
Journal of Machine Learning Research 12 (2011) 663-689 Submitted 5/10; Revised 2/11; Published 3/11

Efficient Structure Learning of Bayesian Networks using Constraints

Cassio P. de Campos CASSIOPC@ACM .ORG

Dalle Molle Institute for Artificial Intelligence
Galleria 2
Manno 6928, Switzerland

Qiang Ji JIQ@RPI.EDU

Dept. of Electrical, Computer & Systems Engineering
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180, USA

Editor: David Maxwell Chickering

Abstract
This paper addresses the problem of learning Bayesian network structures from data based on score
functions that are decomposable. It describes properties that strongly reduce the time and memory
costs of many known methods without losing global optimality guarantees. These properties are
derived for different score criteria such as Minimum Description Length (or Bayesian Information
Criterion), Akaike Information Criterion and Bayesian Dirichlet Criterion. Then a branch-and-
bound algorithm is presented that integrates structural constraints with data in a way to guarantee
global optimality. As an example, structural constraints are used to map the problem of structure
learning in Dynamic Bayesian networks into a correspondingaugmented Bayesian network. Fi-
nally, we show empirically the benefits of using the properties with state-of-the-art methods and
with the new algorithm, which is able to handle larger data sets than before.
Keywords: Bayesian networks, structure learning, properties of decomposable scores, structural
constraints, branch-and-bound technique

1. Introduction

A Bayesian network is a probabilistic graphical model that relies on a structured dependency among
random variables to represent a joint probability distribution in a compact and efficient manner. It
is composed by a directed acyclic graph (DAG) where nodes are associated to random variables
and conditional probability distributions are defined for variables given their parents in the graph.
Learning the graph (or structure) of these networks from data is one ofthe most challenging prob-
lems, even if data are complete. The problem is known to be NP-hard (Chickering et al., 2003),
and best exact known methods take exponential time on the number of variables and are applicable
to small settings (around 30 variables). Approximate procedures can handle larger networks, but
usually they get stuck in local maxima. Nevertheless, the quality of the structure plays a crucial
role in the accuracy of the model. If the dependency among variables is notproperly learned, the
estimated distribution may be far from thecorrectone.

In general terms, the problem is to find the best structure (DAG) according to some score func-
tion that depends on the data (Heckerman et al., 1995). There are methods based on other (local)
statistical analysis (Spirtes et al., 1993), but they follow a completely different approach. The re-

c©2011 Cassio P. de Campos and Qiang Ji.

DE CAMPOS AND JI

search on this topic is active (Chickering, 2002; Teyssier and Koller, 2005; Tsamardinos et al., 2006;
Silander and Myllymaki, 2006; Parviainen and Koivisto, 2009; de Campos et al., 2009; Jaakkola
et al., 2010), mostly focused on complete data. In this case, best exact ideas (where it is guaran-
teed to find the global best scoring structure) are based on dynamic programming (Koivisto and
Sood, 2004; Singh and Moore, 2005; Koivisto, 2006; Silander and Myllymaki, 2006; Parviainen
and Koivisto, 2009), and they spend time and memory proportional ton ·2n, wheren is the number
of variables. Such complexity forbids the use of those methods to a couple oftens of variables,
mainly because of the memory consumption (even though time complexity is also a clear issue).
Ott and Miyano (2003) devise a faster algorithm when the complexity of the structure is limited
(for instance the maximum number of parents per node and the degree of connectivity of a subja-
cent graph). Perrier et al. (2008) use structural constraints (creating an undirected super-structure
from which the undirected subjacent graph of the optimal structure must bea subgraph) to reduce
the search space, showing that such direction is promising when one wantsto learn structures of
large data sets. Kojima et al. (2010) extend the same ideas by using new search strategies that
exploit clusters of variables and ancestral constraints. Most methods are based on improving the
dynamic programming method to work over reduced search spaces. On a different front, Jaakkola
et al. (2010) apply a linear programming relaxation to solve the problem, together with a branch-
and-bound search. Branch-and-bound methods can be effective when good bounds and cuts are
available. For example, this has happened with certain success in the Traveling Salesman Problem
(Applegate et al., 2006). We have proposed an algorithm that also uses branch and bound, but em-
ploys a different technique to find bounds (de Campos et al., 2009). It has been showed that branch
and bound methods can handle somewhat larger networks than the dynamic programming ideas.
The method is described in detail in Section 5.

In the first part of this paper, we present structural constraints as a way to reduce the search
space. We explore the use of constraints to devise methods to learn specialized versions of Bayesian
networks (such as naive Bayes and Tree-augmented naive Bayes) and generalized versions, such as
Dynamic Bayesian networks (DBNs). DBNs are used to model temporal processes. We describe
a procedure to map the structural learning problem of a DBN into a corresponding augmented
Bayesian network through the use of further constraints, so that the sameexact algorithm we discuss
for Bayesian networks can be employed for DBNs.

In the second part, we present some properties of the problem that bringa considerable improve-
ment on many known methods. We build on our recent work (de Campos et al.,2009) onAkaike
Information Criterion(AIC) andBayesian Information Criterion(BIC), and present new results for
the Bayesian Dirichlet (BD) criterion (Cooper and Herskovits, 1992) and some derivations under a
few assumptions. We show that the search space of possible structures can be reduced drastically
without losing the global optimality guarantee and that the memory requirements are very small in
many practical cases.

As data sets with many variables cannot be efficiently handled (unless P=NP), a desired prop-
erty of a learning method is to produce ananytimesolution, that is, the procedure, if stopped at
any moment, provides an approximate solution, while if kept running, its solutionimproves until
a global optimum is found. We point out that the termanytimeis used to mean that the differ-
ence between best current solution and upper bound for the global optimum constantly decreases
throughout the algorithm’s execution (even though we cannot guaranteewhether the improvement
happens because a better solution is found or because the upper boundis shrunk). We describe an
anytime and exact algorithm using a branch-and-bound (B&B) approachwith caches. Scores are

664

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

pre-computed during an initialization step to save computational time. Then we perform the search
over the possible graphs iterating over arcs. Because of the B&B properties, the algorithm can be
stopped with a best current solution and an upper bound for the global optimum, which gives a
certificate to the answer and allows the user to stop the computation when she/hebelieves that the
current solution is good enough. For example, such an algorithm can be integrated with a structural
Expectation-Maximization (EM) method without the huge computational expenses of other exact
methods by using the generalized EM (where finding an improving solution is enough), but still
guaranteeing that a global optimum is found if run until the end. Due to this property, the only
source of approximation would regard the EM method itself. It worth noting that using a B&B
method is not new for structure learning (Suzuki, 1996). Still, that previousidea does not constitute
a global exact algorithm, instead the search is conducted after a node ordering is fixed. Our method
does not rely on a predefined ordering and finds a global optimum structure considering all possible
orderings.

The paper is divided as follows. Section 2 describes the notation and introduces Bayesian net-
works and the structure learning problem based on score functions. Section 3 presents the structural
constraints that are treated in this work, and shows examples on how they can be used to learn dif-
ferent types of networks. Section 4 presents important properties of thescore functions that consid-
erably reduce the memory and time costs of many methods. Section 5 details our branch-and-bound
algorithm, while Section 6 shows experimental evaluations of the properties, the constraints and the
exact method. Finally, Section 7 concludes the paper.

2. Bayesian Networks

A Bayesian network represents a joint probability distribution over a collection of random variables,
which we assume to be categorical. It can be defined as a triple(G ,X ,P), whereG

.
= (VG ,EG) is

a directed acyclic graph (DAG) withVG a collection ofn nodes associated to random variablesX
(a node per variable), andEG a collection of arcs;P is a collection of conditional mass functions
p(Xi |Πi) (one for each instantiation ofΠi), whereΠi denotes the parents ofXi in the graph (Πi may
be empty), respecting the relations ofEG . In a Bayesian network every variable is conditionally
independent of its non-descendants given its parents (Markov condition).

We use uppercase letters such asXi ,Xj to represent variables (or nodes of the graph, which
are used interchanged), andxi to represent a generic state ofXi , which has state spaceΩXi

.
=

{xi1,xi2, . . . ,xir i}, wherer i
.
= |ΩXi | ≥ 2 is the number of (finite) categories ofXi (| · | is the cardi-

nality of a set or vector, and the notation
.
= is used to indicate a definition instead of a mathematical

equality). Bold letters are used to emphasize sets or vectors. For example,x ∈ ΩX
.
= ×X∈XΩX,

for X ⊆ X , is an instantiation for all the variables inX. Furthermore,rΠi

.
= |ΩΠi | = ∏Xt∈Πi

rt is
the number of possible instantiations of the parent setΠi of Xi , andθ = (θi jk)∀i jk is the entire vec-
tor of parameters such that the elements areθi jk = p(xik|πi j), with i ∈ {1, . . . ,n}, j ∈ {1, ..., rΠi},
k∈ {1, ..., r i}, andπi j ∈ ΩΠi .

Because of the Markov condition, the Bayesian network represents a joint probability distribu-
tion by the expressionp(x) = p(x1, . . . ,xn) = ∏i p(xi |πi), for everyx ∈ ΩX , where everyxi andπi

are consistent withx.
Given a complete data setD = {D1, . . . ,DN} with N instances, whereDu

.
= xu ∈ ΩX is an

instantiation of all the variables, the goal of structure learning is to find a DAGG that maximizes a
given score function, that is, we look forG∗ = argmaxG∈G sD(G), with G the set of all DAGs with

665

DE CAMPOS AND JI

nodesX , for a given score functionsD (the dependency on data is indicated by the subscriptD).1 In
this paper, we consider some well-known score functions: the Bayesian Information Criterion (BIC)
(Schwarz, 1978) (which is equivalent to theMinimum Description Length), the Akaike Information
Criterion (AIC) (Akaike, 1974), and the Bayesian Dirichlet (BD) (Cooper and Herskovits, 1992),
which has as subcases BDe and BDeu (Buntine, 1991; Cooper and Herskovits, 1992; Heckerman
et al., 1995). As done before in the literature, we assume parameter independence and modularity
(Heckerman et al., 1995). The score functions based on BIC and AIC differ only in the weight that
is given to the penalty term:

BIC/AIC : sD(G) = max
θ

LG ,D(θ)− t(G) ·w,

wheret(G) = ∑n
i=1(rΠi · (r i −1)) is the number of free parameters,w= logN

2 for BIC andw= 1 for
AIC, LG ,D is the log-likelihood function with respect to dataD and graphG :

LG ,D(θ) = log
n

∏
i=1

rΠi

∏
j=1

r i

∏
k=1

θni jk

i jk ,

whereni jk indicates how many elements ofD contain bothxik andπi j . Note that the values(ni jk)∀i jk

depend on the graphG (more specifically, they depend on the parent setΠi of eachXi), so a more
precise notation would be to usenΠi

i jk instead ofni jk . We avoid this heavy notation for simplicity un-

less necessary in the context. Moreover, we know thatθ∗ =(θ∗
i jk)∀i jk =(

ni jk

ni j
)∀i jk = argmaxθ LG ,D(θ),

with ni j = ∑k ni jk .2

In the case of the BD criterion, the idea is to compute a score based on the posterior probability
of the structurep(G |D). For that purpose, the following score function is used:

BD : sD(G) = log

(

p(G) ·
∫

p(D|G ,θ) · p(θ|G)dθ
)

,

where the logarithmic is often used to simplify computations,p(θ|G) is the prior ofθ for a given
graphG , assumed to be a Dirichlet with hyper-parametersα = (αi jk)∀i jk (which are assumed to be
strictly positive):

p(θ|G) =
n

∏
i=1

rΠi

∏
j=1

Γ(αi j)
r i

∏
k=1

θαi jk−1
i jk

Γ(αi jk)
,

whereαi j = ∑k αi jk . Hyper-parameters(αi jk)∀i jk also depend on the graphG , and we indicate it by
αΠi

i jk if necessary in the context. From now on, we also omit the subscriptD. We assume that there
is no preference for any graph, sop(G) is uniform and vanishes in the computations. Under the
assumptions, it has been shown (Cooper and Herskovits, 1992) that for multinomial distributions,

s(G) = log
n

∏
i=1

rΠi

∏
j=1

Γ(αi j)

Γ(αi j +ni j)

r i

∏
k=1

Γ(αi jk +ni jk)

Γ(αi jk)
.

The BDe score (Heckerman et al., 1995) assumes thatαi jk = α∗ · p(θi jk |G), whereα∗ is the hyper-
parameter known as the Equivalent Sample Size (ESS), andp(θi jk |G) is the prior probability for

1. In case of many optimal DAGs, then we assume to have no preference and argmax returns one of them.
2. If ni j = 0, thenni jk = 0 and we assume the fractionni jk

ni j
to be equal to one.

666

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

(xik ∧πi j) givenG (or simply givenΠi). The BDeu score (Buntine, 1991; Cooper and Herskovits,
1992) assumes further that local priors are such thatαi jk becomes α∗

rΠi r i
and α∗ is the only free

hyper-parameter.
An important property of all such criteria is that their functions are decomposable and can be

written in terms of the local nodes of the graph, that is,s(G) = ∑n
i=1si(Πi), such that

BIC/AIC : si(Πi) = max
θi

LΠi (θi)− ti(Πi) ·w, (1)

whereLΠi (θi) = ∑
rΠi
j=1 ∑r i

k=1ni jk logθi jk , andti(Πi) = rΠi · (r i −1). And similarly,

BD : si(Πi) =

rΠi

∑
j=1

(

log
Γ(αi j)

Γ(αi j +ni j)
+

r i

∑
k=1

log
Γ(αi jk +ni jk)

Γ(αi jk)

)

. (2)

In the case of BIC and AIC, Equation (1) is used to compute the global score of a graph using
the local scores at each node, while Equation (2) is employed for BD, BDeand BDeu, using the
respective hyper-parametersα.

3. Structural Constraints

A way to reduce the space of possible DAGs is to consider some constraints provided by experts.
We work with structural constraints that specify where arcs may or may notbe included. These
constraints help to reduce the search space and are available in many situations. Moreover, we
show examples in Sections 3.1 and 3.2 of how these constraints can be used tolearn structures
of different types of networks, such as naive Bayes, tree-augmented naive Bayes, and Dynamic
Bayesian networks. We work with the following rules, used to build up the structural constraints:

• indegree(Xj ,k,op), whereop∈ {lt,eq} andk an integer, means that the nodeXj must have
less than(whenop= lt) or equal to(whenop= eq)k parents.

• arc(Xi ,Xj) indicates that the nodeXi must be a parent ofXj .

• Operatorsor (∨) andnot (¬) are used to form the rules. Theand operator is not explicitly
used as we assume that each constraint is in disjunctive normal form.

The structural constraints can be imposed locally as long as they involve justa single node and
its parents. In essence, parent sets of a nodeXi that do violate a constraint are never processed
nor stored, and this can be checked locally when one is about to compute thelocal score. On the
other hand, constraints such as(arc(X1,X2)∨arc(X2,X3)) cannot be imposed locally, as it defines
a non-local condition (the arcs go to distinct variables, namelyX2 andX3). In this work we assume
that constraints are local. Besides constraints devised by an expert, onemight use constraints to
force the learning procedure to obtain specialized types of networks. The next two subsections
describe (somewhat non-trivial) examples of use of constraints to learn different types of networks.
Specialized networks tend to be easier to learn, because the search space is already reduced to
the structures that satisfy the underlying constraints. Notwithstanding, the readers who are only
interested in learning general Bayesian networks might want to skip the rest of this section and
continue from Section 4.

667

DE CAMPOS AND JI

3.1 Learning Naive and TAN structures

For example, the constraints∀i 6=c, j 6=c ¬arc(Xi ,Xj) and indegree(Xc,0,eq) impose that only arcs
from nodeXc to the others are possible, and thatXc is a root node, that is, a Naive Bayes structure
will be learned. A learning procedure would in fact act as a feature selection procedure by letting
some variables unlinked. Note that the symbol∀ just employed is not part of the language but
is used for easy of expose (in fact it is necessary to write down every constraint defined by such
construction). As another example, the constraints∀ j 6=c indegree(Xj ,3, lt), indegree(Xc,0,eq), and
∀ j 6=c indegree(Xj ,0,eq)∨ arc(Xc,Xj) ensure that all nodes haveXc as parent, or no parent at all.
BesidesXc, each node may have at most one other parent, andXc is a root node. This learns the
structure of a Tree-augmented Naive (TAN) classifier, also performinga kind of feature selection
(some variables may end up unlinked). In fact, it learns a forest of trees, as we have not imposed
that all variables must be linked. In Section 6 we present some experimentalresults which indicate
that learning TANs is a much easier (still very important) practical situation.

We point out that learning structures of networks with the particular purpose of building a clas-
sifier can be also tackled by other score functions that consider conditional distributions (Pernkopf
and Bilmes, 2005). Here we present a way to learn TANs considering the fit of the joint distribution,
which can be done by constraints. Further discussions about learning classifiers is not the aim of
this work.

3.2 Learning Dynamic Bayesian Networks

A more sophisticated application of structural constraints is presented in this section, where they
are employed to translate the structure learning in Dynamic Bayesian Networks(DBNs) to a cor-
responding problem in Bayesian networks. While Bayesian networks arenot directly related to
time, DBNs are used to model temporal processes. Assuming Markovian andstationary properties,
DBNs may be encoded in a very compact way and inferences are executed quickly. They are built
over a collection of sets of random variables{X 0,X 1, . . . ,X T} representing variables in different
times 0,1, . . . ,T (we assume that time is discrete). A Markovian property holds, which ensures that
p(X t+1|X 0, . . .X t) = p(X t+1|X t), for 0≤ t < T. Furthermore, because the process is assumed to
be stationary, we have thatp(X t+1|X t) is independent oft, that is,p(X t+1|X t) = p(X t ′+1|X t ′) for
any 0≤ t, t ′ < T. This means that a DBN is just as a collection of Bayesian networks that share the
same structure and parameters (apart from the initial Bayesian network for time zero). IfXt

i ∈ X t

are the variables at timet, a DBN may have arcs between nodesXt
i of the same timet and arcs

from nodesXt−1
i (previous time) to nodesXt

i of time t. Hence, a DBN can be viewed as two-slice
temporal Bayesian network, where at time zero, we have a standard Bayesian network as in Section
2, which we denoteBo, and for slices 1 toT we have another Bayesian network (calledtransitional
Bayesian network and denoted simplyB) defined over the same variables but where nodes may
have parents on two consecutive slices, that is,B precisely defines the distributionsp(X t+1|X t), for
any 0≤ t < T.

To learn a DBN, we assume that many temporal sequences of data are available. Thus, a com-
plete data setD = {D1, . . . ,DN} is composed ofN sequences, where eachDu is composed of in-
stancesDt

u
.
= xt

u = {xt
u,1, . . . ,x

t
u,n}, for t = 0, . . . ,T (whereT is the total number of slices/frames

apart from the initial one). Note that there is an implicit order among the elementsof eachDu. We
denote byD0 .

= {D0
u : 1≤ u≤ N} the data of the first slice, and byDt .

= {(Dt
u,D

t−1
u) : 1≤ u≤ N},

with 1 ≤ t ≤ T, the data of a slicet (note that the data of the slicet − 1 is also included, be-

668

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

cause it is necessary for learning the transitions). As the conditional probability distributions
for time t > 0 share the same parameters, we can unroll the DBN to obtain the factorization
p(X 1:T) = ∏i p0(X0

i |Π0
i)∏T

t=1 ∏i p(Xt
i |Πt

i), wherep0(X0
i |Π0

i) are the local conditional distributions
of B0, Xt

i andΠt
i represent the corresponding variables in timet, andp(Xt

i |Πt
i) are the local distri-

butions ofB.
Unfortunately learning a DBN is at least as hard as learning a Bayesian network, because the

former can be viewed as a generalization of the latter. Still, we show that the same method used for
Bayesian networks can be used to learn DBNs. With complete data, learning parameters of DBNs
is similar to learning parameters of Bayesian networks, but we deal with counts ni jk for bothB0

andB. The counts related toB0 are obtained from the first slice of each sequence, so there areN
samples overall, while counts forB are obtained from the whole time sequences, so there areN ·T
elements to consider (supposing that each sequence has the same lengthT, for ease of expose).
The score function of a given structure decomposes between the scorefunction ofB0 and the score
function ofB (because of the decomposability of score functions), so we look for graphs such that

(G0∗,G ′∗) = argmax
G0,G ′

(

sD0(G0)+sD1:T (G ′)
)

= (argmax
G0

sD0(G0),argmax
G ′

sD1:T (G ′)), (3)

whereG0 is a graph overX 0 andG ′ is a graph over variablesX t ,X t−1 of a generic slicet and
its predecessort − 1. Counts are obtained from data sets with time sequences separately for the
initial and the transitional Bayesian networks, and the problem reduces to the learning problem in
a Bayesian network with some constraints that force the arcs to respect theDBN’s stationarity and
Markovian characteristics (of course, it is necessary to obtain the counts from the data in a particular
way). We make use of the constraints defined in Section 3 to develop a simple transformation of the
structure learning problem to a corresponding structure learning problem in an augmented Bayesian
network. The steps of this procedure are as follows:

1. LearnB0 using the data setD0. Note that this is already a standard Bayesian network structure
learning problem, so we obtain the graphG0 for the first maximization of Equation (3).

2. Suppose there is a Bayesian networkB ′ = (G ′,X ′,P ′) with twice as many nodes asB0.
Denote the nodes as(X1, . . . ,Xn,X′

1, . . . ,X
′
n). Construct a new data setD′ that is composed by

N ·T elements{D1, . . . ,DT}. Note thatD′ is precisely a data set over 2n variables, because
it is formed of pairs(Dt−1

u ,Dt
u), which are complete instantiations for the variables ofB ′,

containing the elements of two consecutive slices.

3. Include structural constraints as follows:

∀1≤i≤n arc(Xi ,X
′
i), (4)

∀1≤i≤n indegree(Xi ,0,eq). (5)

Equation (4) forces the time relation between the same variable in consecutivetime slices (in
fact this constraint might be discarded if someone does not want to enforce each variable to
be correlated to itself of the past slice). Equation (5) forces the variablesX1, . . . ,Xn to have
no parents (these are the variables that are simulating the previous slice, while the variables
X ′ are simulating the current slice).

669

DE CAMPOS AND JI

4. LearnB ′ using the data setD′ with an standard Bayesian network structure learning proce-
dure, capable of enforcing the structural constraints. Note that the parent sets ofX1, . . . ,Xn

are already fixed to be empty, so the output graph will maximize the scores associated only to
nodesX ′: argmaxG ′ sD1:T (G ′)) =

argmax
G ′

(

∑
i

si,D1:T (Πi)+∑
i′

si′,D1:T (Π′
i)

)

= argmax
G ′

∑
i′

si′,D1:T (Π′
i).

This holds because of the decomposability of the score function among nodes, so that the
scores of the nodesX1, . . . ,Xn are fixed and can be disregarded in the maximization (they are
constant).

5. Take the subgraph ofG ′ corresponding to the variablesX′
1, . . . ,X

′
n to be the graph of the

transitional Bayesian networkB. This subgraph has arcs amongX′
1, . . . ,X

′
n (which are arcs

correlating variables of the same time slice) as well as arcs from the previousslice to the
nodesX′

1, . . . ,X
′
n.

Therefore, after applying this transformation, the structure learning problem in a DBN can be
performed by two calls to the method that solves the problem in a Bayesian network. We point
out that an expert may create her/his own constraints to be used during thelearning, besides those
constraints introduced by the transformation, as long as such constraints do not violate the DBN
implicit constraints. This makes possible to learn DBNs together with expert’s knowledge in the
form of structural constraints.

4. Properties of the Score Functions

In this section we present mathematical properties that are useful when computing score functions.
Local scores need to be computed many times to evaluate the candidate graphswhen we look for
the best graph. Because of decomposability, we can avoid to compute suchfunctions several times
by creating a cache that containssi(Πi) for eachXi and each parent setΠi . Note that this cache
may have an exponential size onn, as there are 2n−1 subsets of{X1, . . . ,Xn}\{Xi} to be considered
as parent sets. This gives a total space and time ofO(n ·2n · v) to build the cache, wherev is the
worst-case asymptotic time to compute the local score function at each node.3 Instead, we describe
a collection of results that are used to obtain much smaller caches in many practical cases.

First, Lemma 1 is quite simple but very useful to discard elements from the cacheof each node
Xi . It holds for all score functions that we treat in this paper. It was previously stated in Teyssier and
Koller (2005) and de Campos et al. (2009), among others.

Lemma 1 Let Xi be a node ofG ′, a candidate DAG for a Bayesian network where the parent set of
Xi is Π′

i . SupposeΠi ⊂ Π′
i is such that si(Πi) > si(Π′

i) (where s is one of BIC, AIC, BD or derived
criteria). ThenΠ′

i is not the parent set of Xi in an optimal DAGG∗.

Proof This fact comes straightforward from the decomposability of the score functions. Take a
graphG that differs fromG ′ only on the parent set ofXi , where it hasΠi instead ofΠ′

i . Note thatG

3. Note that the time to compute a single local score might be large dependingon the number of parents but still
asymptotically bounded by the data set size.

670

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

is also a DAG (asG is a subgraph ofG ′ built from the removal of some arcs, which cannot create
cycles) ands(G) = ∑ j 6=i sj(Π′

j)+si(Πi)> ∑ j 6=i sj(Π′
j)+si(Π′

i) = s(G ′). Any DAG G ′ with parent
setΠ′

i for Xi has a subgraphG with a better score than that ofG ′, and thusΠ′
i is not the optimal

parent configuration forXi in G∗.

Unfortunately Lemma 1 does not tell us anything about supersets ofΠ′
i , that is, we still need

to compute scores for all the possible parent sets and later verify which ofthem can be removed.
This would still leave us withn ·2n ·v asymptotic time and space requirements (although the space
would be reduced after applying the lemma). The next two subsections present results to avoid all
such computations. BIC and AIC are treated separately from BD and derivatives (reasons for that
will become clear in the derivations).

4.1 BIC and AIC Score Properties

Next theorems handle the issue of having to compute scores for all possibleparent sets, when one
is using BIC or AIC criteria. BD scores are dealt later on.

Theorem 2 Using BIC or AIC as score function, suppose that Xi ,Πi are such that rΠi >
N
w

logr i
r i−1. If

Π′
i is a proper superset ofΠi , thenΠ′

i is not the parent set of Xi in an optimal structure.

Proof 4 We know thatΠ′
i contains at least one additional node, that is,Π′

i ⊇ Πi ∪{Xe} andXe /∈ Πi .
BecauseΠi ⊂ Π′

i , Li(Π′
i) is certainly greater than or equal toLi(Πi), andti(Π′

i) will certainly be
greater than the corresponding valueti(Πi) in G . The difference in the scores issi(Π′

i)− si(Πi),
which equals to (see the explanations after the formulas):

max
θ′i

Li(Π′
i)− ti(Π′

i)− (max
θi

Li(Πi)− ti(Πi))≤

−max
θi

Li(Πi)− ti(Π′
i)+ ti(Πi) =

rΠi

∑
j=1

ni j

(

−
r i

∑
i=1

ni jk

ni j
log

ni jk

ni j

)

− ti(Π′
i)+ ti(Πi)≤

rΠi

∑
j=1

ni j H(θi j)− ti(Π′
i)+ ti(Πi)≤

rΠi

∑
j=1

ni j logr i − rΠi · (re−1) · (r i −1) ·w≤

rΠi

∑
j=1

ni j logr i − rΠi · (r i −1) ·w= Nlogr i − rΠi · (r i −1) ·w.

The first step uses the fact thatLi(Π′
i) is negative, so we drop it, the second step uses the fact that

θ∗
i jk =

ni jk

ni j
, with ni j = ∑r i

i=1ni jk , the third step uses the definition of entropyH(·) of a discrete distri-
bution, and the fourth step uses the fact that the entropy of a discrete distribution is less than the log
of its number of categories. Finally, the last equation is negative ifrΠi · (r i −1) ·w> Nlogr i , which

4. Another similar proof appears in Bouckaert (1994), but it leads directly to the conclusion of Corollary 3. The
intermediate result is algorithmically important.

671

DE CAMPOS AND JI

is exactly the hypothesis of the theorem. Hencesi(Π′
i) < si(Πi), and Lemma 1 guarantees thatΠ′

i
cannot be the parent set ofXi in an optimal structure.

Corollary 3 Using BIC or AIC as criterion, the optimal graphG has at most O(logN) parents per
node.

Proof AssumingN > 4, we have logr i
w(r i−1) < 1 (becausew is either 1 orlogN

2). Take a variableXi and
a parent setΠi with exactly⌈log2N⌉ elements. Because every variable has at least two states, we
know thatrΠi ≥ 2|Πi | ≥ N > N

w
logr i
r i−1, and by Theorem 2 we know that no proper superset ofΠi can

be an optimal parent set.

Theorem 2 and Corollary 3 ensures that the cache stores at mostO(∑⌈log2 N⌉
t=0

(n−1
t

)

) elements for
each variable (all combinations up to⌈log2N⌉ parents). Next lemma does not help us to improve
the theoretical size bound that is achieved by Corollary 3, but it is quite useful in practice because
it is applicable even in cases where Theorem 2 is not, implying that fewer parent sets need to be
inspected.

Theorem 4 Let BIC or AIC be the score criterion and let Xi be a node withΠi ⊂ Π′
i two possible

parent sets such that ti(Π′
i)+si(Πi)> 0. ThenΠ′

i and all supersetsΠ′′
i ⊃ Π′

i are not optimal parent
configurations for Xi .

Proof We have thatti(Π′
i)+ si(Πi) > 0 ⇒ −ti(Π′

i)− si(Πi) < 0, and becauseLi(·) is a negative
function, it implies

⇒ (Li(Π′
i)− ti(Π′

i))−si(Πi)< 0⇒ si(Π′
i)< si(Πi).

Using Lemma 1, we have thatΠ′
i is not the optimal parent set forXi . The result also follows for any

Π′′
i ⊃ Πi , as we know thatti(Π′′

i)> ti(Π′
i) and the same argument suffices.

Theorem 4 provides a bound to discard parent sets without even inspecting them. The idea is
to verify the assumptions of Theorem 4 every time the score of a parent setΠi of Xi is about to be
computed by taking the best score of any subset and testing it against the theorem. Only subsets that
have been checked against the structural constraints can be used, that is, a subset with high score but
that violates constraints cannot be used as the “certificate” to discard its supersets (in fact, it is not
a valid parent set at first). This ensures that the results are valid even inthe presence of constraints.
Whenever the theorem can be applied,Πi is discard and all its supersets are not even inspected.
This result allows us to stop computing scores earlier than the worst-case, reducing the number of
computations to build and store the cache.Πi is also checked against Lemma 1 (which is stronger
in the sense that instead of a bounding function, the actual scores are directly compared). However
Lemma 1 cannot help us to avoid analyzing the supersets ofΠi .

4.2 BD Score Properties

First note that the BD scores can be rewritten as:

si(Πi) = ∑
j∈Ji

(

log
Γ(αi j)

Γ(αi j +ni j)
+ ∑

k∈Ki j

log
Γ(αi jk +ni jk)

Γ(αi jk)

)

,

672

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

whereJi
.
= JΠi

i
.
= {1≤ j ≤ rΠi : ni j 6= 0}, becauseni j = 0 implies that all terms cancel each other.

In the same manner,ni jk = 0 implies that the terms of the internal summation cancel out, so let
Ki j

.
= KΠi

i j
.
= {1 ≤ k ≤ r i : ni jk 6= 0} be the indices of the categories ofXi such thatni jk 6= 0. Let

KΠi
i

.
= ∪ jK

Πi
i j be a vector with all indices corresponding to non-zero counts forΠi (note that the

symbol∪ must be seen as a concatenation of vectors, as we allowKΠi
i to have repetitions). The

countsni jk (and consequentlyni j = ∑k ni jk) are completely defined if we know the parent setΠi .
Rewrite the score as follows:

si(Πi) = ∑
j∈Ji

(

f (Ki j ,(αi jk)∀k)+g((ni jk)∀k,(αi jk)∀k)
)

,

with

f (Ki j ,(αi jk)∀k) = logΓ(αi j)− ∑
k∈Ki j

logΓ(αi jk),

g((ni jk)∀k,(αi jk)∀k) =− logΓ(αi j +ni j)+ ∑
k∈Ki j

logΓ(αi jk +ni jk).

We do not needKi j as argument ofg(·) because the set of non-zeroni jk is known from the counts
(ni jk)∀k that are already available as arguments ofg(·). To achieve the desired theorem that will be
able to reduce the computational time to build the cache, some intermediate results are necessary.

Lemma 5 Let Πi be the parent set of Xi , (αi jk)∀i jk > 0 be the hyper-parameters, and integers
(ni jk)∀i jk ≥ 0 be counts obtained from data. We have that g((ni jk)∀k,(αi jk)∀k) ≤ − logΓ(v) ≈
0.1214 if ni j ≥ 1, where v= argmaxx>0− logΓ(x) ≈ 1.4616. Furthermore, g((ni jk)∀k,(αi jk)∀k) ≤
− logαi j + logαi jk − f (Ki j ,(αi jk)∀k) if |Ki j |= 1.

Proof We use the relationΓ(x+∑k ak)≥ Γ(x+1)∏k Γ(ak), for x≥ 0,∀kak ≥ 1 and∑k ak ≥ 1 (note
that it is valid even if there is a single element in the summation). This relation comes from the Beta
function inequality:

Γ(x)Γ(y)
Γ(x+y)

≤
x+y
xy

=⇒ Γ(x+1)Γ(y+1)≤ Γ(x+y+1),

wherex,y> 0. Applying the transformationy+1= ∑t at (which is possible because∑t at > 1 and
thusy> 0), we obtain:

Γ(x+∑
t

at)≥ Γ(x+1)Γ(∑
t

at)≥ Γ(x+1)∏
t

Γ(at),

(the last step is due toat ≥ 1 for all t, so the same relation of the Beta function can be overall
applied, becauseΓ(x+1)Γ(y+1)≤ Γ(x+y+1)≤ Γ(x+1+y+1)).

With the relation just devised in hands, we have

Γ(αi j +ni j)

∏k∈Ki j
Γ(αi jk +ni jk)

=
Γ(∑1≤k≤r i

(αi jk +ni jk))

∏k∈Ki j
Γ(αi jk +ni jk)

=

=
Γ(∑k/∈Ki j

αi jk +∑k∈Ki j
(αi jk +ni jk))

∏k∈Ki j
Γ(αi jk +ni jk)

≥ Γ(1+ ∑
k/∈Ki j

αi jk),

673

DE CAMPOS AND JI

obtained by renamingx= ∑k/∈Ki j
αi jk andak = αi jk +ni jk (we have that∑k∈Ki j

(αi jk +ni jk)≥ ni j ≥ 1
and eachak ≥ 1). Thus

g((ni jk)∀k,(αi jk)∀k) =− log
Γ(αi j +ni j)

∏k∈Ki j
Γ(αi jk +ni jk)

≤− logΓ(1+ ∑
k/∈Ki j

αi jk).

Becausev= argmaxx>0− logΓ(x), we have− logΓ(1+∑k/∈Ki j
αi jk)≤− logΓ(v).

Now, the second part of the lemma. If|Ki j | = 1, then letKi j = {k}. We know thatni j ≥ 1 and
thus

g((ni jk)∀k,(αi jk)∀k) =− log
Γ(αi j +ni j)

Γ(αi jk +ni j)
=− log

(

Γ(αi j)

Γ(αi jk)

ni j−1

∏
t=0

(αi j + t)

(αi jk + t)

)

=

=− f (Ki j ,(αi jk)∀k)− log
αi j

αi jk
−

ni j−1

∑
t=1

log
(αi j + t)

(αi jk + t)
≤− logαi j + logαi jk − f (Ki j ,(αi jk)∀k),

because(αi j+t)
(αi jk+t) ≥ 1 for everyt.

Lemma 6 Let Πi be the parent set of Xi , (αi jk)∀i jk > 0 be the hyper-parameters, and integers
(ni jk)∀i jk ≥ 0 be counts obtained from data. We have that g((ni jk)∀k,(αi jk)∀k)≤ 0 if ni j ≥ 2.

Proof If ni j ≥ 2, we use the relationΓ(x+∑k ak) ≥ Γ(x+ 2)∏k Γ(ak), for x ≥ 0, ∀kak ≥ 1 and
∑k ak ≥ 2. This inequality is obtained in the same way as in Lemma 5, but using a tighter Beta
function bound:

B(x,y)≤
x+y
xy

(

(x+1)(y+1)
x+y+1

)−1

=⇒ Γ(x+2)Γ(y+2)≤ Γ(x+y+2),

and the relation follows by usingy+2= ∑t at and the same derivation as before. Now,

Γ(αi j +ni j)

∏k∈Ki j
Γ(αi jk +ni jk)

=
Γ(∑1≤k≤r i

(αi jk +ni jk))

∏k∈Ki j
Γ(αi jk +ni jk)

=

=
Γ(∑k/∈Ki j

αi jk +∑k∈Ki j
(αi jk +ni jk))

∏k∈Ki j
Γ(αi jk +ni jk)

≥ Γ(2+ ∑
k/∈Ki j

αi jk),

obtained by renamingx = ∑k/∈Ki j
αi jk andak = αi jk + ni jk , as we know that∑k∈Ki j

(αi jk + ni jk) ≥
ni j ≥ 2 and eachak ≥ 1. Finally,

g((ni jk)∀k,(αi jk)∀k) =− log
Γ(αi j +ni j)

∏k∈Ki j
Γ(αi jk +ni jk)

≤− logΓ(2+ ∑
k/∈Ki j

αi jk)≤ 0,

becauseΓ(2+∑k/∈Ki j
αi jk)≥ 1.

674

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

Lemma 7 Given a BD score and two parent setsΠ0
i andΠi for a node Xi such thatΠ0

i ⊂ Πi , if

si(Π0
i)> ∑

j∈J
Πi
i :

|K
Πi
i j |≥2

f (KΠi
i j ,(α

Πi
i jk)∀k)+ ∑

j∈J
Πi
i :

|K
Πi
i j |=1

log
αΠi

i jk ′

αΠi
i j

,

thenΠi is not the optimal parent set for Xi .

Proof Using the results of Lemmas 5 and 6,

si(Πi) = ∑
j∈Ji

(

f (KΠi
i j ,(α

Πi
i jk)∀k)+g((nΠi

i jk)∀k,(αΠi
i jk)∀k)

)

≤ ∑
j∈Ji : |K

Πi
i j |≥2

(

f (KΠi
i j ,(α

Πi
i jk)∀k)+g((nΠi

i jk)∀k,(αΠi
i jk)∀k)

)

+

+ ∑
j∈J

Πi
i : |K

Πi
i j |=1

(

− logαΠi
i j + logαΠi

i jk ′

)

≤ ∑
j∈J

Πi
i :|K

Πi
i j |≥2

f (KΠi
i j ,(α

Πi
i jk)∀k)+ ∑

j∈J
Πi
i :|K

Πi
i j |=1

log
αΠi

i jk ′

αΠi
i j

,

which by the assumption of this lemma, is less thansi(Π0
i). Thus, we conclude that the parent set

Π0
i has better score thanΠi , and the desired result follows from Lemma 1.

Lemma 8 Given the BDeu score,(αi jk)∀i jk > 0, and integers(ni jk)∀i jk ≥ 0 such thatαi j ≤ 0.8349
and|Ki j | ≥ 2 for a given j, then f(Ki j ,(αi jk)∀k)≤−|Ki j | · logr i .

Proof Usingαi jk ≤ αi j ≤ 0.8349 (for allk), we have

f (Ki j ,(αi jk)∀k) = logΓ(αi j)−|Ki j | logΓ(
αi j

r i
)

= logΓ(αi j)−|Ki j | logΓ(
αi j

r i
+1)+ |Ki j | log

αi j

r i

= logΓ(αi j)−|Ki j | log
Γ(αi j

r i
+1)

αi j
−|Ki j | logr i

= |Ki j | log
Γ(αi j)

1/|Ki j |αi j

Γ(αi j

r i
+1)

−|Ki j | logr i .

Now, Γ(αi j)
1/|Ki j |αi j ≤ Γ(αi j

r i
+1), becauser i ≥ 2, |Ki j | ≥ 2 andαi j ≤ 0.8349 (this number can be

computed by numerically solving the inequality forr i = |Ki j | = 2). We point out that 0.8349 is a
bound forαi j that ensures this last inequality to hold whenr i = |Ki j | = 2, which is the worst-case
scenario (greater values ofr i and|Ki j | make the left-hand side decrease and the right-hand side in-
crease). Becauser i of each node is known, tighter bounds might be possible according to the node.

675

DE CAMPOS AND JI

Theorem 9 Given the BDeu score and two parent setsΠ0
i andΠi for a node Xi such thatΠ0

i ⊂ Πi

and αΠi
i j ≤ 0.8349 for every j, if si(Π0

i) > −|KΠi
i | logr i then neitherΠi nor any supersetΠ′

i ⊃ Πi

are optimal parent sets for Xi .

Proof We have that

si(Π0
i)>−|KΠi

i | logr i = ∑
j∈J

Πi
i : |K

Πi
i j |≥2

−|KΠi
i j | logr i + ∑

j∈J
Πi
i : |K

Πi
i j |=1

− logr i ,

which by Lemma 8 is greater than or equal to

∑
j∈J

Πi
i : |K

Πi
i j |≥2

f (KΠi
i j ,(α

Πi
i jk)∀k)+ ∑

j∈J
Πi
i : |K

Πi
i j |=1

− logr i .

Now, Lemma 7 suffices to show thatΠi is not a optimal parent set, because− logr i = log
αΠi

i jk

αΠi
i j

for any

k. To show the result for any supersetΠ′
i ⊃ Πi , we just have to note that|K

Π′
i

i | ≥ |KΠi
i | (because the

overall number of non-zero counts can only increase when we include more parents), andαΠ′
i

i j ′ (for
all j ′) are all less than 0.8349 (because theαs can only decrease when more parents are included),
thus we can apply the very same reasoning to all supersets.

Theorem 9 provides a bound to discard parent sets without even inspecting them because of
the non-increasing monotonicity of the employed bounding function when we increase the number
of parents. As done for the BIC and AIC criteria, the idea is to check the validity of Theorem 9
every time the score of a parent setΠi of Xi is about to be computed by taking the best score of
any subset and testing it against the theorem (of course using only subsets that satisfy the structural
constraints). Whenever possible, we discardΠi and do not even look into all its supersets. Note
that the assertionαi j ≤ 0.8349 required by the theorem is not too restrictive, because as parentsets
grow, as ESS is divided by larger numbers (it is an exponential decrease of theαs). Hence, the
valuesαi j become quickly below such a threshold. Furthermore,Πi is also checked against Lemma
1 (although it does not help with the supersets). As we see later in the experiments, the practical size
of the cache after the application of the properties is small even for considerably large networks, and
both Lemma 1 and Theorem 9 help reducing the cache size, while Theorem 9 also help to reduce
computations. Finally, we point out that Singh and Moore (2005) have already worked on bounds to
reduce the number of parent sets that need to be inspected, but Theorem 9 provides a much tighter
bound than their previous result, where the cut happens only after all|KΠi

i j | go below two (or using
their terminology, whenconfigurations are pure).

5. Constrained B&B Algorithm

In this section we describe the branch-and-bound (B&B) algorithm used tofind the best structure of
the Bayesian network and comment on its complexity and correctness. The algorithm uses a B&B
search where each case to be solved is a relaxation of a DAG, that is, the cases may contain cycles.
At each step, a graph is picked up from a priority queue, and it is verifiedif it is a DAG. In such
case, it is a feasible structure for the network and we compare its score against the best score so

676

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

far (which is updated if needed). Otherwise, there must be a directed cycle in the graph, which is
then broken into subcases by forcing some arcs to be absent/present. Each subcase is put in the
queue to be processed (these subcases cover all possible subgraphs related to the original case, that
is, they cover all possible ways to break the cycle). The procedure stops when the queue is empty.
Note that every time we break a cycle, the subcases that are created are independent, that is, their
sets of graphs are disjoint. We obtain this fact by properly breaking the cycles to avoid overlapping
among subcases (more details below). This is the same idea as in the inclusion-exclusion principle
of combinatorics employed over the set of arcs that formed the cycle and ensures that we never
process the same graph twice, and also ensures that all subgraphs arecovered.

The initialization of the algorithm is as follows:

• C : (Xi ,Πi) → R is the cache with the scores for all the variables and their possible parent
configurations. This is constructed using a queue and analyzing parentsets according to the
properties of Section 4, which saves (in practice) a large amount of space and time. All the
structural constraints are considered in this construction so that only validparent sets are
stored.

• G is the graph created by taking the best parent configuration for each node without checking
for acyclicity (so it is not necessarily a DAG), ands is the score ofG . This graph is used as
an upper bound for the best possible graph, as it is clearly obtained from a relaxation of the
problem (the relaxation comes from allowing cycles).

• H is an initially empty matrix containing, for each possible arc between nodes, a mark stating
that the arc must be present, or is prohibited, or is free (may be present or not). This matrix
controls the search of the B&B procedure. Each branch of the search has aH that specifies
the graphs that still must be searched within that branch.

• Q is a priority queue of triples(G ,H ,s), ordered bys (initially it contains a single triple with
G , H ands as mentioned. The order is such that the top of the queue contains always the
triple of greatests, while the bottom has the triple of smallests.

• (Gbest,sbest) keeps at any moment the best DAG and score found so far. The value ofsbest

could be set to−∞, but this best solution can also be initialized using any inner approximation
method. For instance, we use a procedure that guesses an ordering for the variable, then
computes the global best solution for that ordering, and finally runs a hill climbing over
the resulting structure. All these procedures are very fast (given thesmall size of the pre-
computed cache that we obtain in the previous steps). A good initial solution maysignificantly
reduce the search of the B&B procedure, because it may give a lower bound closer to the upper
bound defined by the relaxation(G ,H ,s).

• iter, initialized with zero, keeps track of the iteration number.bottomis a user parameter that
controls how frequent elements will be picked from the bottom of the queue instead of the
usual removal from the top. For example, a value of 1 means to pick alwaysfrom the bottom,
a value of 2 alternates elements from the top and the bottom evenly, and a largevalue makes
the algorithm picks always from the top.

The main loop of the B&B search is as follows:

677

DE CAMPOS AND JI

• While Q is not empty, do

1. Incrementiter. If iter
bottom is not an integer, then remove the top ofQ and put into

(Gcur,Hcur,scur). Otherwise remove the bottom ofQ into (Gcur,Hcur,scur). If scur ≤ sbest

(worse than an already known solution), then discard the current element and start the
loop again.

2. If Gcur is a DAG, then update(Gbest,sbest) with (Gcur,scur), discard the current element
and start the loop again (ifGcur came from the top ofQ, then the algorithm stops—no
other graph in the queue can be better thanGcur).

3. Take a cycle ofGcur (one must exist, otherwise we would have not reached this step),
namelyv= (Xa1 → Xa2 → . . .→ Xaq+1), with a1 = aq+1.

4. Fory= 1, . . . ,q, do

(a) Mark onHcur that the arcXay → Xay+1 is prohibited. This implies that the branch
we are going to create will not have this cycle again.

(b) Recompute(G ,s) from (Gcur,scur) such that the new parent set ofXay+1 in G com-
plies with this newHcur. This is done by searching in the cacheC(Xay+1,Πay+1) for
the best parent set. If there is a parent set in the cache that satisfiesHcur, then

– Include the triple(G ,Hcur,s) into Q.5

(c) Mark onHcur that the arcXay → Xay+1 must be present and that the sibling arc
Xay+1 → Xay is prohibited, and continue the loop of step 4. (Step 4c forces the
branches that we create to be disjoint among each other.)

There are two considerations to show the correctness of the method. First,we need to guarantee
that all the search space is considered, even though we do not explicitly search through all of it.
Second, we must ensure that the same part of the search space is not processed more than once, so
we do not lose time and know that the algorithm will finish with a best global graph. The search is
conducted over all possible graphs (not necessarily DAGs). The queueQ contains the subspaces (of
all possible graphs) to be analyzed. A triple(G ,H ,s) indicates, throughH , which is this subspace.
H is a matrix containing an indicator for each possible arc. It says if an arc is allowed (meaning it
might or might not be present), prohibited (it cannot be present), or demanded (it must be present) in
the current subspace of graphs. Thus,H completely defines the subspaces.G andsare respectively
the best graph insideH (note thatG might have cycles) and its score value (which is an upper bound
for the best DAG in this subspace).

In the initialization step,Q begins with a triple whereH indicates that every arc is allowed,6 so
all possible graphs are within the subspace of the initialH . In this moment, the main loop starts and
the only element ofQ is put into(Gcur,Hcur,scur) andscur is compared against the best known score.
Note that asGcur is the graph with the greatest score that respectsHcur, any other graph within the
subspace defined byHcur will have worse score. Therefore, ifscur is less than the best known score,
all this branch represented byHcur may be discarded (this is theboundstep). Certainly no graph
within that subspace will be worth checking, because their scores are less thanscur.

5. One may check the acyclicity of the graph before including the triple in the queue. We analyze this possibility later
on.

6. In fact, the implementation may setH with possible known restrictions of arcs, that is, those that are known to be
demanded or prohibited by structural constraints may be included in the initial H .

678

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

If Gcur has score greater thansbest, then the graphGcur is checked for cycles, as it may or may
not be acyclic (all we know is thatGcur is a relaxed solution within the subspaceHcur). If it is
acyclic, thenGcur is the best graph so far. Moreover, if the acyclicGcur was extracted from the top
of Q, then the algorithm may stop, as all the other elements in the queue have lower score (this is
guaranteed by the priority of the queue). Otherwise we restart the loop, as we cannot find a better
graph within this subspace (the acyclicGcur is already the best one by definition). On the other
hand, ifGcur is cyclic, then we need to divide the spaceHcur into smaller subcases with the aim of
removing the cycles ofGcur (this is thebranchstep). Two characteristics must be kept by the branch
step: (i)Hcur must be fully represented in the subcases (so we do not miss any graph),and (ii) the
subcases must be disjoint (so we do not process the same graph more thanonce). A possible way
to achieve these two requirements is as follows: let the cyclev= (Xa1 → Xa2 → . . .→ Xaq+1) be the
one detected inGcur. We createq subcases such that

• The first subcase does not containXa1 → Xa2 (but may contain the other arcs of that cycle,
that is, we do not prohibit the others).

• The second case certainly containsXa1 →Xa2, butXa2 →Xa3 is prohibited (so they are disjoint
because of the difference in the presence of the first arc).

• (And so on such that) They-th case certainly containsXay′
→ Xay′+1

for all y′ < y and prohibits
Xay → Xay+1. This is done until the last element of the cycle.

This is the same idea as the inclusion-exclusion principle, but applied here to the arcs of the cycle. It
ensures that we never process the same graph twice, and also that we cover all the graphs, as by the
union of the mentioned sets we obtain the originalH . Because of that, the algorithm runs at most
∏i |C(Xi)| steps, where|C(Xi)| is the size of the cache forXi (there are not more ways to combine
parent sets than that number). In practice, we expect theboundstep to be effective in dropping parts
of the search space in order to reduce the total time cost.

The B&B algorithm as described alternately picks elements from the top and from the bottom of
the queue (the percentage of elements from the bottom is controlled by the user parameterbottom).
In terms of covering all search space, we have to ensure that all elementsof the queue are processed,
no matter the order we pick them, and that is enough to the correctness of the algorithm. However,
there is an important difference between elements from the top and the bottom: top elements im-
prove the upper bound for the global score, because we know that theglobal score is less than or
equal to the highest score in the queue. Still, the elements from the top cannotimprove the lower
bound, as lower bounds are made of valid DAGs, and the first found DAGfrom the top is already
the global optimal solution (by the priority of the queue). In order to update also the lower bound,
elements from the bottom can be used, as they have low score with (usually) small subspaces, mak-
ing easier to find valid DAGs. In fact, we know that an element from the bottom,if not a DAG,
will generate new elements of the queue whose subspaces have upper bound score less than that of
the originating elements, which certainly put them again in the bottom of the queue. This means
that processing elements from the bottom is similar to perform a depth-first search, which is likely
to find valid DAGs. Hence, we guarantee to have both lower and upper bounds converging to the
optimal solution.

In the experiments of Section 6, we have chosen the parameterbottomsuch that one in three
iterations picks an element from the bottom of the queue. This choice has notbeen tuned and has
been taken with the aim of increasing the chance of finding valid DAGs. Note that every element

679

DE CAMPOS AND JI

from the top will certainly decrease the upper bound, while the elements fromthe bottom may or
may not increase the lower bound. There is no obvious choice here: if weuse fewer elements from
the bottom, then we improve the upper bound faster, but we possibly have a worse lower bound,
which implies in less chance ofboundingregions of the search space (which would help to improve
the upper bound in a faster way as well); on the other hand, if we use many elements from the
bottom, then we increase the chance (even if there is no guarantee) of improving the lower bound,
but we spend less time improving the upper bound, which ultimately has to be tightened until it
meets the lower bound. In other words, if the current best solution is already very good (in the sense
of being optimal or almost optimal—note that we do not know it when the method is running),
then it is useless to pick elements from the bottom. Therefore, a possible (heuristic) approach is
to adaptively select the percentage of elements to pick from the bottom: in the very beginning of
the algorithm, more elements are picked from the bottom. As time passes, as the upper bound gets
closer to the best current solution (it also becomes less likely to find better solutions because the
chance that the current solution is already good gets higher with time), so thepercentage of elements
picked from the bottom should keep reducing until it reaches zero (or almost zero). Currently we
have not implemented any strategy to modify the percentage of elements that arepicked from top
and bottom of the queue.

Two other ideas are worth mentioning regarding the B&B algorithm: (i) if we periodically
perform local searches within subspaces using distinct starting points, the lower bound can be im-
proved (still this has its own computational cost, so it must be selectively done); (ii) if we do check
for acyclicity in the step 4b before inserting the triple into the queue, then it is possible to update
the current best solution earlier, and the algorithm still works. In this case, step 2 is unnecessary
because DAGs will never be inserted into the queue (given that we checkif the initial graph is not
already a DAG before starting the main loop). Still, we need to find the cycle to beused in step 3,
so to save computations we need to spend memory to store the cycle (previouslyfound in step 4b)
together with the triples of the queue. Hence, this idea trades some computationaltime (or memory
usage) by a speed-up in finding some DAGs to improve the lower bound. Notethat, in most cases,
the graph that is checked in step 4b will not be a DAG anyway. While this modification benefits the
improvement of the lower bound by spending some additional computation/memory, some prelim-
inary experiments have not shown any significant gain. However, this is still to be better analyzed,
as it may vary depending on implementation details.

The B&B can be stopped at any time and the current best solution as well as an upper bound for
the global best score are available. This stopping criterion might be basedon number of steps, time
and/or memory consumption, percentage of error (difference between upper and lower bounds).
This is an important property of this method. For example, if we are just lookingfor an improving
solution, we may include in the loop anif to check if the current best solution is already better
than some threshold, which would save computational time. Still, if we run it until theend, we are
ensured to have a global optimum solution.

The algorithm can also be easily parallelized. We can split the content of the priority queue into
many different tasks. No shared memory needs to exist among tasks if eachone has its own version
of the cache. The only data structure that needs consideration is the queue, which from time to time
must be balanced between tasks. With a message-passing idea that avoids using locks, the gain of
parallelization is linear in the number of tasks.

Some particular cases of the algorithm are worth mentioning. If we fix an ordering for the
variables such that all the arcs must link a node towards another non-precedent in the ordering (this

680

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

is a common idea in many approximate methods), the proposed algorithm does notperform any
branch, as the ordering implies acyclicity, and so the initial solution is already the best (only for
that ordering—recall that the number of possible orderings is exponential in n). The performance
would be proportional to the time to create the cache. Another important case is when one limits
the maximum number of parents of a node. This is relevant for hard problemswith many variables,
as it would imply in a bound on the cache size.

ESS adult breast car letter lung mush nurse wdbc zoo
0.1 6.2 0.0 0.1 3.7 1699.6 7.5 0.9 221.2 0.4

Memory 1 6.2 0.0 0.1 3.7 1150.1 5.9 0.8 204.6 0.4
(in MB) 10 6.3 0.0 0.1 3.8 812.3 5.4 0.7 206.2 0.3

BIC 1.8 0.0 0.0 2.3 0.3 0.5 0.4 5.3 0.1
0.1 89.3 0.0 0.0 429.4 2056 357.9 0.7 2891 1.7

Time 1 91.6 0.0 0.0 440.4 1398 278.7 0.7 2692 1.7
(in sec.) 10 91.6 0.0 0.0 438.1 1098 268.9 0.7 2763 1.7

BIC 67.4 0.0 0.1 859.6 1.3 72.1 1.4 351 0.3
0.1 217.4 210.5 28.8 220.1 230.8 224.0 211.2 227.9 219.8

Number 1 217.4 210.5 28.8 220.1 230.2 223.6 211.2 227.8 219.7

of Steps 10 217.4 210.4 28.8 220.1 229.8 223.5 211.2 227.9 219.6

BIC 214.8 27.3 28.4 219.0 215.4 217.1 210.9 220.7 213.1

Worst-case 217.9 212.3 28.8 220.1 231.1 226.5 211.2 228.4 220.1

Table 1: Memory, time and number of steps (local score evaluations) used tobuild the cache. Re-
sults for BIC and BDeu with ESS varying from 0.1 to 10 are presented.

6. Experiments

We perform experiments to show the benefits of the reduced cache and search space. Later we show
some examples of the use of constraints.7 First, we use data sets available at the UCI repository
(Asuncion and Newman, 2007). Lines with missing data are removed and continuous variables are
discretized over the mean into binary variables. The data sets are:adult (15 variables and 30162
instances),breast(10 variables and 683 instances),car (7 variables and 1728 instances)letter (17
variables and 20000 instances),lung (57 variables and 27 instances), mushroom (23 variables and
1868 instances, denoted bymush), nursery (9 variables and 12960 instances, denoted bynurse),
Wisconsin Diagnostic Breast Cancer (31 variables and 569 instances, denoted bywdbc), zoo (17
variables and 101 instances). The number of categories per variables varies from 2 to dozens in
some cases (we refer to UCI for further details).

Table 1 presents the used memory in MB (first block), the time in seconds (second block) and
number of steps in local score evaluations (third block) for the cache construction, using the prop-
erties of Section 4. Each column presents the results for a distinct data set. In different lines we
show results for BDeu with ESS equals to 0.1, 1, 10, and for BIC. The lineworst-casepresents
the number of steps to build the cache without using Theorems 4 (for BIC/AIC) and 9 (for BDeu),
which are the theorems that allow the algorithm to avoid computing every subsetof parents. As we
see through the log-scale in which they are presented, the reduction in number of steps has not been

7. The software is available online in the web addresshttp://www.ecse.rpi.edu/ ˜ cvrl/structlearning.html .

681

DE CAMPOS AND JI

exponential, but still saves a good amount of computations (roughly half ofthe work). In the case
of the BIC score, the reduction is more significant. In terms of memory, the usage clearly increases
with the number of variables in the network (lung has 57 and wdbc has 31 variables).

ESS adult breast car letter lung mush nurse wdbc zoo
Max. 0.1 2.1(4) 1.0(1) 0.7(1) 4.5(5) 0.1(2) 4.1(5) 1.2(3) 1.3(2) 1.4(3)
Number 1 2.4(4) 1.0(1) 1.0(2) 5.2(6) 0.4(2) 4.4(7) 1.7(3) 1.7(3) 1.9(4)
of Parents 10 3.3(5) 1.0(1) 1.9(2) 5.9(6) 3.0(4) 4.8(8) 2.1(3) 3.1(4) 3.4(4)

BIC 2.8(5) 1.0(1) 1.3(2) 6.3(7) 2.1(3) 4.1(4) 1.8(3) 2.7(3) 2.8(3)
Worst-case 14.0 9.0 6.0 16.0 6.0∗ 22.0 8.0 8.0∗ 16.0
Final Size 0.1 24.2 21.5 21.1 28.2 20.2 28.5 21.9 23.6 23.3

of the 1 24.8 21.9 21.6 29.0 20.8 28.9 22.4 24.9 24.4

Cache 10 26.3 23.3 23.0 210.5 210.7 29.8 23.5 212.1 28.9

BIC 29.3 24.7 24.5 215.3 211.5 213.0 25.6 212.9 210.9

Worst-case 217.9 212.3 28.8 220.1 231.1∗ 226.5 211.2 228.4∗ 220.1

Implied 0.1 254.1 213.3 26.3 2129.0 28.2 2175.7 211.6 290.3 239.3

Search 1 262.1 217.1 28.3 2144.8 233.1 2186.0 215.4 2132.7 260.3

Space 10 291.6 233.2 220.6 2176.1 2612.0 2221.8 227.3 2375.1 2150.7

(approx.) BIC 271 223 210 2188 2330 2180 217 2216 2111

Worst-case 2210 290 242 2272 21441∗ 2506 272 2727∗ 2272

Table 2: Final cache characteristics: maximum number of parents (average by node; between
parenthesis is presented the actual maximum number), actual cache size, and (approxi-
mate) search space implied by the cache. Worst-cases are presented forcomparison (those
marked with a star are computed using the constraint on the number of parentsthat was
applied tolung andwdbc). Results of BIC and BDeu with ESS from 0.1 to 10 are pre-
sented.

The benefits of the application of these results imply in performance gain for many algorithms
in the literature to learn Bayesian network structures, as long as they only need to work over the
(already precomputed) small cache. In Table 2 we present the final cache characteristics, where
we find the most attractive results, for instance, the small cache sizes whencompared to the worst
case. The first block contains the maximum number of parents per node (averaged over the nodes,
and the actual maximum between parenthesis). The worst-case is the total number of nodes in the
data set minus one, apart fromlung (where we have set a limit of at most six parents) andwdbc
(with at most eight parents). The second block shows the cache size foreach data set and distinct
values of ESS. We also show the results of the BIC score and the worst-case values for comparison.
We see that the actual cache size is smaller (in orders of magnitude) than the worst-case situation.
It is also possible to analyze the search space reduction implied by these results by looking the
implications to the search space of structure learning. We must point out thatby search space
we mean all the possible combinations of parent sets for all the nodes. Eventually some of these
combinations are not DAGs, but are still being counted. However, there are two considerations:
(i) the precise counting problem is harder to solve (in order to give the exact search space size),
and (ii) many structure learning algorithms run over more than only DAGs, because they need to
look at the graphs (and thus combinations of parents) to decide if they are acyclic or not. In these
cases, the actual search space is not simply the set of possible DAGs, even though the final solution
will be a DAG. Still, some algorithms might do a better job by using other ideas of searching for

682

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

the best structure instead of looking to possible DAGs, which might imply in a smaller worst-case
complexity (for instance, the dynamic programming method runs over subsets of variables, which
are in number 2n).

B&B DP OS HC
network Score gap time score time score time score time

B
IC

adult -286902.8 5.5% 150.3 0.0% 0.77 0.1% 0.17 0.5% 0.30
breast -8254.8 0.0% 0.01 0.0% 0.01 0.0% 0.01 0.0% 0.00
car -13100.5 0.0% 0.01 0.0% 0.01 0.0% 0.01 0.2% 0.00
letter -173716.2 8.1% 574.1 -0.6% 22.8 1.0% 0.75 3.7% 0.30
lung -1146.9 2.5% 907.1 Fail Fail 1.0% 0.13 0.7% 0.05
mushroom -12834.9 15.3% 239.8 Fail Fail 1.0% 0.12 4.8% 0.05
nursery -126283.2 0.0% 0.04 0.0% 0.04 0.0% 0.04 0.03% 0.06
wdbc -3053.1 13.6% 333.5 Fail Fail 0.8% 0.13 0.9% 0.02
zoo -773.4 0.0% 5.2 0.0% 3.5 1.0% 0.03 0.6% 0.00

E
S

S
=

0.
1

adult -288591.2 0.0% 92.1 0.0% 0.75 0.1% 0.21 0.3% 0.32
breast -8635.1 0.0% 0.02 0.0% 0.01 0.0% 0.01 0.0% 0.00
car -13295.0 0.0% 0.01 0.0% 0.00 0.0% 0.00 0.1% 0.01
letter -181941.5 5.7% 375.75 -0.1% 7.6 0.1% 0.27 2.1% 0.27
lung -1731.9 0.0% 0.22 Fail Fail 0.0% 0.11 0.0% 0.05
mushroom -12564.2 14.7% 382.4 Fail Fail 0.2% 0.15 5.3% 0.05
nursery -126660.4 0.0% 0.06 0.0% 0.04 0.0% 0.04 0.1% 0.06
wdbc -3558.6 4.4% 494.1 Fail Fail 1.4% 0.05 1.3% 0.01
zoo -1024.5 0.0% 0.09 0.0% 3.1 0.8% 0.01 1.0% 0.00

E
S

S
=

1

adult -286695.2 4.5% 203.0 0.0% 0.76 0.1% 0.22 0.3% 0.34
breast -8254.3 0.0% 0.02 0.0% 0.01 0.0% 0.01 0.0% 0.00
car -13145.3 0.0% 0.01 0.0% 0.00 0.0% 0.00 0.05% 0.00
letter -178635.2 6.7% 520.2 -0.7% 9.9 0.0% 0.34 2.1% 0.27
lung -1249.7 0.0% 0.61 Fail Fail 0.1% 0.12 0.1% 0.05
mushroom -12097.0 16.7% 381.5 Fail Fail 0.2% 0.19 4.2% 0.05
nursery -126212.7 0.0% 0.06 0.0% 0.04 0.0% 0.04 0.1% 0.05
wdbc -3175.9 11.2% 471.1 Fail Fail 0.7% 0.06 1.0% 0.02
zoo -794.1 0.0% 1.4 0.0% 3.4 1.1% 0.02 8.7% 0.00

E
S

S
=

10

adult -285014.5 11.8% 213.8 -0.1% 0.88 0.04% 0.24 0.5% 0.33
breast -8130.2 0.0% 0.04 0.0% 0.01 0.0% 0.00 0.3% 0.00
car -13038.6 0.0% 0.03 0.0% 0.00 0.0% 0.00 0.03% 0.00
letter -174111.8 8.7% 1250 -0.4% 22.3 0.1% 0.84 1.8% 0.32
lung -957.2 11.7% 2118 Fail Fail 3.3% 1.38 2.3% 0.1
mushroom -11924.0 22.7% 587.8 Fail Fail 0.1% 0.43 2.4% 0.07
nursery -125846.5 0.0% 0.14 0.0% 0.04 0.0% 0.04 0.1% 0.06
wdbc -2986.2 22.2% 1938 Fail Fail 0.6% 2.8 1.4% 0.23
zoo -697.2 13.2% 367.7 -0.3% 5.0 1.4% 0.1 0.9% 0.00

Table 3: Comparison of scores among B&B, DP, OS and HC.Fail means that it could not solve the
problem within 10 million steps or because of memory limit (4GB). DP, OS and HC scores
are in percentage w.r.t. the score of B&B (positive means worse than B&B andnegative
means better). Each entry with a 0.0% means that the result, in that instance, was exactly
equal to the B&B result (in terms of the score). Times are given in seconds.

683

DE CAMPOS AND JI

An expected but important point to emphasize is the correlation of the prior withthe time and
memory to build the cache. It would be expected that, as larger ESS (and thusthe prior towards
the uniform) as slower and more memory consuming is the method. That is because smoothing
the different parent sets by the stronger prior makes harder to see large differences in scores, and
consequently the properties that would reduce the cache size are less effective. However, this is not
quite evident from the results, where the relation between ESS and time/memory isnot clear. Yet it
must be noted that the two largest data sets in terms of number of variables (lung andwdbc) were
impossible to be processed without setting up other limits such as maximum number ofparents or
maximum number of free parameters in the node (we have not used any limit forthe other data sets).
We used an upper limit of six parents per node forlung and eight forwdbc. This situation deserves
further study so as to clarify whether it is possible to run these computations on large data sets and
large ESS. It might be necessary to find tighter bounds if at all possible, that is, stronger results
than Theorem 9 to discard unnecessary score evaluations earlier in the computations. Nevertheless,
the main goal of this present work is not to study the impact of ESS on learning, but to present
properties that improve the performance of learning methods.

In Table 3, we show results of four distinct algorithms: the B&B described in Section 5, the
dynamic programming (DP) idea of Silander and Myllymaki (2006), the hill-climbing (HC) method
starting with an empty structure, and an algorithm that picks variable orderings randomly and then
find the best structure satisfying that ordering, that is, DAGs where arcs respect the ordering of the
variables (there is no arc connecting a node to its predecessors in the ordering). This algorithm
(named OS) is similar to K2 algorithm with random orderings, but it is always better because a
global optimum is found for each ordering (we use one million of orderings). Note that OS performs
better than HC in almost all test cases. We have chosen to analyze the BIC scores (given that the
properties have provided greater reduction in the search space in this case) and BDeu with ESS
equals to 0.1, 1 and 10. It is clear from the results of ESS equals to 10 that the B&B procedure
struggles with very large search spaces, and the same might happen for even larger ESS.

The scores obtained by each algorithm (in percentage against the value obtained by B&B) and
the corresponding time are shown in Table 3 (excluding the cache construction). A limit of ten mil-
lion steps is given to each method (steps here are considered as the numberof queries to the cache).
It is also presented the reduced space where B&B performs its search, as well as the maximum
gap of the solution. This gap is obtained by the relaxed version of the problem. We can guarantee
that the global optimal solution is within this gap (even though the solution found by the B&B may
already be the best, as it happens, for example, in the first line of the table). With the reduced cache
presented here, finding the best structure for a given ordering is very fast, so it is possible to run OS
over millions of orderings in a short period of time. Some additional comments areworth. DP could
not solvewdbcor lung even without the limit in number of steps, because it has exhausted 16GB
of memory. Hence, we cannot expect to obtain answers in larger cases.However, it is clear that (in
a worst case sense) the number of steps of DP is smaller than that of B&B, and this behavior can
be seen in data sets with small number of variables. Nevertheless, B&B eventually bounds some
regions without processing them, provides an upper bound at each iteration, and does not suffer
from memory exhaustion as DP. It is true that B&B also uses memory increasingly if there are not
good bounds, but this case can be tackled by (automatically) switching between the described B&B
and a full depth-first search.8 This makes the method applicable even to very large settings. When

8. Our implementation is able to stop the B&B and to switch to a full depth-first search, but this behavior was not
necessary in the experiments because the memory requirements were not too intense.

684

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

n is large (more than 35), DP will not finish in reasonable time, and hence will not provide any
solution, while B&B still gives an approximation and a bound to the global optimum. About OS, if
we sample even more orderings, then its results improve and the global optimum isfound also for
theadultdata set. Still, OS provides no guarantee or estimation about how far is the global optimum
(here we know that the optimum has been achieved because of the solution of the exact methods).
It is worth noting that both DP and OS are also benefited by the smaller cache.Although we are
discussing only four algorithms, performance gain from the application of the properties in other
algorithms is expected as well.

network time(s) cache size space
adult 0.26 114 239

car 0.01 14 26.2

letter 0.32 233 261

lung 0.26 136 251

mushroom 0.71 398 288

nursery 0.06 26 212

wdbc 361.64 361 299

zoo 8.4 1697 2111

Table 4: B&B procedure learning TANs using BIC. Time (in seconds) to findthe global optimum,
cache size (number of stored scores) and (reduced) space for the search.

The last part of this section is dedicated to some test cases with constraints. Table 4 shows the
results when we employ constraints to force the final network to be a Tree-augmented Naive Bayes.
Here the class variable is isolated in the data set and constraints are included as described in Section
3. Note that the cache size, the search space and consequently the time to solve the problems have
substantially decreased. Finally, Table 5 has results for random data setswith predefined number
of nodes and instances using the BIC score. A randomly created Bayesian network with at most
3n arcs (wheren is the number of nodes) is used to sample the data. Because of that, we are able
to generate random structural constraints that are certainly valid for thistrue Bayesian network
(approximatelyn constraints for each case). The table contains the total time to run the problemand
the size of the cache, together with the results when using constraints. Note that the code was run in
parallel with a number of tasks equals ton, otherwise an increase by a factor ofn must be applied
to the results in the table. Each line contains the mean and standard deviation of ten executions
(using random generated networks) for time and cache size with and withoutconstraints (using the
same data sets in order to compare them). We can see that the gain is recurrent in all cases. The
B&B method was able to find a global optimal solution in all but the cases with one hundred nodes,
where it has achieved an approximate solution with error always less than 0.1% (this amounts to
40% of the test cases with 100 nodes). We point out that the other exact method we have analyzed
based on dynamic programming cannot deal with such large networks because of both memory and
time costs. There is an increase in computational time from 30 to 100 nodes, buteven more from
100 to 500 instances (considering the data sets with 70 and 100 nodes). This happens because the
properties that reduce the cache size and search space are much more effective under small-sized
data sets. However, we are not considering the improvement in accuracywhen using constraints,
but just the computational gain. It is not trivial to measure the quality of a learned structure, because
the target of the methods is the underlying probability distribution, and distinct structures may lead

685

DE CAMPOS AND JI

to good results in fitting such distribution. For instance, comparing number of matching arcs has
only meaning if one is interested in the structure by itself, and not in the fitness of the underlying
distribution. This topic deserves attention, but it would bring us far from thefocus of this study.

unconstrained constrained
nodes(n)/ time(sec) cache size time(sec) cache size
instances mean std.dev. mean std.dev. mean std.dev. mean std.dev.
30/100 0.07 0.02 49.6 9.1 0.04 0.01 44.3 8.98
30/500 3.70 1.18 75.6 16.6 2.33 0.73 61.4 17.7
50/100 0.31 0.08 77.9 9.6 0.20 0.04 66.1 6.71
50/500 37.1 10.8 102.5 23.0 23.2 6.86 83.0 17.7
70/100 1.91 0.82 127.5 18.1 0.97 0.32 108.3 13.6
70/500 293.3 99.5 137.3 22.2 176.3 62.6 111.8 14.5
100/100 85.0 29.3 253.4 27.7 4.44 1.06 199.5 21.1
100/500 2205.6 534.4 204.6 32.1 1414.8 419.2 168.0 21.3

Table 5: Results on ten data sets per line generated from random networks. Both mean and standard
deviation of time to solve (with an upper limit of 20 million steps) and size of the cache(in
number of scores) are presented for thenormalunconstrained case and for the constrained
cases (over the same data sets).

7. Conclusions

This paper describes novel properties of decomposable score functions to learn Bayesian network
structure from data. Such properties allow the construction of a cache withall possible local scores
of nodes and their parents without large memory consumption, which can laterbe used by search-
ing algorithms. For instance, memory consumption was a bottleneck for some algorithms in the
literature, see, for example, Parviainen and Koivisto (2009). This implies ina considerable reduc-
tion of the search space of graphs without losing the global optimal structure, that is, it is ensured
that the overall best graph remains in the reduced space. In fact the reduced memory and search
space potentially benefits many structure learning methods in the literature, andwe have conducted
experiments with some of them.

An algorithm based on a branch-and-bound technique is described, which integrates structural
constraints with data. The procedure guarantees global optimality with respect the score function. It
is an anytime procedure in the sense that the error of the current solution isconstantly reduced either
by finding a better solution or by reducing the upper bound for the global optimum. If stopped early,
the method provides the current solution and its maximum error. This can be useful if one wants to
integrate it with an expectation-maximization (EM) method to treat incomplete data sets, and such
characteristic is usually not present in other exact structure learning methods. In the EM method,
the global structure learning procedure ensures that the maximization step isnever trapped by a
local solution, and the anytime property allows the use of a generalized EM to reduce considerably
the computational cost.

Because of the properties and the characteristics of the B&B method, it is moreefficient than
dynamic programming state-of-the-art exact methods for large domains. Weshow through exper-
iments with randomly generated data and public data sets that problems with up to 70nodes can

686

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

be exactly processed in reasonable time, and problems with 100 nodes are handled within a small
worst-case error. Dynamic programming methods are able to treat less than 35 variables. Described
ideas may also help to improve other approximate methods and may have interestingpractical ap-
plications. We show through experiments with public data sets that requirementsof memory are
small, as well as the resulting reduced search space. Of course we do not expect to exactly solve
problems for considerably large networks, still the paper makes a relevant step towards solving
larger instances. We can summarize the comparison with the dynamic programmingidea as fol-
lows: if the problem has few variables, dynamic programming is probably the fastest method (the
branch-and-bound method will also be reasonably fast); if the problem has medium size, the branch-
and-bound method might solve it exactly (dynamic programming will mostly fail to answer); finally,
if the problem is large, the branch-and-bound method will eventually give an approximation (and
its worst-case error), while the standard dynamic programming idea will fail.

There is certainly much further to be done. One important question is whetherthe bounds of
the theorems in Section 4 (more specifically Theorem 9) can be improved or not. We are actively
working on this question. Furthermore, the experimental analysis can be extended to further clarify
the understanding of the problem, for instance how the ESS affects the results. It is clear that, for
considerably large domains, none of the exact methods are going to suffice by themselves. Besides
developing ideas and algorithms for dealing with large domains, the comparisonof structures and
what define them to be good is an important topic. For example, accuracy ofthe generated networks
can be evaluated with real data. On the other hand, it does not ensure that we are finding the
true links of the underlying structure, but a somehow similar graph that produces a close joint
distribution. For that, one could use generated data and compare the structures against the one data
were generated from it. A study on how the properties may help fast approximate methods is also a
desired goal.

Acknowledgments

This work is supported in part by the grant W911NF-06-1-0331 from the U.S. Army Research
Office, and by theComputational Life Sciences (CLS)program phase II, canton Ticino, Switzerland.

References

H. Akaike. A new look at the statistical model identification.IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

D. L. Applegate, R. E. Bixby, V. Chv́atal, and W. J. Cook.The Traveling Salesman Problem: A
Computational Study. Princeton Univ. Press, 2006.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL http://www.ics.
uci.edu/ ˜ mlearn/MLRepository.html .

R. Bouckaert. Properties of Bayesian belief network learning algorithms.In Proceedings of the 10th
Conference on Uncertainty in Artificial Intelligence, UAI’94, pages 102–109, San Francisco, CA,
1994. Morgan Kaufmann.

687

DE CAMPOS AND JI

W. Buntine. Theory refinement on Bayesian networks. InProceedings of the 8th Annual Conference
on Uncertainty in Artificial Intelligence, UAI’92, pages 52–60, San Francisco, CA, 1991. Morgan
Kaufmann.

D. M. Chickering. Optimal structure identification with greedy search.Journal of Machine Learning
Research, 3:507–554, 2002.

D. M. Chickering, C. Meek, and D. Heckerman. Large-sample learning of Bayesian networks is
np-hard. InProceedings of the 19th Conference on Uncertainty in Artificial Intelligence, UAI’03,
pages 124–13, San Francisco, CA, 2003. Morgan Kaufmann.

G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data.Machine Learning, 9:309–347, 1992.

C. P. de Campos, Z. Zeng, and Q. Ji. Structure learning of Bayesian networks using constraints. In
Proceedings of the 26th International Conference on Machine Learning, ICML’09, pages 113–
120, Montreal, 2009. Omnipress.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: the combination of
knowledge and statistical data.Machine Learning, 20:197–243, 1995.

T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian Network Structure using
LP Relaxations. InProceedings of the 13th International Conference on Artificial Intelligence
and Statistics, AISTATS’10, pages 358–365, 2010.

M. Koivisto. Advances in exact Bayesian structure discovery in Bayesian networks. InProceedings
of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI’06, pages 241–248. AUAI
Press, 2006.

M. Koivisto and K. Sood. Exact Bayesian Structure Discovery in Bayesian Networks.Journal of
Machine Learning Research, 5:549–573, 2004.

K. Kojima, E. Perrier, S. Imoto, and S. Miyano. Optimal search on clusteredstructural constraint
for learning Bayesian network structure.Journal of Machine Learning Research, 11:285–310,
2010.

S. Ott and S. Miyano. Finding optimal gene networks using biological constraints. Genome Infor-
matics, 14:124–133, 2003.

P. Parviainen and M. Koivisto. Exact structure discovery in Bayesian networks with less space.
In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI’09, pages
436–443, Arlington, Virginia, United States, 2009. AUAI Press.

F. Pernkopf and J. Bilmes. Discriminative versus generative parameter and structure learning of
Bayesian network classifiers. InProceedings of the 22nd International Conference on Machine
Learning, ICML’05, pages 657–664, New York, NY, USA, 2005. ACM.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal Bayesian network given a super-structure.
Journal of Machine Learning Research, 9:2251–2286, 2008.

688

EFFICIENT STRUCTURELEARNING OF BAYESIAN NETS

G. Schwarz. Estimating the dimension of a model.The Annals of Statistics, 6(2):461–464, 1978.

T. Silander and P. Myllymaki. A simple approach for finding the globally optimal Bayesian net-
work structure. InProceedings of the 22nd Conference on Uncertainty in Artificial Intelligence,
UAI’06, pages 445–452, Arlington, Virginia, 2006. AUAI Press.

A. P. Singh and A. W. Moore. Finding optimal Bayesian networks by dynamicprogramming.
Technical report, Carnegie Mellon University, 2005. CMU-CALD-05-106.

P. Spirtes, C. Glymour, and R. Scheines.Causation, Prediction and Search. Springer-Verlag, New
York, 1993.

J. Suzuki. Learning Bayesian belief networks based on the minimum description length princi-
ple: An efficient algorithm using the B&B technique. InProceedings of the 13th International
Conference on Machine Learning, ICML’96, pages 462–470, 1996.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning
Bayesian networks. InProceedings of the 21st Conference on Uncertainty in Artificial Intelli-
gence, UAI’05, pages 584–590, 2005.

I. Tsamardinos, L. E. Brown, and C. Aliferis. The max-min hill-climbing Bayesian network struc-
ture learning algorithm.Machine Learning, 65(1):31–78, 2006.

689

