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Abstract

In classification, semisupervised learning usually involves a large amount of unlabeled data with
only a small number of labeled data. This imposes a great challenge in that it is difficult to achieve
good classification performance through labeled data alone. To leverage unlabeled data for enhanc-
ing classification, this article introduces a large margin semisupervised learning method within the
framework of regularization, based on an efficient margin loss for unlabeled data, which seeks effi-
cient extraction of the information from unlabeled data forestimating the Bayes decision boundary
for classification. For implementation, an iterative scheme is derived through conditional expec-
tations. Finally, theoretical and numerical analyses are conducted, in addition to an application to
gene function prediction. They suggest that the proposed method enables to recover the perfor-
mance of its supervised counterpart based on complete data in rates of convergence, when possible.

Keywords: difference convex programming, classification, nonconvexminimization, regulariza-
tion, support vectors

1. Introduction

Semisupervised learning occurs in classification, where only a small numberof labeled data is avail-
able with a large amount of unlabeled data, because of the difficulty of labeling. In artificial intelli-
gence, one central issue is how to integrate human’s intelligence with machine’s processing capacity.
This occurs, for instance, in webpage classification and spam email detection, where webpages and
emails are automatically collected, yet require labeling manually or classification by experts. The
reader may refer to Blum and Mitchell (1998), Amini and Gallinari (2003),and Balcan et al. (2005)
for more details. In genomics applications, functions of many genes in sequenced genomes remain
unknown, and are predicted using available biological information, see Xiao and Pan (2005). In
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situations as such, the primary goal is to leverage unlabeled data to enhancepredictive performance
of classification (Zhu, 2005).

In semisupervised learning, labeled data{(xi ,yi)
nl
i=1} are sampled from an unknown distribution

P(x,y), together with an independent unlabeled sample{x j}n
j=nl +1 from its marginal distribution

q(x). Here labelyi ∈ {−1,1}, xi = (xi1, · · · ,xid) is and-dimensional input,nl ≪ nu andn = nl +nu

is the combined size of labeled and unlabeled samples.
Two types of approaches—distributional and margin-based, have beenproposed in the literature.

The distributional approach includes, among others, co-training (Blum and Mitchell, 1998), the EM
method (Nigam et al., 1998), the bootstrap method (Collins and Singer, 1999), Gaussian random
fields (Zhu, Ghahramani and Lafferty, 2003), and structure learningmodels (Ando and Zhang,
2005). The distributional approach relies on an assumption relating the class probability given input
p(x) = P(Y = 1|X = x) to q(x) for an improvement to occur. However, the assumption of this sort
is often not verifiable or met in practice.

A margin approach uses the concept of regularized separation. It includes Transductive SVM
(TSVM; Vapnik, 1998; Chapelle and Zien, 2005; Wang, Shen and Pan,2007), and a large mar-
gin method of Wang and Shen (2007). These methods use the notation of separation to borrow
information from unlabeled data to enhance classification, which relies on theclustering assump-
tion (Chapelle and Zien, 2005) that the clustering boundary can preciselyapproximate the Bayes
decision boundary which is the focus of classification.

This article develops a large margin semisupervised learning method, which aimsto extract the
information from unlabeled data for estimating the Bayes decision boundary. This is achieved by
constructing an efficient loss for unlabeled data with regard to reconstruction of the Bayes decision
boundary and by incorporating some knowledge from an estimate ofp. This permits efficient use
of unlabeled data for accurate estimation of the Bayes decision boundary thus enhancing the clas-
sification performance based on labeled data alone. The proposed method, using both the grouping
(clustering) structure of unlabeled data and the smoothness structure ofp, is designed to recover the
classification performance based on complete data without missing labels, when possible.

The proposed method has been implemented through an iterative scheme, which can be thought
of as an analogy of Fisher’s efficient scoring method (Fisher, 1946).That is, given a consistent
initial classifier, an iterative improvement can be obtained through the constructed loss function.
Numerical analysis indicates that the proposed method performs well against several state-of-the-
art semisupervised methods, including TSVM and Wang and Shen (2007),where Wang and Shen
(2007) compares favorably against several smooth and clustering based semisupervised methods.

A novel statistical learning theory forψ-loss is developed to provide an insight into the proposed
method. The theory reveals that theψ-learning classifier’s generalization performance based on
complete data can be recovered by its semisupervised counterpart basedon incomplete data in rates
of convergence, when some regularity assumptions are satisfied. The theory also says that the
least favorable situation for a semisupervised problem occurs at points nearp(x) = 0 or 1 because
little information can be provided by these points for reconstructing the classification boundary
as discussed in Section 2.3. This is in contrast to the fact that the least favorable situation for a
supervised problem occurs nearp(x) = 0.5. In conclusion, this semisupervised method achieves the
desired objective of delivering higher generalization performance.

This article also examines one novel application in gene function prediction, which has been
a primary focus of biomedical research. In gene function prediction, microarray gene expression
profiles can be used to predict gene functions, because genes sharing the same function tend to co-
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express, see Zhou, Kao and Wong (2002). Unfortunately, biologicalfunctions of many discovered
genes remain unknown at present. For example, about 1/3 to 1/2 of the genes in the genome of bac-
teriumE. coli have unknown functions. Therefore, gene function prediction is an ideal application
for semisupervised methods and also employed in this article as a real numerical example.

This article is organized in six sections. Section 2 introduces the proposed method. Section 3
develops an iterative algorithm for implementation. Section 4 presents some numerical examples,
together with an application to gene function prediction. Section 5 develops a learning theory.
Section 6 contains a discussion, and the appendix is devoted to technical proofs.

2. Methodology

In this section, we present our proposed efficient large margin semisupervised learning method as
well its connection to other existing popular methodologies.

2.1 Large Margin Classification

Consider large margin classification with labeled data(xi ,yi)
nl
i=1. In linear classification, given a

class of candidate decision functionsF , a cost function

C
nl

∑
i=1

L(yi f (xi))+J( f ) (1)

is minimized overf ∈ F = { f (x) = w̃T
f x+ wf ,0 ≡ (1,xT)wf } to yield the minimizerf̂ leading to

classifier sign( f̂ ). HereJ( f ) is the reciprocal of the geometric margin of various form with the usual
L2 marginJ( f ) = ‖w̃f ‖2/2 to be discussed in further detail, andL(·) is a margin loss defined by
functional marginz= y f(x), andC > 0 is a regularization parameter. In nonlinear classification, a
kernelK(·, ·) is introduced for flexible representations:f (x) = ∑nl

i=1 αiK(x,xi)+b. For this reason,
it is referred to as kernel-based learning, where the reproducing kernel Hilbert spaces (RKHS) are
useful, see Gu (2000) and Wahba (1990).

Different margin losses correspond to different learning methodologies. Margin losses include,
among others, the hinge lossL(z) = (1− z)+ for SVM with its variantL(z) = (1− z)q

+ for q > 1;
see Lin (2002); theψ-lossesL(z) = ψ(z), with ψ(z) = 1− sign(z) if z≥ 1 or z< 0, and 2(1− z)
otherwise, see Shen et al. (2003), the logistic lossV(z) = log(1+e−z), see Zhu and Hastie (2005);
theη-hinge lossL(z) = (η−z)+ for nu-SVM (Scḧolkopf et al., 2000) withη > 0 being optimized;
the sigmoid lossL(z) = 1− tanh(cz); see Mason, Baxter, Bartlett and Frean (2000). A margin loss
L(z) is said to be large margin ifL(z) is non-increasing inz, penalizing small margin values. In this
article, we fixL(z) = ψ(z).

2.2 Loss Construction for Unlabeled Data

In classification, the optimal Bayes rule is defined byf̄.5 = sign( f.5) with f.5(x) = P(Y = 1|X =
x)−0.5 being a global minimizer of the generalization errorGE( f ) = EI(Y 6= sign( f (X))), which is
usually estimated by labeled data throughL(·) in (1). In absence of sufficient labeled data, the focus
is on how to improve (1) by using additional unlabeled data. For this, we construct a margin lossU
to measure the performance of estimatingf̄.5 for classification through unlabeled data. Specifically,
we seek the best lossU from a class of candidate losses of formT( f ), which minimizes theL2-

721



WANG, SHEN AND PAN

distance between the target classification lossL(y f) andT( f ). The expression of this lossU is
given in Lemma 1.

Lemma 1 (Optimal loss) For any margin loss L(z),

argmin
T

E(L(Y f(X))−T( f (X)))2 = E(L(Y f(X))|X = x) = U( f (x)),

where U( f (x)) = p(x)L( f (x)) + (1− p(x))L(− f (x)) and p(x) = P(Y = 1|X = x). Moreover,
argminf∈F EU( f (X)) = argminf∈F EL(Y f(X)).

Based on Lemma 1, we definêU( f ) to be p̂(x)L( f (x))+(1− p̂(x))L(− f (x)) by replacingp in
U( f ) by p̂. Clearly,Û( f ) approximates the ideal lossU( f ) for reconstructing the Bayes decision
function f.5 when p̂ is a good estimate ofp, as suggested by Corollary 5. This is analogous to
construction of the efficient scores for Fisher’s scoring method: an optimal estimate can be obtained
iteratively through an efficient score function, provided that a consistent initial estimate is supplied,
see McCullagh and Nelder (1983) for more details. Through (approximately) optimal lossÛ( f ),
an iterative improvement of estimation accuracy is achieved by starting with a consistent estimate
p̂ of p, which, for instance, can be obtained through SVM or TSVM. ForÛ( f ), its optimality is
established through its closeness toU( f ) in Corollary 5, where our iterative method based onÛ
is shown to yield an iterative improvement in terms of the classification accuracy, recovering the
generalization error rate of its supervised counterpart based on complete data ultimately.

As a technical remark, we note that the explicit relationship betweenp and f is usually un-
available in practice. As a result, several large margin classifiers such asSVM andψ-learning do
not directly yield an estimate ofp given f̂ . Thereforep needs to be either assumed or estimated.
For instance, the methods of Wahba (1999) and Platt (1999) assume a parametric form ofp so that
an estimatedf̂ yields an estimatedp, whereas Wang, Shen and Liu (2008) estimatesp given f̂
nonparametrically.

The preceding discussion leads to our proposed cost function:

s( f ) = C

(

n−1
l

nl

∑
i=1

L(yi f (xi))+n−1
u

n

∑
j=nl +1

Û( f (x j))

)

+J( f ). (2)

Minimization of (2) with respect tof ∈ F gives our estimated decision functionf̂ for classification.

2.3 Connection with Clustering Assumption

We now intuitively explain advantages of̂U( f ) over a popular large margin lossL(| f |) = (1−
| f (x)|)+ (Vapnik, 1998; Wang and Shen, 2007), and its connection with the clustering assumption
(Chapelle and Zien, 2005) that assumes closeness between the classification and grouping (cluster-
ing) boundaries.

First,Û( f ) has an optimality property, as discussed in Section 2.2, which leads to better perfor-
mance as suggested by Theorem 3. Second, it has a higher discriminativepower over its counterpart
L(| f |). To see this aspect, note thatL(| f |) = infpU( f ) by Lemma 1 of Wang and Shen (2007). This
says thatL(| f |) is a version ofÛ( f ) in the least favorable situation where unknownp is estimated
by sign( f ), completely ignoring the magnitude ofp. As displayed in Figure 1,̂U( f ) corresponds to
an “asymmetric” hat function or the solid line, whereasL(| f |) corresponds to a “symmetric” one or
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the dashed line. By comparison,Û( f ) enables not only to identify the clustering boundary through
the hat function asL(| f |) does but also to discriminatef (x) from− f (x) through an estimated ˆp(x).
That is,Û( f ) has a smaller value forf (x) > 0 than for− f (x) < 0 when p̂ > 0.5, and vice versa,
whereasL(| f |) is in-discriminative with regard to the sign off (x).

−2 −1 0 1 2

f(x)

U
(f

(x
))

0
1−

p̂
p̂

1

L(|f(x)|)

Û(f(x))

Figure 1: Plots ofL(| f (x)|) andÛ( f (x)).

To reinforce the second point in the foregoing discussion, we examine one specific example
with two possible clustering boundaries as described in Figure 3 of Zhu (2005). ThereÛ( f ) favors
one clustering boundary for classification if a consistent ˆp is provided, whereasL(| f |) fails to dis-
criminate these two. More details are deferred to Section 4.1, where the simulated example 2 of this
nature is studied.

In conclusion,Û( f ) yields a more efficient loss for a semisupervised problem as it uses the
clustering information from the unlabeled data asL(| f |) does, in addition to guidance about labeling
throughp̂ to gain a higher discriminative power.

3. Computation

In this section, we implement the proposed semisupervised method through an iterative scheme as
well as a nonconvex optimization technique.

3.1 Iterative Scheme

Effectiveness of̂U depends largely on the accuracy of ˆp in estimatingp. Given an estimate ˆp(0), (2)
yields an estimatêf (1), which leads to a new estimate ˆp(1) throughAlgorithm 0 below. The ˆp(1) is
expected to be more accurate than ˆp(0) for p because additional information from unlabeled data has
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been used in estimation of̂f (1) through p̂(0) and additional smoothness structure has been used in
Algorithm 0 in estimation of ˆp(1) given f̂ (1). Specifically, an improvement in the process from ˆp(0)

to f̂ (1) and that fromf̂ (1) to p̂(1) are assured by Assumptions B and D in Section 5.1, respectively,
which are a more general version of the clustering assumption and a smoothness assumption ofp.
In other words, the marginal information from unlabeled data has been effectively incorporated in
each iteration ofAlgorithm 1 for improving estimation accuracy of̂f and p̂.

Detailed implementation of the preceding scheme as well as the conditional probability estima-
tion are summarized as follows.
Algorithm 0: (Conditional probability estimation; Wang, Shen and Liu, 2008)
Step 1.Specifymand initializeπt = (t −1)/m, for t = 1, . . . ,m+1.
Step 2.Train weighted margin classifierŝfπt by solving

min
f∈F

Cn−1

(

(1−πt) ∑
yi=1

L(yi f (xi))+πt ∑
yi=−1

L(yi f (xi))

)

+J( f ),

with 1−πt associated with positive instances andπt associated with negative instances.
Step 3.Estimate labels ofx by sign( f̂πt (x)).
Step 4. Sort sign{ f̂πt (x)}, t = 1, . . . ,m+ 1, to computeπ∗ = max

{

πt : sign( f̂πt (x)) = 1
}

, π∗ =
min

{

πt : sign( f̂πt (x)) = −1
}

. The estimated class probability is ˆp(x) = 1
2(π∗ +π∗).

Algorithm 1: (Efficient semisupervised learning)
Step 1. (Initialization) Given any initial classifier sign( f̂ (0)), compute ˆp(0) throughAlgorithm 0 .
Specify precision tolerance levelε.
Step 2. (Iteration) At iterationk+ 1; k = 0,1, · · · , minimizes( f ) in (2) for f̂ (k+1) with Û = Û (k)

defined by ˆp = p̂(k) there. This is achieved through sequential QP for theψ-loss. Details for
sequential QP are deferred to Section 3.2. Computeˆ̃p(k+1) throughAlgorithm 0 , based on complete
data with unknown labels imputed by sign( f̂ (k+1)). Definep̂(k+1) = max(p̂(k), ˆ̃p(k+1)) when f̂ (k+1) ≥
0 and min(p̂(k), ˆ̃p(k+1)) otherwise.
Step 3.(Stopping rule) Terminate when|s( f̂ (k+1))− s( f̂ (k))| ≤ ε|s( f̂ (k))|. The final solutionf̂C is
f̂ (K), with K the number of iterations to termination inAlgorithm 1 .

Theorem 2 (Monotonicity) s( f̂ (k)) is non-increasing in k. As a consequence,Algorithm 1 con-
verges to a stationary point s( f̂ (∞)) in that s( f̂ (k)) ≥ s( f̂ (∞)). Moreover,Algorithm 1 terminates
finitely.

Algorithm 1 differs from the EM algorithm and its variant MM algorithm (Hunter and Lange,
2000) in that little marginal information has been used in these algorithms as argued in Zhang and
Oles (2000).Algorithm 1 also differs from Yarowsky’s algorithm (Yarowsky, 1995; Abney, 2004)
in that Yarowsky’s algorithm solely relies on the strength of the estimated ˆp, ignoring the potential
information from the clustering assumption.

There are several important aspects ofAlgorithm 1 . First, lossL(·) in (2) may not be a likeli-
hood regardless of if labeling missingness occurs at random. Secondly,the monotonicity property,
as established in Theorem 2, is assured by constructing ˆp(k+1) to satisfy(p̂(k+1) − p̂(k)) f̂ (k+1) ≥ 0,
as opposed to the property of likelihood in the EM algorithm. Most importantly, thesmoothness
and clustering assumptions have been used in estimatingp, and thus semisupervised learning. This
is in contrast to the EM, where only likelihood is used in estimatingp in a supervised manner.
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Finally, we note that inStep 2of Algorithm 1 , given p̂(k), minimization in (2) involves non-
convex minimization whenL(·) is ψ-loss. Next we shall discuss how to solve (2) forf̂ (k+1) through
difference convex (DC) programming for nonconvex minimization.

3.2 Nonconvex Minimization

This section develops a nonconvex minimization method based on DC programming(An and Tao,
1997) for (2) with theψ-loss, which was previously employed in Liu, Shen and Wong (2005) for
supervisedψ-learning. As a technical remark, we note that DC programming has a high chance to
locate anε-global minimizer (An and Tao, 1997), although it can not guarantee globality. In fact,
when combined with the method of branch-and-bound, it yields a global minimizer, see Liu et al.
(2005). For a computational consideration, we shall use the DC programming algorithm without
seeking an exact global minimizer.

Key to DC programming is decomposing the cost functions( f ) in (2) with L(z) = ψ(z) into a
difference of two convex functions as follows:

s( f ) = s1( f )−s2( f ); (3)

s1( f ) = C
(

n−1
l

nl

∑
i=1

ψ1(yi f (xi))+n−1
u

n

∑
j=nl +1

Û (k)
ψ1 ( f (x j))

)

+J( f );

s2( f ) = C
(

n−1
l

nl

∑
i=1

ψ2(yi f (xi))+n−1
u

n

∑
j=nl +1

Û (k)
ψ2 ( f (x j))

)

,

whereÛ (k)
ψt ( f (x j)) = p̂(k)(x j)ψt( f (x j)) + (1− p̂(k)(x j))ψt(− f (x j)); t = 1,2, ψ1 = 2(1− z)+ and

ψ2 = 2(−z)+. Hereψ1 andψ2 are obtained through a convex decomposition ofψ = ψ1−ψ2 as
displayed in Figure 2.

With these decompositions, we treat (2) with theψ-loss and ˆp = p̂(k) by solving a sequence of
quadratic problems described inAlgorithm 2 .
Algorithm 2: (Sequential QP)
Step 1.(Initialization) Set initial f̂ (k+1,0) to be the solution of minf s1( f ). Specify precision toler-
ance levelε as inAlgorithm 1 .
Step 2.(Iteration) At iterationl +1, computef̂ (k+1,l+1) by solving

min
f

(

s1( f )−〈wf ,∇s2( f̂ (k+1,l))〉
)

, (4)

where∇s2( f (k+1,l)) is a gradient vector ofs2( f ) atw f̂ (k+1,l) .

Step 3.(Stopping rule) Terminate when|s( f̂ (k+1,l+1))−s( f̂ (k+1,l))| ≤ ε|s( f̂ (k+1,l))|.
Then the estimatêf (k+1) is the best solution amonĝf (k+1,l); l = 0,1, · · · .

In (4), gradient∇s2( f (k+1,l)) is defined as the sum of partial derivatives ofs2 over each observa-
tion, with ∇ψ2(z) = 0 if z> 0 and∇ψ2(z) = −2 otherwise. By the definition of∇s2( f (k+1,l)) and
convexity ofs2( f (k+1,l)), (4) gives a sequence of non-increasing upper envelops of (3), which can
be solved via their dual forms.

The speed of convergence ofAlgorithm 2 is super-linear, following the proof of Theorem 3 in
Liu et al. (2005). This means that the number of iterations required forAlgorithm 2 to achieve the
precisionε is o(log(1/ε)).
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Figure 2: Plot ofψ, ψ1 andψ2 for the DC decomposition ofψ = ψ1−ψ2. Solid, dotted and dashed
lines representψ, ψ1 andψ2, respectively.

4. Numerical Comparison

This section examines effectiveness of the proposed method through numerical examples. A test
error, averaged over 100 independent simulation replications, is used tomeasure a classifier’s gen-
eralization performance. For simulation comparison, the amount of improvement of our method
over sign( f̂ (0)) is defined as the percent of improvement in terms of the Bayesian regret

(T(Before)−Bayes)− (T(After)−Bayes)
T(Before)−Bayes

, (5)

whereT(Before), T(After), andBayesdenote the test errors of sign( f̂ (0)), the proposed method
based on initial classifier sign( f̂ (0)), and the Bayes error. The Bayes error is the ideal performance
and serves as a benchmark for comparison, which can be computed whenthe distribution is known.
For benchmark examples, the amount of improvement over sign( f̂ (0)) is defined as

T(Before)−T(After)
T(Before)

, (6)

which actually underestimates the amount of improvement in absence of knowledge of the Bayes
error.

Numerical analyses are conducted in R2.1.1. In linear learning,K(x,y) = 〈x,y〉; in Gaussian

kernel learning,K(x,y) = exp(− ‖x−y‖2

σ2 ), whereσ is set to be the median distance between posi-
tive and negative classes to reduce computational cost for tuningσ2, see Jaakkola, Diekhans and
Haussler (1999).
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4.1 Simulations and Benchmarks

Two simulated and five benchmark data sets are examined, based on four state-of-the-art classifiers
sign( f̂ (0))’s. They are SVM (with labeled data alone), TSVM (TSVMDCA; Wang, Shen and Pan,
2007) , and the methods of Wang and Shen (2007) with the hinge loss (SSVM) and with theψ-
loss (SPSI), where SSVM and SPSI compare favorably against their competitors. Corresponding
to these methods, our method, withm= n1/2 andε = 10−3, yields four semisupervised classifiers
denoted as ESVM, ETSVM, ESSVM and ESPSI.

4.1.1 SIMULATED EXAMPLES

Examples 1 and 2 are taken from Wang and Shen (2007), where 200 and800 labeled instances are
randomly selected for training and testing. For training, 190 out 200 instances are randomly chosen
for removing their labels. Here the Bayes errors are 0.162 and 0.089, respectively.

4.1.2 BENCHMARKS

Six benchmark examples include Wisconsin breast cancer (WBC), Pima Indians diabetes (PIMA),
HEART, MUSHROOM, Spam email (SPAM) and Brain computer interface (BCI). The first five
datasets are available in the UCI Machine Learning Repository (Blake and Merz, 1998) and the
last one can be found in Chapelle et al. (2006). WBC discriminates a benignbreast tissue from
a malignant one through 9 diagnostic characteristics; PIMA differentiates between positive and
negative cases for female diabetic patients of Pima Indian heritage based on8 biological or diag-
nostic attributes; HEART concerns diagnosis status of the heart disease based on 13 clinic attributes;
MUSHROOM separates an edible mushroom from a poisonous one through22 biological records;
SPAM identifies spam emails using 57 frequency attributes of a text, such as frequencies of partic-
ular words and characters; BCI concerns the difference of brain images when imagining left-hand
and right-hand movements, based on 117 autoregressive model parameters fitted over human’s elec-
troencephalography.

Instances in WBC, PIMA, HEART, and MUSHROOM are randomly divided into two halves
with 10 labeled and 190 unlabeled instances for training, and the remaining 400 for testing. In-
stances in SPAM are randomly divided into halves with 20 labeled and 380 unlabeled instances
for training, and the remaining instances for testing. Twelve splits for BCI have already given
at http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html, with 10 labeled and390 unlabeled
instances while no instance for testing. An averaged error rate over the unlabeled set is used in BCI
example to approximate the test error.

In each example, the smallest test errors of all methods in comparison are computed over 61
grid points{10−3+k/10; k = 0, · · · ,60} for tuningC in (2) through a grid search. The results are
summarized in Tables 1-2.

As suggested in Tables 1-2, ESVM, ETSVM, ESSVM and ESPSI performno worse than their
counterparts in almost all examples, except ESVM in SPAM where the performance is slightly
worse but indistinguishable from its counterpart. The amount of improvement, however, varies over
examples and different types of classifiers. In linear learning, the improvements of the proposed
method are from 1.0% to 51.7% over its counterparts, except in SPAM whereESVM performs
slightly worse than SVM; in kernel learning, the improvements range from 0.0% to 23.2% over its
counterparts. Overall, large improvement occurs for less accurate initialclassifiers when they are
sufficiently accurate. However, if the initial classifier is too accurate, the potential for an improve-
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Data Example 1 Example 2 WBC PIMA HEART MUSHROOM SPAM BCI1

Size 1000× 2 1000× 2 682× 9 768× 8 303× 13 8124× 22 4601× 57 400× 117
SVM .345(.0081) .333(.0129) .053(.0071) .328(.0092) .284(.0085) .232(.0135) .216(.0097) .479(.0059)

ESVM .281(.0143) .297(.0177) .031(.0007) .320(.0059) .214(.0066) .172(.0084) .217(.0178) .474(.0052)
Improv. 35.0% 14.8% 41.5% 2.4% 24.6% 25.9% -0.5% 1.0%
TSVM .220(.0103) .203(.0088) .037(.0024) .314(.0086) .270(.0082) .206(.113) .196(.0132) .479(.0054)

ETSVM .190(.0074) .147(.0131) .029(.0009) .309(.0063) .211(.0062) .153(.0054) .179(.0101) .474(.0076)
Improv. 51.7% 49.1% 21.6% 1.6% 21.9% 25.7% 8.7% 1.0%
SSVM .188(.0084) .129(.0031) .032(.0025) .307(.0054) .240(.0074) .186(.0095) .191(.0114) .479(.0071)

ESSVM .182(.0065) .124(.0034) .028(.0006) .293(.0029) .205(.0059) .162(.0054) .169(.0107) .474(.0041)
Improv. 23.1% 12.5% 12.5% 4.6% 14.6% 11.8% 11.5% 1.0%

SPSI .184(.0084) .128(.0084) .029(.0022) .291(.0032) .232(.0067) .184(.0095) .189(.0107) .476(.0068)
ESPSI .182(.0065) .123(.0029) .027(.0006) .284(.0026) .181(.0052) .137(.0067) .167(.0107) .471(.0046)

Improv. 9.1% 12.8% 6.9% 2.4% 22.0% 25.5% 11.6% 1.1%
SVMc .164(.0084) .115(.0032) .027(.0020) .238(.0011) .176(.0031) .041(.0018) .095(.0022) .173(.0012)2

Table 1: Linear learning. Averaged test errors as well as estimated standard errors (in parenthesis)
of ESVM, ETSVM, ESSVM, ESPSI, and their initial counterpartsand testingsamples, in
the simulated and benchmark examples. SVMc denotes the performance of SVM with
complete labeled data. Here the amount of improvement is defined in (5) or (6).

Data Example 1 Example 2 WBC PIMA HEART MUSHROOM SPAM BCI1

Size 1000× 2 1000× 2 682× 9 768× 8 303× 13 8124× 22 4601× 57 400× 117
SVM .385(.0099) .347(.0119) .047(.0038) .353(.0089) .331(.0094) .217(.0135) .226(.0108) .488(.0073)

ESVM .368(.0077) .322(.0109) .039(.0067) .335(.0035) .308(.0107) .187(.0118) .212(.0104) .482(.0076)
Improv. 7.6% 9.7% 17.0% 5.1% 6.9% 13.8% 6.2% 1.2%
TSVM .232(.0122) .205(.0091) .037(.0015) .330(.0107) .281(.0113) .185(.0080) .192(.0110) .484(.0087)

ETSVM .216(.0090) .187(.0084) .030(.0005) .304(.0028) .263(.0094) .171(.0093) .181(.0106) .484(.0086)
Improv. 22.9% 15.5% 18.9% 7.9% 6.4% 7.6% 5.7% 0.0%
SSVM .201(.0072) .175(.0092) .030(.0005) .304(.0044) .226(.0063) .173(.0126) .189(.0120) .479(.0080)

ESSVM .201(.0072) .170(.0083) .030(.0005) .304(.0042) .223(.0054) .147(.0105) .170(.0103) .476(.0085)
Improv. 0.0% 5.8% 0.0% 0.0% 1.3% 15.0% 10.1% 0.6%

SPSI .200(.0069) .175(.0092) .030(.0005) .295(.0037) .215(.0057) .164(.0123) .189(.0112) .475(.0072)
ESPSI .198(.0072) .169(.0082) .030(.0005) .294(.0033) .215(.0054) .126(.0083) .169(.0091) .475(.0081)

Improv. 1.0% 7.0% 0.0% 0.3% 0.0% 23.2% 10.6% 0.0%
SVMc .196(.0015) .151(.0021) .030(.0004) .254(.0013) .196(.0031) .021(.0014) .099(.0018) .280(.0015)2

Table 2: Gaussian kernel learning. Averaged test errors as well as estimated standard errors (in
parenthesis) of ESVM, ETSVM, ESSVM, ESPSI, and their initial counterpartsin the sim-
ulated and benchmark examples. Here the amount of improvement is defined in(5) or
(6).

ment becomes small or null, such as the cases of SSVM and SPSI with Gaussian kernel in PIMA.
If the initial classifier is too poor, then no improvement may occur. This is the case for ESVM with
linear kernel in SPAM, where ESVM performs worse than SVM withnl = 10 labeled data alone.
This suggests that a better initial estimate should be used together with unlabeleddata.

In summary, we recommend SPSI to be an initial classifier forf̂ (0) based on its overall perfor-
mance across all the examples. Moreover, ESPSI nearly recovers the classification performance of
its counterpart SVM with complete labeled data in the two simulated examples, WBC and HEART.

4.2 Gene Function Prediction Through Expression Profiles

This section applies the proposed method to predict gene functions throughgene data in Hughes
et al. (2000), consisting of expression profiles of a total of 6316 genes for yeast S.cerevisiaefrom

1. The error rate is computed on the unlabeled data and averaged over twelve splits.
2. This error rate is approximated by the 10-fold cross validation.
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300 microarray experiments. In this case almost half of the genes have unknown functions although
gene expression profiles are available for almost the entire yeast genome.

Our specific focus is predicting functional categories defined by the MIPS, a multifunctional
classification scheme (Mewes et al., 2002). For simplicity, we examine two functional categories,
namely “transcriptional control” and “mitochondrion”, with 334 and 346 annotated genes, respec-
tively. The goal is to predict gene functional categories for genes annotated within these two cate-
gories by training our semisupervised classifier on expression profiles of genes, where some genes
are treated as if their functions are unknown to mimic the semisupervised scenario in complete
dataset. At present, detection of novel class is not permitted in our formulation, which remains to
be an open research question.

For the purpose of evaluation, we divide the entire dataset into two sets of training and testing.
The training set involves a random sample ofnl = 20 labeled andnu = 380 unlabeled gene profiles,
while the testing set contains 280 remaining profiles.

SVM TSVM SSVM SPSI
I .298(.0066) .303(.0087) .270(.0075) .272(.0063)

Linear E .278(.0069) .272(.0080) .261(.0052) .252(.0112)
Improv. 6.7% 14.0% 3.3 % 7.4%

I .290(.0081) .287(.0027) .284(.0111) .283(.0063)
Gaussian E .279(.0085) .279(.0076) .275(.0086) .256(.0082)

Improv. 3.8% 2.8% 3.2% 9.5%

Table 3: Averaged test errors as well as estimated standard errors (in parenthesis) of ESVM,
ETSVM, ESSVM, ESPSI, and their initial counterparts, over 100 pairs oftraining and
testing samples, in gene function prediction. HereI stands for an initial classifier,E stands
for our proposed method with the initial method, and the amount of improvement isde-
fined in (6).

As indicated in Table 3, ESVM, ETSVM, ESSVM and ESPSI all improve predictive accuracy
of their initial counterparts in linear learning and Gaussian kernel learning. It appears that ESPSI
performs best. Most importantly, it demonstrates predictive power of the proposed method for
predicting which of the two categories a gene belongs to.

5. Statistical Learning Theory

In the literature, several theories have been developed to understand the problem of semisuper-
vised learning, including Rigollet (2007) and Singh, Nowak and Zhu (2008). Both the theories
rely on a different clustering assumption that homogeneous labels are assumed over local clusters.
Based on the original clustering assumption, as well as a smoothness assumption on the condi-
tional probabilityp(x), this section develops a novel statistical learning theory. Specifically, finite-
sample and asymptotical upper bounds of the generalization error are derived for ESPSIf̂C defined
by the ψ-loss in Algorithm 1 . The generalization accuracy is measured by the Bayesian regret
e( f̂C, f̄.5) = GE( f̂C)−GE( f̄.5) ≥ 0 with GE( f ) defined in Section 2.2.
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5.1 Statistical Learning Theory

The error bounds ofe( f̂C, f̄.5) are expressed in terms of complexity of the candidate classF , the

sample sizen, tuning parameterλ = (nC)−1, the error rate of the initial classifierδ(0)
n , and the

maximum number of iterationK in Algorithm 1 . The results imply that ESPSI, without knowing
labels of the unlabeled data, enables to recover the classification accuracy of ψ-learning based on
complete data under regularity conditions.

We first introduce some notations. LetL(z) = ψ(z) be theψ-loss. Define the margin loss
Vπ( f ,Z) for unequal cost classification to beSπ(y)L(y f(x)), with cost 0< π < 1 for the positive
class andSπ(y) = 1− π if y = 1, andπ otherwise. LeteVπ( f , f̄π)E(Vπ( f ,Z)−Vπ( f̄π,Z)) ≥ 0 for
f ∈ F with respect to unequal costπ, where f̄π(x) = sign( fπ(x)) = argminf EVπ( f ,Z) is the Bayes
rule, with fπ(x) = p(x)−π.
Assumption A: (Approximation) For anyπ ∈ (0,1), there exist some positive sequencesn → 0 as
n→ ∞ and f ∗π ∈ F such thateVπ( f ∗π , f̄π) ≤ sn.

Assumption A is an analog of that of Shen et al. (2003), which ensures that the Bayes rulef̄π
can be well approximated by elements inF .
Assumption B. (Conversion) For anyπ ∈ (0,1), there exist constants 0< α, βπ < ∞, 0≤ ζ < ∞,
ai > 0; i = 0,1,2, such that for any sufficiently smallδ > 0,

sup
{ f∈F :eV.5( f , f̄.5)≤δ}

e( f , f̄.5) ≤ a0δα, (7)

sup
{ f∈F :eVπ ( f , f̄π)≤δ}

‖sign( f )−sign( f̄π)‖1 ≤ a1δβπ , (8)

sup
{ f∈F :eVπ ( f , f̄π)≤δ}

Var(Vπ( f ,Z)−Vπ( f̄π,Z)) ≤ a2δζ. (9)

Assumption B describes local smoothness of the Bayesian regrete( f , f̄.5) in terms of a first-
moment function‖sign( f )− sign( f̄π)‖1 and a second-moment function Var(Vπ( f ,Z) −Vπ( f̄π,Z))
relative toeVπ( f , f̄π) with respect to unequal costπ. Here the degrees of smoothness are defined by
exponentsα, βπ andζ. Note that (7) and (9) are related to the “no noise assumption” of Tsybakov
(2004); and (8) has been used in Wang et al. (2008) for quantifying the error rate of probability
estimation, which plays a key role in controlling the error rate of ESPSI. For simplicity, denoteβ.5

and infπ6=0.5{βπ} asβ andγ respectively, whereβ quantifies the clustering assumption through the
degree to which the positive and negative clusters are distinguishable, and γ measures the conversion
rate between the classification and probability estimation accuracies.

For Assumption C, we define a complexity measure—theL2-metric entropy with bracketing,
describing the cardinality ofF . Given anyε > 0, denote{( f l

r , f u
r )}R

r=1 as anε-bracketing function
set ofF if for any f ∈ F , there exists anr such thatf l

r ≤ f ≤ f u
r and‖ f l

r − f u
r ‖2 ≤ ε; r = 1, · · · ,R.

Then theL2-metric entropy with bracketingHB(ε,F ) is defined as the logarithm of the cardinality
of the smallestε-bracketing function set ofF . See Kolmogorov and Tihomirov (1959) for more
details.

DefineF (k) = {L( f ,z)−L( f ∗π ,z) : f ∈F ,J( f )≤ k} to be a space defined by candidate decision
functions, withJ( f ) = 1

2‖ f‖2
K . Let J∗π = max(J( f ∗π ),1). In (11), we specify an entropy integral to

establish a relationship between the complexity ofF (k) and convergence speedεn for the Bayesian
regret.
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Assumption C. (Complexity) For some constantsai > 0;i = 3, · · · ,5 andεn > 0,

sup
k≥2

φ(εn,k) ≤ a5n1/2, (10)

whereφ(ε,k) =
R a1/2

3 Mmin(1,ζ)/2

a4M H1/2
B (w,F (k))dw/M, andM = M(ε,λ,k) = min(ε2+λ(k/2−1)J∗π,1).

Assumption D.(Smoothness ofp(x)) There exist some constants 0≤ η ≤ 1, d ≥ 0 anda6 > 0 such
that‖∆ j(p)‖∞ ≤ a6 for j = 0,1, · · · ,d, and|∆d(p(x1))−∆d(p(x2))| ≤ a6‖x1−x2‖η

1 +d/m for any
‖x1− x2‖1 ≤ δ with some sufficiently smallδ > 0, where∆ j is the j-th order difference operator
andm is defined as inAlgorithm 0 .

Assumption D specifies the degree of smoothness of the conditional densityp(x).
Assumption E. (Degree of least favorable situation) There exist some constants 0≤ θ ≤ ∞ and
a7 > 0 such thatP

(

X : min(p(X),1− p(X)) ≤ δ
)

≤ a7δθ for any sufficiently smallδ > 0.
Assumption E describes the behavior ofp(x) near 0 and 1, corresponding to the least favorable

situation, as described in Section 2.3.

Theorem 3 In addition to Assumptions A-E, let the precision parameter m be[δ−βγ
n ] and δ2

n =
min(max(ε2

n,16sn),1). Then for ESPSÎfC, there exist some positive constants a8-a10 such that

P
(

e( f̂C, f̄.5) ≥ a10max(δ2α
n ,(a11ρnδ(0)

n )2αmax(1,BK))
)

≤

P
(

eL( f̂ (0)
.5 , f̄.5) ≥ 2a11ρn(δ

(0)
n )2

)

+3.5K exp(−a8nl (λJ∗.5)
max(1,2−ζ))+

3.5K exp(−a9n(λJ∗π)max(1,2−ζ))+2Kρ−min(1,β)
n .

Here B= (θ+1)(d+η)βγ
2(1+max(0,1−β)θ)(d+η+1) , a11 = max

(

1,2
3γ(d+η)
d+η+1 +2a

(2γ+1)(d+η)
d+η+1

1

)

andρn > 0 is any real number

satisfying a11ρnδ2
n ≤ 4λJ∗π.

Theorem 3 provides a finite-sample probability bound for the Bayesian regret e( f̂C, f̄.5), where
the parameterB measures the level of difficulty of a semisupervised problem, with small value of B
indicating more difficulty. Note that the value ofB is proportional to those ofα, β, γ, d, η andθ,
as defined in Assumptions A-E. In fact,α, β andγ quantify the local smoothness of the Bayesian
regrete( f , f̄.5), andd, η andθ describe the smoothness ofp(x) as well as its behavior near 0 and 1.

Next, by lettingnl ,nu tending infinity, we obtain the rates of convergence of ESPSI in terms of
the error rateδ2α

n of its supervised counterpartψ-learning based on complete data, and the initial

error rateδ(0)
n , B, and the maximum numberK of iteration.

Corollary 4 Under the assumptions of Theorem 3, as nu,nl → ∞,

|e( f̂C, f̄.5)| = Op

(

max(δ2α
n ,(ρnδ(0)

n )2αmax(1,BK))
)

,

E|e( f̂C, f̄.5)| = O
(

max(δ2α
n ,(ρnδ(0)

n )2αmax(1,BK))
)

,

provided that the initial classifier converges in that P
(

eL( f̂ (0)
.5 , f̄.5) ≥ 2a11ρn(δ

(0)
n )2

)

→ 0, with any

slow varying sequenceρn → ∞ and ρnδ(0)
n → 0, and the tuning parameterλ is chosen such that

n(λJ∗π)max(1,2−ζ) and nl (λJ∗.5)
max(1,2−ζ) are bounded away from 0.
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Note that there are two important cases defined by the value ofB. WhenB > 1, ESPSI achieves
the convergence rateδ2α

n of its supervised counterpartψ-learning based on complete data, c.f., The-
orem 1 of (Shen and Wang, 2007). WhenB≤ 1, ESPSI performs no worse than its initial classifier
because(δ(0)

n )2αmax(1,BK)(δ(0)
n )2α. Therefore, it is critical to compute the value ofB. For instance,

if the two classes are perfectly separated and located very densely within respective regions, then
B = ∞ and our method recovers the rateδ2α

n ; if the two classes are completely indistinguishable,

thenB = 0 and our method yields the rate(δ(0)
n )2.

For the optimality claimed in Section 2.2, we show thatÛ( f ) is sufficiently close toU( f ) so that
optimality ofU( f ) can be translated intôU( f ). As a result, minimization of̂U( f ) over f mimics
that ofU( f ).

Corollary 5 (Optimality) Under the assumptions of Corollary 4, as nu,nl → ∞,

sup
f∈F

‖Û( f )−U( f )‖1 = Op

(

max(δβγ
n ,(ρnδ(0)

n )βγmax(1,BK))
)

,

whereÛ( f ) is estimated U( f ) loss with p estimated based onf̂C.

To argue that the approximation error rate ofÛ( f ) to U( f ) is sufficiently small, note that̂fC
obtained from minimizing (2) recovers the classification error rate of its supervised counterpart
based on complete data, as suggested by Corollary 4. Otherwise, a poor approximation precision
could impede the error rate of ESPSI.

In conclusion, ESPSI, without knowing label values of unlabeled instances, enables to recon-
struct the classification and estimation performance ofψ-learning based on complete data in rates
of convergence, when possible.

5.2 Theoretical Example

We now apply Corollary 4 to linear and kernel learning examples to derive generalization errors rates
for ESPSI in terms of the Bayesian regret. In all cases, ESPSI (nearly)achieves the generalization
error rates ofψ-learning for complete data when unlabeled data provides useful information, and
yields no worse performance then its initial classifier otherwise.

Consider a learning example in whichX = (X·1,X·2) are independent, following marginal dis-
tribution q(x) = 1

2(κ1 +1)|x|κ1 for x∈ [−1,1] for κ1 > 0. GivenX = 1, P(Y = 1|X = x) = p(x) =
2
5 sign(x·1)|x·1|κ2 + 1

2 with κ2 > 0. Note thatfπ(x) is x·1− sign(π− 1
2)(5

4|2π−1|)
1

κ2 , which in turn
yields the vertical line as the decision boundary for classification with unequal costπ. The value
of κi ; i = 1,2 describe the behavior of the marginal distribution around the origin, and that of the
conditional distributionp(x) in the neighborhood of 1/2, respectively.

For illustration, Figure 3 displays the marginal and conditional densities fromthe data distribu-
tion with κ1 = 2 andκ2 = 1. It is evident that the clustering assumption (Assumption B) is met
since the neighborhood off.5(x) has low density as showed in the left panel of Figure 3, and the
smoothness assumption (Assumption D) and the boundedness assumption ofp(x) (Assumption
E) are met as well sincep(x) is a hyperplane bounded by(0.1,0.9) as showed in the right panel of
Figure 3. Technical details of verifying assumptions are deferred to Appendix B.
5.2.1 LINEAR LEARNING

Here it is natural to consider linear learning in which candidate decision functions are linear in
F = { f (x) = (1,xT)w : w∈ R 3,x = (x·1,x·2) ∈ R 2}.
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X1
X

2

q(x1,x2)

X1

X
2

p(x1,x2)

Figure 3: Plots of the marginal and conditional densities from the data distribution with κ1 = 2 and
κ2 = 1.

For ESPSIf̂C, we chooseδ(0)
n = n−1

l lognl , the convergence rate of supervised linearψ-learning,
ρn → ∞ to be an arbitrarily slow sequence andC = O((logn)−1). An application of Corollary 4

yields thatE|e( f̂C, f̄.5)|= O(max(n−1 logn, (n−1
l (lognl )

2)max(1,2BK))), with B= (1+κ1)
2

2κ2(1+κ1+κ2)
. When

B > 1, equivalently,κ1 + 1 > (1+
√

3)κ2, this rate reduces toO(n−1 logn) whenK is sufficiently
large. Otherwise, the rate isO(n−1

l lognl ).

The fast raten−1 logn is achieved whenκ1 is large butκ2 is relatively small. Interestingly,
largeκ1 value implies thatq(x) has a low density aroundx = 0, corresponding to the low density
separation assumption in Chapelle and Zien (2005) for a semisupervised problem, whereas large
κ1 value and smallκ2 value indicate thatp(x) has a small probability to be close to the decision
boundaryp(x) = 1/2 for a supervised problem.

5.2.2 KERNEL LEARNING

Consider a flexible representation defined by a Gaussian kernel, whereF = {x∈ R 2 : f (x)wf ,0 +

∑n
k=1wf ,kK(x,xk) : wf = (wf ,1, · · · ,wf ,n)

T ∈ R n} by the representation theorem of RKHS, see

Wahba (1990). HereK(x,z) = exp(− ‖x−z‖2

2σ2 ) is the Gaussian kernel.

Similarly, we chooseδ(0)
n = n−1

l (lognl )
3 to be the convergence rate of supervisedψ-learning

with Gaussian kernel,ρn→∞ to be an arbitrarily slow sequence andC= O((logn)−3). By Corollary
4, E|e( f̂C, f̄.5)| = O(max((n−1

l (lognl )
3)max(1,2BK), n−1(logn)3)) = O(n−1(logn)3) whenκ1 + 1 >

2κ2(1+ κ2) andK is sufficiently large, andO(n−1
l (lognl )

3) otherwise. Again, largeκ1 and small
κ2 lead to the fast rate.
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6. Summary

This article introduces a large margin semisupervised learning method throughan iterative scheme
based on an efficient loss for unlabeled data. In contrast to most methodsassuming a relationship
between the conditional and the marginal distributions, the proposed method integrates labeled and
unlabeled data through using the clustering structure of unlabeled data as well as the smoothness
structure of the estimatedp. The theoretical and numerical results suggest that the method compares
favorably against top competitors, and achieves the desired goal of reconstructing the classification
performance of its supervised counterpart on complete labeled data.

With regard to tuning parameterC, further investigation is necessary. One critical issue is how
to use unlabeled data to enhance the accuracy of estimating the generalizationerror so that adaptive
tuning is possible.
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Appendix A. Technical Proofs

Proof of Lemma 1: Let U( f (x)) = E(L(Y f(X))|X = x). By orthogonality, E(L(Y f(X))−
T( f (X)))2 = E(L(Y f(X))−U( f (X)))2 + E(U( f (X))−T( f (X)))2, implying thatU( f (x)) mini-
mizesE(L(Y f(X))−T( f (X)))2 over anyT. Then the proof follows from the fact thatEL(Y f(X))=
E(E(L(Y f(X))|X)).
Proof of Theorem 2: For clarity, we writes( f̂ ) ass( f̂ , p̂) in this proof. Then it suffices to show that
s( f̂ (k), p̂(k))≥ s( f̂ (k+1), p̂(k+1)). First,s( f̂ (k), p̂(k))≥ s( f̂ (k+1), p̂(k)) since f̂ (k+1) minimizess( f , p̂(k)).
Thens( f̂ (k+1), p̂(k))− s( f̂ (k+1), p̂(k+1)) = ∑n

j=nl +1(p̂(k) − p̂(k+1))(L( f̂ (k+1)(x j))− L(− f̂ (k+1)(x j))),

which is nonnegative by the definition of ˆp(k+1).
Proof of Theorem 3: The proof involves two steps. InStep 1, given f (k), we derive a probability
upper bound for‖p̂(k) − p‖1, where p̂(k) is obtained fromAlgorithm 0 . In Step 2, based on the

result ofStep 1, the difference between the tail probability ofeπ( f̂ (k+1)
π , f̄π) and that ofeπ( f̂ (k)

π , f̄π)
is bounded through a large deviation inequality of Wang and Shen (2007);k = 0,1, · · · . This in
turn results in a faster rate fore( f̂ (k+1)

.5 , f̄.5), thuse( f̂C, f̄.5). In this proof, we denote labeled and
unlabeled samples by{(Xi ,Yi)}nl

i=1 and{Xj}n
j=nl +1 to indicate that they are all random variables.

Step 1:First we bound the probability of the percentage of wrongly labeled unlabeled instances
by sign( f̂ (k)) by the tail probability ofeV.5( f̂ (k), f̄.5). For this purpose, defineD f = {sign( f̂ (k)(Xj)) 6=
sign( f̄.5(Xj));nl +1≤ j ≤ n} to be the set of unlabeled data that are wrongly labeled by sign( f̂ (k)),
with nf = #{D f } being its cardinality. According to Markov’s inequality, the fact thatE(

nf

n ) =
nu
n E‖sign( f̂ (k+1))−sign( f̄.5)‖1, and (8), we have

P
(nf

n
≥ a1(a11ρ2

n(δ
(k)
n )2)β

)

≤ P
(

‖sign( f̂ (k))−sign( f̄.5)‖1 ≥ a1(a11ρn(δ
(k)
n )2)β

)

+P
(nf

n
≥ ρβ

n‖sign( f̂ (k+1))−sign( f̄.5)‖1

)

≤ P
(

eV.5( f̂ (k), f̄.5) ≥ a11ρn(δ
(k)
n )2

)

+ρ−β
n . (11)
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Next we bound the tail probability of‖p̂(k) − p‖1 based on “complete” data consisting of un-
labeled data assigned by sign( f̂ (k)). An application of similar treatment to that in the proof of
Theorem 3 of Wang et al. (2008) leads to

P
(

‖p̂(k)− p‖1 ≥8γa2γ+1
1 (a11ρnδ(k)

n )βγ
)

≤

P(∃ j : ‖sign( f̂ (k)
π j )−sign( f̄π j )‖1 ≥ 8γa2γ+1

1 (a11ρnδ(k)
n )2βγ),

(12)

with π j = j/⌈(a11ρnδ(k)
n )−βγ⌉. By (8), it suffices to boundP(eVπ( f̂ (k)

π j , f̄π j ) ≥ 8a2
1(a11ρnδ(k)

n )2β) for
all π j in what follows.

We introduce some notations to be used. LetṼπ( f ,Z) =Vπ( f ,Z)+λJ( f ), andZ j = (Xj ,Yj) with
Yj = sign( f̂ (k)(Xj)); nl +1≤ j ≤ n. Define a scaled empirical processEn(Ṽπ( f ∗π ,Z)− Ṽπ( f ,Z)) =

n−1
(

∑i∈D f
+∑i /∈D f

)(

Ṽπ( f ∗π ,Zi)−Ṽπ( f ,Zi)−E(Ṽπ( f ∗π ,Zi)−Ṽπ( f ,Zi))
)

≡En(Vπ( f ∗π ,Z)−Vπ( f ,Z)).

By the definition of f̂ (k)
π and (11),

P
(

eVπ( f̂ (k)
π , f̄π) ≥ δ2

k

)

≤ P
(nf

n
≥ a1(a11ρ2

n(δ
(k)
n )2)β

)

+

P∗
(

sup
Nk

1
n

n

∑
i=1

(Ṽπ( f ∗π ,Zi)−Ṽπ( f ,Zi)) ≥ 0,
nf

n
≤ a1(a11ρ2

n(δ
(k)
n )2)β

)

≤ P
(

eV.5( f̂ (k), f̄.5) ≥ a11ρn(δ
(k)
n )2

)

+ρ−β
n + I1, (13)

where Nk = { f ∈ F : eVπ( f , f̄π) ≥ δ2
k}, δ2

k = 8a2
1(a11ρnδ(k)

n )2β, I1 = P∗
(

supNk
En(Vπ( f ∗π , Z)−

Vπ( f ,Z))≥ infNk ∇( f , f ∗π ),
nf

n ≤a1(a11ρ2
n(δ

(k)
n )2)β

)

, and∇( f , f ∗π )=
nf

n Ei∈D f (Ṽπ( f ,Zi)−Ṽπ( f ∗π ,Zi))+
n−nf

n Ei /∈D f
(Ṽπ( f ,Zi)−Ṽπ( f ∗π ,Zi)).

To boundI1, we partitionNk into a union ofAs,t with

As,t = { f ∈ F : 2s−1δ2
k ≤ eVπ( f , f̄π) < 2sδ2

k,2
t−1J∗π ≤ J( f ) < 2tJ∗π};

As,0 = { f ∈ F : 2s−1δ2
k ≤ eVπ( f , f̄π) < 2sδ2

k,J( f ) < J∗π},

for s, t = 1,2, · · · . Then it suffices to bound the corresponding probability over eachAs,t . Toward this
end, we need to bound the first and second moments ofṼπ( f ,Z)−Ṽπ( f ∗π ,Z) over f ∈ As,t . Without
loss of generality, assume that 4sn < δ2

k < 1, J( f ∗π ) ≥ 1, and thusJ∗π = max(J( f ∗π ),1) = J( f ∗π ).

For the first moment, note that∇( f , f ∗π ) ≥ eVπ( f , f ∗π )− nf

n E|Vπ( f ,Z)−Vπ( f ∗π ,Z)+ V̄π( f ,Z)−
V̄π( f ∗π ,Z)| ≥ eVπ( f , f ∗π )−4nf

n with V̄π( f ,z) = Sπ(−y)L(−y f(x)). Using the assumption that 4λJ( f ∗π )
≤ δ2

k, and Assumptions A and B, we obtain

inf
As,t

∇( f , f ∗π ) ≥ M(s, t) = (2s−1−1/2)δ2
k +λ(2t−1−1)J( f ∗π ),

inf
As,0

∇( f , f ∗π ) ≥ (2s−1−3/4)δ2
k ≥ M(s,0) = 2s−3δ2

k.
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For the second moment, by Assumptions A and B and|V̄π( f ,Z)− V̄π( f̄π,Z)| ≤ 2 for any 0<
π < 1, we have, for anys, t = 1,2, · · · and some constanta3 > 0,

sup
As,t

Var(Vπ( f ,Z)−Vπ( f ∗π ,Z))

≤ sup
As,t

2(n−nf )

n

(

Var(Vπ( f ,Z)−Vπ( f̄π,Z))+Var(Vπ( f ∗π ,Z)−Vπ( f̄π,Z))
)

+

2nf

n

(

Var(V̄π( f ,Z)−V̄π( f̄π,Z))+Var(V̄π( f ∗π ,Z)−V̄π( f̄π,Z))
)

≤ 2a2M(s, t)ζ +8a1(a11ρ2
n(δ

(k)
n )2)β +4sn ≤ a3M(s, t)min(1,ζ) = v2(s, t).

Note thatI1 ≤ I2 + I3 with

I2 =
∞

∑
s,t=1

P∗(sup
As,t

En(Vπ( f ∗π ,Z)−Vπ( f ,Z)) ≥ M(s, t),nf /n≤ a1(a11ρ2
n(δ

(k)
n )2)β);

I3 =
∞

∑
s=1

P∗(sup
As,0

En(Vπ( f ∗π ,Z)−Vπ( f ,Z)) ≥ M(s,0),nf /n≤ a1(a11ρ2
n(δ

(k)
n )2)β).

Then we boundI2 and I3 separately using Lemma 1 of Wang et al. (2007). ForI2, we verify
conditions (8)-(10) there. Note that

R v(s,t)
aM(s,t) H1/2

B (w,F (2w))dw/M(s, t) is non-increasing ins and
M(s, t), we have

Z v(s,t)

aM(s,t)
H1/2

B (w,F (2t))dw/M(s, t) ≤
Z aM(1,t)min(1,ζ)/2

a3M(1,t)
H1/2

B (w,F (2t))dw/M(1, t),

which is bounded byφ(ε2
n,2

t) with a = 2a4ε andε2
n ≤ δ2

k. Then Assumption C implies (8)-(10)
there withε = 1/2, the choices ofM(s, t) andv(s, t) and some constantsai > 0;i = 3,4. It then
follows that for some constant 0< ξ < 1,

I2 ≤
∞

∑
s,t=1

3exp

(

− (1−ξ)n(M(s, t))2

2(4(v(s, t))2 +2M(s, t)/3)

)

≤
∞

∑
s,t=1

3exp(−a8n(M(s, t))max(1,2−ζ))

≤
∞

∑
s,t=1

3exp(−a8n(2s−1δ2
k +λ(2t−1−1)J∗π)max(1,2−ζ))

≤ 3exp(−a8n(λJ∗π)max(1,2−ζ))/(1−exp(−a8n(λJ∗π)max(1,2−ζ)))2.

Similarly I3≤3exp(−a8n(λJ∗π)max(1,2−ζ))/(1−exp(−a8n(λJ∗π)max(1,2−ζ)))2. Combining the bounds
for Ii ; i = 2,3, we haveI1 ≤ 3.5exp(−a8n(λJ∗π)max(1,2−ζ)). Consequently, by (8), (12) and (13)

P
(

‖p̂(k)− p‖1 ≥ 8γa2γ+1
1 (a11ρnδ(k)

n )βγ
)

≤

P
(

eV.5( f̂ (k)
.5 , f̄.5) ≥ a11ρn(δ

(k)
n )2

)

+ρ−β
n +3.5exp(−a8n(λJ∗π)max(1,2−ζ)).

(14)
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Step 2: To begin, note thatP
(

eV.5( f̂ (k+1)
.5 , f̄.5) ≥ a11ρn(δ

(k+1)
n )2

)

≤ I4 + I5 with

I4 = P
(

eV.5( f̂ (k+1)
.5 , f̄.5) ≥ a11ρn(δ

(k+1)
n )2‖p̂(k)− p‖1 < 8γa2γ+1

1 (a11ρnδ(k)
n )βγ

)

,

I5 = P
(

‖p̂(k)− p‖1 ≥ 8γa2γ+1
1 (a11ρnδ(k)

n )βγ
)

,

wherea11ρn(δ
(k+1)
n )2 = (a12(a11ρnδ(k)

n )
(d+η)βγ
d+η+1 )

θ+1
1+max(0,1−β)θ anda12 = 2a1/(d+η+1)

6 (4a7)
− 1

θ . By (14), it
suffices to boundI4.

For I4, we need some notations. Let the ideal cost function beV.5( f ,z)+U.5( f (x)), the ideal ver-
sion of (2), whereV.5( f ,z) = 1

2L(y f(x)), andU.5( f (x)) = 1
2(p(x)L( f (x))+(1− p(x))L(− f (x))) is

the ideal loss for unlabeled data. Denote byÛ (k)
.5 ( f (x))= 1

2(p̂(k)(x)L( f (x))+(1− p̂(k)(x))L(− f (x)))
an estimate ofU.5( f (x)) atStepk. So the cost function in (2) can be written asW̃( f ,z) = W( f ,z)+
λJ( f ) with W( f ,z) = V.5( f ,z) +U.5( f (x)). For simplicity, we denote a weighted empirical pro-
cess byEn(W( f ∗.5,z)−W( f ,z)) = n−1

l ∑nl
i=1

(

V.5( f ∗.5,Zi)−V.5( f ,Zi) −E(V.5( f ∗.5,Z)−V.5( f ,Z))
)

+
n−1

u ∑n
j=nl +1

(

U.5( f ∗.5(Xj))−U.5( f (Xj))−E(U.5( f ∗.5(X))−U.5( f (X)))
)

.

By the definition of f̂ (k+1)
.5 , we have

I4 ≤ P
(

sup
N′

k

n−1
l

nl

∑
i=1

(V.5( f ∗.5,Zi)−V.5( f ,Zi))+n−1
u

n

∑
j=nl +1

(Û (k)
.5 ( f ∗.5(Xj))−

Û (k)
.5 ( f (Xj)))+λ(J( f ∗.5)−J( f )) ≥ 0, ‖p̂(k)− p‖1 < 8γa2γ+1

1 (a11ρnδ(k)
n )βγ

)

,

whereN′
k = { f ∈ F : eV.5( f , f̄.5) ≥ a11ρn(δ

(k+1)
n )2}. ThenI4 ≤ I6 + I7 with

I6 = P
(

sup
N′

k

n−1
u

n

∑
j=nl +1

D( f ,Xj) ≥

8
γ(d+η)
d+η+1 a

(2γ+1)(d+η)
d+η+1

1 ρn(eV.5( f , f ∗.5))
min(1,β)θ

θ+1 (a11ρn(δ
(k+1)
n )2)

1+max(0,1−β)θ
θ+1

)

,

I7 = P
(

sup
N′

k

En(W( f ∗.5,Z)−W( f ,Z)) ≥ inf
N′

k

E(W̃( f ,Z)−W̃( f ∗.5,Z))

−8
γ(d+η)
d+η+1 a

(2γ+1)(d+η)
d+η+1

1 ρn(eV.5( f , f ∗.5))
min(1,β)θ

θ+1 (a11ρn(δ
(k+1)
n )2)

1+max(0,1−β)θ
θ+1

)

,

whereD( f ,Xj) = Û (k)
.5 ( f ∗.5(Xj))−Û (k)

.5 ( f (Xj))−U.5( f ∗.5(Xj))+U.5( f (Xj)).
For I6, we note that

E|D( f ,X)| =
1
2

E|p̂(k)(X)− p(X)|
∣

∣L( f ∗.5(X))−L( f (X))−L(− f ∗.5(X))+L(− f (X))
∣

∣

≤ 1
2
‖p̂(k)− p‖∞E

(

|L( f ∗.5(X))−L( f (X))|+ |L(− f ∗.5(X))−L(− f (X))|
)

.

It thus suffices to bound‖p̂(k) − p‖∞ and E
(

|L( f ∗.5(X))− L( f (X))|+ |L(− f ∗.5(X))− L(− f (X))|
)

separately.
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To bound‖p̂(k) − p‖∞, note thatEJ( f̂ (k)
π j ) is bounded for allπ j following the same argument

as in Lemma 5 of Wang and Shen (2007). By Sobolev’s interpolation theorem(Adams, 1975),
‖p̂(k)‖∞ ≤ 1 and the fact that|p̂(k,d)(x1)− p̂(k,d)(x2)| ≤ supj | f̂

(k,d)
π j (x1)− f̂ (k,d)

π j (x2)|+d(m(k))−1 for

any x1 andx2 based on the construction of ˆp(k) with f̂ (k,d)
π j = ∆d( f̂ (k)

π j ), there exists a constanta13

such that‖p̂(k,d)‖∞ ≤ a13 and|p̂(k,d)(x1)− p̂(k,d)(x2)| ≤ a13|x1−x2|η +d(m(k))−1 when|x1−x2| is
sufficiently small. Without loss of generality, we assumea13 ≤ a6. By Assumption D andm(k) =

⌈(a11ρnδ(k)
n )−βγ⌉, we have
∣

∣|p̂(k,d)(x1)− p(d)(x1)|− |p̂(k,d)(x2)− p(d)(x2)|
∣

∣

≤ |p̂(k,d)(x1)− p̂(k,d)(x2)|+ |p(d)(x1)− p(d)(x2)| ≤ 2a6|x1−x2|η +2d(a11ρnδ(k)
n )

βγ(d+η)
d+η+1 .

It then follows from Proposition 6 of Shen (1997) that‖p̂(k) − p‖∞ ≤ 2a
1

d+η+1

6 ‖p̂(k) − p‖
d+η

d+η+1
1 +

2d(a11ρnδ(k)
n )

βγ(d+η)
d+η+1 ≤ 2a

1
d+η+1

6 (8γa2γ+1
1 )

d+η
d+η+1 (a11ρnδ(k)

n )
βγ(d+η)
d+η+1 .

To boundE
(

|L( f ∗.5(X))−L( f (X))|+ |L(− f ∗.5(X))−L(− f (X))|
)

, we note that

E|V.5( f ,Z)−V.5( f ∗.5,Z)|

=
1
2

E
(

p(X)|L( f ∗.5)−L( f )|+(1− p(X))|L(− f )−L(− f ∗.5)|
)

≥ E
δ
2

(

|L( f ∗.5)−L( f )|+ |L(− f )−L(− f ∗.5)|
)

I(min(p(X),1− p(X)) ≥ δ)

≥ δ
(

E
1
2

(

|L( f ∗.5)−L( f )|+ |L(− f )−L(− f ∗.5)|
)

−2a7δθ)

by Assumption E. Withδ =
(

E(|L( f ∗.5) − L( f )| + |L(− f ) − L(− f ∗.5)|)/8a7
)1/θ

, it yields that

E
(

|L( f ∗.5)−L( f )|+ |L(− f )−L(− f ∗.5)|
)

≤ (4a7)
−1/θ(E|V.5( f ,Z)−V.5( f ∗.5,Z)|

)θ/θ+1
, where

E|V.5( f ,Z)−V.5( f ∗.5,Z)| ≤ E|V.5( f ,Z)−V.5( f̄.5,Z)|+E|V.5( f ∗.5,Z)−V.5( f̄.5,Z)|
≤ P(sign( f ) 6= sign( f̄.5))+E(V.5( f ,Z)−V.5( f̄.5,Z))+

P(sign( f ∗.5) 6= sign( f̄.5))+E(V.5( f ∗.5,Z)−V.5( f̄.5,Z))

≤ (eV.5( f , f ∗.5))
β +eV.5( f , f ∗.5)+sβ

n +sn ≤ 4(eV.5( f , f ∗.5))
min(1,β)

by Assumptions A and B. Therefore,

E|D( f ,X)| ≤ 8
β(d+η)
d+η+1 a

(2β+1)(d+η)
d+η+1

1 (eV.5( f , f ∗.5))
min(1,β)θ

θ+1 (a11ρn(δ
(k+1)
n )2)

1+max(0,1−β)θ
θ+1

andI6 ≤ ρ−1
n by Markov’s inequality.

To bound I7, we apply a similar treatment as in boundingI1 in Step 1 to yield that I7 ≤
3.5exp(−a8nl (λJ∗.5)

max(1,2−ζ)). Combining the upper bounds ofI6 and I7, P(eV.5( f̂ (k+1)
.5 , f̄.5) ≥

a11ρn(δ
(k+1)
n )2) ≤ P(eV.5( f̂ (k)

.5 , f̄.5) ≥ a11ρn(δ
(k)
n )2) + 3.5exp(−a9n(λJ∗.5)

max(1,2−ζ))+

3.5exp(−a8nl (λJ∗.5)
max(1,2−ζ))+ρ−β

n +ρ−1
n . Iterating this inequality yields that

P
(

eV.5( f̂ (K)
.5 , f̄.5) ≥ (a

2B(d+η+1)
βγ(d+η)

12 (a11ρn)
2B−1)

BK+1−1
B−1 (δ(0)

n )2BK
)

≤ P
(

eV.5( f̂ (0)
.5 , f̄.5) ≥ a11ρn(δ

(0)
n )2

)

+3.5K exp(−a8nl (λJ∗.5)
max(1,2−ζ))+

3.5K exp(−a9n(λJ∗π)max(1,2−ζ))+Kρ−β
n +Kρ−1

n ,

(15)
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whereB = (θ+1)(d+η)βγ
2(1+max(0,1−β)θ)(d+η+1) . Then the desired result follows from Assumption B and the fact

thatδ2
k = 8a2

1(a11ρnδ(k)
n )2β ≥ max(ε2

n,16sn) = δ2
n for anyk.

Proof of Corollary 4: It follows from Theorem 3 immediately and the proof is omitted.
Proof of Corollary 5: It follows from (14) and Corollary 4 that‖p̂C − p‖1 =

Op

(

max(δβγ
n , (ρnδ(0)

n )max(1,1βγBK))
)

, wherep̂C is the estimated probability througĥfC. The desired

results follows from the fact that‖ÛC( f )−U( f )‖1 ≤ 4‖p̂C− p‖1.

Appendix B. Verification of Assumptions in Section 5.2

We now verify Assumptions A-E for the theoretical examples in Section 5.2.

B.1 Linear Learning

First, note that(X·1,Y) is independent ofX·2, which implies thatES( f ;C) = E(E(S( f ;C)|X·2)) ≥
ES( f̃ ∗C;C) for any f ∈ F , where f̃ ∗C = argminf̃∈F1

ES( f̃ ;C) with F1 = {x·1 ∈ R : f̃ (x) = (1,x·1)Tw :
w∈ R 2} ⊂ F andS( f ;C) = C(L(Y f(X))+U( f (X)))+J( f ).

Assumption A follows fromeVπ( f ∗π , f̄π) ≤ 2P(|n fπ(X)| ≤ 1) ≤ (κ1 +1)n−1 = sn with f ∗π = n fπ.
Easily, (7) in Assumption B holds forα = 1. To verify (8), direct calculation yields that there exist
some constantsb1 > 0 andb2 > 0 such that for anyf ∈ F1, we haveeVπ( f , f̄π) ≥ eπ( f , f̄π) =
b1
(

(5
4(2π − 1) + e)κ1+κ2+1 − (5

4(2π − 1))κ1+κ2+1
)

and E|sign( fπ)− sign( f )| = b2
(

(5
4(2π − 1) +

e)κ1+1 − (5
4(2π− 1))κ1+1

)

with wf = wfπ + (e0,e1)
T and e = −50e1(

5
4(2π−1))+10e0

4+10e1
> 0. This im-

plies (8) withβ = γ = 1+κ1
1+κ1+κ2

. For (9) in Assumption B, by the triangle inequality, Var(Vπ( f ,Z)−
Vπ( f ∗π ,Z)) ≤ 2E|Vπ( f ,Z)−Vπ( f̄π,Z)| ≤ 2(Λ1 + Λ2), whereΛ1 = E|lπ( f ,Z)−Vπ( f̄π,Z)|E|Sπ(Y)|
|sign( f )−sign( f̄π)| ≤

(

21+κ2(κ1+1)κ2
)

1+κ1
1+κ1+κ2 eVπ( f , f̄π)

1+κ1
1+κ1+κ2 , andΛ2 = E(Vπ( f ,Z)− lπ( f ,Z)) =

E(Vπ( f ,Z)−Vπ( f̄π,Z)) + E(lπ( f̄π, Z)− lπ( f ,Z)) ≤ 2eVπ( f , f̄π). Therefore (9) is met withζ =
1+κ1

1+κ1+κ2
. For Assumption C, we defineφ1(ε,k) = a3(log(1/M1/2))1/2/M1/2 with M = M(ε,λ,k).

By Lemma 6 of Wang and Shen (2007), solving (10) yieldsεn = ( logn
n )1/2 whenC/J∗π ∼ δ−2

n n−1 ∼
(logn)−1. Assumption D is satisfied withd = ∞ andη = 0, and Assumption E is met withθ = ∞ by

noting that min(p(x),1− p(x))≥ 1/10. In this case,B= (1+κ1)
2

2κ2(1+κ1+κ2)
, and the desired result follows

from Corollary 4.

B.2 Kernel Learning

Similar to the linear case, we restrict our attention toF1 = {x·1 ∈ R : f (x·1) = wf ,0+

∑n
k=1wf ,kK(x·1,xk1) : wf = (wf ,1, · · · ,wf ,n)

T ∈ R n}.
Note thatF1 is rich for sufficiently largen in that for function f ∗π as defined in the linear ex-

ample, there exists ãf ∗π ∈ F1 such that‖ f̃ ∗π − f ∗π‖∞ ≤ sn, and henceeVπ( f̃ ∗π , f̄π) ≤ 2sn. Assump-
tion A is then met. Easily, (7) is satisfied forα = 1. To verify (8), note that there exists con-
stantb3 > 0 such that for smallδ > 0, P(|p(x)−1/2| ≥ δ) = 2P(0 ≤ p(x)−1/2 ≤ δ) = 2P(0 ≤
x(1) ≤ 5

2δ
1

κ2 ) ≤ b3δ
1+κ1

κ2 . Therefore,eV.5( f , f̄.5) ≥ e.5( f , f̄.5) ≥ δE|sign( f )− sign( f̄.5)|I(|p(x)| ≥

δ) ≥ 2−1(4b3)
− κ2

1+κ1 ‖sign( f )− sign( f̄.5)‖
1+κ1+κ2

1+κ1
1 with δ = (‖sign( f )− sign( f̄.5)‖1/4b3)

κ2
1+κ1 . This

implies β = 1+κ1
1+κ1+κ2

in (8). Similarly, we can verify that there exists a constantb4 > 0 such that
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P(|p(x)−π| ≥ δ) = 2P
(

5
2(π− 1

2) ≤ x(1) ≤ 5
2(π− 1

2 +δ
1

κ2 )
)

≤ b4δ
1

κ2 whenπ > 1
2, which implies (8)

with γ = 1
1+κ2

. For (9), an application of the similar argument leads toζ = 1
1+κ2

. For Assumption C,

we defineφ1(ε,k) = a3(log(1/M1/2))3/2/M1/2 with M = M(ε,λ,k). By Lemma 7 of Wang and Shen
(2007), solving (10) yieldsεn = ((logn)3n−1)1/2 whenC/J∗π ∼ δ−2

n n−1 ∼ (logn)−3. Assumption D
is satisfied withd = ∞ andη = 0, and Assumption E is met withθ = ∞. Finally,B = (1+κ1)

2κ2(1+κ2)
, and

the desired result follows from Corollary 4.
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O. Chapelle, B. Scḧolkopf, and A. Zien.Semi-supervised Learning. MIT press, Cambridge, 2006.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In Proc. Int.
Workshop on Artif. Intell. and Statist., pages 57-64, 2005.

M. Collins and Y. Singer. Unsupervised models for named entity classification. In Proc. Joint SIG-
DAT Conf. on Empirical Methods in Natural Language Processing and Very Large Corpora,
pages 100-110, 1999.

R. A. Fisher. A system of scoring linkage data, with special reference tothe pied factors in mice.
Amer. Nat., 80:568-578, 1946.

C. Gu. Multidimension smoothing with splines. In, M. G. Shimek, (ed.),Smoothing and Regression:
Approaches, Computation and Application, 2000.

T. Hughes, M. Marton, A. Jones, C. Roberts, R. Stoughton, C. Armour, H. Bennett, E. Coffey, H.
Dai, Y. He, M. Kidd, A. King, M. Meyer, D. Slade, P. Lum, S. Stepaniants,D. Shoemaker, D.
Gachotte, K. Chakraburtty, J. Simon, M. Bard and S. Friend. Functionaldiscovery via a com-
pendium of expression profiles.Cell, 102:109-126, 2000.

740



EFFICIENT LARGE MARGIN SEMISUPERVISEDLEARNING

D. Hunter and K. Lange. Quantile regression via an MM algorithm.J. Computat. & Graph. Statist.,
9:60-77, 2000.

T. Jaakkola, M. Diekhans and D. Haussler. Using the Fisher kernel method to detect remote protein
homologies. InProc. Int. Conf. on Intelligent Systems for Molecular Biology, pages 149-158,
1999.

A. N. Kolmogorov and V. M. Tihomirov.ε-entropy andε-capacity of sets in function spaces.Us-
pekhi Mat. Nauk., 14:3-86, 1959. [In Russian. English translation,Ameri. Math. Soc. Transl.,
14:277-364, 1961.

Y. Lin. Support vector machines and the Bayes rule in classification.Data Mining and Knowledge
Discovery, 6:259-275, 2002.

S. Liu, X. Shen and W. Wong. Computational development ofψ-learning. InProc. SIAM 2005 Int.
Data Mining Conf., pages 1-12, 2005.

Y. Liu and X. Shen. Multicategoryψ-learning.J. Amer. Statist. Assoc., 101:500-509, 2006.

P. Mason, L. Baxter, J. Bartlett and M. Frean. Boosting algorithms as gradient descent. InAdvances
in Neural Information Processing Systems, 12:512-518. MIT Press, Cambridge, 2000.

P. McCullagh and J. Nelder.Generalized Linear Models, 2nd edition. Chapman and Hall/CRC,
1983.

H. Mewes, K. Albermann, K. Heumann, S. Liebl and F. Pfeiffer. MIPS:a database for protein
sequences, homology data and yeast genome information.Nucleic Acids Res., 25:28-30, 2002.

K. Nigam, A. McCallum, S. Thrun and T. Mitchell . Text classification from labeled and unlabeled
documents using EM.Mach. Learn., 39:103–134, 1998.

J. Platt. Probabilistic outputs for support vector machines and comparisonsto regularized likelihood
methods. InAdvances in Large Margin Classifiers, pages 61-74, MIT press, Cambridge, 1999.

P. Rigollet. Generalization Error Bounds in Semi-supervised Classification Under the Cluster As-
sumption.J. Mach. Learn. Res., 8:1369-1392, 2007.
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