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Abstract

This paper presents the prior PAC-Bayes bound and explores its capabilities as a tool to provide

tight predictions of SVMs’ generalization. The computation of the bound involves estimating a

prior of the distribution of classifiers from the available data, and then manipulating this prior in

the usual PAC-Bayes generalization bound. We explore two alternatives: to learn the prior from

a separate data set, or to consider an expectation prior that does not need this separate data set.

The prior PAC-Bayes bound motivates two SVM-like classification algorithms, prior SVM and η-

prior SVM, whose regularization term pushes towards the minimization of the prior PAC-Bayes

bound. The experimental work illustrates that the new bounds can be significantly tighter than the

original PAC-Bayes bound when applied to SVMs, and among them the combination of the prior

PAC-Bayes bound and the prior SVM algorithm gives the tightest bound.

Keywords: PAC-Bayes bound, support vector machine, generalization capability prediction, clas-

sification

1. Introduction

Support vector machines (SVMs) (Boser et al., 1992; Vapnik, 1998; Cristianini and Shawe-Taylor,

2000; Schölkopf and Smola, 2002) are accepted among practitioners as one of the most accurate

automatic classification techniques. They implement linear classifiers in a high-dimensional feature

space using the kernel trick to enable a dual representation and efficient computation. The danger of

overfitting in such high-dimensional spaces is conquered by maximizing the margin of the classifier
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on the training examples. For this reason there has been considerable interest in bounding the

generalization in terms of the margin.

In fact, a main drawback that restrains engineers from using these advanced machine learning

techniques is the lack of reliable predictions of generalization, especially in what concerns worst-

case performance. In this sense, the widely used cross-validation generalization measures indicate

little about the worst-case performance of the algorithms. The error of the classifier on a set of sam-

ples follows a binomial distribution whose mean is the true error of the classifier. Cross-validation

is a sample mean estimation of the true error, and worst-case performance estimations concern

the estimation of the tail of the error distribution. One could then employ statistical learning the-

ory (SLT) tools to bound the tail of the distribution of errors. Early bounds have relied on covering

number computations (Shawe-Taylor et al., 1998; Zhang, 2002), while later bounds have considered

Rademacher complexity (Bartlett and Mendelson, 2002). The tightest bounds for practical appli-

cations appear to be the PAC-Bayes bound (McAllester, 1999; Langford and Shawe-Taylor, 2002;

Catoni, 2007) and in particular the form given in Seeger (2002), Langford (2005) and Germain et al.

(2009). However, there still exist a remarkable gap between SLT predictions and practitioners’ ex-

periences: SLT predictions are too pessimistic when compared to the actual results data analysts get

when they apply machine learning algorithms to real-world problems.

Another issue affected by the ability to predict the generalization capability of a classifier is

the selection of the hyperparameters that define the training. In the SVM case, these parameters

are the trade-off between maximum margin and minimum training error, C, and the kernel param-

eters. Again, the more standard method of cross-validation has proved to be more reliable in most

experiments, despite the fact that it is statistically poorly justified and relatively expensive.

The aim of this paper is to investigate whether the PAC-Bayes bound can be tightened towards

less pessimistic predictions of generalization. Another objective is to study the implications of the

bound in the training of the classifiers. We specifically address the use of the bound in the model

selection stage and in the design of regularization terms other than the maximization of the margin.

The PAC-Bayes bound (retrospected in Section 2) uses a Gaussian prior centered at the origin

in the weight space. The key to the new bounds introduced here is to use part of the training set to

compute a more informative prior and then compute the bound on the remainder of the examples

relative to this prior. This generalisation of the bound, called prior PAC-Bayes bound, is derived

in Section 3. The prior PAC-Bayes bound was initially presented by Ambroladze et al. (2007). A

slight nuisance of the prior PAC-Bayes bound is that a separate data set should be available in order

to fix the prior. In Section 3.2, we further develop the expectation-prior PAC-Bayes bound as an

interesting new approach which does not require the existence of the separate data set. We also

derive a PAC-Bayes bound with a non-spherical Gaussian prior. To the best of our knowledge this

is the first such application for SVMs.

The encouraging results of Ambroladze et al. (2007), motivate a further use of the prior PAC-

Bayes bound. Section 4.1 introduces a new classification algorithm, the prior SVM, which replaces

the margin maximization in the optimization problem by a regularization term that pushes towards

the minimization of the PAC-Bayes bound. The optimization problem that produces the prior SVM

is divided into three stages. The first one involves the learning of a prior formed by an ensemble of

Gaussian distributions centered at different distances along the same direction. During the second

stage, each component of the prior is mapped with a posterior that improves its classification ac-

curacy while tightening the PAC-Bayes bound. In the last stage the prior component/posterior pair

that achieves the lowest value of the PAC-Bayes bound is selected as prior SVM classifier. Section
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4.2 presents a second algorithm, named η-prior SVM as a variant of prior SVMs where the position

of component of the prior that goes into the overall classifier is optimised in a continuous range (not

picked from a fixed set). Therefore, η-prior SVMs include a first optimization where the direction

of the prior is learnt from a separate set of training patterns, and a second optimization that deter-

mines (i) the exact position of the prior along the already learnt direction and (ii) the position of the

posterior. Furthermore we show that the performance of the algorithm can be bounded rigorously

using PAC-Bayes techniques.

In Section 5 the new bounds and algorithms are evaluated on multiple classification tasks after

a parameter selection. The experiments illustrate the capabilities of the prior PAC-Bayes bound

to provide tighter predictions of the generalisation of an SVM. Moreover, the combination of the

new bounds and the two prior SVM algorithms yields more dramatic tightenings of the bound.

Besides, these classifiers achieve good accuracies, comparable to those obtained by an SVM with

its parameters fixed with ten fold cross validation. We finish the experimental work showing that

the use of a different value of C for the prior and the posterior that form the (η)prior SVM lead to a

further tightening of the bound.

Finally, the main conclusions of this work and some related ongoing research are outlined in

Section 6.

2. PAC-Bayes Bound for SVMs

This section is devoted to a brief review of the PAC-Bayes bound theorem of Langford (2005). Let

us consider a distribution D of patterns x lying in a certain input space X and their corresponding

output labels y (y ∈ {−1,1}). Suppose Q is a posterior distribution over the classifiers c. For every

classifier c, the following two error measures are defined:

Definition 1 (True error) The true error cD of a classifier c is defined to be the probability of

misclassifying a pattern-label pair (x,y) selected at random from D

cD ≡ Pr(x,y)∼D(c(x) 6= y).

Definition 2 (Empirical error) The empirical error ĉS of a classifier c on a sample S of size m is

defined to be the error rate on S

ĉS ≡ Pr(x,y)∼S(c(x) 6= y) =
1

m

m

∑
i=1

I(c(xi) 6= yi),

where I(·) is an indicator function equal to 1 if the argument is true and equal to 0 if the argument

is false.

Now we define two error measures on the distribution of classifiers: the average true error,

QD ≡ Ec∼QcD , as the probability of misclassifying an instance x chosen uniformly from D with a

classifier c chosen according to Q; and the average empirical error Q̂S ≡ Ec∼QĉS, as the probability

of classifier c chosen according to Q misclassifying an instance x chosen from a sample S.

For these two quantities we can derive the PAC-Bayes bound on the true error of the distribution

of classifiers:
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Theorem 3 (PAC-Bayes bound) For all prior distributions P(c) over the classifiers c, and for any

δ ∈ (0,1],

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤
KL(Q(c)||P(c))+ ln(m+1

δ )

m

)

≥ 1−δ,

where KL(Q(c)||P(c)) = Ec∼Q ln
Q(c)
P(c) is the Kullback-Leibler divergence, and KL+(q||p) = q ln

q
p
+

(1−q) ln
1−q
1−p

for p > q and 0 otherwise.

The proof of the theorem can be found in Langford (2005).

This bound can be specialized to the case of linear threshold classifiers. Suppose the m training

examples define a linear classifier that can be represented by the following equation:

cu(x) = sign(uTφ(x)), (1)

where φ(x) is a nonlinear projection to a certain feature space1 where the linear classification actu-

ally takes place, and vector u in the feature space determines the separating hyperplane. Since we

are considering only classifiers with threshold set to zero all the classifiers in the paper can be rep-

resented with unit vectors (‖w‖= 1). However, as we will be considering distributions of classifiers

we use the notation u to indicate weight vectors that can also be non-unit.

For any unit vector w we can define a stochastic classifier in the following way: we choose

the distribution Q(cu) = Q(cu|w,µ), where u ∼ N (µw, I) is drawn from a spherical Gaussian with

identity covariance matrix centered along the direction pointed by w at a distance µ from the origin.

Moreover, we can choose the prior cu : u ∼ N (0, I) to be a spherical Gaussian with identity covari-

ance matrix centered at the origin. Then, for classifiers of the form in Equation (1) the generalization

performance can be bounded as

Corollary 4 (PAC-Bayes bound for SVMs (Langford, 2005)) For all distributions D , for all δ ∈
(0,1], we have

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
µ2

2
+ ln(m+1

δ )

m

)

≥ 1−δ.

It can be shown (see Langford, 2005) that

Q̂S(w,µ) = Em[F̃(µγ(x,y))], (2)

where Em is the average over the m training examples, γ(x,y) is the normalized margin of the

training examples

γ(x,y) =
ywTφ(x)

‖φ(x)‖ , (3)

and F̃ = 1−F where F is the cumulative normal distribution

F(x) =
∫ x

−∞

1√
2π

e−x2/2dx. (4)

1. This projection is induced by a kernel κ(·) satisfying κ(x,y) = 〈φ(x),φ(y)〉.

3510



PAC-BAYES BOUNDS WITH DATA DEPENDENT PRIORS

Note that the SVM expressed as (1) is computed with a single unit vector w. The generalization

error of such a classifier can be bounded by at most twice the average true error QD(w,µ) of the

corresponding stochastic classifier involved in Corollary 4 (Langford and Shawe-Taylor, 2002).

That is, for all µ we have

Pr(x,y)∼D

(

sign(wTφ(x)) 6= y
)

≤ 2QD(w,µ). (5)

3. Data Dependent Prior PAC-Bayes Bounds for SVMs

This section presents some versions of the PAC-Bayes bound that aim at yielding a tighter predic-

tion of the true generalization error of the classifier. These new bounds introduce more sophisticated

designs for the prior distribution over the classifiers in order to reduce its divergence with the pos-

terior distribution. The first set of bounds learns the prior distribution from a separate training data

set that will not be used in the computation of the bound, whilst the second set learns the prior from

mathematical expectations, avoiding to leave out a subset of patterns to calculate the bound.

3.1 Bounds Based on a Separate Set of Training Data

This section is a further extension of previous ideas presented by Ambroladze et al. (2007).

Our first contribution is motivated by the fact that the PAC-Bayes bound allows us to choose the

prior distribution, P(c). In the standard application of the bound P(c) is chosen to be a spherical

Gaussian centered at the origin. We now consider learning a different prior based on training an

SVM on a subset T of the training set comprising r training patterns and labels. In the experiments

this is taken as a random subset, but for simplicity of the presentation we will assume T comprises

the last r examples {xk,yk}m
k=m−r+1.

With these r examples we can learn an (unit and biased) SVM classifier, wr, and form a prior

P(wr,η)∼N (ηwr, I) consisting of a Gaussian distribution with identity covariance matrix centered

along wr at a distance η from the origin.

The introduction of this prior P(wr,η) in Theorem 3 results in the following new bound.

Corollary 5 (Single-prior PAC-Bayes bound for SVMs) Let us consider a prior on the distribution

of classifiers consisting of a spherical Gaussian with identity covariance centered along the direc-

tion given by wr at a distance η from the origin. Classifier wr has been learnt from a subset T of

r examples a priori separated from a training set S of m samples. Then, for all distributions D , for

all δ ∈ (0,1], we have

PrS∼Dm

(

∀wm,µ : KL+(Q̂S\T ||QD)≤
||ηwr−µwm||2

2
+ ln(m−r+1

δ )

m− r

)

≥ 1−δ,

where Q̂S\T is a stochastic measure of the empirical error of the classifier on the m− r samples not

used to learn the prior. This stochastic error is computed as in Equation (2) but averaged over S\T .

Proof Since we separate r instances to learn the prior, the actual size of the training set to which we

apply the bound is m−r. In addition, the stochastic error Q̂ must be computed only on the instances

not used to learn the prior, that is, the subset S\T . Note also that the selection of T can not be

optimised.
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Using a standard expression for the KL divergence between two Gaussians in an N dimensional

space,

KL(N (µ0,Σ0)‖N (µ1,Σ1)) =

1

2

(

ln

(

detΣ1

detΣ0

)

+ tr(Σ−1
1 Σ0)+(µ1 −µ0)

T Σ−1
1 (µ1 −µ0)−N

)

, (6)

the KL divergence between prior and posterior is computed as follows:

KL(Q(w,µ)||P(wr,η)) = KL(N (µw, I)‖N (ηwr, I)) =
1

2
||µw−ηwr||2.

Intuitively, if the selection of the prior is appropriate, the bound can be tighter than the one

given in Corollary 4 when applied to the SVM weight vector on the whole training set. It is worth

stressing that the bound holds for all w and so can be applied to the SVM trained on the whole set.

This might at first appear to be ‘cheating’, but the critical point is that the bound is evaluated on

the set S\T not involved in generating the prior. The experimental work illustrates how in fact this

bound can be tighter than the standard PAC-Bayes bound.

Moreover, the structure of the prior may be further refined in exchange for a very small increase

in the penalty term. This can be achieved with the application of the following result.

Theorem 6 (Mixture prior PAC-Bayes bound) Let P (c) = ∑J
j=1 π jPj(c) be a prior distribution

over classifiers consisting of a mixture of J components {Pj(c)}J
j=1 combined with positive weights

{π j}J
j=1 so that ∑J

j=1 π j = 1. Then, for all δ ∈ (0,1],

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤ min
j

KL(Q(c)||Pj(c))+ ln m+1
δ + ln 1

π j

m

)

≥ 1−δ.

Proof

The bound in Theorem 3 can be instantiated for the ensemble prior P (c)

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤
KL(Q(c)||P (c))+ ln(m+1

δ )

m

)

≥ 1−δ.

We now bound the KL divergence between the posterior Q(c) and the ensemble prior P (c). For

any 1 ≤ i ≤ J:

KL(Q(c)‖P (c)) =
∫

c∈C
Q(c)

(

lnQ(c)− ln(
J

∑
j=1

π jPj(c))

)

dc

≤
∫

c∈C
Q(c)(lnQ(c)− ln(πiPi(c)))dc = KL(Q(c)‖Pi(c))− ln(πi),

where the inequality follows from the fact that we have reduced the value inside the ln(·) term for

all c. Finally, the particularisation for the term of minimal KL(Q(c)‖Pj(c))− ln(π j) completes the
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proof.

Note that the inequality in the proof upper bounds the KL divergence to give a bound equivalent

to performing a union bound. In particular applications it may be possible to obtain tighter bounds

by estimating this KL divergence more closely.

This result can be also specialized for the case of SVM classifiers. The mixture prior is con-

structed by allocating Gaussian distributions with identity covariance matrix along the direction

given by wr at distances {η j}J
j=1 from the origin where {η j}J

j=1 are positive real numbers. In such

a case, we obtain

Corollary 7 (Gaussian Mixture-prior PAC-Bayes bound for SVMs) Let us consider a prior dis-

tribution of classifiers formed by an ensemble of equiprobable spherical Gaussian distributions

{Pj(c|wr,η j)}J
j=1 with identity covariance and mean η jwr, where {η j}J

j=1 are positive real num-

bers and wr is a linear classifier trained using a subset T of r samples a priori separated from

a training set S of m samples. Then, for all distributions D , for all posteriors (w,µ) and for all

δ ∈ (0,1], we have that with probability greater than 1− δ over all the training sets S of size m

sampled from D

KL+(Q̂S\T (w,µ)||QD(w,µ))≤ min
j

||η jwr−µw||2
2

+ ln(m−r+1
δ )+ lnJ

m− r
.

Proof The proof is straightforward and can be completed by substituting 1/J for all π j in Theorem

6 and computing the KL divergence between prior and posterior as in the proof of Corollary 5.

Note that the {η j}J
j=1 must be chosen before we actually compute the posterior. A linear search

can be implemented for the value of µ that leads to the tightest bound for each particular prior. In the

case of a mixture prior, the search is repeated for every member of the ensemble and the reported

value of the bound is the tightest one found during the searches.

Moreover, the data distribution can also shape the covariance matrix of the Gaussian prior.

Rather than take a spherically symmetric prior distribution we choose the variance in the direction

of the prior vector to be τ > 1. As with the prior PAC-Bayes bound the mean of the prior distribution

is also shifted from the original in the direction wr. Seeger (2002) has previously considered non-

spherical priors and (different) non-spherical posteriors in bounding Gaussian process classification.

Our application to SVMs is not restricted to using specific priors and posteriors so that we have the

flexibility to adapt our distributions in order to accommodate the prior derived from the last part of

the data.

We introduce notation for the norms of projections for unit vector u, P
‖
u(v)= 〈u,v〉 and P⊥

u (v)2 =

‖v‖2 −P
‖
u(v)

2.

Theorem 8 (τ-prior PAC-Bayes bound for linear classifiers) Let us consider a prior P(c|wr,τ,η)
distribution of classifiers consisting of a Gaussian distribution centred on ηwr, with identity covari-

ance matrix in all directions except wr in which the variance is τ2. Then, for all distributions D ,

for all δ ∈ (0,1], we have that with probability at least 1−δ over all the training samples of size m

drawn from D , for all posterior parameters (w, µ),

KL(Q̂S\T (w,µ)‖QD(w,µ))≤
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(ln(τ2)+ τ−2 −1+P
‖
wr
(µw−ηwr)

2/τ2 +P⊥
wr
(µw)2)+2ln(m−r+1

δ )

2(m− r)
.

Proof The application of the PAC-Bayes theorem follows that of Langford (2005) except that

we must recompute the KL divergence. Using the expression for the KL divergence between two

Gaussian distributions of (6) we obtain

KL(Q(w,µ)‖P(wr,τ,η)) =

1

2

(

ln(τ2)+

(

1

τ2
−1

)

+
P
‖
wr
(µw−ηwr)

2

τ2
+P⊥

wr
(µw)2

)

,

and the result follows.

Note that the quantity

Q̂S\T (w,µ) = Em−r[F̃(µγ(x,y))]

remains unchanged as the posterior distribution is still a spherical Gaussian centred at w.

3.2 Expectation-Prior PAC-Bayes Bound for SVMs

In this section, we attempt to start an interesting new approach on exploiting priors without the aid

of a separate data set. The basic idea is to adopt the mathematical expectation of some quantity and

then approximate this expectation by an empirical average computed on the available data.

An expectation that may result in reasonable priors is E(x,y)∼D [yφ(x)], which is used in the

derivation of the bound below. Define wp = E(x,y)∼D [yφ(x)] where y ∈ {+1,−1}. A special case

of wp is 1
2
(w+−w−) with w+ = E(x,y)∼D,y=+1[φ(x)], w− = E(x,y)∼D,y=−1[φ(x)] when each class

has the same prior probability. We use its general form in deriving bounds.

Given a sample set S including m examples, the empirical estimate of wp would be ŵp =
E(x,y)∼S[yφ(x)] =

1
m ∑m

i=1[yiφ(xi)]. We have the following bound.

Theorem 9 (Single-expectation-prior PAC-Bayes bound for SVMs) For all D , for all Gaussian

prior P ∼ N (ηwp, I) over margin classifiers, for all δ ∈ (0,1] :

PrS∼Dm (∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2
(‖µw−ηŵp‖+η R√

m
(2+

√

2ln 2
δ))

2 + ln( 2(m+1)
δ )

m
)≥ 1−δ,

where the posterior is Q ∼ N (µw, I) with R = supx ‖φ(x)‖.

Proof First, we try to bound KL(Q||P). We have

KL(Q||P) =
1

2
‖µw−ηwp‖2

=
1

2
‖µw−ηŵp +ηŵp −ηwp‖2

=
1

2
‖µw−ηŵp‖2 +

1

2
‖ηŵp −ηwp‖2 +(µw−ηŵp)

⊤(ηŵp −ηwp)

≤ 1

2
‖µw−ηŵp‖2 +

1

2
η2‖ŵp −wp‖2 +η‖µw−ηŵp‖‖ŵp −wp‖, (7)
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where the last inequality uses Cauchy-Schwarz inequality. Now it suffices to bound ‖ŵp −wp‖.

Define R = supx ‖φ(x)‖. It is simple to show that sup(x,y) ‖yφ(x)‖ = supx ‖φ(x)‖ = R. With

reference to a result on estimating the center of mass (Shawe-Taylor and Cristianini, 2004), we have

Pr

(

‖ŵp −wp‖ ≥
2R√

m
+ ε

)

≤ exp

(

−2mε2

4R2

)

.

Setting the right hand side equal to δ/2, solving for ε shows that with probability at least 1− δ/2,

we have

‖ŵp −wp‖ ≤
R√
m

(

2+

√

2ln
2

δ

)

. (8)

Define b = R√
m

(

2+
√

2ln 2
δ

)

, we have

PrS∼Dm

(

KL(Q||P)≤ 1

2
‖µw−ηŵp‖2 +

1

2
η2b2 +ηb‖µw−ηŵp‖

)

≥ 1−δ/2. (9)

Then, according to Theorem 3, we have

PrS∼Dm

(

∀Q(c) : KL+(Q̂S||QD)≤
KL(Q||P)+ ln( 2(m+1)

δ )

m

)

≥ 1−δ/2. (10)

Define a = ‖µw−ηŵp‖. Combining (9) and (10), we get

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2
a2 + 1

2
η2b2 +ηab+ ln( 2(m+1)

δ )

m

)

≥ 1−δ,

where we used (1−δ/2)2 > 1−δ. Rewriting the bound as

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2
(a+ηb)2 + ln( 2(m+1)

δ )

m

)

≥ 1−δ

completes the proof.

Considering at the same time Theorem 9 and the mixture-prior PAC-Bayes bound, it is not

difficult to reach the following mixture-expectation-prior PAC-Bayes bound for SVMs.

Theorem 10 (Mixture-expectation-prior PAC-Bayes bound for SVMs) For all D , for all mixtures of

Gaussian prior P (c) = ∑J
j=1 π jPj(c) where Pj ∼ N (η jwp, I) ( j = 1, . . . ,J), π j ≥ 0 and ∑J

j=1 π j = 1

over margin classifiers, for all δ ∈ (0,1] :

PrS∼Dm

(

∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤

min
j

1
2
(‖µw−η jŵp‖+η j

R√
m
(2+

√

2ln 2
δ))

2 + ln( 2(m+1)
δ )+ ln 1

π j

m



≥ 1−δ,

where the posterior is Q ∼ N (µw, I) with R = supx ‖φ(x)‖. If we consider equiprobable members

in the mixture, then ln 1
π j

= lnJ.
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Moreover, the expectation prior bound can also be extended to the case where the shape of the

covariance matrix of the prior is also determined from the training data:

Theorem 11 (τ-Expectation-prior PAC-Bayes bound) Consider a prior distribution

P ∼ N (ηwp, I,τ
2) of classifiers consisting of a Gaussian distribution centred on ηwp, with identity

covariance in all directions except wp in which the variance is τ2. Then, for all distributions D , for

all δ ∈ (0,1], we have

PrS∼Dm (∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2
(ln(τ2)+

(‖µw−ηŵp‖+η R√
m
(2+

√
2ln 2

δ ))
2−µ2+1

τ2 +µ2 −1)+ ln( 2(m+1)
δ )

m
)≥ 1−δ,

where the posterior is Q ∼ N (µw, I) with R = supx ‖φ(x)‖. We can recover Theorem 9 by taking

τ = 1.

Proof According to Theorem 8,

KL(Q||P) = 1

2



ln(τ2)+
1

τ2
−1+

P
‖
w∗

p
(µw−ηwp)

2

τ2
+P⊥

w∗
p
(µw)2



 ,

where w∗
p = wp/‖wp‖. The last two quantities can be rewritten as

P
‖
w∗

p
(µw−ηwp)

2

τ2
+P⊥

w∗
p
(µw)2 =

1

τ2
(

w⊤
p

‖wp‖
(µw−ηwp))

2 +‖µw‖2 − (
w⊤

p

‖wp‖
µw)2

=
1

τ2
(

w⊤
p

‖wp‖
µw−η‖wp‖)2 +‖µw‖2 − (

w⊤
p

‖wp‖
µw)2

=
1

τ2
(η2‖wp‖2 −2ηw⊤

p µw)+‖µw‖2

=
1

τ2
(‖µw−ηwp‖2 −‖µw‖2)+‖µw‖2

=
1

τ2
(‖µw−ηwp‖2 −µ2)+µ2 .

By Equation (7), we have

‖µw−ηwp‖2 ≤ ‖µw−ηŵp‖2 +η2‖ŵp −wp‖2 +2η‖µw−ηŵp‖‖ŵp −wp‖ .

By Equation (8), we have with probability at least 1−δ/2

‖ŵp −wp‖ ≤
R√
m

(

2+

√

2ln
2

δ

)

.

With a = ‖µw−ηŵp‖ and b = R√
m

(

2+
√

2ln 2
δ

)

, we have

PrS∼Dm

(

KL(Q||P)≤ 1

2
(ln(τ2)+

1

τ2
−1+

a2 +η2b2 +2ηab−µ2

τ2
+µ2)

)

≥ 1−δ/2. (11)
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Then, according to Theorem 3, we have

PrS∼Dm(∀Q(c) : KL+(Q̂S||QD)≤
KL(Q||P)+ ln( 2(m+1)

δ )

m
)≥ 1−δ/2. (12)

Combining (11) and (12) results in

PrS∼Dm (∀w,µ : KL+(Q̂S(w,µ)||QD(w,µ))≤
1
2
(ln(τ2)+ (a+ηb)2−µ2+1

τ2 +µ2 −1)+ ln( 2(m+1)
δ )

m
)≥ 1−δ,

which completes the proof.

4. Optimising the Prior PAC-Bayes Bound in the Design of the Classifier

Up to this point we have introduced the prior PAC-Bayes bounds as a means to tighten the origi-

nal PAC-Bayes bound (this fact is illustrated in the experiments included in Section 5). The next

contribution of this paper consists of the introduction of the optimisation of the prior PAC-Bayes

bound into the design of the classifier. The intuition behind this use of the bounds is that classifiers

reporting low values for the bound should yield a good generalization capability.

4.1 Prior SVM

The new philosophy is implemented in the prior SVM by replacing the maximization of the margin

in the optimization problem defining the original SVM with a term that pushes towards the tighten-

ing of the prior PAC-Bayes bound. This subsection introduces the formulation of the new algorithm,

a method to determine the classifier by means of off-the-shelf quadratic programming solvers, and

a procedure to compute the prior PAC-Bayes bound for these new classifiers.

4.1.1 FORMULATION OF THE PRIOR SVMS

As stated before, the design criterion for the prior SVMs involves the minimization of the prior

PAC-Bayes bound. Let us consider the simplest case of the bound, that is, a single prior centered on

ηwr, where wr is the unit vector weight of the SVM constructed with r training samples and η is a

scalar fixed a priori. For simplicity, we assume these r samples are the last ones in the training set

{(xl,yl)}m
l=m−r+1. Therefore, wr can be expressed in terms of these input patterns as:

wr =
∑m

l=m−r+1 ylαlφ(xl)
∥

∥∑m
l=m−r+1 ylαlφ(xl)

∥

∥

.

In such a case, a small bound on the error of the classifier is the result of a small value of ‖ηwr −
µw‖2, and a large value of the normalized margin of Equation (3) for the remaining training exam-

ples γ(xi,yi), i = 1, . . . ,m− r.

We start by addressing the separable case. Under perfect separability conditions, a good strategy

to obtain a classifier of minimal bound is to solve the following optimization problem:

min
w

[

1

2
‖w−ηwr‖2

]

(13)
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subject to

yiw
Tφ(xi)≥ 1 i = 1, . . . ,m− r. (14)

Clearly, the objective function of (13) attempts to reduce the value of the right hand side of the

bound, while the constraints in (14) that impose the separability of the classes lead to a small Q̂S.

Once w is found through the solution of (13) with constraints (14) the proper bound on the

average true error of the prior SVM can be obtained by means of a further tuning of µ (that is, using

µw instead of w as mean of the posterior distribution), where this last tuning will not change w.

The extension of the prior SVM to the non-separable case is easily carried out through the

introduction of positive slack variables {ξi}m−r
i=1 . Then the optimization problem becomes

min
w,ξi

[

1

2
‖w−wr‖2 +C

m−r

∑
i=1

ξi

]

(15)

subject to

yiw
Tφ(xi)≥ 1−ξi i = 1, . . . ,m− r, (16)

ξi ≥ 0 i = 1, . . . ,m− r. (17)

Note that the constraints in (16) also push towards the minimization of the stochastic error

Q̂S. In this sense, for a sample x on the wrong side of the margin we have ξ = 1− ywTφ(x) > 1,

which leads to a margin γ < 0 and thus an increase in Q̂S (see Equations (2) to (4)). Therefore, by

penalizing ξ we enforce a small Q̂S.

Furthermore, Corollary 7 allows us to use a mixture of J distributions instead of one at the cheap

cost of lnJ
m

. This can be used to refine the selection of the weight vector of the prior SVMs through

the following procedure:

1. First we determine a unit wr with samples {(xl,yl)}m
l=m−r+1. Then we construct a mixture

prior with J Gaussian components with identity covariance matrices centered at η jwr, with

η j being J real positive constants.

2. For every element in the mixture we obtain a prior SVM classifier w j solving

min
w j,ξi

[

1

2
‖w j −η jwr‖2 +C

m−r

∑
i=1

ξi

]

subject to

yiφ(xi)
T w j ≥ 1−ξi i = 1, . . . ,m− r,

ξi ≥ 0 i = 1, . . . ,m− r.

Afterwards, we obtain the bounds Q
j

D corresponding to the average true error of each one of

the J prior SVMs by tuning µ (see Corollary 6).

3. We finally select as the prior SVM the w j that reports the lowest bound Q
j

D .

It should be pointed out that each prior scaling (η j) that is tried increases the computational

burden of the training of the prior SVMs by an amount corresponding to an SVM problem with

m− r data points.

Appendix A details a procedure to determine the solution w to the optimization problem given

by (15) and constraints (16) and (17) based on the usual derivation of the SVM.
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4.1.2 COMPUTING THE PAC-BAYES BOUND FOR THE PRIOR SVMS

The remainder of the section presents a method to compute the PAC-Bayes bound for a prior SVM

obtained through the procedure described above. To simplify notation we have introduced the

nonunit weight vector wm−r =w−ηwr, that includes the posterior part of the prior SVM. The bound

is based on the relationship between two distributions of classifiers: the prior P(wr,η)∼ N (ηwr, I)
and the posterior Q(w,µ)∼ N (µw, I).

The stochastic error Q̂S in the left hand side of the bound can be straightforwardly obtained by

using a unit w in (27) in Equations (2) to (4). For the right hand side of the bound, we need to

compute KL(Q(w,µ)||P(wr,η)) =
‖ηwr−µw‖2

2
which can be rewritten as

KL(Q(w,µ)||P(wr,η)) =
1

2

(

µ2 +η2 −2µη(η+wT
m−rwr)

)

.

4.2 η-Prior SVM

When the prior SVM is learnt within a mixture priors setting, the last stage of the optimization

is the selection of the best prior-component/posterior pair, among the J possibilities. These prior-

component/posterior pairs are denoted by (η j,w j), where η j is the jth scaling of the normalized

prior wr. From the point of view of the prior, this selection process can be regarded as a search

over the set of scalings using the mixture-prior PAC-Bayes bound as fitness function. Note that the

evaluation of such a fitness function involves learning the posterior and the tuning of µ.

The idea presented in this section actually consists of two turns of the screw. First, the search

in the discrete set of priors is cast as a linear search for the optimal scaling η in a continuous range

of scalings [η1,ηJ]. Second, this linear search is introduced into the optimization of the posterior.

Therefore, instead of optimizing a posterior for every scaling of the prior, the optimal scaling and

posterior given a normalized prior are the output of the same optimization problem.

The sequel is devoted to the derivation of the resulting algorithm, called the η-prior SVMs, and

to its analysis using the prior PAC-Bayes bound framework.

4.2.1 DERIVATION OF THE η-PRIOR SVMS

The η-prior SVM is designed to solve the following problem:

min
v,η,ξi

[

1

2
‖v‖2 +C

m−r

∑
i=1

ξi

]

subject to

yi(v+ηwr)
Tφ(xi)≥ 1−ξi i = 1, . . . ,m− r,

ξi ≥ 0 i = 1, . . . ,m− r.

The final (unit vector) classifier will be

w = (v+ηwr)/‖v+ηwr‖.

After a derivation analogous to that presented in Appendix A, we arrive at the following quadratic

program

max
αi

m−r

∑
i=1

αi −
1

2

m−r

∑
i, j=1

αiα jyiy jφ(xi)
Tφ(x j)
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subject to

m−r

∑
i=1

m

∑
k=m−r+1

αiyiα̃kykκ(xi,xk) =
m−r

∑
i=1

yiαigi = 0 i = 1, . . . ,m− r,

0 ≤ αi ≤C i = 1, . . . ,m− r,

where gi =∑m
k=m−r+1 α̃kykκ(xi,xk) and α̃k are the normalized dual variables for the prior learnt from

the last r samples, {xk}m
k=m−r+1. Once we have solved for αi, we can compute η by considering

some j such that 0 < α j <C and using the equation

y j

(

m−r

∑
i=1

αiyiκ(xi,x j)+ηg j

)

= 1.

4.2.2 BOUNDS FOR η-PRIOR SVMS

The statistical analysis of the η-prior SVMs can be performed using the τ-prior PAC-Bayes bound

of Theorem 8, and τ-expectation prior PAC-Bayes bound. Rather than take a spherically symmetric

prior distribution we choose the variance in the direction of the prior vector to be τ2 > 1. As with the

prior SVM analysis the mean of the prior distribution is also shifted from the origin in the direction

wr.

In order to apply the bound we need to consider the range of priors that are needed to cover the

data in our application. The experiments conducted in the next section require a range of scalings

of wr from 1 to 100. For this we can choose η = 50, τ = 50, and µ ≤ 100 in all but one of our

experiments, giving an increase in the bound over the factor P⊥
wr
(µw)2 directly optimized in the

algorithm of

ln(τ2)+ τ−2 −1+P
‖
wr
(µw−ηwr)

2/τ2

2(m− r)
≤ ln(τ)+0.5τ−2

m− r
≈ 3.912

m− r
. (18)

We include Equation (18) to justify that our algorithm optimises a quantity that is very close to

the expression in the bound. Note that the evaluation of the bounds presented in the experimental

section are computed using the expression from Theorem 8 and not this approximate upper bound.

One could envisage making a sequence of applications of the PAC-Bayes bound with spherical

priors using the union bound and applying the result with the nearest prior. This strategy leads to

a slightly worse bound as it fails to take into account the correlations between the different priors.

This fact is illustrated in Section 5.

5. Experiments

This section is devoted to an experimental analysis of the bounds and algorithms introduced in the

paper. The comparison of the algorithms is carried out on classification preceded by model selection

tasks using some UCI (Blake and Merz, 1998) data sets (see their description in terms of number of

instances, input dimensions and numbers of positive/negative examples in Table 1).

5.1 Experimental Setup

For every data set, we prepared 50 different training/test set partitions where 80% of the samples

form the training set and the remaining 20% form the test set. From every training set we considered
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Problem # Examples Input Dim. Pos/Neg

Handwritten-digits (han) 5620 64 2791 / 2829

Waveform (wav) 5000 21 1647 / 3353

Pima (pim) 768 8 268 / 500

Ringnorm (rin) 7400 20 3664 / 3736

Spam (spa) 4601 57 1813 / 2788

Table 1: Description of data sets in terms of number of examples, number of input variables and

number of positive/negative examples.

subsets with 20%, 30%, . . ., 100% of the training patterns, in order to analyse the dependence of

the bounds with the number of samples used to train the classifier. Note that all the training subsets

from the same partition share the same test set.

With each of the training sets we learned a classifier with Gaussian RBF kernels preceded by

a model selection. The model selection consists in the determination of an optimal pair of hy-

perparameters (C,σ). C is the SVM trade-off between the maximization of the margin and the

minimization of the number of misclassified training samples; σ is the width of the Gaussian ker-

nel, κ(x,y) = exp(−‖x− y‖2/(2σ2)). The best pair is sought in a 7× 5 grid of parameters where

C ∈ {0.01, 0.1, 1, 10, 100, 1000, 10000} and σ ∈ { 1
4

√
d, 1

2

√
d,

√
d, 2

√
d, 4

√
d}, d being the input

space dimension.

With respect to the parameters needed by the prior PAC-Bayes bounds, the number of priors J

and the amount of patterns separated to learn the prior, the experiments reported by Ambroladze

et al. (2007) suggest that J = 10 and r = 50% of the training set size lead to reasonable results.

The setup to calculate the bound values displayed in the next tables was as follows. We trained

an instance of the corresponding classifier for each position of the grid of hyperparameters and

compute the bound. We selected for that type of classifier the minimum value of the bound found

through the whole grid. Then we averaged the 50 values of the bound corresponding to each of

the training/testing partitions. We completed the average with the sample standard deviation. Note

that proceeding this way we select a (possibly) different pair of hyperparameters for each of the 50

partitions. That is the reason why we name this task model selection plus classification.

The test error rates are computed after the following procedure. For each one of the training/test

partitions we carried out the model selection described in the previous paragraph and selected the

classifier of minimum bound. We classified the test set with this classifier and obtain the test error

rate for those particular classifier and partition. Then we averaged the 50 test error rates to yield the

test error rate for those particular data set, model selection method and type of classifier. Note again

that the model selection has a significant impact on the reported test error rates.

Moreover, the reported values of the PAC-Bayes and the mixture-prior PAC-Bayes bounds cor-

respond to the mean of the true error over the distribution of classifiers QD. The real true error cD

could then be bounded by twice this value (see Equation (5)). In all the experiments the bounds are

obtained using a confidence of δ = 0.01.
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5.2 Results and Discussion

The section starts presenting an analysis of the performance of SVM with the prior PAC Bayes

bounds introduced in this paper. We show how in most cases the use of an informative prior leads

to a significant tightening of the bounds on the true error of the classifier. The analysis is then

extended towards the new algorithms prior SVM and η-prior SVM. We show how their true error

is predicted more accurately by the prior PAC Bayes bound. The observed test errors achieved

by these algorithms are comparable to those obtained by SVMs with their hyperparameters fixed

through ten fold cross validation. Finally, the prior SVM framework enables the use of a different

value of parameter C for prior and posterior, that can be tuned using the prior PAC Bayes bound.

The experiments show that the use of different values of C contributes to get even tighter lower

bounds.

5.2.1 ANALYSIS OF THE SVM WITH THE PRIOR PAC BAYES BOUNDS

The first set of experiments is devoted to illustrate how tight can be the predictions about the gen-

eralisation capabilities of a regular SVM based upon the prior PAC-Bayes bounds. Thus, we have

trained SVM using the hyperparameters that arrived at a minimum value of each of the following

bounds:

PAC Bayes: the model selection is driven by the PAC Bayes bound of Langford (2005).

Prior PB: model selection driven by the mixture-prior PAC-Bayes bound of Corollary 7 with J =
10.

τ-prior PB: τ-prior PAC-Bayes bound of Theorem 8 with J = 10 and τ = 50.

E prior PB: expectation-prior PAC-Bayes bound of Theorem 10.

τ-E prior PB: τ-expectation prior PAC-Bayes bound of Theorem 11.

Plots in Figure 1 show the performance of the different bounds as a function of the training set

size. All the bounds achieve non trivial results even for training set sizes as small as 16% of the

complete data set (20% of the training set). In most of the cases, the bounds with an informative

prior are tighter than the original PAC Bayes bound with an spherical prior centred on the origin.

The expectation prior is significantly better in data sets wav and pim, whilst the prior PAC Bayes

and the τ-prior PAC Bayes are the tighter in problems rin and spa. Table 2 shows the values of the

bounds when the SVM is determined using the 100% of the training set (80% of the data).

Moreover, an examination of the slopes of the plots corresponding to the bounds point out that

those that learn the prior from a separate training set do converge faster than the original PAC Bayes

and the expectation prior PAC Bayes bounds. Since the former present a m− r in the denominator

of the right hand side, one could a priori think that their convergence would be slower than that of

the latter, with an m in the denominator. However, the experimental results show that it is better

to devote those separate training patterns to acquire a more informative prior than to increase the

weight of the denominator in the penalty term.
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Figure 1: Analysis of SVM with data dependent prior PAC Bayes bounds.

Data Set

Bound han wav pim rin spa

PAC Bayes 0.148 ± 0.000 0.190 ± 0.000 0.390 ± 0.001 0.198 ± 0.000 0.230 ± 0.000

Prior PB 0.088 ± 0.004 0.151 ± 0.004 0.411 ± 0.015 0.110 ± 0.004 0.171 ± 0.005

τ Prior PB 0.088 ± 0.004 0.152 ± 0.004 0.406 ± 0.013 0.110 ± 0.004 0.172 ± 0.006

E Prior PB 0.107 ± 0.001 0.133 ± 0.001 0.352 ± 0.004 0.194 ± 0.000 0.221 ± 0.001

τE Prior PB 0.149 ± 0.000 0.191 ± 0.000 0.401 ± 0.001 0.199 ± 0.000 0.232 ± 0.000

Table 2: Values of the bounds for SVM.

5.2.2 ANALYSIS OF PRIOR SVM AND η-PRIOR SVM

We repeated the study on the new algorithms, prior SVM and η-prior SVM, which are designed to

actually optimise prior PAC-Bayes bounds. The configurations classifier-bound considered for this

study were the following:

prior SVM + Prior PB: prior SVM described in page 14 and mixture-prior PAC-Bayes bound of

Corollary 7 with J = 10 priors .
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Figure 2: Bounds learning a prior classifier.

η-PSVM + Prior PB: η-prior SVM of Section 4.2.1 and mixture-prior PAC-Bayes bound of Corol-

lary 7 considering η comes from a mixture prior setting of J = 50 components η jwr with the

η j equally spaced between η1 = 1 and η50 = 100. This setting minimizes the penalty term

in the prior PAC-Bayes bound as we are not actually using these components to learn the

posterior.

η-PSVM + τ-Prior PB: η-prior SVM and the bound in Theorem 8.

As baseline results we include the better bounds found in the analysis of the SVM:

τ-Prior PB: τ prior PAC-Bayes bound of Theorem 8 with J = 10 and τ = 50.

E Prior PB: expectation-prior PAC-Bayes bound of Theorem 10.

The plots in Figure 2 show the bounds on the true error, QD , for the studied configurations

bound/classifier as a function of the size of the training set. Table 3 shows these results for a training

set of 80% of the complete data. In general, the bounds achieved on prior SVM and η-prior SVM

are significantly tighter than the bounds on the SVM, being the mixture-prior PAC Bayes bound on

prior SVM the tightest result.
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Data Set

Bound han wav pim rin spa

Prior SVM

Prior PB 0.037 ± 0.004 0.128 ± 0.004 0.386 ± 0.016 0.046 ± 0.003 0.137 ± 0.005

η-Prior SVM

Prior PB 0.050 ± 0.006 0.154 ± 0.004 0.419 ± 0.014 0.053 ± 0.004 0.177 ± 0.006

τ Prior PB 0.047 ± 0.005 0.135 ± 0.004 0.397 ± 0.014 0.050 ± 0.004 0.147 ± 0.006

SVM

τ Prior PB 0.088 ± 0.004 0.152 ± 0.004 0.406 ± 0.013 0.110 ± 0.004 0.172 ± 0.006

E Prior PB 0.107 ± 0.001 0.133 ± 0.001 0.352 ± 0.004 0.194 ± 0.000 0.221 ± 0.001

Table 3: Values of the bounds on the prior SVM and η-prior SVM classifiers.
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Figure 3: Bounds when prior and posterior have a different value of C.

Notice that in most of the configurations where the prior is learnt from a separate set the new

bounds achieve a significant cut in the value of the PAC-Bayes bound, which indicates that learning

an informative prior distribution helps to tighten the PAC-Bayes bound.

Furthermore, the two stages training of prior SVM and η-prior SVM enable the use of a different

value of C for the prior and posterior classifiers. The intuition behind this proposal is that once the

prior is fixed, the posterior could possibly accept a higher value C without overfitting.
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Data Set

Bound han wav pim rin spa

Prior SVM

Prior PB 0.037 ± 0.004 0.128 ± 0.004 0.386 ± 0.016 0.046 ± 0.003 0.137 ± 0.005

Prior PB 2C 0.033 ± 0.002 0.126 ± 0.004 0.341 ± 0.019 0.041 ± 0.002 0.113 ± 0.004

η-Prior SVM

Prior PB 0.050 ± 0.006 0.154 ± 0.004 0.419 ± 0.014 0.053 ± 0.004 0.177 ± 0.006

Prior PB 2C 0.035 ± 0.003 0.154 ± 0.004 0.401 ± 0.018 0.049 ± 0.003 0.150 ± 0.005

τ Prior PB 0.047 ± 0.005 0.135 ± 0.004 0.397 ± 0.014 0.050 ± 0.004 0.147 ± 0.006

τ Prior PB 2C 0.031 ± 0.002 0.126 ± 0.004 0.345 ± 0.019 0.039 ± 0.002 0.111 ± 0.005

Table 4: Values of the bounds on the prior SVM and η-prior SVM classifiers when different values

of C are used for prior and posterior.

Data Set

Bound han wav pim rin spa

Prior SVM

Prior PB 0.010 ± 0.004 0.086 ± 0.007 0.246 ± 0.034 0.016 ± 0.003 0.082 ± 0.009

Prior PB 2C 0.011 ± 0.003 0.091 ± 0.009 0.251 ± 0.038 0.017 ± 0.003 0.069 ± 0.007

η-Prior SVM

Prior PB 0.010 ± 0.005 0.086 ± 0.006 0.236 ± 0.028 0.016 ± 0.003 0.080 ± 0.009

Prior PB 2C 0.011 ± 0.003 0.087 ± 0.009 0.242 ± 0.039 0.018 ± 0.003 0.068 ± 0.008

τ Prior PB 0.010 ± 0.005 0.085 ± 0.006 0.238 ± 0.028 0.016 ± 0.003 0.080 ± 0.009

τ Prior PB 2C 0.011 ± 0.003 0.092 ± 0.010 0.248 ± 0.042 0.018 ± 0.003 0.070 ± 0.007

SVM

10 FCV 0.008 ± 0.003 0.087 ± 0.007 0.251 ± 0.023 0.016 ± 0.003 0.067 ± 0.006

Table 5: Test error rates achieved by prior SVM and η-prior SVM classifiers when the hyperparam-

eters are those that minimise a PAC Bayes bound. Prior and posterior are allowed to use a

different value of the hyperparameter C.

To evaluate the goodness of this modification, we carried out again the experiments in this

subsection but now allowing the prior and posterior to take different values of C from within the

range proposed at the beginning of the section. The results displayed in Figure 3 and Table 4 show

that the introduction of a different C significantly reduces the value of the bound.

Finally, Table 5 gives some insight about the performance of the new algorithms in terms of

observed test error. The joint analysis of the bounds and the error rates on a separate test set shows

that the prior PAC Bayes bounds are achieving predictions on the true error very close to the empir-

ical estimations; as an example, for data set wav the bound on QD is around 13% and the empirical

estimation is around 9%. Moreover, the combination of the new classifiers and bounds perform

similarly to an SVM plus ten fold cross validation in terms of accuracy.

Figure 4 tries to illustrate qualitatively the discrepancies among the test error rate observed in

crossvalidated SVM and that observed in the prior SVM. The figure shows the observed test error

and the value of bounds on QD as functions of C for data sets wav and pim. The vertical pink

line shows the crossvalidated C. The value of σ was fixed in both cases to the square root of the

input data. In both cases, it is very noticeable the dramatic increase in the value of the bound as C

increases, compared with a slight increase in the observed test error. A broadly accepted intuition

3526



PAC-BAYES BOUNDS WITH DATA DEPENDENT PRIORS

−2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

log
10

(C))

E
{Q

D
}

−2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

log
10

(C))

E
{Q

D
}

 

 

Test Error

PAC Bayes

10 Prior PAC Bayes

τ Prior PAC Bayes

E−Prior PAC Bayes

Crossvalidated model

Figure 4: Values of bounds and observed test error rate as a function of C for data sets wav (top

plot) and pim (bottom).

says that high values of C are likely to result in overfit, since the SVM is keener in reducing the

training set error. However, our experiments seem to show that the bounds are overreacting to that

behavior.

6. Conclusions

In this paper we have presented some strategies to tighten the already tight PAC-Bayes bound for

binary classifiers by learning an informative prior distribution on classifiers. We have studied the

SVM case, considering multivariate Gaussian priors and using some training data to infer their
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mean and/or covariance matrix. The first strategy, named prior PAC Bayes bound, considers an

identity covariance matrix. Then, an SVM learn on a separated subset of training samples serves as

a direction along which to place the mean of the prior. This prior can be further refined in the τ-

prior PAC Bayes bound case, where this direction is also used to stretch the covariance matrix. The

second strategy, named expectation prior PAC-Bayes bound also considers identity covariances, but

expresses the direction to place the prior as an statistic of the training data distribution and uses all

the training samples to estimate such statistic. The expectation prior can also be refined stretching

the covariance along the direction of the mean, yielding the τ-expectation prior PAC-Bayes bound.

The experimental work shows that these prior PAC-Bayes bounds achieve estimations of the

expected true error of SVMs significantly tighter than those obtained with the original PAC-Bayes

bound. It is remarkable that the prior PAC Bayes bounds improve the tightness of the PAC-Bayes

bound even when the size of the training set experiences reductions of up to an 80% of its size.

The structure of the prior PAC-Bayes bound: learn a prior classifier using some data and then

consider the SVM to be a posterior classifier inspired the design of new algorithms to train SVM-like

classifiers. The prior SVM proposes a set of prior parts (fixed scalings along a prior direction learnt

with separate data) and then fits a posterior part to each prior. The overall prior SVM classifier

is the prior-posterior couple that yields a lower value of the bound. The η-prior SVM learns the

scaling of the prior part and the posterior in the same quadratic program, thus significantly reducing

the computational burden of the training. The analysis of these classifiers under the prior PAC-

Bayes framework shows that the achieved bounds are dramatically tighter than those obtained for

the original SVM under the same framework. Moreover, if the bound drives the selection of the

hyperparameters of the classifiers, the observed empirical test error rate is similar to that observed

in the SVM when the hyperparameters are tuned via ten fold cross validation.

Moreover, the prior SVM enables the use of different values of the regularisation constant C

for both prior and posterior parts, which further tightens the bounds. The prior SVM classifiers

with hyperparameters selected by minimising the τ-prior PAC Bayes bound achieve classification

accuracies comparable to those obtained by an SVM with its parameters fixed by ten fold cross

validation; with the great advantage that the theoretical bound on the expected true error provided

by the τ-prior PAC Bayes bound is tightly close to the empirically observed.

All in all, the final message from this work is that the use informative priors can significantly

improve the analysis and design of classifiers within the PAC-Bayes framework. We find the study

of ways of extracting relevant prior domain knowledge from the available data and incorporating

such knowledge in the form of the prior distribution to be a really promising line of research.
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Appendix A.

The first step is to construct a Lagrangian functional to be optimized by the introduction of the

constraints with multipliers αi and νi, i = 1, . . . ,m− r,

LP =
1

2
‖w−ηwr‖2 +C

m−r

∑
i=1

ξi −
m−r

∑
i=1

αi

(

yiw
Tφ(xi)−1+ξi

)

−
m−r

∑
i=1

νiξi , νi,αi ≥ 0. (19)

Taking the gradient of (19) with respect to w and derivatives with respect to ξi we obtain the opti-

mality conditions:

w−ηwr =
m−r

∑
j=1

α jy jφ(x j), (20)

C−αi −νi = 0 ⇒ 0 ≤ αi ≤C i = 1, . . . ,m− r. (21)

Plugging Equation (20) in functional (19) and applying the optimality condition (21) we arrive at

the dual problem

max
αi

1

2

∥

∥

∥

∥

∥

m−r

∑
j=1

α jy jφ(x j)

∥

∥

∥

∥

∥

2

−
m−r

∑
i=1

αi

(

yi

(

ηwT
r +

m−r

∑
j=1

α jy jφ
T (x j)

)

φ(xi)−1

)

subject to

0 ≤ αi ≤C i = 1, . . . ,m− r.

Now we can replace the prior wr by its corresponding combination of mapped input vectors, wr =

∑m
k=m−r+1 ykα̃kφ(xk) (with α̃k being the scaled version of the Lagrange multipliers that yield a unit

vector wr), and substitute kernel functions (κ(·, ·)) for the inner products to arrive at

max
αi

m−r

∑
i=1

αi −
m−r

∑
i=1

η
m

∑
k=m−r+1

αiyiα̃kykκ(xi,xk)−
1

2

m−r

∑
i, j=1

αiα jyiy jκ(xi,x j)

subject to

0 ≤ αi ≤C i = 1, . . . ,m− r.

Grouping terms we have

max
αi

m−r

∑
i=1

αi

(

1− yiη
m

∑
k=m−r+1

α̃kykκ(xi,xk)

)

− 1

2

m−r

∑
i, j=1

αiα jyiy jκ(xi,x j) (22)

subject to

0 ≤ αi ≤C i = 1, . . . ,m− r.

Now we can introduce the following matrix identifications to further compact Equation (22)

Y(m−r),(m−r) = diag({yi}m−r
i=1 ),

K(m−r),(m−r) = (K(m−r),(m−r))i j = κ(xi,x j) i, j = 1, . . . ,m− r,

H(m−r),(m−r) = Y(m−r),(m−r)K(m−r),(m−r)Y(m−r),(m−r), (23)
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v = (v)i =

(

1− yiη
m

∑
k=m−r+1

α̃kykκ(xi,xk)

)

i = 1, . . . ,m− r, (24)

α= [α1, . . . ,αm−r]
T . (25)

Plugging (23), (24) and (25) in (22), we arrive at its final form that can be solved by off-the-shelf

quadratic programming methods:

max
α

vTα− 1

2
αT H(m−r),(m−r)α (26)

with box constraints

0 ≤ αi ≤C i = 1, . . . ,m− r.

Once (26) is solved, the overall prior SVM classifier w can be retrieved from (20):

w =
m−r

∑
i=1

αiyiφ(xi)+η
m

∑
k=m−r+1

α̃kykφ(xk). (27)
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