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Abstract

Most classification methods assume that the samples are drawn independently and identically from
an unknown data generating distribution, yet this assumption is violated in several real life prob-
lems. In order to relax this assumption, we consider the case where batches or groups of samples
may have internal correlations, whereas the samples from different batches may be considered to
be uncorrelated. This paper introduces three algorithms for classifying all the samples in a batch
jointly: one based on a probabilistic formulation, and two based on mathematical programming
analysis. Experiments on three real-life computer aided diagnosis (CAD) problems demonstrate
that the proposed algorithms are significantly more accurate than a naive support vector machine
which ignores the correlations among the samples.

Keywords: batch-wise classification, support vector machine, linear programming, machine
learning, statistical methods, unconstrained optimization

1. Introduction

Most classification systems assume that the data used to train and test the classifier are drawn from
an independent and identically distributed underlying distribution. For example, samples are clas-
sified one at a time in a support vector machine (SVM), thus the classification of a particular test
sample does not depend on the features from any other test sample. Nevertheless, this assumption
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Figure 1: Two pulmonary emboli (blood clots) as they are detected by the Candidate Generation
algorithm in a CT image. The candidates are shown as five circles for the left embolus &
six circles for the right embolus. The disease status of spatially overlapping or proximate
candidates is highly correlated.

is commonly violated in many real-life problems where sub-groups of samples have a high degree
of correlation amongst both their features and their labels.

A sample problem with the characteristics described above is computer aided diagnosis (CAD),
where the goal is to detect structures of interest to physicians in medical images: for example, to
identify potentially malignant tumors in computed tomography (CT) scans, X-ray images, etc. In an
almost universal paradigm for CAD algorithms, this problem is addressed by a three-stage system:
(1) identification of potentially unhealthy candidates regions of interest (ROI) from a medical image,
(2) computation of descriptive features for each candidate, and (3) classification of each candidate
(e.g., normal or diseased) based on its features.

Figure 1 displays a CT image of a lung showing circular marks that point to potential diseased
candidate regions that are detected by a CAD algorithm. There are five candidates on the left and six
candidates on the right (marked by circles) in Figure 1. Descriptive features are extracted for each
candidate and each candidate region is classified as normal or abnormal. In this setting, correlations
exist among the candidates belonging to the same batch (image, in the case of CAD) both in the
training data set and in the unseen testing data. Further, the level of correlation is a function of
the pairwise distance between candidates: the disease status (class-label) of a candidate is highly
correlated with the status of other spatially proximate candidates, but the correlations decrease as the
distance is increased. Most conventional CAD algorithms classify one candidate at a time, ignoring
the correlations amongst the candidates in an image. By explicitly accounting for the correlation
structure between the labels of the test samples, classification accuracy can be improved.

In this paper, we present two large margin classifiers and a batch-wise version of logistic re-
gression that take into account the local correlations among samples in a batch. We use the term
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batch-wise classification to mean training and testing classifiers in batches or groups (i.e., samples
in the same batch are learned and classified collectively). Our experiments on three real CAD prob-
lems show that indeed incorporating the local dependencies among samples within a batch improve
the classification accuracy significantly compared to standard SVMs.

Beyond the domain of CAD applications, our algorithms are quite general and may be used
for batch-wise classification problems in many other contexts. In general, the proposed classifiers
can be used whenever data samples are presented in independent batches. In the CAD example, a
batch corresponds to an image and strong correlations among candidate samples are based on spatial
proximity within an image. A similar relationship structure is true with geographical classification
of regions in satellite images; an image would be a batch and spatial proximity corresponds to
correlations among the pixel instances. In other contexts, a batch may correspond to data from the
same hospital, the patients treated by the same doctor or nurse, etc. In non-medical contexts, a batch
can be transactions from the same person, or documents from the same author. Another example
is in credit card transaction approval where a single transaction has to be classified by taking into
account both the entire set of available training transactions and other transactions made by the same
person recently during the testing phase. In this credit card example, it might be preferable to test
the recent transaction of this same person as a batch collectively rather than singly.

1.1 Related Work

We are not aware of previous work that exploit internal correlations among the samples to improve
the performance of standard classifiers (such as, SVM). However, there exist classification algo-
rithms that incorporate special relationships among the samples (the Markov property) into their
model formulation. In natural language processing (NLP), conditional random fields (CRF) (Laf-
ferty et al., 2001) and recently maximum margin Markov (MMM) networks (Taskar et al., 2004)
are used to identify part-of-speech information about words by using the context of nearby words.
CRF are also used in similar applications in spoken word recognition. For images, Markov random
fields (MRF) (Besag, 1974; Geman and Geman, 1984) are applied to capture correlation among
neighborhood pixels.

However, while these Markov models are also fairly general algorithms, they are both compu-
tationally demanding and are not easy to implement for problems where the relationship structure
among the samples is in any form other than a linear chain (as in the text and speech processing ap-
plications). Certainly, their application would be difficult in many large-scale medical applications
where run time requirements would be quite severe. For example, in the CAD applications shown
in our experiments, the run-time of the testing phase usually has to be less than a second in order
that the end user’s (radiologist’s) time would not be wasted.

Our algorithm is also related to the multiple instance learning (MIL) problem, where one is
given bags (batches) of samples; class labels are provided only for the bags, not for the individual
samples. A bag is labeled positive if we know that at least one sample from it is positive, and a
negative bag is known to not contain any positive sample. In this manner, the MIL problem also
encodes a form of prior knowledge about correlations between the labels of the training instances.

There are two differences between our algorithm and MIL. First, we want to classify each in-
stance (candidate) in our algorithm; unlike MIL, we are not only trying to label a bag of related
instances. Second, unlike the MIL problem which treats all the instances in a bag as equally re-
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lated to each other, we account for more fine grained differences in the level of correlation between
samples (via the similarity matrix R).

Local learning algorithms such as, Wu and Schlkopf (2007) and Bottou and Vapnik (1992), also
capture the correlation among data points. However, one major difference between our method
and local learning based methods is that our methods build a global classifier that combines the
global information extracted from the entire training data with the additional side-information ex-
tracted from correlations in the same batch, whereas the local learning algorithms rely on the local
information only. Another major difference is that local learning algorithms classify a particular
point based on its neighbors in the feature space, therefore the captured correlation is limited to the
neighbors of that particular point. On the other hand, the methods that we propose in this paper can
incorporate any type of correlation information that is not fully encoded in the features. The same
difference is also valid between our method and semi-supervised algorithms such as, Vural et al.
(2008) and Zhou et al. (2003) that exploit the idea of using local information in semi-supervised
learning. The graph based semi-supervised algorithms such as, Krishnapuram et al. (2005) and Zhu
et al. (2003), can be considered to be related to the methods introduced in this paper in the sense
that they build weighted graphs based on the correlation among data points. However, the targeted
problems in semi-supervised learning and this paper are substantially different. In semi-supervised
learning problems, the goal is to make use of unlabeled data to improve classification accuracy. In
our methods, on the other hand, we investigate the relations among the data points that are in the
same batch only. These data points may not constitute a neighborhood in the feature space and
every data point is labeled in our problem.

1.2 Organization of the Paper

After briefly describing the notation in Section 2, we build two SVM based methods for classifying
batches of correlated samples in Section 3. We also provide a probabilistic interpretation of our
approach in Section 4.

Unlike the previous methods such as CRF, MMM and MRF, the proposed algorithms are easy
to implement for arbitrary relationships between samples, and further we are able to run these fast
enough to be viable in commercial CAD products. In Section 5, we provide experimental evidence
from three different CAD problems to show that the proposed algorithms are more accurate in terms
of the metrics appropriate to CAD as compared to a naive SVM which is routinely used for these
problems as the state-of-the-art in the current literature and commercial products. We conclude with
a review of our contributions in Section 6.

2. Notations

Throughout this paper, we will use the following notations. The capital letters shown in bold font
represent matrices whereas lower case letters in bold correspond to vectors. The notation A ∈ R

m×n

will signify a real m× n matrix. For such a matrix, A′ will denote the transpose of A and Ai will
denote the i-th row of A. All vectors will be column vectors.

For x ∈ R
n, ‖x‖p denotes the p-norm, p = 1,2,∞. A vector of ones in a real space of arbitrary

dimension will be denoted by e. Thus, for e ∈ R
m and y ∈ R

m, e′y is the sum of the components of
y. A vector of zeros in a real space of arbitrary dimension will be denoted by 0. The identity matrix
of arbitrary dimension will be denoted by I. A separating hyperplane, with respect to two given
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point sets A and B, is a plane that attempts to separate R
n into two half spaces such that each open

half space contains points mostly of A or B.

3. A Mathematical Programming Approach

In this section, we formulate the problem of learning for batch-wise prediction as an SVM-like
mathematical program.

3.1 Standard Support Vector Machine

In a standard SVM hyperplane classifier, f (x) = x′w − γ is learned from the training instances
individually, ignoring the correlations among them. Consider the problem of classifying m points in
the n-dimensional real space R

n, represented by the m×n matrix A, according to class membership
of each point xi (ith row of A) in the classes A+, A− as specified by a given m×m diagonal matrix
D with +1 or −1 along its diagonal. The standard 1-norm support vector machine with a linear
kernel (Vapnik, 1995; Bradley and Mangasarian, 1998) is given by the following linear program
with parameter ν > 0:

min
(w,γ,ξ,v)∈Rn+1+m+n

νe′ξ+ e′v (1)

s.t. D(Aw− eγ)+ξ ≥ e

v ≥ w ≥−v

ξ ≥ 0

where, ξ ∈ R
m is a vector of slack variables, ν is the cost parameter, and at a solution, v = |w| is

the absolute value of w. We used the 1-norm linear programming formulation instead of the more
popular 2-norm quadratic programming (QP) formulation since the 1-norm formulation is known to
produce solutions that depend on fewer features. In other words, by solving the 1-norm formulation,
an implicit feature selection is obtained automatically. This is an advantage in CAD applications
because the initial pool typically contains a large set of experimental features, although often only
a small subset of these features is typically found to be very useful for the classification task at
the end of design (i.e., training) stage. It is important to note that all the batch-based classifica-
tion approaches presented in this paper are equally applicable even when the standard QP SVM
formulation is considered.

3.2 Batch Support Vector Machine

The idea in our model is to encode that the classification of any sample (i.e., data point) depends on
two factors: (a) the features that encode information about each candidate sample in a batch; and (b)
additional side-information—not already fully encoded in the features—that is available to describe
the level of correlations among the set of samples within a batch.1

Let the covariance matrix R j represent the correlations among the samples withing the jth batch.
As mentioned above, in CAD applications, R j can be defined in terms of Sj, the matrix of Euclidean
distances between candidates inside a medical image (from a patient) as:

1. We define a batch to be a set of possibly correlated samples that occur together naturally, for example, the set of all
candidate locations from the image of the same patient.
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R j
pq =

{

0 , p = q
exp(−αS j

pq) ,o.w.

with α > 0 as a model parameter. Accordingly, B j ∈ R
m j×n represents the m j training points

that belong to the jth batch and the labels of these training points are represented by the m j ×m j

diagonal matrix D j with positive or negative ones along its diagonal. Using the new notations, the
standard SVM set of constraints: D(Aw− eγ)+ξ ≥ e can be presented as:

D j(B jw− eγ)+ξ j ≥ e, for j = 1, . . . ,k. (2)

Here, k is defined as the number of batches in A and the vector of slack variables, ξ, in Equation

(1) corresponds to ξ = [ξ1
′

,ξ2
′

, . . . ,ξk
′

]
′
. In Equation (2), every data point in B j sets a constraint on

w and γ independently, that is, the ith constraint is set by only the ith data point, B j
i , ignoring the

correlations between B j
i and the rest of the samples in B j. Therefore, we modify the standard SVM

set of constraints in order to take into account the correlations among samples in the same batches,
using the R j matrix as:

D j [(I+θR j)(B jw− eγ)
]

+ξ j ≥ e, for j = 1, . . . ,k. (3)

Here, θ is a parameter that helps us control the contribution of the correlation information en-
coded by R j. We can find the optimum value of θ by tuning over a validation set. However, we also
present a method where we can learn θ automatically in Section 3.3.

In Equation (3), the class membership prediction for any single sample in batch j is a weighted
average of the batch members’ prediction vector B jw− eγ, and the weighting coefficients depend
on the pairwise similarity between samples. Using constraints (3) in the SVM formulation (1), we
obtain the optimization problem for learning BatchSV M with parameters ν and θ:

min
(w,γ,ξ,v)∈Rn+1+m+n

νe′ξ+ e′v (4)

s.t. D j [(θR j + I
)

(B jw− eγ)
]

+ξ j ≥ e, for j = 1, . . . ,k

v ≥ w ≥−v

ξ ≥ 0.

When θ = 0, the constraints in Equation (4) become standard SVM constraints. Therefore, if the
information provided in R j matrix does not help our algorithm improve the accuracy performance
of SVM, we expect our method to turn into the standard SVM.

Unlike standard SVMs, the hyperplane ( f (x) = w
′
x−γ) produced by BatchSV M is not the final

decision function. We refer to f (x) as a pre-classifier that will be used in the next stage to make
the final decision on a batch of instances. While testing an arbitrary data point x j

i in batch B j, the
BatchSV M algorithm accounts for the pre-classifier prediction w′x j

p − γ for every member in the
batch. The final prediction f̂ (x j

i ) is given by:

sign( f̂ (x j
i )) = sign(w

′
x j

i − eγ+θR j
i

[

B jw− eγ
]

). (5)

Consider the two dimensional example in Figure 2, showing batches of training points. The data
points that belong to the same batch are indicated by the elliptical boundaries in the figure. Figure
2b displays the correlations amongst the training points given in Figure 2a using an edge.
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Figure 2: An illustrative example for batch learning. a) Training data points are displayed in
batches. b) Relations within training points are displayed as a linked graph. c) Classifier
produced by SVM. d) Pre-classifier produced by BatchSV M. Unlike standard SVMs,
the hyperplane, f (x), produced by BatchSV M (preclassifier) is not the decision function.
Instead, the decision of each test sample xi, is based on a weighted average of the f (x)
values for the points linked to xi.

In Figure 2c, the hyperplane fsvm(x) is the final decision function for standard SVM and gives
the results displayed in Table 1 where we observe that the fourth and the seventh instances are
misclassified. In Figure 2d, the pre-classifier produced by BatchSV M, fbatch(x) gives the results
displayed in the fifth column of Table 1 for the training data. If this pre-classifier were to be con-
sidered as the decision function, then three training points would be misclassified. However, during
batch-testing (Equation 5), the predictions of those points are corrected as seen in the sixth column
of Table 1.
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Point Batch Label SVM Pre-classifier Final classifier

1 1 + 0.2826 0.1723 0.1918
2 1 + 0.2621 0.1315 0.2122
3 1 - -0.2398 0.0153 -0.0781
4 1 + -0.3188 -0.0259 0.2909
5 1 - -0.4787 -0.0857 -0.0276
6 2 + 0.2397 0.0659 0.0372
7 2 - 0.2329 0.0432 -0.0888
8 2 + 0.1490 0.0042 0.0680
9 2 - -0.2525 -0.0752 -0.1079
10 2 - -0.2399 -0.1135 -0.1671

Table 1: Outputs of the classifier produced by SVM, pre-classifier and the final classifier produced
by BatchSV M. The outputs are calculated for the data points presented in Figure 2. The
first column of the table indicates the order of the data points as they are presented in
Figure 2a and the second column specifies the corresponding labels. Misclassified points
are displayed in bold. Notice that the combination of the pre-classifier outputs at the final
stage corrects the mistakes.

3.3 A Faster Proximal Batch Approach

Support vector machines are known to be slow to train. In Fung and Mangasarian (2001), Fung
and Mangasarian introduced proximal support vector machine which is a fast and simple algorithm
for generating a linear or nonlinear classifier that merely requires the solution of a single system of
linear equations. To yield a faster training method, we present a batch approach to proximal support
vector machine in this section.

Similar to the proximal support vector machine formulation (PSVM) in Fung and Mangasarian
(2001), we can slightly modify the set of inequalities (3) and consider a Gaussian prior (instead
of a Laplacian) for both the error vector ξ and the regularization term, to obtain the following
unconstrained formulation:

min
(w,γ)∈Rn+1

ν
1
2

k

∑
j=1

‖e−D j [(θR j + I
)

(B jw− eγ)
]

‖2 +
1
2
(w′w+ γ2). (6)

Note that formulation (6) is a strongly convex (quadratic) unconstrained optimization problem
and it has a unique solution. Then, obtaining the solution to formulation (6) requires only solving
a single system of linear equations; therefore, it should be substantially faster than the linear pro-
gramming approach of the standard QP approach while maintaining approximate accuracy results
(Fung and Mangasarian, 2001). Moreover, this simple formulation allows us to introduce a very
small modification to learn the parameter θ in a very simple but effective manner:

min
(w,γ,θ)∈Rn+1+1

ν
1
2

k

∑
j=1

‖e−D j [(θR j + I
)

(B jw− eγ)
]

‖2 +
1
2
(w′w+ γ2 +θ2). (7)
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This formulation is strongly convex in all its variables (w,γ,θ) and it has a unique solution as well.
The optimization problem (7) can be solved in many different ways, however we chose to use
an alternating optimization approach similar to the one used in Fung et al. (2004), since it suits
the structure of the problem perfectly and it converged rapidly in our experiments. It took nine
iterations on average for the algorithm to converge in our experiments. The alternate optimization
method used can be summarized as follows:

0 initialization: Given an initial θ0, the parameter ν, the training data A =
Sk

j=1 B j and the
corresponding labels D.

1. Solve optimization problem (6) for θ = θi−1 obtain wi and γi.

2. For the obtained wi and γi, solve the following linear system of equations:

θi =
−∑k

j=1 M j

2∑k
j=1 N j

where

M j = S j ′Z jS j +2e′D jR jS j , for S j =
(

B jw− eγ
)

and Z j = (R j ′ +R j),

N j = Y j ′Y j + 1
ν , for Y j = R j

(

B jw− eγ
)

.

This is an iterative method with two steps. At the first step, it finds the optimum values of w
and γ (wopt ,γopt) for a given θ. At the second step, for the given wopt and γopt , it finds the optimum
value of θ (θopt), which will be used at the first leg of the next iteration. Appendix A.2 provides
a derivation of the update equations. Initially, we assign a random value for θ, the procedure is
repeated until it converges to the global optimum solution for w, γ and θ.

4. A Probabilistic Batch Classification Model

Let x j
i ∈ R

n represent the n features for the ith candidate in the jth image, and let w ∈ R
n be the

weight parameters and γ ∈ R
1 be the offset of some hyperplane classifier. Traditionally, classifiers

label samples one at a time (i.e., independently) based only on the features that describe a given
sample x j

i :
z j

i = w′x j
i − γ = (x j

i )
′w− γ ,z j

i ∈ R
1.

For example, in logistic regression, the posterior probability of the sample x j
i belonging to class

+1 is obtained using the sigmoid function P(y j
i = 1|x j

i ) = 1
1+exp(−w′x j

i +γ)
.

We claim that z j
i is only a noisy observation of the underlying, unobserved variable u j

i ∈ R
1

that actually influences classification (as opposed to the traditional classification approach, where
classification directly depends on z j

i ). Beside the features x j
i that are available to influence the

classification of a sample point (via u j
i ), we have side information about the extent of correlation

amongst the quantities u j
i . We mathematically model the side information as an a-priori guess or

intuition about u j
i even before we observe any x j

i (therefore before z j
i ).
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For example, in the context of CAD, features describe the shape, size, texture, and intensity
profile of a candidate (sample) in an image. However, besides the above information encoded in the
form of features that describe each candidate, we also know that correlation amongst the samples in
an image (batch) purely based on the proximity of the spatial locations of samples in the jth image.
In CAD applications, this spatial adjacency induces correlations in the predictions for the labels,
but in other applications the nature of side-information that accounts for the correlations would be
different. Nevertheless, in general (in a domain independent way) we model this side-information
as a Gaussian prior on u j

i .
P(u j ∈ R

n j) = N(u j|0,R j) (8)

where n j is the number of the candidates in the jth image, and the covariance matrix R j encodes
the correlations. As mentioned above, in CAD applications, R j can be defined in terms of S, the
matrix of Euclidean distances between candidates inside a medical image (from a patient) as R j =
exp(−αS), with α > 0 as a model parameter.

Having defined a prior, next we define the likelihood as follows:

P(z j
i |u

j
i ) = N(z j

i |u
j
i ,σ2). (9)

After observing x j
i and therefore z j

i , we can modify our prior intuition about u j in (8), based on our
observations from (9) to obtain the Bayesian posterior:

P(u j|z j) = N
(

u j|(R j−1σ2 + I)−1z j;(R j−1
+ 1

σ2 I)−1
)

(10)

The class-membership prediction for the ith candidate in the jth image is controlled exclusively by
u j

i . Let B j ∈ R
m j×n represent the m j training points that belong to the jth batch. Exact compu-

tation of the integral required for P(y j = 1|B j,w,γ,α,σ2) is analytically infeasible because of the
nonlinear sigmoid terms. However, by using the maximum-a-posteriori (MAP) estimate of u j

i , the
prediction probability for class label, y j

i is then determined approximately as:

P(y j
i = 1|B j,w,γ,α,σ2) ≈ 1/

(

1+ exp
(

−V j
i [B

jw− eγ]
))

,

where

V j =
[

R j−1σ2 + I
]−1

.

(11)

Note, however, that for each batch j, the probabilistic method requires calculating two matrix

inversions to compute
(

R j−1σ2 + I
)−1

. Hence, training and testing using this method can be time

consuming for large batch sizes. On the other hand,
(

R jθ+ I
)

that we introduced in Equation (3) is
relatively less time consuming to compute.

In general,
(

R j−1σ2 + I
)−1

6=
(

R jθ+ I
)

. However, the intuition behind both are similar: the

class prediction for each sample is a weighted sum of the prediction values of the test sample and
the samples that are correlated with the test instance. In the appendix A.1, we show that when σ
is small and we are considering a least squared loss function as in Section 3.3, the constraint (3)
results in an approximation to the following constraint:

D j
[

(

R j−1σ2 + I
)−1

(B jw− eγ)
]

+ξ j ≥ e, for j = 1, . . . ,k (12)
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when the sum of the labels of neighboring data points according to each row of R j is the same
or they have similar values. Note that, this is particularly true when R j only contains information
about correlations for a constant number of nearest neighbors for each sample (k-nearest neighbors)
and when the assumption that neighboring segments should have similar labels holds.

4.1 Learning in this Model

For batch-wise prediction using (11), w,α and σ2 can be learned from a set of N training images
via maximum-a-posteriori (MAP) estimation of w and maximum-likelihood estimation of α,σ2 as
follows:

[ŵ, γ̂, α̂, σ̂2] = argmaxw,γ,α,σ2 P(w)∏N
j=1 P(y j|B j,w,γ,α,σ2)

where, P(y j|B j,w,γ,α,σ2) is defined as in (11) and P(w) may be assumed to be Gaussian N(w|0,λ).
The regularization parameter λ is typically chosen by cross-validation. General purpose numerical
optimizers such as conjugate gradient algorithms may be used for the above optimization problem.

4.2 Intuition about Batch Classification

Equations (10) and (11) imply that E[u j|z j] = (R j−1σ2 + I)−1z j. In other words, the class mem-
bership prediction for any single sample is a weighted average of the noisy prediction quantity z j

(distance to the hyperplane), where the weighting coefficients depend on the pairwise Euclidean
distances between samples. Hence, the intuition presented above is that we predict the classes for
all the n j candidates in the jth image together, as a function of the features for all the candidates in
the batch (here a batch corresponds to an image from a patient). In every test image, each of the
candidates is classified using the features from all the samples in the image. Note that although we
classify each instance in a batch at the same time, our algorithm outputs a class for each instance
and the class membership for these samples need not be the same.

5. Experiments

In this section, we compare regular SVM, probabilistic batch learning (BatchProb), and BatchSV M.
Note that in order to make the comparison consistent, BatchProb was implemented by using the
same linear programming formulation as BatchSV M but using Equation (12) instead of Equation
(3). We also compare PSVM based techniques introduced in Section 3: (1) the proximal ver-
sion of batch learning presented in (6) where θ is determined as a parameter via cross-validation
(BatchPSV M−cv), and (2) the alternating optimization method presented in (7), where θ is learned
automatically (BatchPSV M− learned).

5.1 Implementation Details

We present the details of the similarity function that we used in our experiments and how we tuned
the parameters of our methods in the next sections.

5.1.1 THE SIMILARITY FUNCTION

As mentioned earlier, the matrix R j represents the level of correlation between all pairs of candi-
dates from a batch (an image in our case) and it is a function of the pairwise-similarity between
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the candidates. One needs to produce the R j matrix using the appropriate similarity metric that
represents the pairwise-similarities the best for a particular application.

In our CAD applications, we have used the Euclidean distances between candidates inside a
medical image as our similarity metric to define the covariance matrix R j. Let rp and rq represent
the coordinates of two candidates, B j

p and B j
q on the jth image. For our experiments, we used the

Euclidean distance between rp and rq to define the pairwise-similarity, s(p,q), between B j
p and B j

q

as following:

s(p,q) = e
−

‖rp−rq‖2

ς2 .

If the matrices s(p,q) are sparse, it aids the computational efficiency of our algorithms, both in
terms of memory use and speed of implementation. Note also that the matrix is naturally sparse, due
to the rapid decrease of the exponential function. Nevertheless, to make the implementation stable
and memory efficient (by avoiding storing all the elements of these matrices), we found it useful
to discretize the continuous similarity function, s(p,q) to the binary similarity function, s∗(p,q) by
applying a threshold as following:

s∗(p,q) =

{

0 s(p,q) < e−4,
1 s(p,q) ≥ e−4.

(13)

In all experiments, we set the threshold at e−4 to provide us with a similarity of one if the neighbor
is at a 95% confidence level of belonging to the same density as the candidate assuming that the
neighborhood is a Gaussian distribution with mean equal to the candidate and variance ς2 = 1

α .
Each element of the matrix R is given by:

Rpq = s∗(p,q).

In order to observe the effects of binarization of the R matrix, we also run experiments on
BatchSV M without applying the threshold in Equation (13), that is, R = s(p,q). We refer to this
version of BatchSV M as BatchSV Mcont in our experiments.

5.1.2 PARAMETER TUNING

All our parameters in these experiments are tuned by 10-fold patient cross-validation on the training
data (i.e., the training data is split into ten folds). During cross-validation, a range of parameters
(θ,σ,ς) were evaluated for the proposed methods. In BatchPSV M − learned, the parameter θ is
learned automatically through equation (7).

5.2 Evaluation Method

As we explained earlier, R used in the proposed methods is produced from the spatial locations
of the candidates. These spatial locations can be considered as extra information provided to our
methods. In order to make fair comparisons between our methods and standard SVM and PSVM, we
added the spatial locations (x,y,z coordinates of the candidates in 3D image) to the feature vectors
of the candidates.

Receiver Operating Characteristic (ROC) plots are used to study the classification accuracy of
these techniques on three CAD applications for detecting pulmonary embolism, colon cancer, and

194



USING LOCAL DATA DEPENDENCIES TO IMPROVE LARGE MARGIN CLASSIFIERS

PE Colon Lung

train test train test train test
SVM 16.87 0.00 7.22 0.00 1.58 0.00
BatchProb 19.26 4.71 105.14 18.63 46.42 30.02
BatchSV M 11.39 0.23 13.45 0.91 11.73 2.81
BatchSV Mcont 13.42 0.74 61.09 5.93 14.69 3.01
PSVM 0.22 0.00 0.13 0.00 0.05 0.00
BatchPSV M− cv 1.02 0.23 3.67 0.89 4.80 2.82
BatchPSV M− learned 1.39 0.33 4.08 0.89 5.44 2.79

Table 2: Training and testing times for each classifier are displayed in seconds.

lung cancer. In clinical practice, CAD systems are evaluated on the basis of a somewhat domain-
specific metric: to maximize the fraction of positives that are correctly identified by the system
while displaying at most a clinically acceptable number of false-marks per image. We report this
domain-specific metric in an ROC plot, where the y-axis is a measure of sensitivity and the x-axis is
the number of false-marks per patient (in our case, per image is also per patient). Sensitivity is the
number of patients diagnosed as having the disease divided by the number of patients that has the
disease. High sensitivity and low false-marks are desired. All classification algorithms are trained
on a training data set and evaluated on a sequestered (held-out) test set.

The area under the ROC curve is a commonly used criteria to evaluate the performance of an
algorithm. Table 3 displays the area under the ROC curve of each classifier. It is important to
note that the areas under the curve presented in Table 3 are calculated considering the entire false
positive range which tends to underestimate the superiority of our proposed approach with respect
to traditional approaches around the range of false positives acceptable for CAD applications.

PSVM, BatchPSV M− cv and BatchPSV M− learned algorithms require solving a set of linear
equations while training, therefore we expect them to be faster than the other methods mentioned
in this paper, namely SVM, BatchProb and BatchSV M. In order to compare the time performances
of the methods, we measured the CPU time consumed by each classifier. Table 2, displays the
training and testing times required by the algorithms. The training times obtained for the parametric
methods (SVM, BatchProb, BatchSV M, PSVM and BatchPSV M − cv) are the total times divided
by the number of cross-validations to find the best value of θ. On the other hand, the training time
for BatchPSV M− learned is the total time divided by the number of iterations that BatchPSV M−
learned required while converging to the optimum value of θ. We measured the training times this
way to be able to make a fair comparison between the algorithms.

We ran our experiments on an Intel Pentium 4 CPU with 2.8 GHz clock frequency and 1GB
RAM and the algorithms were implemented in Matlab.

5.3 Data Sources and Domain Description

When searching for descriptive features, researchers often deploy a large amount of experimental
image features to describe the identified candidates, which consequently introduces irrelevant or
redundant features. The initial large set of features is based on medically relevant characteristics:
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Figure 3: Experimental results for PE data. ROC curves obtained by (a) SVM, BatchProb,
BatchSV M and BatchSV Mcont (b) PSVM, BatchPSV M− cv and BatchPSV M− learned

the pixel intensity descriptive statistics, texture, contrast, 2D and 3D shape descriptors, and the
location of the corresponding structure.

5.3.1 EXAMPLE: PULMONARY EMBOLISM

Pulmonary embolism (PE), a potentially life-threatening condition, is a result of underlying venous
thromboembolic disease. An early and accurate diagnosis is the key to survival. Computed to-
mography angiography (CTA) has emerged as an accurate diagnostic tool for PE. However, there
are hundreds of CT slices in each CTA study. Manual reading is laborious, time consuming and
complicated by various PE look-alikes (false positives) including respiratory motion artifact, flow-
related artifact, streak artifact, partial volume artifact, stair step artifact, lymph nodes, vascular
bifurcation among many others (Masutani et al., 2002; Wittram et al., 2004). Several CAD systems
are developed to assist radiologists in this process by helping them detect and characterize emboli
in an accurate, efficient and reproducible way (Quist et al., 2004; Zhou et al., 2003).

We have collected 72 cases with 242 PEs marked by expert chest radiologists at four different
institutions (two North American sites and two European sites). For our experiments, they were
randomly divided into two sets: a training and a testing set. The training set was used to train and
validate the classifiers and consists of 48 cases with 173 PEs and a total of 3655 candidates. The
testing set consists of 24 cases with 69 true PEs out of a total of 1857 candidates. This set was only
used to evaluate the performance of the final system. A combined total of 70 features were extracted
to describe the shape, texture, size and intensity profile of each candidate.

5.3.2 EXAMPLE: COLON CANCER DETECTION

Colorectal cancer is the third most common cancer in both men and women. It is estimated that in
2004, nearly 147,000 cases of colon and rectal cancer will be diagnosed in the US, and more than
56,730 people would die from colon cancer (Jemal et al., 2004). In over 90% of the cases colon
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Figure 4: Experimental results for Colon Cancer data. ROC curves obtained by (a)
SVM, BatchProb, BatchSV M and BatchSV Mcont (b) PSVM, BatchPSV M − cv and
BatchPSV M− learned

cancer progressed rapidly is from local (polyp adenomas) to advanced stages (colorectal cancer),
which has very poor survival rates. However, identifying (and removing) lesions (polyp) when still
in a local stage of the disease, has very high survival rates, thus illustrating the critical need for early
diagnosis. The sizes of a polyp in the colon can vary from 1mm all the way up to 10cm. Most polyps
no matter how small they are, are represented by two candidates; one obtained from the prone view
and the other one from the supine view. Moreover, for large polyps or so called masses a typical
candidate generation algorithm generates several candidates across the polyp surface. Therefore
most polyps in the training data are inherently represented by multiple candidates.

For the sake of clinical acceptability, it is sufficient to detect one of these candidates during
classification. Unlike a standard classification algorithm where the emphasis is to accurately classify
each and every candidate, here we seek to classify at least one of the candidates representing a polyp
accurately. The database of high-resolution CT images used in this study were obtained from seven
different sites across US, Europe and Asia. The 188 patients were randomly partitioned into a
training and a test set. The training set consists of 65 cases containing 127 volumes. Fifty polyps
were identified in this set out of a total of 6748 candidates. The testing set consists of 123 cases
containing 237 volumes. There are 103 polyps in this set from a total of 12984 candidates. A total of
75 features were extracted to describe the shape, size, texture and intensity profile of each candidate.

5.3.3 EXAMPLE: LUNG CANCER

LungCAD is a computer aided detection system for detecting potentially cancerous pulmonary nod-
ules from thin slice multi-detector computed tomography (CT) scans. The final output of LungCAD
is provided by a classifier that classifies a set of candidates as positive or negative. This is a very
hard classification problem: most patient lung CTs contain a few thousand structures (candidates),
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Figure 5: Experimental results for Lung Cancer data. ROC curves obtained by (a)
SVM, BatchProb, BatchSV M and BatchSV Mcont (b) PSVM, BatchPSV M − cv and
BatchPSV M− learned

and only a few (≤ 5 on average) of which are potential nodules that should be identified as positive
by LungCAD, all within the run-time requirements of completing the classification on-line during
the time the physician completes their manual review.

The training set consists of 60 patients. The number of candidates labeled as nodules in the train-
ing set are 157 and the total number of candidates is 9987. The testing set consists of 26 patients. In
this testing set, there are 79 candidates labeled as nodules out of 6159 generated candidates. A total
of 15 features were used to describe the shape, size, texture and intensity profile of each candidate
region.

5.4 Discussion and Results

In our experiments, we would like to find out whether the batch methods are better than the stan-
dard SVM, whether BatchSV M is better than BatchProb in terms of accuracy and speed, whether
BatchPSV M is as accurate as BatchSV M, whether BatchPSV M is faster than BatchSV M, and
whether the automated tuning works by comparing BatchPSV M− learned with BatchPSV M− cv.

5.4.1 SVM VERSUS BATCH METHODS

Figures 3, 4, and 5 show the ROC curves for pulmonary embolism, colon cancer, and lung cancer
data respectively. In our medical applications high-sensitivity is critical as early detection of lung
and colon cancer is believed to greatly improve the chances of successful treatment (Bogoni et al.,
2005). Furthermore, high specificity is also critical, as a large number of false positives will vastly
increase physician load and lead (ultimately) to loss of physician confidence.

In Figure 3a, corresponding to the comparison of the ROC curves on the PE data set, we observe
that standard SVM can only achieve 53% sensitivity for six false positives. However, BatchSV M
achieves 80% with a remarkable improvement of 27%. BatchProb also outperforms SVM with a
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PE Colon Lung

SVM 0.79 0.91 0.98
BatchProb 0.83 0.98 0.99
BatchSV M 0.89 0.96 0.99
BatchSV Mcont 0.88 0.95 0.99
PSVM 0.77 0.91 0.99
BatchPSV M− cv 0.82 0.96 0.99
BatchPSV M− learned 0.83 0.96 0.99

Table 3: Area under the ROC curves for each classifier. (Best in bold).

64% sensitivity. As seen from the figure, the two proposed methods are substantially more accurate
than standard SVMs at any specificity level. When we compare the performances of PSVM and
BatchPSV M − learned in Figure 3b, we observe that the proposed batch method (BatchPSV M −
learned) dominates over PSVM. However, they do not improve the accuracy of PSVM as much as
BatchProb and BatchSV M do.

Colon cancer data is a relatively easier data set than pulmonary embolism since standard SVM
can achieve 54.5% sensitivity at one false positive level as illustrated in Figure 4a. However,
BatchSV M improved SVM’s performance to 84% sensitivity for the same number of false posi-
tives. Note that BatchProb improved the sensitivity further, giving 89.6% for the same specifity.
In one to ten false positives region which constitutes the region of interest in our applications, our
proposed methods outperform standard SVM significantly. PSVM’s performance is substantially
worse than that of our proposed batch methods, BatchPSV M− cv and BatchPSV M− learned.

Although SVM is very accurate for the lung cancer application, Figure 5a shows that BatchProb
and BatchSV M could still improve SVM’s performance further. BatchProb method is superior to
the other methods at two and three false positives per image. Both BatchProb and BatchSV M
outperform SVM in the 2-6 false positives per image region, which is the region of interest for
commercial clinical lung CAD systems. All three of the methods are comparable at other specificity
levels. On the other hand, we observe in Figure 5b that BatchPSV M−cv and BatchPSV M− learned
methods did not achieve significant improvements, yet they are still comparable to PSVM.

When we consider the area under the ROC curve for each of the methods in Table 3, we observe
that our proposed methods are better than SVM and PSVM in every case except one where PSVM
performs the same as our proposed methods in the lung cancer data.

In order to understand if the proposed methods are statistically significantly better than standard
SVM and PSVM, we applied Z-test to compare the areas under the ROC curves derived from the
same set of patients as explained in Hanley and McNeil (1983). The corresponding P-values that
indicate the level of confidence of the paired comparisons are presented in Table 4. The smaller the
P-values, the higher the level of confidence. Looking at the results in Table 4, we can say that the
improvements provided by the proposed methods are statistically significant for PE and Colon data
sets.
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SVM vs
BatchProb

SVM vs
BatchSV M

PSVM vs
BatchPSV M− cv

PSVM vs
BatchPSV M− learned

PE 0.05 0.01 0.06 0.05
Colon 0.01 0.01 0.05 0.05
Lung 0.81 0.81 1 1

Table 4: P-values that indicate the confidence level of significance when the proposed algorithms
are compared to SVM and PSVM in terms of the area under the ROC curves.

5.4.2 BatchSV M VERSUS BatchProb

As we discussed in Section 3, BatchProb requires calculating two matrix inversions, which can be
time consuming for large sizes of batches, whereas BatchSV M avoids matrix inversions, therefore
BatchSV M should be faster than BatchProb in both training and testing. As expected, our experi-
ments show us that BatchSV M is faster than BatchProb in every case. Note that the difference in run
times is significant for testing in PE and Colon data sets, where BatchSV M is twenty times faster
than BatchProb. On the other hand, BatchProb produced a better ROC curve in Colon data set.
Therefore, although BatchProb is slow compared to BatchSV M, it may be preferable with respect
to accuracy depending on the application.

5.4.3 BatchPSV M− learned VERSUS BatchPSV M− cv

BatchPSV M−cv requires cross-validated tuning over the parameter θ to achieve the optimum accu-
racy. One problem with tuning is that we can only tune the parameter in a limited range. Therefore
a good guess of the range of the parameter values is crucial. Another problem is that we can only
tune the parameter over discrete values which may not include the best parameter value. One way
to obtain a close approximation of the best parameter value is to divide the range of the parameter
into small steps. However this method will increase the training time since cross-validation will be
repeated as many times as the possible parameter values (in our experiments, we cross-validated
θ over 21 values). On the other hand, automated tuning (BatchPSV M − learned) is quite feasible
and avoids the problems stated above. In our experiments, BatchPSV M − learned was able to au-
tomatically converge to the optimum value of θ in only nine iterations on average while producing
comparable ROC plots with cross-validated tuning (BatchPSV M−cv) as seen in Figures 3b, 4b and
5b. The optimum θ values obtained by cross-validated tuning and automated tuning are presented in
Table 5. As observed in the table, the optimum θ values found by both algorithms are very similar.

When we compare the two methods with respect to training times, we observe that BatchPSV M−
cv is faster than BatchPSV M − learned for a fixed value of θ. However, since we repeated cross-
validation 21 times for BatchPSV M − cv and BatchPSV M − learned required nine iterations on
average, BatchPSV M− learned is actually faster than BatchPSV M− cv in overall while training.

5.4.4 BatchPSV M VERSUS BatchSV M

BatchSV M results in a linear programming problem, whereas BatchPSV M requires solving a set
of linear equations. Therefore, we expect BatchPSV M to be faster than BatchSV M while train-
ing. Experimental results on training times displayed in Table 2 confirm that it takes less time for
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PE Colon Lung

BatchPSV M− cv 1 0.6 0.1
BatchPSV M− learned 1.11 0.68 0.03

Table 5: θ values obtained by BatchPSV M− cv and BatchPSV M− learned.

BatchPSV M in the training phase. However, despite the training time performance, BatchSV M
produced better ROC curves than that of BatchPSV M in PE and lung cancer data sets as illustrated
in Figures 3 and 5 respectively. The area under the ROC curve produced by BatchSV M is also
better than BatchPSV M for these two data sets. For Colon data set, in Figure 4b, we observe that
BatchPSV M − cv and BatchSV M performed slightly better than BatchSV M − learned where both
achieve 86% sensitivity at one false positive level. Furthermore, the total area under the ROC curves
produced by BatchSV M and BatchPSV M are the same (0.96). From the experimental results, we
can draw the conclusion that BatchPSV M is a fast alternative to BatchSV M and can be preferable
in some applications.

6. Conclusions

Three related algorithms have been proposed for classifying batches of correlated data samples. Al-
though primarily motivated by real-life CAD applications, the problem occurs commonly in many
situations; our algorithms are sufficiently general to be applied in other contexts. Experimental re-
sults indicate that the proposed method can substantially improve the diagnosis of (a) early stage
cancer in the Lung & Colon, and (b) pulmonary embolisms (which may result in strokes). With the
increasing adoption of these systems in routine clinical practice, these experimental results demon-
strate the potential of our methods to impact a large cross-section of the population.

In this paper, we validated the improvement in diagnosis sensitivity that batch-wise classifica-
tion provides to CAD problems. The algorithms presented here are general and can be applied to
other domains. In other domains, one may apply other similarity metric appropriate for the appli-
cation. For data with no clear batch information, clustering can be performed to create the batches.
Extending the batch algorithms to other data and automatically learning the similarity metric are
topics for future work.
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Appendix A.

In this section, we present the connection between Equations (3) and (12), and the derivation steps
for automatically tuning the parameters in BatchPSVM.
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A.1 Connection between Equations (3) and (12)

We will show the connection between the optimization problems that result by considering the
constraints (3) and (12) by proving that the resulting objective functions are closely related to each
other.

First, let us show that the inverse
(

I+R j−1σ2
)−1

that appears in Equation (12) can be approx-

imated by the expression I−σ2R j−1.
By replacing A = σ2R j−1, in the identity:

(I+A)−1 = I−A+A2 −A3 + . . .+,∀A

we have:

(

I+R j−1σ2
)−1

= I−σ2R j−1
+σ4R j−1

R j−1
− . . .

where the terms σ4R j−1R j−1
−σ6R j−1R j−1R j−1

+ . . . can be ignored if σ is sufficiently small.
Then, we have:

(

I+R j−1σ2
)−1

∼= I−σ2R j−1

= −σ2R j−1 (

I+θR j
)

(14)

where θ = −1
σ2 provided that σ 6= 0.

Let us recall that the quadratic unconstrained objective function that results from the constraint
(12) is:

min
(w,γ,θ)∈Rn+1+1

ν
1
2

k

∑
j=1

∥

∥

∥

∥

e−D j
[

(

σ2R j−1
+ I

)−1
(B jw− eγ)

]∥

∥

∥

∥

2

+
1
2
(w′w+ γ2 +θ2) (15)

and that the quadratic unconstrained objective function that results from the constraint (3) is given
by:

min
(w,γ,θ)∈Rn+1+1

ν
1
2

k

∑
j=1

∥

∥e−D j [(θR j + I
)

(B jw− eγ)
]∥

∥

2
+

1
2
(w′w+ γ2 +θ2). (16)

Next, we will show that the objective functions (15) and (16) are related to each other under
certain assumptions. In order to ease the notation, let’s now define

g(w,γ) =
k

∑
j=1

∥

∥

∥

∥

e−D j
[

(

σ2R j−1
+ I

)−1
(B jw− eγ)

]∥

∥

∥

∥

2

.

Then if σ2 is small we have from (14) that:

g(w,γ) ≈ ∑k
j=1

∥

∥

∥
e−D j

[

−σ2R j−1 (

θR j + I
)

(B jw− eγ)
]∥

∥

∥

2

= ∑k
j=1

∥

∥

∥

(

−σ2R j−1
)

((

− 1
σ2 R j

)

e−D j
[(

θR j + I
)

(B jw− eγ)
])

∥

∥

∥

2

≤ ∑k
j=1

∥

∥

∥
σ2R j−1

∥

∥

∥

2 ∥

∥

(

− 1
σ2 R j

)

e−D j
[(

θR j + I
)

(B jw− eγ)
]∥

∥

2

≤ Ψ∑k
j=1

∥

∥− 1
σ2 R je−D j

[(

θR j + I
)

(B jw− eγ)
]∥

∥

2
= f (w,γ)
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where Ψ = max j{
∥

∥

∥
σ2R j−1

∥

∥

∥

2
}, then, if σ is small we can conclude that f (w,γ) is approximately

a “good” upper bound for g(w,γ). Furthermore if h(w,γ,θ) = w′w + γ2 + θ2,then F(w,γ,θ) =
ν 1

2 f (w,γ)+ 1
2 h(w,γ,θ) is also a “good” upper bound for G(w,γ,θ) = ν 1

2 g(w,γ)+ 1
2 h(w,γ,θ).

So intuitively, since G(w,γ,θ) and F(w,γ,θ) are non-negative convex quadratic functions, mini-
mizing F(w,γ,θ) should provide good approximate solutions to the problem of minimizing G(w,γ,θ).

Let us assume now that the number of neighboring points that affect the classification for every
point is more or less constant. This is true when R is binary and calculated only for the k nearest
neighbors or when the rows of R are normalized and approximately true when R is defined as
in (13). This is equivalent to assuming that the summation of all the rows of R is constant, or
equivalently, for every batch j:

−
1

σ2 R je ≈ ke

where k is a constant. hence:

f (w,γ) =
k

∑
j=1

∥

∥ke−D j [(θR j + I
)

(B jw− eγ)
]∥

∥

2
.

Then, solving the problem:
minw,γ,θF(w,γ,θ)

is equivalent to solving the proximal batch formulation presented in Equation (7) for some ν = ν̄
(the constant k only rescales the problem in the variables w and γ).

A.2 Derivation for Automatically Tuning the Parameters in BatchPSVM

The optimization problem in (7) is a bi-convex problem and can be solved in an iterative fashion
with two steps. At the first step, we find the optimum values of w and γ (wopt ,γopt) for a given θ. At
the second step, for wopt and γopt held fixed, we find the optimum value of θ (θopt), which will be
used at the first leg of the next iteration.

A.2.1 OPTIMIZING FOR w AND γ WITH θ FIXED

Given θ is held fixed, we can optimize (7) with respect to w and γ, and rewrite the equation as
follows:

min
(w,γ)∈Rn+1

1
2

µ
k

∑
j=1

x′P jx+q jx+K1,

where

x =

[

w

γ

]

,

P j =

[

1
µ I+θ2B j ′R j ′R jB j+θB j ′(R j ′+R j)B j+B j ′B j −θ2B j ′R j ′R je−θB j ′(R j ′+R j)e−B j ′e

−θ2e′R j ′R jB j−θe′(R j ′+R j)B j−e′B j θ2e′R j ′R je+θe′(R j ′+R j)e+e′e+ 1
µ

]

,

q j = 2

[

−θe′D jR jB j−e′D jB j

−θe′D jR je+e′D je

]
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and K1 is a constant term with respect to w and γ.
After taking the derivative of the objective function with respect to x and equating to zero, we

can obtain the solution as following:

x = −(
k

∑
j=1

P j)−1(
k

∑
j=1

q j)

A.2.2 OPTIMIZING FOR θ WITH w AND γ FIXED

When w and γ have fixed values, we can rewrite Equation (7) considering θ is the only variable as
following:

min
(w,γ)∈Rn+1

1
2

µ
k

∑
j=1

θ2N j +θM j +K2

where K2 is a constant with respect to θ and

N j = w′B j ′R j ′R jB jw−w′B j ′R j ′R jeγ− γe′R j ′R jB jw+ γ2e′R j ′R je+ 1
µ

and

M j = −e′D jR jB jw+ e′D jR jeγ−w′B j ′R j ′D j ′e+w′B j ′R j ′B jw−w′B j ′R j ′eγ
+γe′R j ′D j ′e− γe′R j ′B jw+ γe′R j ′eγ+w′B j ′R jB jw−w′B j ′R jeγ
−γe′R jB jw+ γe′R je

.

M j can be further simplified as:

M j = w′B j ′(R j ′ +R j)B jw−w′B j ′(R j ′ +R j)eγ− γe′(R j ′ +R j)B jw
+γe′(R j ′ +R j)eγ−2e′D jR jB jw+2e′D jR jeγ

using the property that A′ = A, if A is a scalar.
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