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Abstract
This paper points out that many search relevance models in information retrieval, such as the Vector
Space Model, BM25 and Language Models for Information Retrieval, can be viewed as a similarity
function between pairs of objects of different types, referred to as an S-function. An S-function is
specifically defined as the dot product between the images of two objects in a Hilbert space mapped
from two different input spaces. One advantage of taking this view is that one can take a unified and
principled approach to address the issues with regard to search relevance. The paper then proposes
employing a kernel method to learn a robust relevance model as an S-function, which can effectively
deal with the term mismatch problem, one of the biggest challenges in search. The kernel method
exploits a positive semi-definite kernel referred to as an S-kernel. The paper shows that when
using an S-kernel the model learned by the kernel method is guaranteed to be an S-function. The
paper then gives more general principles for constructing S-kernels. A specific implementation of
the kernel method is proposed using the Ranking SVM techniques and click-through data. The
proposed approach is employed to learn a relevance model as an extension of BM25, referred to
as Robust BM25. Experimental results on web search and enterprise search data show that Robust
BM25 significantly outperforms baseline methods and can successfully tackle the term mismatch
problem.

Keywords: search, term mismatch, kernel machines, similarity learning, s-function, s-kernel

1. Introduction

There are many applications such as search, collaborative filtering, andimage annotation, that can
be viewed as a task employing a similarity function defined on pairs of instancesfrom two different
spaces. For example, search is a task as follows. Given a query, the system retrieves documents
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relevant to the query and ranks the documents based on the degree of relevance. The relevance of
a document with respect to a query can be viewed as a kind of similarity, and the search task is
essentially one based on a similarity function between query and document pairs, where query and
document are instances from two spaces: query space and document space.

In this paper, we formally define the similarity function as the dot product of the images of two
objects in a Hilbert space mapped from two different spaces. For simplicity,we call the similarity
function S-function. In fact, the state-of-the-art relevance models in information retrieval (IR), such
as the Vector Space Model (VSM) (Salton and McGill, 1986), BM25 (Robertson et al., 1994) and
Language Models for Information Retrieval (LMIR) (Ponte and Croft, 1998; Zhai and Lafferty,
2004), are all S-functions. We prove some properties of the S-functionand show that it becomes a
positive semi-definite kernel under certain conditions. One advantage oftaking this view to search
is that it provides us with a unified and principled approach to using and learning relevance models.

In this paper, we focus on the learning of a robust relevance model as an S-function, to deal with
term mismatch, one of the critical challenges for search. We show that we can define a new type
of positive semi-definite kernel function called S-kernel and learn a robust relevance model using a
kernel method based on S-kernel. Recently, the learning of similarity function has emerged as a hot
research topic in machine learning (cf., Abernethy et al., 2009; Grangierand Bengio, 2008). Our
work is novel and unique in that it learns a similarity function for search using a kernel method .

The conventional relevance models are all based on term matching. That is, they look at the
matched words in a query and document, and calculate the similarity (relevance) based on the
degree of matching. A good match at term level does not necessarily mean high relevance, however,
and vice versa. For example, if the query is “NY” and the document only contains “New York”,
then the BM25 score of the query and document pair will be low (i.e., the two willbe viewed less
relevant), although the query and document are relevant. Similar problems occur with LMIR and
other relevance models. This is the so-called term mismatch problem, which all existing relevance
models suffer from. In other words, the scores from the relevance models may not be reliable and
the question of how to learn a more robust similarity function for search arises; this is exactly the
problem we want to address in this paper.

In this paper, we tackle the term mismatch problem with a kernel method based on the notion of
S-function. Intuitively, we calculate a more reliable score between a querydocument pair by using
the scores between the pairs of similar query and similar document. Our kernel method exploits a
special positive semi-definite kernel, referred to as S-kernel, definedbased upon the S-function.

An S-kernel is formally defined as a positive semi-definite kernel such that the reproducing
kernel Hilbert space (RKHS) generated by the kernel is also a space of S-functions. Therefore,
the model learned by a kernel method is guaranteed to be an S-function. Wefurther give general
principles for constructing S-kernels, and thus offer a formulation for learning similarity functions
with S-kernels. An S-kernel can be viewed as an extension of the hyperkernel proposed by Ong
et al. (2005).

We provide a method for implementing the kernel method using the Ranking SVM techniques
and click-through data. The method is used to train a relevance model named ‘Robust BM25’ to
deal with term mismatch, as an extension of BM25. The learned Robust BM25model determines
the relevance score of a query document pair on the basis of not only theBM25 score of the query
document pair, but also the BM25 scores of similar query and similar document pairs. All calcu-
lations are naturally incorporated in the kernel method. Experimental resultson two large scale
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data sets show that Robust BM25 can indeed solve term mismatch and significantly outperform the
baselines.

This paper has the following contributions: 1) proposal of a kernel method for dealing with term
mismatch in search, 2) proposal of a unified view to search using S-function, 3) proposal of a family
of kernel functions, S-kernel.

The rest of the paper is organized as follows. A survey of related workis conducted in Section
2, and then the definition of S-function and interpretation of traditional relevance models as S-
functions are given in Section 3. Section 4 first introduces the term mismatch problem in search,
and then proposes a kernel method for learning a robust relevance model to deal with the problem,
such as Robust BM25. Section 5 defines S-kernel and proposes learning a similarity function with
S-kernel. Section 6 describes how to implement the learning Robust BM25 method. Section 7
reports experimental results and Section 8 concludes this paper.

2. Related Work

Kernel methods, including the famous Support Vector Machines (SVM) (Vapnik, 1995), refer to
a class of algorithms in machine learning which can be employed in a variety of tasks such as
classification, regression, ranking, correlation analysis, and principlecomponent analysis (Hofmann
et al., 2008; Scḧolkopf and Smola, 2002). Kernel methods make use of kernel functions which map
a pair of data in the input space (Euclidean space or discrete set) into the feature space (Hilbert
space) and compute the dot product between the images in the feature space. Many kernels have
been proposed for different applications (Zhou, 2004; Vishwanathan and Smola, 2004; Haussler,
1999; Watkins, 1999; Gartner et al., 2003; Kashima et al., 2004). Conventional kernels are defined
over one single input space and are symmetric and positive semi-definite. The kernel function is
called Mercer kernel when it is continuous. The similarity function, S-function, which we define in
this paper, is related to the conventional kernel function. An S-function isdefined as the dot product
in a Hilbert space between the images of inputs from two spaces, and a conventional kernel function
is defined as the dot product in a Hilbert space between the images of inputsfrom the same input
space. If the two spaces in an S-function are the same, the S-function becomes a kernel function.

Koide and Yamashita (2006) defined a similarity function called asymmetric kernel and applied
it to Fisher’s linear discriminant. The asymmetric kernel defined by Koide andYamashita (2006)
is similar to S-function. We use the term S-function instead of asymmetric kernelin this paper,
because further investigation of the properties of S-function (or asymmetric kernel), particularly the
necessary and sufficient condition, is still necessary.

The learning of a similarity function between pairs of objects has been studied. When the pair
of objects are from the same space, the similarity function becomes a positive semi-definite kernel;
a typical approach is kernel learning (cf., Lanckriet et al., 2002; Bach et al., 2004; Ong et al.,
2005; Micchelli and Pontil, 2005; Bach, 2008; Cortes, 2009; Varma andBabu, 2009). Lanckriet
et al. (2002) as well as Bach et al. (2004) have proposed methods formultiple kernel learning,
in which the optimal kernel (similarity function) is selected from a class of linearcombinations
of kernels. Besides this, Ong et al. (2005) have proposed learning a kernel function (similarity
function) by using kernel methods, in which the optimal kernel is chosen from RKHS generated by
the ‘hyperkernel’. Our method can be viewed as an extension of Ong et al.’s method. Recently, the
learning of a similarity function between pairs of objects from two different spaces has also emerged
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as a hot research topic (cf., Abernethy et al., 2009; Grangier and Bengio, 2008). In this paper, we
propose a kernel approach for performing the learning task.

Term mismatch is one of the major challenges for search, because most of thetraditional rel-
evance models, including VSM (Salton and McGill, 1986), BM25 (Robertson et al., 1994), and
LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004), are basedon term matching and the rank-
ing result will be inaccurate when term mismatch occurs. To solve the problem,heuristic methods
of query expansion or (pseudo) relevance feedback (cf., Salton and Buckley, 1997; Xu and Croft,
1996; Salton and McGill, 1986; Baeza-Yates and Ribeiro-Neto, 1999; Mitra et al., 1998; Broder
et al., 2009; Zhuang and Cucerzan, 2006) and Latent Semantic Indexing (LSI) (Deerwester et al.,
1990) or Probabilistic Latent Semantic Indexing (PLSI) (Hofmann, 1999) have been proposed and
certain improvements have been made. The former approach tackles the problem at the term level
and the latter at the topic level. In this paper, we demonstrate that we can learna relevance model
Robust BM25 to address the term mismatch challenge at the term level. The learned Robust BM25
is also an S-function.

Click-through data, which records the URLs clicked by users after their query submissions
at a search engine, has been widely used in web search (Agichtein et al.,2006; Joachims, 2002;
Craswell and Szummer, 2007). For example, click-through data has beenused in the training of
a Ranking SVM model, in which preference pairs on documents given queries are derived from
click-through data (Joachims, 2002). Click-through data has also been used for calculating query
similarity, because queries which link to the same URLs in click-through data may represent the
same search intent (Beeferman and Berger, 2000; Cui et al., 2003; Wen et al., 2002). In this paper,
we use click-through data for training a Robust BM25 as well as calculatingquery similarity.

Learning to rank refers to supervised learning techniques for constructing ranking models using
training data (cf., Liu, 2009). Several approaches to learning to rank have been proposed and it
has become one of the important technologies in the development of modern search engines (e.g.,
Herbrich et al., 1999; Joachims, 2002; Crammer and Singer, 2001; Agarwal and Niyogi, 2005;
Freund et al., 2003; Rudin et al., 2005; Burges et al., 2006; Cao et al., 2006; Xu and Li, 2007;
Cao et al., 2007). The method for learning Robust BM25 in this paper can also be viewed as a
learning to rank method. Robust BM25 runs on the top of conventional learning to rank methods.
Specifically, it trains a ‘re-ranking’ model online to deal with term mismatch, while conventional
learning to rank methods train a ranking model offline for basic ranking. The method of learning
Robust BM25 is similar to Ranking SVM proposed by Herbrich et al. (1999)and Joachims (2002),
a popular learning to rank algorithm. However, there are some differences. For example, the Robust
BM25 method uses a different kernel function.

3. Similarity Function

This section describes the definition and properties of S-function, the similarity function between
pairs of objects of different types.

3.1 Definition

An S-function measures the similarity between two objects from two different spaces. It is in fact
the dot product between the images in the feature space mapped from two objects in the two input
spaces.
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Definition 1 (S-function) Let X andY be two input spaces, andH be a feature space (Hilbert
space). S-function is a function k: X ×Y → R, satisfying k(x,y) = 〈ϕX(x),ϕY(y)〉H for all x ∈ X

and y∈ Y , whereϕX andϕY are mapping functions fromX andY toH , respectively.

A positive semi-definite kernel is defined as a functionK(·, ·) : X ×X → R, which satisfies
that there is a mappingφ(·) from X to a Hilbert spaceH with inner product< ·, · >H , such that
∀x,x′ ∈ X , K(x,x′) =< φ(x),φ(x′) >H . A positive semi-definite kernel measures the similarity of
pairs of objects in a single space by using the dot product of their images in a Hilbert space. In
contrast, S-function measures the similarity between pairs of objects in two different spaces. If the
two input spaces (also the two mapping functions) are identical in Definition 1,then S-function
becomes a positive semi-definite kernel. Moreover, S-function also has some properties similar to
those of positive semi-definite kernels, as shown below.

3.2 Properties

S-function has properties as shown below; they are similar to those in conventional positive semi-
definite kernels, but there are also differences. Note that for a conventional kernel,α must be non-
negative in property (1) of Lemma 2. The properties will enable us to construct more complicated
S-functions from simple S-functions.

Lemma 2 (Properties of S-function) Let k1(x,y) and k2(x,y) be S-functions onX ×Y , then the
following functions k: X ×Y → R are also S-functions: (1)α · k1 (for all α ∈ R), (2) k1+ k2, (3)
k1 ·k2.

Proof Since k1(x,y) and k2(x,y) are S-functions, suppose thatk1(x,y) = 〈ϕ1
X(x),ϕ1

Y(y)〉1 and
k2(x,y) = 〈ϕ2

X(x),ϕ2
Y(y)〉2, where〈·, ·〉1 is the dot product inN1-dimensional Hilbert space and

〈·, ·〉2 is the dot product inN2-dimensional Hilbert space.N1 andN2 can be finite or infinite.
Let ϕ1

Xi(·) andϕ1
Yi(·) be theith elements of vectorsϕ1

X(·) andϕ1
Y(·), respectively (i = 1,2, . . . ,N1),

andϕ2
Xi(·) andϕ2

Yi(·) be theith elements of vectorsϕ2
X(·) andϕ2

Y(·), respectively (i = 1,2, . . . ,N2).

(1) Letϕ1
X
′
(x) = α ·ϕ1

X(x), we obtainα ·k1(x,y) = 〈ϕ1
X
′
(x),ϕ1

Y(y)〉1, which proves thatα ·k1 is an
S-function,∀α ∈ R.

(2) Let ϕX(x) = (ϕ1
X(x),ϕ2

X(x)), and ϕY(y) = (ϕ1
Y(y),ϕ2

Y(y)), we obtain 〈ϕX(x),ϕY(y)〉 =
〈ϕ1

X(x),ϕ1
Y(y)〉1 + 〈ϕ2

X(x),ϕ2
Y(y)〉2 = k1(x,y) + k2(x,y), which proves thatk1 + k2 is an S-

function.

(3) LetϕX(x) = ϕ1
X(x)⊗ϕ2

X(x) andϕY(y) = ϕ1
Y(y)⊗ϕ2

Y(y). ϕX(x) is a vector whose elements are
{ϕ1

Xi(x)ϕ2
X j(x)}, 16 i 6N1, 16 j 6N2 andϕY(y) is a vector whose elements are{ϕ1

Yi(y)ϕ2
Y j(y)},

16 i 6 N1, 16 j 6 N2. We obtain

〈ϕX(x),ϕY(y)〉=
N1

∑
i=1

N2

∑
j=1

ϕ1
Xi(x)ϕ

2
X j(x)ϕ

1
Yi(y)ϕ

2
Y j(y)

=
N1

∑
i=1

ϕ1
Xi(x)ϕ

1
Yi(y)

N2

∑
j=1

ϕ2
X j(x)ϕ

2
Y j(y)

=
N1

∑
i=1

ϕ1
Xi(x)ϕ

1
Yi(y)k2(x,y)

= k1(x,y)k2(x,y),
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which proves thatk1 ·k2 is an S-function.

3.3 Relevance Models as Similarity Functions

Traditional relevance models, including VSM (Salton and McGill, 1986), BM25 (Robertson et al.,
1994) and LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004),can be viewed as S-functions.1

In fact, all these models measure the similarity of a query and document from query space and
document space. In VSM, query space and document space are treated as the same space, while in
the other two models, query space and document space are two differentspaces.

3.3.1 VSM

Let Q andD denote query and document spaces. Each dimension in the two spaces corresponds
to a term, and query and document are respectively represented as vectors in the two spaces. Let
H denote a Hilbert space endowed with dot product〈·, ·〉 (it is in fact ann-dimensional Euclidean
space wheren is the number of unique terms).

Given queryq∈ Q and documentd ∈D, VSM is calculated as

VSM(q,d) = 〈ϕVSM
Q (q),ϕVSM

D (d)〉,
whereϕVSM

Q (q) andϕVSM
D (d) are mappings toH fromQ andD, respectively.

ϕVSM
Q (q)t = id f (t) · t f (t,q)

and
ϕVSM

D (d)t = id f (t) · t f (t,d),

wheret is a term,t f (t,q) is the frequency of termt in queryq, t f (t,d) is the frequency of termt
in documentd, id f (t) is the inverse document frequency of termt. That is to say, VSM is a linear
positive semi-definite kernel, and is an S-function as well.

3.3.2 BM25

Given queryq∈ Q and documentd ∈D, BM25 is calculated as

BM25(q,d) = 〈ϕBM25
Q (q),ϕBM25

D (d)〉, (1)

whereϕBM25
Q (q) andϕBM25

D (d) are mappings toH fromQ andD, respectively.

ϕBM25
Q (q)t =

(k3+1)× t f (t,q)
k3+ t f (t,q)

and

ϕBM25
D (d)t = id f (t)

(k1+1)× t f (t,d)

k1

(

1−b+b· len(d)
avgDocLen

)

+ t f (t,d)
,

wherek1 ≥ 0, k3 ≥ 0, andb≥ 0 are parameters. Moreover, len(d) is the length of documentd and
avgDocLen is the average length of documents in the collection.

1. “ The matching function between a query and document should be defined as an asymmetric function.” - Stephen
Robertson, personal communication.
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3.3.3 LMIR

We use Dirichlet smoothing as an example. Other smoothing methods such as Jelinek-Mercer (JM)
can also be used. Given queryq∈ Q and documentd ∈D, the LMIR with Dirichlet smoothing is
calculated as

LMIR(q,d) = 〈ϕLMIR
Q (q),ϕLMIR

D (d)〉,

whereφLMIR
Q (q) andφLMIR

D (d) are(n+1)-dimensional mappings toH fromQ andD, respectively.
For t = 1,2, . . . ,n, φLMIR

Q (q)t andφLMIR
D (d)t are defined as

ϕLMIR
Q (q)t = t f (t,q)

and

ϕLMIR
D (d)t = log

(

1+
t f (t,d)
µP(t)

)

,

whereµ> 0 is a smoothing parameter,P(t) is the probability of termt in the whole collection.P(t)
plays a similar role as inverse document frequencyid f (t) in VSM and BM25. The(n+1)th entries
of ϕLMIR

Q (q) andϕLMIR
D (d) are defined as

ϕLMIR
Q (q)n+1 = len(q)

and
ϕLMIR

D (d)n+1 = log
µ

len(d)+µ
,

where len(q) and len(d) are the lengths of queryq and documentd, respectively.
There are several advantages of applying the similarity function view to search. First, it gives a

general and unified framework to relevance models. Although BM25 and LMIR are derived from
different probability models, they work equally well in practice. It was difficult to understand the
phenomenon. The S-function interpretation of the relevance models can give a better explanation of
it. BM25 and LMIR are nothing but similarity functions representing query and document matching
with different formulations. Second, it is easy to make an extension of the conventional relevance
models based on the S-function definition. In (Xu et al., 2010), we show that the conventional
relevance models can be naturally extended from unigram based models to n-gram based models to
improve search relevance, with the S-function interpretation. In this paper, we demonstrate that we
can deal with the term mismatch problem in a principled way on the basis of S-function.

An S-function measures the similarity of pairs of objects from two different spaces. It is an es-
sential model not only for search, but also for many other applications such as collaborative filtering
(Abernethy et al., 2009) and image retrieval (Grangier and Bengio, 2008). In the tasks, there exist
two spaces and given an object in one space the goal is to find the most similar(relevant) objects
in the other space. The spaces are defined over query and document, user and item, and image and
text, respectively. In all these problems, the model can be represented as an S-function.

4. Learning a Robust Relevance Model

In this section, we first describe term mismatch, then propose using RobustBM25 to deal with term
mismatch, and finally propose employing a kernel method to learn Robust BM25.
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yutube yuotube yuo tube
ytube youtubr yu tube
youtubo youtuber youtubecom
youtube om youtube music videos youtube videos
youtube youtube com youtube co
youtub com you tube music videos yout tube
youtub you tube com yourtube your tube
you tube you tub you tube video clips
you tube videos www you tube com wwww youtube com
www youtube www youtube com www youtube co
yotube www you tube www utube com
ww youtube com www utube www u tube
utube videos our tube utube
u tube my tube toutube

Table 1: Example queries representing search intent “finding YouTube website”.

4.1 Term Mismatch in Search

Search is basically based on term match. For example, if the query is “soccer” and the term “soccer”
occurs several times in the document, then the document is regarded as ‘relevant’. The relevance
models of VSM, BM25 and LMIR will give high scores to the document and thedocument will
be ranked highly. This term matching paradigm works quite well. However, the so-called term
mismatch problem also inevitably occurs. That is, even if the document and thequery are relevant,
but they do not match at term level, in other words, they do not share a term,then they will not be
viewed as relevant. For example, if the query is “New York” and the document contains “NY”, then
the document will not be regarded relevant. Similarly, “aircraft” and “airplane” refer to the same
concept; but if one of them is used in the query and the other in the document,then the document
will be considered irrelevant. Term mismatch due to the differences in expressions including typos,
acronyms, and synonyms can easily happen and deteriorate the performance of search.

In web search, users are more diverse and so are the web contents. The term mismatch problem
becomes more severe than traditional search. Although modern search engines exploit more so-
phisticated models for retrieval and ranking, they still heavily rely on the termmatching paradigm.
Therefore, term mismatch is still one of the most critical challenges for web search. For example,
we have observed over 200 different forms for representing the samesearch intent “finding YouTube
website” from the query log of a commercial web search engine. Table 1 listssome examples.

The relevance models of VSM, BM25, LMIR are all based on term frequencies oft f (t,d) and
t f (t,q). If the query and document share a termt, then the term frequencies will be non-zero values
and the relevance score between the query and document will become high. That is, the value of
the S-function between the query and document will be large. When term mismatch occurs, either
t f (t,d) or t f (t,q) will be zero, and the relevance score will be low, although it should not be so. In
that case, the value of S-function will be unnecessarily small.

More generally, term mismatch corresponds to the fact that some S-functionvalues are reliable
while the others are not. The question is whether it is possible to ‘smooth’ the S-function values
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based on some training data and to do it in a theoretically sound way. The kernel approach that we
propose in this paper can exactly solve the problem.

4.2 Robust BM25 Model

We try to learn a more reliable relevance model (S-function) from data. Themodel is an extension
of BM25 but more robust to term mismatch. We call the model ‘Robust BM25’.Without loss of
generality, we use BM25 as the basic relevance model; one can easily extend the techniques here to
other relevance models.

We give the definition of Robust BM25 and then explain why it has the capability to cope with
term mismatch.

Robust BM25 (RBM25) is defined as follows

kRBM25(q,d) =
N

∑
i=1

αi ·kBM25(q,d)kQ(q,qi)kD(d,di)kBM25(qi ,di), (2)

wherekBM25(q,d) is the BM25 model,kQ : Q ×Q → R andkD : D ×D → R are positive semi-
definite kernels in query space and document space, which representquery similarity and document
similarity, respectively.N is the number of training instances.{αi}N

i=1 are weights and can be
learned from training data. In fact, Robust BM25 is also an S-function that measures the similarity
of queryqand documentd through a dot product in a Hilbert space, as will be explained in Section 5.

Here we assume thatkBM25(q,d) > 0,∀q ∈ Q ,d ∈ D, otherwise, we can add a small positive
valueε to Equation (1). Furthermore, we assume that 0≤ kQ(·, ·)≤ 1 and 0≤ kD(·, ·)≤ 1.

Robust BM25 is actually a linear combination of BM25 scores of similar queriesand similar
documents. Because it is based on smoothing, it can be more robust, particularly when the weights
are learned from data.

Figure 1 gives an intuitive explanation on why Robust BM25 can effectively deal with term
mismatch. Suppose that the query space contains queries as elements and has the kernel function
kQ as a similarity function. Given queryq, one can find its similar queriesqi based onkQ(q,qi)
(its neighbors). Similarly, the document space contains documents as elementsand has the kernel
functionkD as a similarity function. Given documentd, one can find its similar documentsdi based
on kD(d,di) (its neighbors). The relevance model BM25 is defined as an S-function between query
and document over the two spaces. Term mismatch means that the BM25 scorekBM25(q,d) is not
reliable.

One possible way to deal with the problem is to use the neighboring queriesqi and documents
di to smooth the BM25 score ofq andd, as in the k-nearest neighbor algorithm (Cover and Hart,
1967; Dudani, 1976). In other words, we employ thek-nearest neighbor method in both the query
and document spaces to calculate the final relevance score (cf., Figure1). This is exactly what
Robust BM25 does. More specifically, Robust BM25 determines the ranking score of queryq and
documentd, not only based on the relevance score betweenq andd themselves (i.e.,kBM25(q,d)),
but also based on the relevance scores between similar queriesqi and similar documentsdi (i.e.,
kBM25(qi ,di)), and it makes a weighted linear combination of the relevance scores (2).

To help further understand why Robust BM25 can tackle the term mismatch problem, we give
an example. Ifq is “NY”, and d is about “New York”, thenkBM25(q,d) will fail to match them
becauseq andd do not share any term. On the other hand, ifq′ is “New York”, and we know that
q andq′ are similar (kQ(q,q′) is high), andkBM25(q′,d) should have a high matching score, then
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query space document space

qi

q d

di

kBM25(q, d)

kBM25(qi, di)

kQ(q, qi) kD(d, di)

Figure 1: Robust BM25 deals with term mismatch by using the neighbors in query space and doc-
ument space.

we can usekBM25(q′,d) to boostkBM25(q,d). Note here that we assumed = d′ andkD(d,d′) = 1.
Therefore, Robust BM25 can overcome the term mismatch problem and outperform conventional
IR models.

4.3 Learning Robust BM25

We learn the weights{αi}N
i=1 in Robust BM25 by using training data and a kernel method. In the

kernel method, we use the following kernel onQ ×D:

k̄HBM25((q,d),(q
′
,d′)) = kBM25(q,d)kQ(q,q

′)kD(d,d
′)kBM25(q

′
,d′), (3)

wherekBM25(q,d) is the BM25 model,kQ andkD are the query and document similarity kernels.
Suppose that the reproducing kernel Hilbert space (RKHS) generated by k̄HBM25 is Hk̄HBM25

.
Given some training data{(qi ,di , r i)}N

i=1 wherer i represents the relevance degree between queryqi

and documentdi , the learning problem is then as follows

argmin
k∈Hk̄HBM25

1
N

N

∑
i=1

l(k(qi ,di), r i)+
λ
2
‖k‖2

Hk̄HBM25
, (4)

wherel(·, ·) is a loss function and‖ · ‖Hk̄HBM25
is the norm defined inHk̄HBM25

.

According to the representer theorem of kernel methods (Hofmann et al.,2008; Scḧolkopf and
Smola, 2002), the optimal relevance modelk∗(q,d) has exactly the same form as Robust BM25 in
Equation (2).

Robust BM25 (2) is also an S-function, becausek̄HBM25 (3) belongs to a specific kernel class
referred to as S-kernel in this paper.

5. S-kernel

In this section, we give the definition of S-kernel and also explain the kernel method of learning an
S-function using an S-kernel.
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Suppose that we are given training dataS = {(xi ,yi), ti}N
i=1, wherexi ∈ X andyi ∈ Y are a pair

of objects, andti ∈ T is their response. The training data can be that for classification, regression,
or ranking. Suppose that the hypothesis spaceK is a space of S-functions. Our goal is to learn
the optimal S-function from the hypothesis space given the training data. Weconsider employing
a kernel method to perform the learning task. That is, we specifically assume that the hypothesis
space is also an RKHS generated by a positive semi-definite kernel.

The learning problem then becomes the following optimization problem:

argmin
k∈K

1
N

N

∑
i=1

l(k(xi ,yi), ti)+
λ
2
‖k‖2

K , (5)

where λ > 0 is a coefficient,K is a subspace of S-functions endowed with norm|| · ||K , and
||k||K denotes regularization on spaceK . HereK is also an RKHS generated by a positive semi-
definite kernelk̄ : (X ×Y )× (X ×Y ) → R, that is, for each S-functionk(x,y) ∈ K , k(x,y) =
〈k(·, ·), k̄((·, ·),(x,y))〉K .

According to the representer theorem of kernel methods, the optimal solution of problem (5) is
in the form

k∗(x,y) =
N

∑
i=1

αi k̄((xi ,yi),(x,y)),

whereαi ∈ R,1≤ i ≤ N, andN denotes the number of training instances.
The question then is whether there exists spaceK , or equivalently kernel̄k. We show below

that it is the case and refer to the kernelk̄ as S-kernel.
We formally define S-kernel and give two families of S-kernels.

Definition 3 (S-kernel) LetX andY be two input spaces.̄k((x,y),(x′,y′)) is called S-kernel, if it
has the following properties. (1)̄k : (X ×Y )× (X ×Y )→ R is a positive semi-definite kernel. (2)
All the elements in the RKHS generated byk̄ are S-functions onX andY .

If the two input spacesX andY are identical in Definition 3, then S-kernel degenerates to the
hyperkernel proposed by Ong et al. (2005).

We give two families of S-kernels based on power series and multiple kernels.

Theorem 4 (Power Series Construction)Given two Mercer kernels kX : X ×X → R and kY : Y ×
Y → R, for any S-function g(x,y) and{ci}∞

i=0 ⊂ R+, k̄P defined below is an S-kernel.

k̄P((x,y),(x
′
,y′)) =

∞

∑
i=0

ci ·g(x,y)
(

kX(x,x
′)kY(y,y

′)
)i

g(x′,y′), (6)

where the convergence radius of∑∞
i=0ciξi is R,|kX(x,x′)|<

√
R, |kY(y,y′)|<

√
R, for any x,x′,y,y′.

Theorem 5 (Multiple Kernel Construction) Given two finite sets of Mercer kernels KX =
{

kX
i (x,x

′)
}n

i=1 and KY =
{

kY
i (y,y

′)
}n

i=1. For any S-function g(x,y) and {ci}n
i=1 ⊂ R+, k̄M defined

below is an S-kernel.

k̄M((x,y),(x′,y′)) =
n

∑
i=1

ci ·g(x,y)kX
i (x,x

′)kY
i (y,y

′)g(x′,y′). (7)
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rank URL click

1 www.walmart.com Yes
2 en.wikipedia.org/wiki/Wal*Mart No
3 www.walmartstores.com Yes
4 instoresnow.walmart.com No
5 mp3.walmart.com No

Table 2: A record of click-through data for query “walmart”. Only the top 5URLs are shown.

Proofs of Theorem 4 and Theorem 5 are given in Appendix A and Appendix B, respectively.
Note that if spaceX and spaceY are identical,kX andkY are identical,kX

i andkY
i are identical

for any 16 i 6 n, andg(x,y) = 1, thenk̄P andk̄M are exactly the hyperkernels given in Section 4.1
and Section 4.3 respectively by Ong et al. (2005).

With the theorems one can easily verify that the following kernel is an S-kernel.

g(x,y)kX(x,x
′)kY(y,y

′)g(x′,y′), (8)

whereg(x,y) is an S-function, andkX(x,x′) andkY(y,y′) are positive semi-definite kernels on spaces
X andY , respectively. In fact, the S-kernel in Equation (8) is a member of the families of S-kernels
in both Equation (6) and Equation (7).

It is obvious that in the learning of Robust BM25 (4), we specifyg(x,y) as BM25 (an S-
function), andkX andkY as query similarity kernelkQ and document similarity kernelkD, respec-
tively. Therefore, the learning problem (4) is a specific case of learning with S-kernel (5), and
Robust BM25 (2) is an S-function.

Basilico and Hofmann (2004) propose a pairwise kernel for collaborative filtering. The pairwise
kernel is defined as̄kC((u, i),(u′, i′)) = kU(u,u′) ·kI (i, i′), wherekU andkI are kernels defined on the
spaces of users and items, respectively. Obviously,k̄C is an S-kernel and their learning problem is
another specific case of learning with S-kernel (5).

6. Implementation

In this section, we describe a specific implementation to learn Robust BM25 (4).
To learn Robust BM25, we need to decide the query similaritykQ(q,q′), document similarity

kD(d,d′), training data, and optimization technique. We explain one way of implementing them.
Click-through data has been proven to be useful for improving search relevance (cf., Cui et al.,

2003; Joachims, 2002). An instance of click-through data consists of a query, a ranked list of URLs,
and a user’s clicks. Table 2 shows a click-through instance. In this case, the user submitted the
query “walmart” and received the ranked list of URLs, and the user clicked on the URLs at ranks
1 and 3 but skipped the URLs at ranks 2, 4, and 5. Every time when a search is conducted using a
search engine, this kind of data is recorded. The amount of click-through data is usually extremely
large. Obviously users do not click on URLs at random, but based on their relevance judgments.
Though click-through data is noisy, it still conveys users’ implicit feedback to search results.

To calculate query similarity, we represent query and URL click-through relationships in a bi-
partite graph in which queries and URLs are nodes in two sets and clicks areedges between nodes
in the two sets. A weight is associated with each edge representing the total number of times that
the URL is clicked after the query is issued. Figure 2 illustrates a click-through bipartite graph.
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Figure 2: Click-through bipartite graph.

We specifically define query similarity using co-clicked URLs in the click-through bipartite
graph. Intuitively, if two queries share many clicked URLs, then they will beregarded as similar.
Since queries with the same search intent tend to be linked to the same URLs, query similarity
defined in this way actually represents the degree of being the same searchintent. We calculate
the query similarity functionkQ(q,q′) as a Pearson Correlation Coefficient between the co-clicked
URLs of two queries:

kQ(q,q
′) =

∑n
i=1(ui − ū)(vi − v̄)

√

∑n
i=1(ui − ū)2

√

∑n
i=1(vi − v̄)2

, (9)

whereui andvi denote the numbers of clicks on URLi by queriesq andq′ respectively, ¯u and v̄
denote the average numbers of clicks ofq andq′ respectively, andn denotes the total number of
clicked URLs byq andq′. Note that query similaritykQ(q,q′) defined in Equation (9) is a positive
semi-definite kernel, because it is the dot product of two vectors( u1−ū√

∑n
i=1(ui−ū)2

, . . . ,
un−ū√

∑n
i=1(ui−ū)2

)

and( v1−v̄√
∑n

i=1(vi−v̄)2
, . . . ,

vn−v̄√
∑n

i=1(vi−v̄)2
) in Rn.

Our experimental results also show that by using the similarity function, one can really find sim-
ilar queries with high quality.2 Table 3 shows some examples of similar queries found by using our
method. In fact, with the use of click-through bipartite and query similarity measure, different types
of similar queries can be found, including spelling error (e.g., “wallmart” v.s.“walmart”), word
segmentation (“ironman” v.s. “iron man”), stemming (e.g., “knives” v.s. “knifes” and “knife”), syn-
onym (e.g., “aircraft for sale” v.s. “airplanes for sale”), and acronym (e.g., “ucsd” v.s. “university
of california san diego”).

Document similaritykD(d,d′) is simply defined as the cosine similarity between the titles and
URLs of two documents, which is certainly a kernel (cosine similarity is the dot product in an
Euclidean space).

Following the proposal given by Joachims (2002), we generate pairwisetraining data from click-
through data. More precisely, for each queryqi we derive preference pairs(d+

i ,d
−
i ), whered+

i and
d−

i mean that documentd+
i is more preferred thand−

i with respect to queryqi (e.g.,d−
i is skipped

even though it is ranked higher thand+
i ).

Finally, we take the pairwise training data as input and learn the optimal S-function, Robust
BM25. We use hinge loss as the loss function, the learning problem (4) thenbecomes

argmin
k∈Hk̄HBM25

M

∑
i=1

[

1− (k(qi ,d
+
i )−k(qi ,d

−
i ))
]

+
+

λ
2
‖k‖2

Hk̄HBM25
, (10)

2. We evaluated the precision of several similar measures. the PearsonCorrelation Coefficient and the Jensen-Shannon
Divergence work the best, followed by the Jaccard Coefficient.
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original query similar queries

wallmart wall mart, walmart, wal mart, walmarts
ironman iron man, ironman movie, irnman,

www.iron man.com
knives knifes, knives.com, knife outlet, knife
aircraft for sale aircraft sales, airplanes for sale,

used airplanes for sale, used planes for sale
ucsd ucsd.edu, uc san diego, uscd,

university of california san diego

Table 3: Similar queries extracted from web search click-through data.

whereM is the number of preference pairs in the training data. Note that this is similar to Ranking
SVM (Herbrich et al., 1999). The major difference is that in our case the kernel function used is an
S-kernel.

According to the representer theorem and Equation (2), when using pairwise training data, the
optimal solution is given as follows

kRBM25(q,d) = kBM25(q,d) ·
M

∑
i=1

θi ·kQ(q,qi)
[

kBM25(qi ,d
+
i )kD(d

+
i ,d)−kBM25(qi ,d

−
i )kD(d

−
i ,d)

]

,

(11)
whereθi is a parameter to learn.

Reformulating the non-constrained optimization in Equation (10) as a constrained optimization
by using Equation (11) and slack variables{ξi}, we obtain the following primal problem:

argmin
{θi}M

i=1

M

∑
i=1

ξi +
λ
2

M

∑
i, j=1

θiθ jW (i, j) (12)

kRBM25(qi ,d
+
i )−kRBM25(qi ,d

−
i ) > 1−ξi , ξi > 0∀i,

where calculatingW (i, j) using the reproducing kernel property is given by

W (i, j) = kQ(qi ,q j)·[kD(d
+
i ,d+

j )kBM25(qi ,d
+
i )kBM25(q j ,d

+
j )−kD(d

+
i ,d−

j )kBM25(qi ,d
+
i )kBM25(q j ,d

−
j )

−kD(d
−
i ,d+

j )kBM25(qi ,d
−
i )kBM25(q j ,d

+
j )+kD(d

−
i ,d−

j )kBM25(qi ,d
−
i )kBM25(q j ,d

−
j )].

With Lagrange multipliers{βi}M
i=1 and{γi}M

i=1, the objective function becomes

L =
M

∑
i=1

ξi +
λ
2

M

∑
i, j=1

θiθ jW (i, j)+
M

∑
i=1

βi
[

1−ξi −
(

kRBM25(qi ,d
+
i )−kRBM25(qi ,d

−
i )
)]

−
M

∑
i=1

γiξi

=
M

∑
i=1

ξi +
λ
2

M

∑
i, j=1

θiθ jW (i, j)+
M

∑
i=1

βi

[

1−ξi −
M

∑
j=1

θ jW (i, j)

]

−
M

∑
i=1

γiξi ,

DifferentiatingL by ξi andθi , we have

∂L
∂ξi

= 1−βi − γi = 0, (13)
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and
∂L
∂θi

=
M

∑
j=1

(λθ j −β j)W (i, j) = 0. (14)

Thus, according to Equation (13), we have

γi = 1−βi .

Sinceβi > 0 andγi > 0, we have 06 βi 6 1. According to Equation (14), we have

M

∑
j=1

λθ jW (i, j) =
M

∑
j=1

β jW (i, j).

Substituting the above two formulas intoL, we obtain the dual problem:

argmax
{β}M

i=1

M

∑
i=1

βi −
1
2λ

M

∑
i=1

M

∑
j=1

βiβ jW (i, j) s.t. 0≤ βi ≤ 1. (15)

By solving the dual problem (15) we obtain the optimal values{β⋆
i }M

i=1. We can further get the
optimal values{θ⋆

i }M
i=1 by solving equation (14), and usingθ⋆

i =
1
λ β⋆

i . Note that when(W (i, j))M×M

is not strictly positive, the solution of (14) is not unique. In such a case, we can still takeθ⋆
i =

1
λ β⋆

i
as a solution for simplicity, because all solutions will make the objective functionachieve the same
minimum (12).

In online search, given a query, we first retrieve the queries similar to it, then individually
retrieve documents with the original query and similar queries, combine the retrieved documents,
train a Robust BM25 model using click-through data, and rank the documents with their Robust
BM25 scores (note that a Robust BM25 model is trained for each query). When training Robust
BM25, we solve the dual problem (15) using a standard QP solver LOQO.3 The time complexity
is of orderO(M2), whereM is the number of preference pairs. Since the number of retrieved
documents is small, a search with Robust BM25 can be carried out efficiently. In our experiments,
we observe that on average it takes about 1.5 seconds per query to train a model on a workstation
with Quad-Core Intel Xeon E5410 2.33GHz CPU and 16GB RAM.

7. Experiments

We conducted experiments to test the performances of Robust BM25.

7.1 Experimental Data

In our experiments, we used two large scale data sets from a commercial websearch engine and
an enterprise search engine running in an IT company. The two data sets consist of query-URL
pairs and their relevance judgments. The relevance judgments can be ‘Perfect’, ‘Excellent’, ‘Good’,
‘Fair’, or ‘Bad’. Besides this, we also collected large scale click-through data from both search
engines. Table 4 shows the statistics on the two data sets. The click-through data in both data sets
was split into two parts, one for learning query similarity and the other for learning Robust BM25.

3. LOQO can be found athttp://www.princeton.edu/ ˜ rvdb/loqo/LOQO.html .
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Web search Enterprise search

# of judged queries 8,294 2,864
# of judged query-URL pairs 1,715,844 282,130
# of search impressions in click-through 490,085,192 17,383,935
# of unique queries in click-through 14,977,647 2,368,640
# of unique URLs in click-through 30,166,304 2,419,866
# of clicks in click-through 2,605,404,156 4,996,027

Table 4: Statistics on web search and enterprise search data sets.

7.2 Baselines

BM25 was selected as a baseline, whose parameters were tuned by using the validation set. Query
expansion (Xu and Croft, 1996) was also chosen as a baseline. Queryexpansion is a state-of-the-art
technique to tackle term mismatch in search. The key idea in query expansion isto add into the
original query terms extracted from relevant queries or documents. Thus, even though the original
query and document do not share a term, after expansion, the query is enriched and it is likely to
be matched with relevant documents. On the other hand, query expansion may also suffer from
the so-called topic drift problem. That is, irrelevant terms can be added to the original query. As a
result, the accuracy of search may drop, rather than improve. In contrast, our method can effectively
address the problem. First, similar queries mined from click-through data areused in search, which
represent the same or similar intent. Thus, the documents retrieved are more likely to be relevant.
Second, the final ranking of results is based on Robust BM25 which is trained specifically for the
query using click-through data. Therefore, the accuracy of the finalranking will be high.

In our experiment, we tried several different ways to conduct query expansion and chose the one
performing the best as the baseline. In our method, we first use the title of themost clicked URL in
the retrieved result to do expansion. If there is no such a URL, we use theterms of the most similar
query to do expansion.

The pairwise kernel, which is initially proposed for collaborative filtering (Basilico and Hof-
mann, 2004), was also chosen as a baseline. The difference between our method and the pairwise
kernel is that the pairwise kernel does not use a traditional relevance modelkBM25(q,d).

7.3 Evaluation Measures

As evaluation measures, we used Mean Average Precision (MAP) (Baeza-Yates and Ribeiro-Neto,
1999) and Normalized Discounted Cumulative Gain (NDCG) (Jarvelin and Kekalainen, 2000) at
positions 1, 3, and 5, which are standard measures in IR.

MAP assesses the accuracy of a ranking algorithm by looking at how wellit ranks relevant docu-
ments against irrelevant documents. MAP denotes mean average precision(AP). Average precision
is defined as

AP(q) =
∑Nq

r=1P(r)× rel(r)

∑Nq

r=1 rel(r)
,
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whereNq is the number of documents retrieved,rel(r) ∈ {0,1}, and if the document ranked at
positionr is relevant,rel(r) = 1, otherwise,rel(r) = 0. P(r) is precision at positionr:

P(r) =
∑r

i=1 rel(i)
r

.

Finally, MAP is defined as

MAP =
∑qAP(q)

#q
,

where #q is the number of queries. If relevant documents are ranked higher than irrelevant docu-
ments, the value of MAP will be high.

NDCG is usually used to assess a ranking algorithm when documents have multiple relevance
grades (e.g., “Bad”, “Good”, “Fair”, “Excellent”, and “Perfect”).Given a queryq, NDCG at posi-
tion n is defined as

NDCG@n(q) =
DCG@n(q)
IDCG@n(q)

,

where DCG@n(q) is defined as

DCG@n(q) =
nq

∑
i=1

2rel(i)−1
log2(i+1)

,

whererel(i) is the relevance grade of a document ranked at positioni. The DCG@n(q) score is
normalized by IDCG@n(q), which is an ideal DCG@n(q) score when documents are ranked in
decreasing order of their relevance grades.

Finally, NDCG is averaged over queries.

NDCG@n=
∑qNDCG@n(q)

#q

A high NDCG score means that relevant documents are ranked higher in theranking list than irrel-
evant documents.

In our experiment, when calculating MAP, we view the documents with judgments ‘Perfect’ and
‘Excellent’ as relevant and the documents with the other three judgments as irrelevant.

7.4 Experimental Results

We trained a model for each query, as described in Section 6. On average, about 207.6 and 174.7
training pairs were used for each query in web search data and enterprise data, respectively. The
only parameterλ in Equation (15) was heuristically set as 1. In fact, we found thatλ does not affect
the results so much. Table 5 reports the results on the web search data and enterprise data. We can
see that Robust BM25 outperforms the baselines, in terms of all measures on both data sets. We
conducted significant tests (t-test) on the improvements. The results show that the improvements
are all statistically significant (p-value< 0.05). We conducted analysis on the cases in which Robust
BM25 performs better and found that the reason is that Robust BM25 canindeed effectively address
the term mismatch problem. The pairwise kernel outperforms BM25 and queryexpansion, which
indicates that it is better to learn a relevance model in search. However, its performance is still lower
than Robust BM25, suggesting that it is better to include BM25 in the final relevance model, as in
Robust BM25.
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MAP NDCG@1 NDCG@3 NDCG@5

Robust BM25 0.1192 0.2480 0.2587 0.2716
Web search Pairwise Kernel 0.1123 0.2241 0.2418 0.2560

Query Expansion 0.0963 0.1797 0.2061 0.2237
BM25 0.0908 0.1728 0.2019 0.2180
Robust BM25 0.3122 0.4780 0.5065 0.5295

Enterprise search Pairwise Kernel 0.2766 0.4465 0.4769 0.4971
Query Expansion 0.2755 0.4076 0.4712 0.4958
BM25 0.2745 0.4246 0.4531 0.4741

Table 5: Ranking accuracies on web search and enterprise search data.

Query wallmart
Similar queries wall mart, walmart, wal mart, walmarts
Page http://www.walmart.com
Title Walmart.com: Save money. Live better
Rate Perfect

Table 6: Example 1 from web search.

7.5 Discussions

We investigated the reasons that Robust BM25 can outperform the baselines, using the experiments
on web search data as examples. It seems that Robust BM25 can effectively deal with term mismatch
with its mechanisms: using query similarity and document similarity.

Our approach can effectively deal with term mismatch with similar queries. Table 6 gives an
example. The query, web page, and label are respectively “wallmart”, which is a typo, “http:
//www.walmart.com ” with title “Walmart.com: Save money. Live better”, and “Perfect”, which
means that the page should be ranked in first position. There is a mismatch between query and
page, the basic relevance model BM25 cannot give a high score to the page (note that there is a
difference between the query term “wallmart” and the document term “walmart”.). Query expansion
cannot rank the page high, either. The web page “http://www.walmartstores.com ” with title
“Walmartstores.com” is the most clicked web page with respect to the original query in the click-
through data. Query expansion uses the title to conduct term expansion, that is, uses the words in the
title. Because it does not have sufficient knowledge to break “Walmartstores” into “walmart” and
“stores”, query expansion cannot add good terms to the original query. When query expansion adds
more terms to the original query, “walmart” will appear, but at the same time noiseterms will also
be included. In contrast, our approach can effectively leverage similarqueries such as “walmart”,
“wal mart”, and “walmarts” and rank the web page to first position.

Table 7 gives another example. The query is “mensmagazines”, which is a tail query and
does not have a similar query found in the click-through data. The web page is “http://en.
wikipedia.org/wiki/List/_of/_men’s/_magazines ” (referred to as Page1) and the relevance
label is “Excellent”. There is a mismatch, because there is not sufficient knowledge to break query
“mensmagazines” into “mens” and “magazines”. As a result, BM25 cannot rank Page1 high. In
contrast, Robust BM25 uses similar documents to calculate the relevance. Specifically, it uses a sim-
ilar web page “http://www.askmen.com/links/sections/mensmagazines. html ” (referred to
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Query mensmagazines
Page1 http://en.wikipedia.org/wiki/List/_of/_men’s/_magaz ines
Title1 List of men’s magazines - Wikipedia, the free encyclopedia
Rate1 Excellent
Page2 http://www.askmen.com/links/sections/mensmagazines. html
Title2 AskMen.com - Men’s magazines

Table 7: Example 2 from web search.

Query southwest airlines
Page1 http://www.southwest-airlines.net
Title1 Southwest Airlines
Rate1 Perfect
Page2 http://www.southwestvacations.com/index.asp
Title2 Southwest Vacations - Vacation Packages - Cheap Airline

Tickets, Hotels, Rental Cars, Activities & Attractions
Rate2 Fair

Table 8: Example 3 from web search.

as Page2), which contains the term “mensmagazines” in its URL. The originalquery can match well
with Page2. Besides, Page1 and Page2 are also similar because they havecommon terms “men” and
“magazines” in titles. Therefore, Robust BM25 can assign a high score toPage1.

Compared with the pairwise kernel, Robust BM25 successfully leveragedthe traditional match-
ing model BM25 when its score is reliable to reflect relevance between query and document. We
show an example in Table 8. The query is “southwest airlines”. The two webpages are “http:
//www.southwest-airlines.net ” (referred to as Page1) with label “Perfect” and “http://www.
southwestvacations.com/index.asp ” (referred to as Page2) with label “Fair”. In the pairwise
kernel, the ranking score of Page2 is larger than Page1. In Robust BM25, however, the ranking
score of Page1 is larger. This is because the pairwise kernel does notconsider the match between
query and documents using BM25, while Robust BM25 does.

8. Conclusion and Future Work

We have formally defined a similarity function between pairs of objects from twodifferent spaces
and named it S-function. We have shown that traditional relevance models in search proposed in
information retrieval can be viewed as S-functions. We have proposed anew kernel method for
learning a robust relevance model as an S-function for search. The learned model can deal with
the term mismatch problem which traditional relevance models suffer from. Thekernel method
employs a new kernel called S-kernel. An S-kernel is a kernel that cangenerate an RKHS which
is also a space of S-functions. We have provided a theoretical basis forconstructing S-kernels.
Finally, we have shown that we can apply our method to learn a Robust BM25model to deal with
term mismatch in search.

There are several directions for future research from the currentwork:
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1. S-function as generalization of kernel:In this paper, we give a formal definition of S-function
and show that it is related to a positive semi-definite kernel. S-function is alsosimilar to the
asymmetric kernel defined by Koide and Yamashita (2006). To make S-function a general-
ization of a positive semi-definite kernel, there are still some open questions that we need to
answer. For example, what is a necessary and sufficient condition fora two-argument func-
tion over two spaces to be an S-function? Is there a theorem like the Mercertheorem for
S-function?

2. S-kernel: We define two families of S-kernels in this paper, that is, to give two sufficient condi-
tions for a positive semi-definite kernel to be an S-kernel. It is still an openquestion: what is
a necessary and sufficient condition for a positive semi-definite kernelto be an S-kernel?

3. Similarity function learning: We employ a kernel method to learn a similarity function for
search. An interesting research direction is to study the general problemof similarity func-
tion learning, particularly, the learning of a similarity function for pairs of objects from two
different spaces. The learning task can be applied to a wide range of applications and is
becoming a popular research topic.

4. Learning of S-Kernel: Our kernel method employs S-kernel which contains free parameters.
How to automatically learn the parameters from data, and thus a better S-function is also an
interesting issue.
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Appendix A. Proof of Theorem 4

Theorem 4 Given two Mercer kernels kX : X ×X → R and kY : Y ×Y → R, for any S-function
g(x,y) and{ci}∞

i=0 ⊂ R+, k̄P defined below is an S-kernel.

k̄P((x,y),(x
′
,y′)) =

∞

∑
i=0

ci ·g(x,y)
(

kX(x,x
′)kY(y,y

′)
)i

g(x′,y′),

where the convergence radius of∑∞
i=0ciξi is R,|kX(x,x′)|<

√
R, |kY(y,y′)|<

√
R, for any x,x′,y,y′.

According to Definition 3, to prove Theorem 4, we first need to prove thatk̄P((x,y),(x′,y′)) is
a positive semi-definite kernel. Note thatg(x,y)g(x′,y′) is a positive semi-definite kernel, since it is
symmetric and∀{α}n

i=1,{(xi ,yi)}n
i=1, ∑n

i, j=1 αiα jg(xi ,yi)g(x j ,y j) = (∑n
i=1 αig(xi ,yi))

2 ≥ 0. More-

over, for anyi ∈ Z+, ci ∈ R+, ci (kX(x,x′)kY(y,y′))
i is also a positive semi-definite kernel. Hence,

cig(x,y)(kX(x,x′)kY(y,y′))
i g(x′,y′) is a positive semi-definite kernel. Since the summation of posi-

tive semi-definite kernels is also a positive semi-definite kernel, we concludethat k̄P((x,y),(x′,y′))
is a positive semi-definite kernel.
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Second, we need to prove that all elements in the reproducing kernel Hilbert spaceKP generated
by k̄P are S-functions. We need two lemmas:

Lemma 6 Suppose that g(x,y) is an S-function, and kX and kY are Mercer kernels. Given any
finite example set{(x j ,y j)}N

j=1 ⊂ X ×Y , and any{α j}N
j=1 ⊂ R, ∑N

j=1 α j k̄P((x,y),(x j ,y j)) is an
S-function.

Proof

N

∑
j=1

α j k̄P((x,y),(x j ,y j)) =
N

∑
j=1

α jg(x,y)
∞

∑
i=0

ci (kX(x,x j)kY(y,y j))
i g(x j ,y j)

= g(x,y)
N

∑
j=1

α j
˜̄kP((x,y),(x j ,y j)),

where
˜̄kP((x,y),(x j ,y j)) =

∞

∑
i=0

ci (kX(x,x j)kY(y,y j))
i g(x j ,y j).

Sinceg(x,y) is an S-function, according to Lemma 2, to prove∑N
j=1 α j k̄P((x,y),(x j ,y j)) is an

S-function, we only need to show that∑N
j=1 α j

˜̄kP((x,y),(x j ,y j)) is an S-function.

For anyi > 0, i ∈ Z+, since
√

ciki
X(x,x

′) and
√

ciki
Y(y,y

′) are both Mercer kernels, we obtain

√
cik

i
X(x,x

′) = 〈ψi
X(x),ψ

i
X(x

′)〉H i
X

and √
cik

i
Y(y,y

′) = 〈ψi
Y(y),ψ

i
Y(y

′)〉H i
Y
,

whereψi
X(·) : X → H i

X and ψi
Y(·) : Y → H i

Y are feature mappings, andH i
X andH i

Y are Hilbert
spaces with respect toψi

X andψi
Y, respectively.

Let Hi = H i
X, ϕi

X(x) = ψi
X(x), andϕi

YN(y) = ∑N
j=1 α jg(x j ,y j)ψi

X(x j)ψi
Y
⊤
(y j)ψi

Y(y). Note that

ϕi
YN= Γi

Nψi
Y, whereΓi

N = ∑N
j=1 α jg(x j ,y j)ψi

X(x j)ψi
Y
⊤
(y j) is a linear operator fromH i

Y toH i
X =Hi .

Thus, we have
N

∑
j=1

α jci(kX(x,x j)kY(y,y j))
ig(x j ,y j) = 〈ϕi

X(x),ϕ
i
YN(y)〉Hi

.

LetH =H0×H1× . . .Hk× . . .,

ϕX :X →H

x 7→ (ϕ0
X(x),ϕ

1
X(x), . . . ,ϕ

k
X(x), . . .),

and

ϕYN :Y →H

y 7→ (ϕ0
YN(y),ϕ

1
YN(y), . . . ,ϕ

k
YN(y), . . .),
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we have

N

∑
j=1

α j
˜̄kP((x,y),(x j ,y j)) =

N

∑
j=1

α j

∞

∑
i=0

ci(kX(x,x j)kY(y,y j))
ig(x j ,y j)

=
∞

∑
i=0

N

∑
j=1

α jci(kX(x,x j)kY(y,y j))
ig(x j ,y j)

=
∞

∑
i=0

〈ϕi
X(x),ϕ

i
YN(y)〉Hi

= 〈ϕX(x),ϕYN(y)〉H ,

where the inner product inH is naturally defined as∑∞
i=0〈·, ·〉Hi

. Note that∑∞
i=0〈·, ·〉Hi

can be de-
fined only when(z0, . . . ,zk, . . .) ∈H ,∑∞

i=0〈zi ,zi〉Hi
< ∞. Obviously, for anyx∈ X andy∈ Y , ϕX(x)

andϕYN(y) satisfy this condition.

Lemma 7 Given any two positive semi-definite kernels kX : X × X → R and kY : Y × Y → R.
SupposeψY : Y →HY is the feature mapping of kY(·, ·). HY is a Hilbert space endowed with inner
product〈·, ·〉HY

. Given any sets{xi}N
i=1 ⊂ X and{yi}N

i=1 ⊂ Y , for an arbitrary z∈HY, the following
matrix inequality holds:

(

kX(xi ,x j)〈ψY(yi),z〉HY
〈ψY(y j),z〉HY

)

N×N 4
(

kX(xi ,x j)kY(yi ,y j)〈z,z〉HY

)

N×N .

Proof SincekX(·, ·) is a positive semi-definite kernel, following the conclusion given in Proposition
4 by Hofmann et al. (2008), we only need to prove

(

kY(yi ,y j)〈z,z〉HY
−〈ψY(yi),z〉HY

〈ψY(y j),z〉HY

)

N×N

is positive semi-definite, which means given any{αi}N
i=1 ⊂ R, we need to prove

N

∑
i, j=1

αiα j
(

kY(yi ,y j)〈z,z〉HY
−〈ψY(yi),z〉HY

〈ψY(y j),z〉HY

)

> 0.

Since

N

∑
i, j=1

αiα jkY(yi ,y j)〈z,z〉HY
=

N

∑
i, j=1

αiα j〈ψY(yi),ψY(y j)〉HY
〈z,z〉HY

=

〈

N

∑
i=1

αiψY(yi),
N

∑
i=1

αiψY(yi)

〉

HY

〈z,z〉HY
,

and

N

∑
i, j=1

αiα j〈ψY(yi),z〉HY
〈ψY(y j),z〉HY

=

(

〈
N

∑
i=1

αiψY(yi),z〉HY

)2

,

according to the Cauchy inequality, we reach the conclusion.
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With Lemma 6 and Lemma 7, we can complete the proof of Theorem 4:

Proof Given a functionk(x,y) in KP, there is a sequence{kN(x,y)} in KP such that

kN(x,y) =
N

∑
j=1

α j k̄P((x,y),(x j ,y j))

=
N

∑
j=1

α jg(x,y)
∞

∑
i=0

ci (kX(x,x j)kY(y,y j))
i g(x j ,y j)

= g(x,y)
N

∑
j=1

α j
˜̄kP((x,y),(x j ,y j));

k(x,y) = lim
N→∞

kN(x,y),

where˜̄kP((x,y),(x j ,y j)) = ∑∞
i=0ci (kX(x,x j)kY(y,y j))

i g(x j ,y j).

We try to prove thatk(x,y) is an S-function. Let̃kN(x,y) = ∑N
j=1 α j

˜̄kP((x,y),(x j ,y j)), k(x,y) =

limN→∞ kN(x,y) = limN→∞ k̃N(x,y)g(x,y) = k̃(x,y)g(x,y), wherek̃(x,y) = limN→∞ k̃N(x,y).

According to Lemma 2, we only need to prove thatk̃(x,y) is an S-function. From the proof
of Lemma 6, we know̃kN(x,y) = 〈ϕX(x),ϕYN(y)〉H , whereH is a Hilbert space determined by
{√ciki

X}∞
i=0.

ϕYN(y) = (ϕ0
YN(y),ϕ

1
YN(y), . . . ,ϕ

k
YN(y), . . .),

and we defineHY =H 0
Y × . . .H k

Y × . . ., HX =H 0
X × . . .H k

X × . . ., and

ΓN :HY →HX

z= (z0, . . . ,zk, . . .) 7→ ΓN(z) = (Γ0
Nz0, . . . ,Γk

Nzk, . . .),

whereH i
X andH i

Y are the Hilbert spaces with respect to feature mappingsψi
X(·) and ψi

Y(·) de-
fined by Mercer kernels

√
ciki

X and
√

ciki
Y, respectively,〈·, ·〉H i

Y
is the inner product defined inH i

Y,

andΓk
Nzk = ∑N

j=1 α jg(x j ,y j)ψk
X(x j)〈ψk

Y(y j),zk〉H k
Y
. The inner products forHX = H 0

X × . . .H k
X × . . .

andHY = H 0
Y × . . .H k

Y × . . . are naturally defined as∑∞
i=0〈·, ·〉H i

X
and ∑∞

i=0〈·, ·〉H i
Y
, respectively.

Note that to make the inner products well defined, we require that input(z0, . . . ,zk, . . .) satisfies
∑∞

i=0〈zi ,zi〉H i
Y
< ∞. From the following proof, we will see that this condition will guarantee that

∑∞
i=0〈Γi

Nzi ,Γi
Nzi〉H i

X
< ∞. Thus,ΓN is well defined.

Then the key point we need to prove is that{ΓN} is a Cauchy sequence.∀z∈HY, ||z||HY
< ∞,

‖ ΓN(z) ‖2
HX

=
∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)
√

cik
i
X(xk,x j)〈ψi

Y(yk),zi〉H i
Y
〈ψi

Y(y j),zi〉H i
Y
.
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Using the conclusion given by Lemma 7, we have

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)
√

cik
i
X(xk,x j)〈ψi

Y(yk),zi〉H i
Y
〈ψi

Y(y j),zi〉H i
Y

6

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)ci(kX(xk,x j)kY(yk,y j))
i〈zi ,zi〉H i

Y

6

(

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)ci(kX(xk,x j)kY(yk,y j))
i

)(

∞

∑
i=0

〈zi ,zi〉H i
Y

)

.

Thus,

‖ ΓN(z) ‖2
HX
6

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)ci(kX(xk,x j)kY(yk,y j))
i ‖ z‖2

HY
.

Therefore,

‖ ΓN ‖2
6

∞

∑
i=0

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)ci(kX(xk,x j)kY(yk,y j))
i

=
N

∑
k, j=1

αkα j k̄P((xk,yk),(x j ,y j)).

Note that∑N
k, j=1 αkα j k̄P((xk,yk),(x j ,y j)) is just the square of the norm ofkN(x,y) in KP. From

the fact that{kN(x,y)} is a Cauchy sequence inKP, we know that{ΓN} is also a Cauchy sequence.
Then there is a linear operatorΓ which satisfiesΓ = limN→∞ ΓN. The convergence is in the norm.
Thus, for every(x,y) ∈ X ×Y , limN→∞ k̃N(x,y) = 〈ϕX(x),ϕY(y)〉H = k̃(x,y), whereϕY is given by

(Γ0ψ0
Y, . . . ,Γ

kψk
Y, . . .).

Appendix B. Proof of Theorem 5

Theorem 5 Given two finite sets of Mercer kernels KX =
{

kX
i (x,x

′)
}n

i=1 and KY =
{

kY
i (y,y

′)
}n

i=1.
For any S-function g(x,y) and{ci}n

i=1 ⊂ R+, k̄M defined below is an S-kernel.

k̄M((x,y),(x′,y′)) =
n

∑
i=1

ci ·g(x,y)kX
i (x,x

′)kY
i (y,y

′)g(x′,y′).

First, since∀i, cig(x,y)kX
i (x,x

′)kY
i (y,y

′)g(x′,y′) is a positive semi-definite kernel, and the sum-
mation of positive semi-definite kernels is also a positive semi-definite kernel, we know that
k̄M((x,y),(x′,y′)) is a positive semi-definite kernel on(X ×Y )× (X ×Y ).

Second, we need one more lemma to prove that all elements in the reproducing kernel Hilbert
spaceKM generated bȳkM are S-functions:
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Lemma 8 Suppose that g(x,y) is an S-function, and kX and kY are Mercer kernels. Given any
{(x j ,y j)}N

j=1 ⊂ X ×Y , and any{α j}N
j=1 ⊂ R, ∑N

j=1 α j k̄M((x,y),(xi,yi)) is an S-function.

Proof

N

∑
j=1

α j k̄M((x,y),(x j ,y j)) =
N

∑
j=1

α jg(x,y)
n

∑
i=1

cik
X
i (x,x j)k

Y
i (y,y j)g(x j ,y j)

= g(x,y)
N

∑
j=1

α j
˜̄kM((x,y),(x j ,y j)).

Sinceg(x,y) is an S-function, according to Lemma 2, to prove∑N
j=1 α j k̄M((x,y),(x j ,y j)) is an S-

function, we only have to prove that∑N
j=1 α j

˜̄kM((x,y),(x j ,y j)) is an S-function.
For any 06 i 6 n, i ∈ Z, since

√
cikX

i (x,x
′) and

√
cikY

i (y,y
′) are both Mercer kernels, we obtain

√
cik

X
i (x,x

′) = 〈ψi
X(x),ψ

i
X(x

′)〉H i
X
,

√
cik

Y
i (y,y

′) = 〈ψi
Y(y),ψ

i
Y(y

′)〉H i
Y
,

whereψi
X(·) : X → H i

X and ψi
Y(·) : Y → H i

Y are feature mappings, andH i
X andH i

Y are Hilbert
spaces with respect toψi

X andψi
Y, respectively.

Let Hi = H i
X, ϕi

X(x) = ψi
X(x), andϕi

YN(y) = ∑N
j=1 α jg(x j ,y j)ψi

X(x j)ψi
Y
⊤
(y j)ψi

Y(y). Note that

ϕi
YN= Γi

Nψi
Y, whereΓi

N = ∑N
j=1 α jg(x j ,y j)ψi

X(x j)ψi
Y
⊤
(y j) is a linear operator fromH i

Y toH i
X =Hi .

Thus, we have
N

∑
j=1

α jcik
X
i (x,x j)k

Y
i (y,y j)g(x j ,y j) = 〈ϕi

X(x),ϕ
i
YN(y)〉Hi

.

LetH =H1×H2× . . .Hn,

ϕX(x) :X →H

x 7→ (ϕ1
X(x),ϕ

2
X(x), . . . ,ϕ

n
X(x)),

and

ϕYN(y) :Y →H

y 7→ (ϕ1
YN(y),ϕ

2
YN(y), . . . ,ϕ

n
YN(y)),

we have

N

∑
j=1

α j
˜̄kM((x,y),(x j ,y j)) =

N

∑
j=1

α j

n

∑
i=1

cik
X
i (x,x j)k

Y
i (y,y j)g(x j ,y j)

=
n

∑
i=1

N

∑
j=1

α jcik
X
i (x,x j)k

Y
i (y,y j)g(x j ,y j)

=
n

∑
i=1

〈ϕi
X(x),ϕ

i
YN(y)〉Hi

= 〈ϕX(x),ϕYN(y)〉H ,

where the inner product inH is naturally defined as∑n
i=1〈·, ·〉Hi

.

1453



WU, XU, L I AND OYAMA

We prove that̄kM is an S-kernel on the basis of Lemma 8 and Lemma 7:
Proof Given a functionk(x,y) in KM, there is a sequence{kN(x,y)} in KM such that

kN(x,y) =
N

∑
j=1

α j k̄M((x,y),(x j ,y j))

=
N

∑
j=1

α jg(x,y)
n

∑
i=1

cik
X
i (x,x j)k

Y
i (y,y j)g(x j ,y j)

= g(x,y)
N

∑
j=1

α j
˜̄kM((x,y),(x j ,y j));

k(x,y) = lim
N→∞

kN(x,y).

We try to prove thatk(x,y) is an S-function. Let̃kN(x,y) = ∑N
j=1 α j

˜̄kM((x,y),(x j ,y j)), k(x,y) =

limN→∞ kN(x,y) = limN→∞ k̃N(x,y)g(x,y) = k̃(x,y)g(x,y), wherek̃(x,y) = limN→∞ k̃N(x,y).
According to Lemma 2, we only have to prove thatk̃(x,y) is an S-function. From Lemma 8, we

know k̃N(x,y) = 〈ϕX(x),ϕYN(y)〉H , whereH = H1×H2× . . .Hn is a Hilbert space andHi is the
Hilbert space of the feature mapping of

√
cikX

i (·, ·).

ϕYN(y) = (ϕ1
NY(y),ϕ

2
NY(y), . . . ,ϕ

n
NY(y)),

and we defineHY =H 1
Y × . . .H n

Y , HX =H 1
X × . . .H n

X , and

ΓN :HY →HX

z= (z1, . . . ,zn) 7→ ΓN(z) = (Γ1
Nz1, . . . ,Γn

Nzn),

whereH i
X andH i

Y are the Hilbert spaces with respect to feature mappingsψi
X(·) and ψi

Y(·) of
Mercer kernels

√
cikX

i and
√

cikY
i , respectively,〈·, ·〉H i

Y
is the inner product defined inH i

Y, and

Γi
N(zi) = ∑N

j=1 α jg(x j ,y j)ψi
X(x j)〈ψi

Y(y j),zi〉H i
Y
.

Then the key point we need to prove is that{ΓN} is a Cauchy sequence.∀z∈HY,

‖ ΓN(z) ‖2
HX

=
n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)
√

cik
X
i (xk,x j)〈ψi

Y(yk),zi〉H i
Y
〈ψi

Y(y j),zi〉H i
Y
.

Using the conclusion given by Lemma 7, we have

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)
√

cik
X
i (xk,x j)〈ψi

Y(yk),zi〉H i
Y
〈ψi

Y(y j),zi〉H i
Y

6

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)cik
X
i (xk,x j)k

Y
i (yk,y j)〈zi ,zi〉H i

Y

6

(

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)cik
X
i (xk,x j)k

Y
i (yk,y j)

)(

n

∑
i=1

〈zi ,zi〉H i
Y

)

.
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Thus,

‖ ΓN(z) ‖2
HX
6

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)cik
X
i (xk,x j)k

Y
i (yk,y j) ‖ z‖2

HY
.

Therefore,

‖ ΓN ‖2
6

n

∑
i=1

N

∑
k, j=1

αkα jg(xk,yk)g(x j ,y j)cik
X
i (xk,x j)k

Y
i (yk,y j) =

N

∑
k, j=1

αkα j k̄M((xk,yk),(x j ,y j)).

Note that∑N
k, j=1 αkα j k̄M((xk,yk),(x j ,y j)) is just the square of the norm ofkN(x,y) in KM. From

the fact that{kN(x,y)} is a Cauchy sequence inKM, we know that{ΓN} is also a Cauchy sequence.
Then there is a linear operatorΓ which satisfiesΓ = limN→∞ ΓN. The convergence is in the norm.
Thus, for every(x,y) ∈ X ×Y , k̃(x,y) = limN→∞ k̃N(x,y) = 〈ϕX(x),ϕY(y)〉H , whereϕY is given by

(Γ1ψ1
Y, . . . ,Γ

nψn
Y).
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