1−P(B(u,h)))≥ P(B(u,h))δ ≥ a1hdvdδ.

Hence,
2a1vdδ ≤ Var(D(u))≤ 2a2vd, ∀u∈ S,

which shows that the variance ofD(u) is bounded above and below by positive functions that do not
depend onh. By a similar calculation, Cov(D(u),D(v)) is bounded above and below by functions
that do not depend onh, for all u,v∈ S.

Now, for anyu,

D(u) = D1(u)−D2(u)≡
√

nhd(Pn−P)( fu)−
√

nhd(Qn−P)( fu)

where Pn is the empirical measure based onX1, . . . ,Xn, Qn is the empirical measure based on
Y1, . . . ,Yn, and fu(·) = h−dK(||u− ·||/h). Note thatD1 andD2 are independent, mean 0 stochas-
tic processes. We can regard{

√
nhd(Pn−P)( f ) : f ∈ F } as an empirical process, whereF = { fu :

u∈ S} and similarly for{
√

nhd(Qn−P)( f ) : f ∈ F }. For fixedh, the collectionF is a Donsker
class. Hence, for everyu∈ S, D1(u) andD2(u) converge to two independent mean 0 Gaussian pro-
cesses. By the continuous mapping theorem, for everyu∈ S, D(u) converges to a mean 0 Gaussian
processG with some covariance kernelκ. By the calculations above, there exist positive bounded
functionsr(u,v) ≤ s(u,v) such thatr(u,v) ≤ κ(u,v) ≤ s(u,v) and such that neitherr nor s depend
onh. Hence

PX,Y

(
Γn(h)≥ t

√
1

nhd

)
≥ PX,Y

(
Γn,S(h)≥ t

√
1

nhd

)
= PX,Y

(√
nhdΓn,S(h)≥ t

)

= PX,Y

(
1
2

∫
S
|D(u)|du≥ t

)

= P

(
1
2

∫
|G(u)|du≥ t

)
+o(1),

where the last probability is the law of the Gaussian processG. The o(1) term is less thanδ/2
whenn ≥ n0. SinceG has strictly positive variance,P(

∫ |G| ≥ 0) = 1. Clearly,P(
∫ |G| ≥ 2t) is

decreasing int. Hence, for eachδ, there is a positivet such thatP
(

1
2

∫ |G| ≥ t
)
≥ 1−δ/2.

(3) The proof of this part is straightforward and is omitted.
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