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Abstract

Asymptotic properties of model selection criteria for high-dimensional regression models are stud-
ied where the dimension of covariates is much larger than thesample size. Several sufficient condi-
tions for model selection consistency are provided. Non-Gaussian error distributions are considered
and it is shown that the maximal number of covariates for model selection consistency depends on
the tail behavior of the error distribution. Also, sufficient conditions for model selection consistency
are given when the variance of the noise is neither known nor estimated consistently. Results of
simulation studies as well as real data analysis are given toillustrate that finite sample performances
of consistent model selection criteria can be quite different.
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1. Introduction

Model selection is a fundamental task for high-dimensional statistical modeling where the number
of covariates can be much larger than the sample size. In such cases, classical model selection
criteria such as the Akaike information criterion or AIC (Akaike, 1973), theBayesian information
criterion or BIC (Schwarz, 1978) and cross validations or generalizedcross validation (Craven and
Wahba, 1979; Stone, 1974) tend to select more variables than necessary. See, for example, Broman
and Speed (2002) and Casella et al. (2009). Also, Yang and Barron (1998) discussed severe selection
bias of AIC which damages predictive performance for high-dimensionalmodels.

Recently, various model selection criteria for high-dimensional models havebeen introduced.
Wang et al. (2009) proposed a modified BIC which is consistent when the dimension of covariates
is diverging slower than the sample size. Here, the consistency of a model selection criterion means
that the probability of the selected model being equal to the true model converges to 1. See Section 2
for a rigorous definition. The extended BIC by Chen and Chen (2008) and corrected RIC by Zhang
and Shen (2010) are shown to be consistent even when the dimension of covariates is larger than the
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sample size. Some sparse penalized approaches including the LASSO (Least Absolute Shrinkage
and Selection Operator) (Tibshirani, 1996) and SCAD (Smoothly Clipped Absolute Deviation) (Fan
and Li, 2001) are proven to be consistent for high-dimensional models. See Zhao and Yu (2006) for
the LASSO and Kim et al. (2008) for the SCAD.

In this paper, we study asymptotic properties of a large class of model selection criteria based
on the generalized information criterion (GIC) considered by Shao (1997). The class of GICs is
large enough to include many well known model selection criteria such as the AIC, BIC, modified
BIC by Wang et al. (2009), risk inflation criterion (RIC) by Foster and George (1994), modified risk
inflation criterion (MRIC) by Foster and George (1994), corrected RICby Zhang and Shen (2010).
Also, as we will show, the extended BIC by Chen and Chen (2008) is asymptotically equivalent to
a GIC.

We give sufficient conditions for a given GIC to be consistent. Our sufficient conditions are
general enough to include cases where the error distribution can be other than Gaussian and the
variance of the error distribution is not consistently estimated. For a case ofthe Gaussian error
distribution with consistent estimator of the variance, our sufficient conditions include most of the
previously proposed consistent model selection criteria such as the modifiedBIC (Wang et al.,
2009), extended BIC (Chen and Chen, 2008) and corrected RIC (Zhang and Shen, 2010).

For high-dimensional models, it is not practically feasible to find the best model among all pos-
sible submodels since the number of submodels are too large. A simple remedy is tofind a sequence
of submodels with increasing complexities (e.g., increasing number of covariates) and find the best
model among them using a given model selection criterion. Examples of constructing a sequence
of submodels are the forward selection procedure and solution paths of penalized regression ap-
proaches. Our sufficient conditions are still valid as long as the sequence of submodels includes the
true model with probability converging to 1. We discuss more on these issues inSection 4.1.

The paper is organized as follows. In Section 2, the GIC is introduced. InSection 3, sufficient
conditions for the consistency of GICs are given. Various remarks about application of GICs to
real data analysis are given in Section 4. In Section 5, results of simulationsas well as a real data
analysis are presented, and concluding remarks follow in Section 6.

2. Generalized Information Criterion

Let L = {(y1,x1), . . . ,(yn,xn)} be a given data set of independent pairs of response and covariates,
whereyi ∈ R andxi ∈ Rpn. Suppose the true regression model for(y,x) is given as

y= x
′
β∗+ ε,

whereβ∗ ∈Rpn,E(ε)= 0 and Var(ε)=σ2. For simplicity, we assume thatσ2 is known. For unknown
σ2, see Section 4.2.

Let Yn = (y1, . . . ,yn)
′

and Xn be then× pn dimensional design matrix whosejth column is
X j

n = (x1 j , . . . ,xn j)
′
. For givenβ ∈ Rpn, let

Rn(β) = ‖Yn−Xnβ‖2,

where‖ · ‖ is the Euclidean norm. For a given subsetπ ⊂ {1, . . . , pn}, let

β̂π = argminβ:β j=0, j∈πcRn(β).
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For a given sequence of positive numbers{λn}, the GIC indexed by{λn}, denoted by GICλn
,

gives a sequence of random subsetsπ̂λn
of {1, . . . , pn} defined as

π̂λn
= argminπ⊂{1,...,pn}Rn(β̂π)+λn|π|σ2,

where|π| is the cardinality ofπ. The AIC corresponds toλn = 2, the BIC toλn = logn, the RIC of
Foster and George (1994) toλn = 2logpn, the RIC of Zhang and Shen (2010) toλn = 2(logpn+
log logpn). Shao (1997) studied the asymptotic properties of the GIC focusing on the AIC and BIC.

Whenpn is large, it would not be wise to search all possible subsets of{1, . . . , pn}. Instead, we
set an upper bound on the cardinality ofπ, saysn and search the optimal model among submodels
whose cardinalities are smaller thansn. Chen and Chen (2008) considered a similar model selection
procedure. LetM sn = {π ⊂ {1, . . . , pn} : |π| ≤ sn}. We define the restricted GICλn

as

π̂λn
= argminπ∈M snRn(β̂π)+λn|π|σ2. (1)

The restricted GIC is the same as the GIC ifsn = pn. In the following, we will only consider the
restricted GIC and suppress the term “restricted” unless there is any confusion.

3. Consistency of GIC on High Dimensions

Let π∗
n = { j : |β∗

j | 6= 0}. We say that the GICλn
is consistent if

Pr(π̂λn
= π∗

n)→ 1

asn→ ∞. In this section, we prove the consistency of the GICλn
under regularity conditions.

For a given subsetπ of {1, . . . , pn}, let Xπ = (X j
n , j ∈ π) be then×|π| matrix whose columns

consist ofX j
n , j ∈ π. For a given symmetric matrixA, let ξ(A) be the smallest eigenvalue ofA.

3.1 Regularity Conditions

We assume the following regularity conditions.

• A1 : There exists a positive constantM1 such thatX j ′
n X j

n/n≤ M1 for all j = 1, . . . , pn and all
n.

• A2 : There is a positive constantM2 such thatξ(X′
π∗

n
Xπ∗

n
/n)≥ M2 for all n.

• A3 : There exist positive constantsc1 andM3 such that 0≤ c1 < 1/2 andρn ≥ M3n−c1, where

ρn = inf
π:|π|≤sn

ξ(X
′
πXπ/n).

• A4 : There exist positive constantsc2 andM4 such that 2c1 < c2 ≤ 1 and

n(1−c2)/2min
j∈π∗

n

|β∗
j | ≥ M4.

• A5 : qn = O(nc3) for some 0≤ c3 < c2, andqn ≤ sn, whereqn = |π∗
n|.
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Condition A1 assumes that the covariates are bounded. Condition A2 means that the design
matrix of the true model is well posed. Condition A3 is called the sparse Riesz condition and used
in Chen and Chen (2008), Zhang (2010) and Kim and Kwon (2012). Condition A4 and A5 allow
the nonzero regression coefficients to converge to 0 and the number of signal variables to diverge,
respectively.

Remark 1 Condition A3 implies that sn ≤ n.

3.2 The Main Theorem

The following theorem proves consistency of the GICλn
. The proofs are deferred to Appendix.

Theorem 2 SupposeE(ε2k) < ∞ for some integer k> 0. If λn = o(nc2−c1) and pn/(λnρn)
k → 0,

then the GICλn
is consistent.

In Theorem 2,pn can diverge only polynomially fast inn sincepn = o(λk
n) = o(nkc2). Sincek

can be considered as a degree of tail lightness of the error distribution, we can conclude that the
lighter the tail of the error distribution is, the more covariates the GICλn

is consistent with. When
ε is Gaussian, the following theorem proves that the GICλn

can be consistent whenpn diverges
exponentially fast.

Theorem 3 Suppose ε ∼ N(0,σ2). If λn = o(nc2−c1),sn logpn = o(nc2−c1) and
λn−2logpn− log logpn → ∞, then the GICλn

is consistent.
In the following, we give three examples for (i) fixedpn, (ii) polynomially divergingpn and

(iii) exponentially divergingpn. For simplicity, we letc1 = 0 (i.e., ρn ≥ M3 > 0), c2 = 1 (i.e.,
min j∈π∗

n
|β∗

j |> 0) andc3 = 0 (i.e.,qn is fixed). In addition, we letsn be fixed.

Example 1 Consider a standard case where pn is fixed and n goes to infinity. Theorem 2 implies
that the GICλn

is consistent ifλn/n → 0 and λn → ∞ regardless of the tail lightness (i.e., k) of
the error distribution, provided the variance exists. The BIC, which is the GIC with λn = logn,
satisfies these conditions and hence is consistent. Note that the AIC does not satisfy the conditions
in Theorem 2. Any GIC withλn = nc,0 < c < 1 is consistent, which suggests that the class of
consistent model selection criteria is quite large. See Shao (1997) for more discussions.

Example 2 Consider a case of pn = nγ,γ > 0. The GIC withλn = nξ,0 < ξ < 1 and γ < kξ is
consistent. That is, for larger pn, we need largerλn for consistency, which is reasonable because
we need to be more careful not to overfit when pn is large. When the error distribution is Gaussian,
Theorem 3 can be compared with other previous results of consistency.First, the BIC (i.e., the GIC
with λn = logn) is consistent whenγ < 1/2. For 0 < γ < 1, Theorem 3 implies that the modified
BIC of Wang et al. (2009), which is a GIC withλn = log logpn logn, is consistent. Chen and Chen
(2008) proposed a model selection criterion called the extended BIC given by

π̂eBIC= argminπ⊂{1,...,pn},|π|≤KRn(β̂π)+ |π|σ2 logn+2κσ2 log

(

pn

|π|

)

for some K> 0 and0≤ κ ≤ 1, and proved that the extended BIC is consistent whenκ > 1−1/(2γ).
Sincelog

(pn
|π|
)

≍ |π| logpn for |π| ≤ K, we have

|π|σ2 logn+2γσ2 log

(

pn

|π|

)

≍ (logn+2κ logpn)|π|σ2.
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Hence, Theorem 3 confirms the result of Chen and Chen (2008).

Example 3 When the error distribution is Gaussian, the GIC can be consistent for exponentially
increasing pn (i.e., ultra-high dimensional cases). The GIC withλn = nξ,0 < ξ < 1 is consistent
when pn = O(exp(αnγ)) for 0 < γ < ξ and α > 0. Also, it can be shown by Theorem 3 that the
extended BIC withγ = 1 is consistent with pn = O(exp(αnγ)) for 0< γ < 1/2. The consistency of
the corrected RIC of Zhang and Shen (2010) can be confirmed by Theorem 3, but the regularity
conditions for Theorem 3 are more general than those of Zhang and Shen (2010).

4. Remarks

Remarks regarding to applications of the GIC to real data analysis are given.

4.1 Construction of Sub-Models

For high-dimensional models, it is computationally infeasible to search the optimalmodel among all
possible submodels. A simple remedy is to construct a sequence of submodelsand select the optimal
model among the sequence of submodels. Examples of constructing a sequence of submodels are
the forward selection (Wang, 2009) and the solution path of a sparse penalized estimator obtained
by, for example, the Lars algorithm (Efron et al., 2004) or the PLUS algorithm (Zhang, 2010). The
following algorithm exemplifies the model selection procedure with the GIC and asparse penalized
regression approach.

• For a given sparse penaltyJη(t) indexed byη ≥ 0, find the solution path of a penalized
estimator{β̂(η) : η > 0}, where

β̂(η) = argminβ

(

Rn(β)+
p

∑
j=1

Jη(|β j |)
)

.

The LASSO corresponds toJη(t) = ηt and the SCAD penalty corresponds to

Jη(t) = ηtI(0≤ 0< η)

+

{

aη(t −η)− (t2−η2)/2
a−1

+η2
}

I(η ≤ t < aη)

+

{

(a−1)η2

2
+η2

}

I(t ≥ aη)

for somea> 2.

• Let S(η) = { j : β̂(η) j 6= 0} andϒ = {η : S(η) 6= S(η−), |S(η)| ≤ sn}.

• Apply the GICλn
to S(η),η ∈ ϒ to select the optimal model. That is, letπ̂λn

= S(η∗) where

η∗ = argminη∈ϒ

(

Rn(β̂η)+λn|S(η)|
)

and
β̂η = argminβ:β j=0, j∈S(η)cRn(β).
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It is easy to see that a consistent GIC is still consistent with a sequence of sub-models as long as
the sequence of submodels includes the true model with probability converging to 1. For the LASSO
solution path, Zhao and Yu (2006) proved the selection consistency under the irrepresentable con-
dition, which is almost necessary (Zou, 2006). However, the irrepresentable condition is hardly
satisfied for high-dimensional models. The consistency of the solution path of a nonconvex penal-
ized estimator with either the SCAD penalty or minimax concave penalty is proved byZhang (2010)
and Kim and Kwon (2012). By combining Theorem 4 of Kim and Kwon (2012) and Theorem 2
of the current paper, we can prove the consistency of the GIC with the solution path of the SCAD
penalty or minimax concave penalty, which is formally stated in the following theorem.

Theorem 4 Condition A3 is replaced by A3’, where

• A3’: There exist positive constants c1 and M3 such that0≤ c1 < 1/2 andρn ≥ M3nc1/2.

SupposeE(ε2k)<∞ for some integer k> 0. If pn= o(nk(c2/2−c1)), the under the regularity conditions
A1 to A5 with A3 being replaced by A3’, the solution path of the SCAD or minimaxconcave penalty
included the true model with probability converging to 1, and hence the GICλn

with λn = o(nc2−c1)
is consistent with the solution path of the SCAD or minimax concave penalty.

Remark 5 Condition A3’ is a technical modification needed for Theorem 4 of Kim and Kwon
(2012). Note that A3 is weaker than A3’, which is an advantage of using the l0 penalty rather
than nonconvex penalties which are linear around 0.

Remark 6 Theorem 3 can be modified similarly for the GIC with the solution path of the SCADor
minimax concave penalty, since Theorem 4 of Kim and Kwon (2012) can be modified accordingly
for the Gaussian error distribution.

4.2 Estimation of the Variance

To use the GIC in practice, we need to knowσ2. If σ2 is unknown, we can replace it by its estimate.
Theorems 2 and 3 are still valid as long asσ2 is estimated consistently. Whenpn is fixed, we can
estimateσ2 consistently by the mean squared error of the full model. For high-dimensional data, it
is not obvious how to estimateσ2. However, a weaker condition can be put on an estimatorσ̂2 of
σ2 for the GIC to be consistent. Suppose that

0< r in f = liminf
σ̂2

σ2 ≤ limsup
σ̂2

σ2 = rsup< ∞ (2)

with probability 1. This condition essentially assumes thatσ̂2 is neither too small nor too large. It
is not difficult to show that Theorem 2 is still valid witĥσ2 satisfying (2). This, however, is not
true for Theorem 3. A slightly weak version of Theorem 3 which only requires (2) is given in the
following theorem.

Theorem 7 Supposeε ∼ N(0,σ2). Let σ̂2 be an estimator ofσ2 satisfying (2). Ifλn = o(nc2−c1)
andλn−2M1 logpn/ρnr in f → ∞, then the GICλn

with the estimated variance is consistent.
The corrected RIC, the GIC withλn = 2(logpn+ log logpn), does not satisfy the condition in

Theorem 7, and hence may not be consistent with an estimated variance. Onthe other hand, the
GIC with λn = αn logpn is consistent as long asαn → ∞.
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4.3 The Size of sn

For condition A5,sn should be large enough so thatqn ≤ sn. In many cases,sn can be sufficiently
large for practical purposes. For example, suppose{xi , i ≤ n} are independent and identically dis-
tributed pn dimensional random vectors such that E(x1) = 0 and Var(x1) = Σ = [σ jk]. For a given
ρ > 0, let s∗ be the largest integer such that the smallest eigenvalue ofΣη = [σ jk, j,k∈ η] is greater
thanρ for any η ⊂ {1, . . . , pn} with |η| ≤ s∗. For example, whenΣ is compound symmetry, that
is σ j j = 1 andσ jk = ν for j 6= k and ν ∈ [0,1), the smallest eigenvalue ofΣη is 1− ν for all
η ⊂ {1, . . . , pn} and hences∗ = pn if 1 − ν > ρ. Let A = Ση −X

′
ηXη/n. By the inequality (2) in

Greenshtein and Ritov (2004), we have

sup
j,k

∣

∣

∣

∣

∣

n

∑
i=1

xi j xik/n−σ jk

∣

∣

∣

∣

∣

= Op

(

√

logn
n

)

,

and hence supjk |a jk| = Op(
√

logn/n), wherea jk is the( j,k) entry of A. Since the largest eigen-

value of A is bounded by|η|Op(
√

logn/n), the smallest eigenvalue ofXη
′Xη/n is greater than

ρ−|η|Op(
√

logn/n) if |η| ≤ s∗. So, we can letsn = min{nc,s∗} for c< 1/2.

5. Numerical Analysis

In this section, we investigate finite sample performance of various GICs by simulation experiments
as well as real data analysis. We consider the five GICs whose correspondingλns are given as

• GIC1(=BIC) : λ(1)
n = logn,

• GIC2 : λ(2)
n = p1/3

n ,

• GIC3 : λ(3)
n = 2logpn,

• GIC4 : λ(4)
n = 2(logpn+ log logpn),

• GIC5 : λ(5)
n = log lognlogpn,

• GIC6 : λ(6)
n = lognlogpn.

The GIC1 is the BIC. By Theorem 2, the GIC2 can be consistent when E(ε8) < ∞. That is, the
GIC2 can be consistent when the tail of the error distribution is heavier than that of the Gaussian
distribution. The GIC3 and GIC4 are the RIC of Foster and George (1994) and the corrected RIC of
Zhang and Shen (2010). The GIC5 and GIC6 are consistent when the error distribution is Gaussian.

5.1 Simulation 1

The first simulation model is
y= x

′
β∗+ ε

wherex = (x1, . . . ,xp)
′
is a multivariate Gaussian random vector with mean 0 and covariances ofxk

andxl being 0.5|k−l |. Theε is a random variable with mean 0 andσ2= 4. Forβ∗=(3,1.5,0,0,2,0
′
p−5)

′

with 0k denoting ak−dimensional vector of zeros. This simulation setup was considered in Fan and

1043



K IM , KWON AND CHOI

Li (2001). We consider two distributions forε : the Gaussian distribution and the t-distribution with
3 degrees of freedom multiplied by a positive constant to make the variance be 4.

First, we compare performances of the GICs applied to all possible submodels with those ap-
plied to submodels constructed by the solution path of a sparse penalized approach. For a sparse
penalized approach, we use the SCAD penalty with the PLUS algorithm (Zhang, 2010). Table 1
summarizes the results whenp= 10 andn= 100 based on 300 repetitions of the simulation. In the
table, ‘Signal’, ‘Noise’, ‘PTM’ and ‘Error (s.e.)’ represent the average number of variables included
in the selected model among the signal variables, the average number of variables included in the
selected model among noisy variables, the proportion of the true model beingexactly identified,
and the average of the squared Euclidean distance ofβ̂π̂λn

form β∗ with the standard error in the
parenthesis, respectively. From Table 1, we can see that the results based on the SCAD solution
path are almost identical to those based on the all possible search, which suggests that the model
selection with the SCAD solution path is a promising alternative to all possible search.

Submodels Criterion Signal Noise PTM Error (s.e.)
All GIC1 3 0.22 0.80 0.220(0.013)

GIC2 3 0.92 0.39 0.371(0.018)

GIC3 3 0.22 0.80 0.220(0.013)

GIC4 3 0.09 0.91 0.190(0.016)

GIC5 3 0.39 0.67 0.267(0.016)

GIC6 3 0.02 0.98 0.158(0.015)

SCAD GIC1 3 0.21 0.80 0.218(0.013)

GIC2 3 0.93 0.40 0.367(0.018)

GIC3 3 0.21 0.80 0.218(0.013)

GIC4 3 0.10 0.90 0.191(0.016)

GIC5 3 0.39 0.67 0.266(0.016)

GIC6 3 0.03 0.97 0.163(0.015)

Table 1: Comparison of the 6 GICs with the all possible search and SCAD solution path when
p= 10 andn= 100.

For simulation with high-dimensional models, we considerp= 500 andp= 3000. The results
of prediction accuracy and variable selectivity forn= 100 andn= 300 with the error distribution
being the Gaussian and t-distributions are presented in Tables 2 and 3, respectively. We use the
SCAD solution path to construct a sequence of submodels. The values arethe averages based on
300 repetitions of the simulation.

First of all, the GIC1 (the BIC) is the worst in terms of prediction accuracy forp = 500 and
p= 3000. This is mainly because the GIC1 selects too many noisy variables compared to the other
selection criteria even though it detects signal variables well. The GIC4 is the best in terms of both
the prediction accuracy and variable selectivity forn= 100, and the GIC6 is the best forn= 300.
The GIC2, GIC3 and GIC5 perform reasonably well but tend to select variables more necessary.
By comparing the results of the Gaussian and t distributions, we have foundthat less signal and
more noisy variables are selected when the tail of the error distribution is heavier. However, the
relative performances of the model selection criteria are similar. That is, theGIC1 is the worst, the
GIC4 and GIC6 are the best and so on. Based on these observations, we conclude that(i) model
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 2.99 4.35 0.00 1.369(0.039)

GIC2 2.98 1.25 0.26 0.706(0.037)

GIC3 2.96 0.20 0.80 0.351(0.036)

GIC4 2.95 0.05 0.90 0.289(0.036)

GIC5 2.98 0.67 0.52 0.509(0.035)

GIC6 2.81 0.00 0.81 0.620(0.061)

3000 GIC1 2.99 5.69 0.00 1.667(0.036)

GIC2 2.94 0.26 0.76 0.444(0.047)

GIC3 2.92 0.14 0.82 0.431(0.049)

GIC4 2.89 0.05 0.87 0.445(0.053)

GIC5 2.95 0.58 0.55 0.569(0.046)

GIC6 2.63 0.00 0.63 1.092(0.075)

300 500 GIC1 3 4.89 0.00 0.561(0.015)

GIC2 3 1.69 0.15 0.280(0.010)

GIC3 3 0.17 0.84 0.083(0.005)

GIC4 3 0.03 0.97 0.057(0.004)

GIC5 3 0.40 0.66 0.119(0.007)

GIC6 3 0.00 1.00 0.049(0.002)

3000 GIC1 3 9.80 0.00 1.045(0.018)

GIC2 3 0.38 0.67 0.136(0.008)

GIC3 3 0.20 0.83 0.099(0.007)

GIC4 3 0.02 0.98 0.057(0.004)

GIC5 3 0.47 0.60 0.154(0.009)

GIC6 3 0.00 1.00 0.050(0.002)

Table 2: Comparison of the 6 GICs with Simulation 1 when the error follows the Gaussian distri-
bution.

selection criteria specialized for high-dimensional models are necessary for optimal prediction and
variable selection, (ii) finite sample performances of consistent GICs are quite different, and (iii)
the tail lightness of the error distribution does not affect seriously to relative performances of model
selection criteria.

5.2 Simulation 2

We consider a more challenging case by modifying the model for Simulation 1. Wedivide thep
components ofβ∗ into continuous blocks of size 20. We randomly select 5 blocks and assign the
value(3,1.5,0,0,2,0

′
15)/1.5 to each block. The entries in other blocks are set to be zero.

The results are summarized in Tables 4 and 5. We observe similar phenomena as in Simulation
1: the GIC1 is the worst, the GIC4 and GIC6 are the best and etc. However, whenn= 100, the GIC1
is better in terms of prediction accuracy than some other GICs which are selection consistent, which
is an example of the conflict between selection consistency and prediction optimality.
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 2.98 4.27 0.09 2.236(0.702)

GIC2 2.97 1.24 0.51 1.478(0.696)

GIC3 2.96 0.48 0.81 1.224(0.696)

GIC4 2.94 0.35 0.86 1.198(0.695)

GIC5 2.97 0.82 0.68 1.348(0.696)

GIC6 2.84 0.12 0.83 1.271(0.692)

3000 GIC1 2.96 5.45 0.01 1.683(0.106)

GIC2 2.92 0.51 0.74 0.701(0.094)

GIC3 2.91 0.40 0.78 0.673(0.088)

GIC4 2.88 0.22 0.82 0.619(0.086)

GIC5 2.94 0.69 0.68 0.729(0.093)

GIC6 2.59 0.03 0.59 1.273(0.086)

300 500 GIC1 3 4.26 0.06 0.501(0.034)

GIC2 3 1.52 0.38 0.261(0.022)

GIC3 3 0.28 0.84 0.100(0.013)

GIC4 3 0.08 0.95 0.063(0.008)

GIC5 3 0.49 0.75 0.133(0.016)

GIC6 3 0.00 1.00 0.044(0.003)

3000 GIC1 3 9.58 0.00 1.057(0.061)

GIC2 3 0.83 0.71 0.248(0.043)

GIC3 3 0.59 0.81 0.205(0.042)

GIC4 3 0.24 0.91 0.131(0.029)

GIC5 3 0.90 0.68 0.262(0.044)

GIC6 3 0.02 0.99 0.062(0.019)

Table 3: Comparison of the 6 GICs with Simulation 1 when the error follows the t-distribution.

5.3 Real Data Analysis

We analyze the data set used in Scheetz et al. (2006), which consists of gene expression levels of
18,975 genes obtained from 120 rats. The main objective of the analysis is tofind genes that are
correlated with gene TRIM32 known to cause Bardet-Biedl syndromes. As was done by Huang et al.
(2008), we first select 3000 genes with the largest variance in expression level, and then choose the
top p genes that have the largest absolute correlation with gene TRIM32 among the selected 3000
genes.

We compare prediction accuracies of the 6 GICs with the submodels obtained from the SCAD
solution path. Each data set was divided into two parts, training and test datasets, by randomly
selecting 2/3 observations and 1/3 observations, respectively. We use the training data set to select
the model and estimate the regression coefficients, and use the test data setto evaluate the prediction
performance.

For estimation of the error variance, Zou et al. (2007) used the mean squared error of the full
model whenp< n. This approach, however, is not applicable to our data set sincep> n. A heuristic
method is to setpmax first, and to select a model among the SCAD solution path whose number of
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 14.82 5.11 0.00 3.553(0.225)

GIC2 14.67 2.39 0.14 3.211(0.242)

GIC3 14.40 1.47 0.24 3.654(0.285)

GIC4 14.17 1.16 0.25 4.212(0.302)

GIC5 14.57 1.86 0.21 3.242(0.254)

GIC6 13.04 0.72 0.16 7.758(0.398)

3000 GIC1 12.08 12.19 0.00 20.192(1.186)

GIC2 11.51 5.78 0.01 19.783(1.061)

GIC3 11.36 5.34 0.01 20.051(1.055)

GIC4 11.06 4.37 0.01 20.649(1.021)

GIC5 11.68 6.62 0.01 19.616(1.103)

GIC6 10.11 2.47 0.01 22.755(0.894)

300 500 GIC1 15 4.56 0.00 0.795(0.015)

GIC2 15 1.63 0.17 0.516(0.013)

GIC3 15 0.19 0.82 0.311(0.009)

GIC4 15 0.03 0.97 0.278(0.007)

GIC5 15 0.39 0.68 0.345(0.011)

GIC6 15 0.00 1.00 0.270(0.006)

3000 GIC1 15 9.60 0.00 1.322(0.020)

GIC2 15 0.32 0.72 0.340(0.010)

GIC3 15 0.14 0.88 0.300(0.008)

GIC4 15 0.01 0.99 0.267(0.006)

GIC5 15 0.40 0.66 0.358(0.010)

GIC6 15 0.00 1.00 0.264(0.006)

Table 4: Comparison of the 6 GICs with Simulation 2 when the error follows the Gaussian distri-
bution.

nonzero coefficients is equal topmax, and to estimate the error variance by the mean squared error
of the selected model. Following the results of Scheetz et al. (2006), Chianget al. (2006), Huang
et al. (2008), and Kim et al. (2008), we guess that a reasonable modelsize would be in between 20
and 40. Table 6 compares the 6 GICs with the number of pre-screened genes beingp = 500 and
p = 3000, when the error variance is estimated withpmax being 20, 30 and 40, respectively. All
values are the arithmetic means of the results from 100 replicated random partitions. In the table,
‘Nonzero’ denotes the number of nonzero coefficients in the selected model and ‘Error (s.e.)’ is
the prediction error on the test data set and the standard error in the parenthesis obtained on the test
data. Forp= 500, the lowest prediction error is achieved by the GIC2 and the GIC3, GIC4 and GIC5

perform reasonably well withpmax= 20. For p= 3000, the lowest prediction error is achieved by
the GIC5 with pmax= 20. So, we choosepmax= 20 for estimation of the error variance.

As argued by Yang (2005), the standard error obtained by random partition could be misleading.
As a supplement, we draw the box plots of the 100 prediction errors of the 6 GICs with pmax= 20
obtained from 100 random partitions in Figure 1. The relative performances of the GICs with the
real data are different from those of the simulation studies in the previous subsections. The GIC2,
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n p Criterion Signal Noise PTM Error (s.e.)
100 500 GIC1 14.65 3.89 0.07 3.974(0.401)

GIC2 14.55 2.07 0.35 3.686(0.411)

GIC3 14.40 1.45 0.41 3.870(0.421)

GIC4 14.17 1.10 0.41 4.378(0.424)

GIC5 14.53 1.85 0.38 3.649(0.412)

GIC6 13.00 0.59 0.25 7.848(0.471)

3000 GIC1 11.99 9.41 0.02 19.768(1.154)

GIC2 11.53 5.23 0.08 19.806(1.066)

GIC3 11.47 4.78 0.08 19.641(1.029)

GIC4 11.19 3.89 0.08 19.968(0.959)

GIC5 11.61 5.92 0.08 19.96(1.101)

GIC6 10.35 2.28 0.03 21.96(0.899)

300 500 GIC1 14.99 4.81 0.05 0.990(0.098)

GIC2 14.99 2.33 0.32 0.748(0.098)

GIC3 14.99 0.75 0.78 0.519(0.094)

GIC4 14.99 0.40 0.89 0.451(0.090)

GIC5 14.99 1.00 0.66 0.565(0.094)

GIC6 14.99 0.06 0.98 0.339(0.053)

3000 GIC1 15 8.18 0.00 1.226(0.051)

GIC2 15 0.58 0.73 0.420(0.040)

GIC3 15 0.31 0.86 0.358(0.037)

GIC4 15 0.12 0.95 0.314(0.032)

GIC5 15 0.63 0.70 0.430(0.041)

GIC6 15 0.01 0.99 0.272(0.015)

Table 5: Comparison of the 6 GICs with Simulation 2 when the error follows the t-distribution.

GIC3 and GIC5 have lower prediction errors than the GIC4 and GIC6 while the formers tend to
select more variables than necessary in the simulation studies. This observation suggests that there
might be many signal genes whose impacts on the response variable are relatively small.

6. Concluding Remarks

The range of consistent model selection criteria is rather large, and it is not clear which one is better
with finite samples. It would be interesting to rewrite the class of GICs as{λn = αn logpn : αn >
0}. The GIC3, GIC5 and GIC6 correspond toαn = 2, αn = log logn andαn = logn, respectively.
When the rue model is expected to be very sparse, it would be better to letαn be rather large (e.g.,
αn = logn), while a smallerαn (e.g.,αn = 2 or αn = log logn) would be better when many signal
covariates with small regression coefficients are expected to exist. The relation of the GICs with
largerαn with those with smallerαn would be similar to the relation between the AIC and BIC for
standard fixed dimensional models.
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pmax= 20
p

500 3000
Error (s.e.) Nonzero Error (s.e.) Nonzero

GIC1 0.742(0.038) 15.91 0.766(0.036) 18.62
GIC2 0.649 (0.028) 10.95 0.686(0.035) 3.91
GIC3 0.656(0.031) 6.99 0.697(0.035) 3.69
GIC4 0.677(0.034) 5.57 0.719(0.037) 2.78
GIC5 0.664(0.030) 9.76 0.667 (0.032) 4.92
GIC6 0.732(0.038) 3.03 0.792(0.039) 1.82

pmax= 30
p

500 3000
Error (s.e.) Nonzero Error (s.e.) Nonzero

GIC1 0.890(0.035) 27.26 0.868(0.039) 26.07
GIC2 0.825(0.038) 21.77 0.698(0.031) 14.04
GIC3 0.752(0.029) 17.53 0.696(0.031) 13.25
GIC4 0.722 (0.029) 15.19 0.691(0.034) 10.76
GIC5 0.800(0.030) 20.29 0.729(0.032) 15.99
GIC6 0.688(0.030) 11.31 0.683 (0.034) 5.53

pmax= 40
p

500 3000
Error (s.e.) Nonzero Error (s.e.) Nonzero

GIC1 1.040(0.077) 34.54 0.936(0.041) 33.80
GIC2 0.916(0.036) 29.59 0.892(0.041) 27.27
GIC3 0.859(0.035) 25.10 0.878(0.040) 26.37
GIC4 0.846 (0.039) 23.02 0.846(0.038) 25.00
GIC5 0.890(0.035) 28.20 0.910(0.040) 28.60
GIC6 0.763(0.029) 18.69 0.800 (0.037) 21.02

Table 6: Comparison of the 6 GICs with the gene expression data. The bold face numbers represent
the lowest prediction errors among the 6GICs.

Estimation ofσ2 is an open question. We may use the BIC-like criterion by assuming the
Gaussian distribution:

π̂λn
= argminπ⊂{1,...,pn} log(Rn(β̂π)/n)+λn|π|.

If Rn(β̂π)/n is bounded above from∞ and below from 0 in probability (uniformly inπ and n),
we could derive similar asymptotic properties for the BIC-like criteria as the GICs. We leave this
problem as future work.
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Figure 1: The boxplot of the prediction errors when (a)p= 500 and (b)p= 3000 withpmax= 20.

For consistency, the smallest eigenvalue of the design matrix of the true modelis assumed to be
sufficiently large (i.e., condition A2). However, it is frequently observedfor large dimensional data
that some covariates are highly correlated and they affect the output similarly. In this case, selecting
some covariates and ignoring the others, which is done by a standard modelselection method, is not
optimal. See Zou and Hastie (2005) for an example. It would be interesting to develop consistent
model selection methods for such cases.
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Appendix A. Proof of Theorem 2

Without loss of generality, we letπ∗
n = {1, . . . ,qn}. Let β̂∗ = β̂π∗

n
. Let Ŷπ = Xnβ̂π andŶ∗

n = Xnβ̂π∗
n
.

We let β∗ = (β(1)∗,β(2)∗), whereβ(1)∗ ∈ Rqn and β(2)∗ ∈ Rpn−qn. Let Cn = X
′
nXn/n and C(i, j)

n =

X(i)′
n X( j)

n /n for i, j = 1,2. We need the following two lemmas.

Lemma 8

max
j≤qn

|β̂∗
j −β∗

j |= op(n
−(1−c2)/2).

Proof. Let zj =
√

n(β̂∗
j −β∗

j ). For proving Lemma 8, we will show

max
j≤qn

|zj |= op(n
c2/2).
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Write

z = (C(1,1)
n )−1X(1)′

n εn√
n

= H(1)′εn,

wherez = (z1, . . . ,zqn)
′
,εn = (ε1, . . . ,εn)

′
andH(1)′ = (h(1)

1 , . . . ,h(1)
qn )

′
= (C(1,1)

n )−1X(1)′
n /

√
n. Since

H(1)′H(1) =(C(1,1)
n )−1, A2 of the regularity conditions implies‖h(1)

j ‖2
2 ≤ 1/M2 for all j ≤ qn. Hence,

E(zj)
2k < ∞ for all j ≤ qn since E(εi)

2k < ∞. Thus

Pr(|zj |> t) = O(t−2k).

For anyη > 0, we can write

Pr(|zj |> ηnc2/2 for somej = 1, . . . ,qn) ≤
qn

∑
j=1

Pr(|zj |> ηnc2/2)

≤
qn

∑
j=1

1
η

n−c2k

=
1
η

qnn−c2k ≤ 1
η

n−(c2−c3)k → 0,

which completes the proof.�

Lemma 9
max

qn< j≤pn

|<Yn−Ŷ∗
n ,X

j
n > |= op(

√

nλnρn).

Proof. Note that

(<Yn−Ŷ∗
n ,X

j
n >, j = qn+1, . . . , pn)

= X(2)′
n

(

Yn−X(1)
n β̂∗(1)

)

= X(2)′
n

(

Yn−X(1)
n

1
n
(C(1,1)

n )−1X(1)′
n Yn

)

= X(2)′
n

(

X(1)
n β∗(1)+ εn−X(1)

n
1
n
(C(1,1)

n )−1X(1)′
n (X(1)

n β∗(1)+ εn)

)

= X(2)′
n

(

I− 1
n

X(1)
n (C(1,1)

n )−1X(1)′
n

)

εn.

Hence, we have
<Yn−Ŷ∗

n ,X
j

n > /
√

n= h(2)′

j εn for j = qn+1, . . . , pn, (3)

whereh(2)
j is the j −qn column vector ofH(2) and

H(2)′ = C(2,1)
n (C(1,1)

n )−1 1√
n

X(1)′
n − 1√

n
X(2)′

n .

Note that

H(2)′H(2) =
1
n

X(2)′
n

(

I−X(1)
n (X(1)′

n X(1)
n )−1X(1)′

n

)

X(2)
n .
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Since the all eigenvalues ofI−X(1)
n (X(1)′

n X(1)
n )−1X(1)′

n are between 0 and 1, we have‖h(2)
j ‖2

2 ≤ M1

for all j = qn+1, . . . , pn. Hence, E(ξ j)
2k < ∞, whereξ j =<Yn−Ŷ∗

n ,X
j

n > /
√

n, and so

Pr (|ξ j |> t) = O(t−2k).

Finally, for anyη > 0,

Pr
(

|<Yn−Ŷ∗
n ,X

j
n > |> η

√

nλnρn for somej = qn+1, . . . , pn

)

= Pr
(

|ξ j |> η
√

λnρn for somej = qn+1, . . . , pn

)

≤
pn

∑
j=qn+1

Pr
(

|ξ j |> η
√

λnρn

)

= (pn−qn)O

(

1
(λnρn)k

)

= O

(

pn

(λnρn)k

)

→ 0,

which completes the proof.�

Proof of Theorem 2. For anyπ, we can write

Rn(β̂π)+λn|π|σ2−Rn(β̂∗)−λn|π∗
n|σ2

=−2∑pn
j=qn+1 β̂π, j <Yn−Ŷ∗

n ,X
j >+(β̂π − β̂∗)

′
(X

′
nXn)(β̂π − β̂∗)+λn(|π|− |π∗

n|)σ2.

By Condition A3,
(β̂π − β̂∗)

′
(X

′
nXn)(β̂π − β̂∗)≥ ∑

j∈π∪π∗
nρn(β̂π, j − β̂∗

j )
2.

Hence, we have for anyπ ∈M sn,

Rn(β̂π)+λn|π|σ2−Rn(β̂∗)−λn|π∗
n|σ2 ≥ ∑

j∈π∪π∗
n

w j ,

where

w j =−2β̂π, j <Yn−Ŷ∗
n ,X

j
n > I( j 6∈ π∗

n)+nρn(β̂π, j − β̂∗
j )

2+λn(I( j ∈ π−π∗
n)− I( j ∈ π∗

n−π))σ2.

For j ∈ π∗
n−π, we havew j = nρnβ̂∗2

j −λnσ2. Let

An = {nρnβ̂∗2
j −λnσ2 > 0, j = 1, . . . ,qn}. (4)

Then, Pr(An)→ 1 by Lemma 8 and Conditions A3 and A4.
For j ∈ π−π∗

n

w j = −2β̂π, j <Yn−Ŷ∗
n ,X

j
n >+nρnβ̂2

π, j +λnσ2

≥ −<Yn−Ŷ∗
n ,X

j
n >2 /(nρn)+λnσ2.

Let
Bn = {−<Yn−Ŷ∗

n ,X
j

n >2 /(nρn)+λnσ2 > 0, j = qn+1, . . . , pn}. (5)
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Then, Pr(Bn)→ 1 by Lemma 9.
For j ∈ π∩π∗

n,

w j = nρn(β̂π, j − β̂∗
j )

2 ≥ 0.

To sum up, onAn∩Bn,

Rn(β̂π)+λn|π|σ2−Rn(β̂∗)−λn|π∗
n|σ2 > 0

for all π 6= π∗
n. Since Pr(An∩Bn)→ 1, the proof is done.�

Appendix B. Proof of Theorem 3

For givenπ ⊂ {1, . . . , pn}, let Mπ be the projection operator onto the space spanned by(X( j), j ∈ π).
That is,Mπ = Xπ(X

′
πXπ)

−1X
′
π providedXπ is of full rank. LetXnβ∗

n = µn andI be then×n identity
matrix. Without loss of generality, we assumeσ2 = 1.

Lemma 10 There existsη > 0 such that for anyπ ∈M sn with π∗
n * π,

µ
′
n(I−Mπ)µn ≥ η|π−|nc2−c1,

whereπ− = π∗
n−π.

Proof. For givenπ ∈M sn with π∗
n * π, we have

µ
′
n(I−Mπ)µn

= inf
α∈R|π|

‖Xπ−β∗
π− −Xπα‖2

= inf
α∈R|π|

(β∗′
π− ,α

′
)(Xπ− ,Xπ)

′
(Xπ− ,Xπ)(β∗′

π− ,α
′
)
′

≥ n‖β∗
π−‖2ρn

≥ M3M4|π−|nc2−c1,

whereβ∗
π− = (β∗

j , j ∈ π−) and the last inequality is due to Condition A4.�

Lemma 11 For givenπ ⊂ {1, . . . , pn}, let

Zπ =
µ
′
n(I−Mπ)εn

√

µ′
n(I−Mπ)µn

.

Then
max

π∈M sn
|Zπ|= Op(

√

sn logpn).

Proof. Note thatZπ ∼ N(0,1) for all π ∈M sn. Since

Pr(|Zπ|> t)≤Cexp(−t2/2) (6)
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for someC> 0, we have

Pr

(

max
π∈M sn

|Zπ|> t

)

≤ ∑
π∈M sn

Cexp(−t2/2)

≤ Cpsn
n exp(−t2/2).

Hence, if we lett =
√

wsn logpn,

Pr

(

max
π∈M sn

|Zπ|> t

)

≤Cexp((−w/2+1)sn logpn)→ 0

asw→ ∞. �

Lemma 12
max

π∈M sn
ε
′
nMπεn = Op(sn logpn).

Proof. For givenπ ⊂ {1, . . . , pn}, let r(p) be the rank ofXπ. Note thatε′
nMπεn ∼ χ2(r(π)) where

χ2(k) is the chi-square distribution with degree of freedomk. It is easy to see that (see, for example,
Yang 1999)

Pr(ε
′
nMπεn ≥ t)≤ exp

(

− t − r(π)
2

)(

t
r(π)

)r(π)/2

. (7)

Hence

Pr

(

max
π∈M sn

ε
′
nMπεn ≥ t

)

≤
sn

∑
k=1

(

pn

k

)

Pr(Wk ≤ t),

whereWk ∼ χ2(k). Since Pr(Wk ≥ t)≤ Pr(Wsn ≥ t), we have

Pr

(

max
π∈M sn

e
′
nMπen ≥ t

)

≤ Pr(Wsn ≥ t)
sn

∑
k=1

(

pn

k

)

≤ Pr(Wsn ≥ t)psn
n . (8)

The proof is done by applying (7) to (8).�

Proof of Theorem 3. First, we will show that Pr(π∗
n * π̂λn

) → 0. For givenπ ⊂ {1, . . . , pn}, let
Rn(π) = Rn(β̂π). Note thatRn(π) =Y

′
n(I−Mπ)Yn. For π + π∗

n, Lemmas 10, 11 and 12 imply

Rn(π)−Rn(π∗
n)+λn(|π|− |π∗

n|)σ2

= µ
′
n(I−Mπ)µn+2µ

′
n(I−Mπ)εn+ ε

′
n(Mπ∗ −Mπ)εn+λn(|π|− |π∗

n|)σ2

≥ η|π−|nc2−c1 −2
√

η|π−|nc2−c1Op(
√

sn logpn)−Op(sn logpn)−|π−|λn,

whereπ− = π∗
n−π. Sincesn logpn ≤ o(nc2−c1) andλn = o(nc2−c1), the proof is done.

It remains to show that the probability of

inf
π∈M sn ,π!π∗

n

Rn(π)−Rn(π∗
n)+λn(|π|− |π∗

n|)σ2 > 0 (9)
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converges to 1. By Theorem 1 of Zhang and Shen (2010), the probability of (9) is larger than

2−
(

1+e1/2exp

(

−λn− logλn

2

))pn−qn

,

which converges to 1 when 2logpn−λn+ logλn →−∞. The equivalent condition with 2 logpn−
λn+ logλn →−∞ is λn−2logpn− log logpn → ∞. �

Appendix C. Proof of Theorem 4

By Theorem 4 of Kim and Kwon (2012), the solution path of the SCAD or minimaxconcave
penalty include the true model with probability converging to 1. Since condition A3’ is stronger
than condition A3, the GICλn

with λn = o(nc2−c1) is consistent, and so is with the solution path of
the SCAD or minimax concave penalty.

Appendix D. Proof of Theorem 7

Let Ãn andB̃n be the sets defined in (4) and (5) except thatσ2 is replaced bŷσ2. It suffices to show
that Pr(Ãn∩ B̃n)→ 1. It is not difficult to prove Pr(Ãn)→ 1 by Lemma 8 and (2).

For B̃n, sinceεi ∼ N(0,σ2), (3) implies

<Yn−Ŷ∗
n ,X

j
n > /

√
n∼ N(0,σ2

j )

whereσ2
j ≤ σ2M1. By (6), we have

Pr(B̃c
n) ≤ Pr(<Yn−Ŷ∗

n ,X
j

n >2> nρnλnσ̂2 for somej = qn+1, . . . , pn)

≤ Cpnexp(−ρnr in f λn/2M1).

Hence, as long as 2M1 logpn/(ρnr in f )−λn →−∞, Pr(B̃c
n)→ 0 and the proof is done.�
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