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Abstract
Subgroup analysis is an integral part of comparative analysis where assessing the treatment effect
on a response is of central interest. Its goal is to determine the heterogeneity of the treatment effect
across subpopulations. In this paper, we adapt the idea of recursive partitioning and introduce
an interaction tree (IT) procedure to conduct subgroup analysis. The IT procedure automatically
facilitates a number of objectively defined subgroups, in some of which the treatment effect is
found prominent while in others the treatment has a negligible or even negative effect. The standard
CART (Breiman et al., 1984) methodology is inherited to construct the tree structure. Also, in order
to extract factors that contribute to the heterogeneity of the treatment effect, variable importance
measure is made available via random forests of the interaction trees. Both simulated experiments
and analysis of census wage data are presented for illustration.
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1. Introduction

In comparative studies where two or more treatments are compared, subgroup analysis emerges after
the overall assessment of the treatment effect and plays an important role in determining whether
and how the treatment effect (i.e., comparison among treatments) varies across subgroups induced
by covariates. In designed clinical trials, for example, practitioners and regulatory agencies are keen
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to know if there are subgroups of trial participants who are more (or less) likely to be helped (or
harmed) by the intervention under investigation. Subgroup analysis helps explore the heterogeneity
of the treatment effect and extract the maximum amount of information from the available data.
According to a survey conducted by Assmann et al. (2000), 70% of trials published over a three-
month period in four leading medical journals involved subgroup analyses.

The research questions in subgroup analysis can be either pre-planned or raised in a post-hoc
manner. If there is a prior hypothesis of the treatment effect being different in particular subgroups,
then this hypothesis and its assessment should be part of the planned study design (CPMP, 1995).
At the same time, subgroup analysis is also often used for post-hoc exploratory identification of
unusual or unexpected results (Chow and Liu, 2004). Suppose, for example, that it is of interest
to investigate whether the treatment effect is consistent among three age groups: young, middle-
aged, and older individuals. The evaluation is formally approached by means of an interaction test
between treatment and age. If the resulting test is significant, multiple comparisons are then used
to find out further details about the magnitude and direction of the treatment effect within each age
group. To ensure a valid experimentwise false positive rate, adjustment methods such as Bonferroni
typed correction are often applied.

Limitations of traditional subgroup analysis have been extensively noted (see, e.g., Assmann et
al., 2000, Sleight, 2000, and Lagakos, 2006). First of all, the subgroups themselves, as well as the
number of subgroups to be examined, are specified by the investigator beforehand in the current
practice of subgroup analysis, which renders subgroup analysis a highly subjective process. Even
for the field expert, it is a daunting task to determine which specific subgroups should be used in
subgroup analysis. The subjectivity may lead directly to dubious results and willful manipulations.
For example, one may fail to identify a subgroup of great prospective interest or intentionally avoid
reporting subgroups where the investigational treatment is found unsuccessful or even potentially
harmful. Reliance on such analyses is likely to be erroneous and harmful. Moreover, significance
testing is the main approach in subgroup analysis. Because there is no general guideline for se-
lecting the number of subgroups, one has to examine numerous plausible possibilities to have a
thorough assessment of the treatment effect. However, a large number of subgroups inevitably
causes concerns related to multiplicity and lack of power.

In this paper, we propose a data-driven tree procedure, labelled as “interaction trees” (IT), to
explore the heterogeneity structure of the treatment effect across a number of subgroups that are
objectively defined in a post hoc manner. The tree method, also called recursive partitioning, was
first proposed by Morgan and Sonquist (1963). By recursively bisecting the predictor space, the hi-
erarchical tree structure partitions the data into meaningful groups and makes available a piecewise
approximation of the underlying relationship between the response and its associated predictors.
The applications of tree models have been greatly advanced in various fields especially since the
development of CART (classification and regression trees) by Breiman et al. (1984). Their pruning
idea for tree size selection has become and remains the current standard in constructing tree models.

The remainder of the paper is organized as follows. In Section 2, the IT procedure is presented
in detail. Section 3 contains simulation studies designed for assessing the proposed method. In
Section 4, we apply the IT procedure to analyze a wage data set, in which the goal is to determine
whether or not women are underpaid or overpaid as compared to their male counterparts and, if so,
by what amount. Section 5 concludes the paper with a brief discussion.
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2. Tree-Structured Subgroup Analysis

We consider a study designed to assess a binary treatment effect on a continuous response or output
while adjusting or controlling for a number of covariates. Suppose that the data available contain n
i.i.d. observations {(yi, trti,xi) : i = 1, . . . ,n}, where yi is the continuous response; trti is the binary
treatment indicator taking values 1 or 0; and xi = (xi1, . . . ,xip)

′ is the associated p-dimensional
covariate vector where its components can be of mixed types, that is, categorical or continuous. Our
goal in subgroup analysis is to find out whether there exist subgroups of individuals in which the
treatment shows heterogeneous effects, and if so, how the treatment effect varies across them.

Applying a tree procedure to guide the subgroup analysis is rather intuitive. First, subgroup
analysis essentially involves the interaction between the treatment and the covariates. The tree
algorithm is known as an excellent tool for exploring interactions. As a matter of fact, the first im-
plementation of decision trees is referred to as Automatic Interaction Detection (AID; Morgan and
Sonquist, 1963). However, tree methods handle interactions implicitly. It is often hard to determine
whether or not interaction really exists among variables for a given tree structure. We shall seeks
ways that enable us to explicitly assess the interaction between the treatment and the covariates.
Secondly, the hierarchical binary tree structure naturally groups data in an optimal way. By recur-
sively partitioning the data into two subgroups that show the greatest heterogeneity in treatment
effect, we are able to optimize the subgroup analysis and make it more efficient in representing the
heterogeneity structure of the treatment effect. Thirdly, the tree procedure is objective, data-driven,
and automated. The grouping strategy and the number of subgroups are automatically determined
by the procedure. The proposed method would result in a set of objectively recognized and mutu-
ally exclusive subgroups, ranking from the most effective to the least effective in terms of treatment
effect. To the best of our knowledge, Negassa et al. (2005) and Su et al. (2008), who studied tree-
structured subgroup analysis in the context of censored survival data, are the only previous works
along similar lines to our proposal.

To construct the IT model, we follow the CART (Breiman et al., 1984) convention, which
consists of three major steps: (1) growing a large initial tree; (2) a pruning algorithm; and (3)
a validation method for determining the best tree size. Once a final tree structure is obtained, the
subgroups are naturally induced by its terminal nodes. To achieve better efficiency, an amalgamation
algorithm is used to merge terminal nodes that show homogenous treatment effects. In addition, we
adopt the variable importance technique in the context of random forest to extract covariates that
exhibit important interactions with the treatment.

2.1 Growing a Large Initial Tree

We start with a single split, say s, of the data. This split is induced by a threshold on a predictor X .
If X is continuous, then the binary question whether X ≤ c is considered. Observations answering
“yes” go to the left child node tL and observations answering “no” go to the right child node tR.
If X is nominal with r distinct categories C = {c1, . . . ,cr}, then the binary question becomes “Is
X ∈ A?” for any subset A ⊂ C. When X has many distinct categories, one may place them into
order according to the treatment effect estimate within each category and then proceed as if X is
ordinal. This strategy helps reduce the computational burden. A theoretical justification is provided
by Theorem 1 in the appendix.

For a given node t, a split s yields the following 2×2 table:
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child node
treatment tL tR

1 µL
1 ȳL

1 s2
1 n1 µR

1 ȳR
1 s2

2 n2

0 µL
0 ȳL

0 s2
3 n3 µR

0 ȳR
0 s2

4 n4

Here, {µL
1 , ȳ

L
1 ,s

2
1,n1} are the population mean, the sample mean, the sample variance, and the sample

size for the treatment 1 group in the left child node tL, respectively. Similar notation applies to the
other quantities. To evaluate the heterogeneity of the treatment effect between tL and tR, we compare
(µL

1−µL
0) with (µR

1 −µR
0 ) so that the interaction between split s and treatment is under investigation.

A natural measure for assessing the interaction is given by

t(s) =
(ȳL

1− ȳL
0)− (ȳR

1 − ȳR
0 )

σ̂ ·
√

1/n1 +1/n2 +1/n3 +1/n4
, (1)

where σ̂2 = ∑4
i=1 wis2

i is a pooled estimator of the constant variance, and wi = (ni−1)/∑4
j=1(n j−

1). For a given split s, G(s) = t2(s) converges to a χ2(1) distribution. We will use G(s) as the
splitting statistic, while remaining aware that the sign of t(s) supplies useful information regarding
the direction of the comparison.

The best split s? is the one that yields the maximum G statistic among all permissible splits.
That is,

G(s?) = max
s

G(s).

The data in node t are then split according to the best split s?. The same procedure is applied to split
both child nodes: tL and tR. Recursively doing so results in a large initial tree, denoted by T0.

Remark 1: It can be easily seen that t(s) given in (1) is equivalent to the t test for testing H0 : γ = 0
in the following threshold model

yi = β0 +β1 · trti +δ · z(s)
i + γ · trti · z(s)

i + εi, (2)

where z(s)
i = 1{Xi≤c} is the binary variable associated with split s. This observation sheds light on ex-

tensions of the proposed method to situations involving different types of responses and multi-level
treatments. Note that inclusion of both trti and z(s)

i in model (2) is important to assure the corre-
spondence between the regression coefficient γ and the interaction, that is, γ = (µL

1−µL
0)−(µR

1−µR
0 ).

Remark 2: In constructing the large initial tree T0, a terminal node is declared when any one of
the following conditions is met: the node gets pure in the sense that all the covariates have the same
values; the total number of observations in the node is less than some preset minimum node size;
the depth of the node is greater than some preset maximum tree depth; for all permissible splits,
the minimum of (n1,n2,n3,n4) is below some preset threshold. The last condition is particularly
useful in preventing the “end-cut preference” problem as discussed in CART (Breiman et al., 1984,
pp. 313–317). For this purpose, the threshold can be set adaptively with respect to the depth of the
node, following the suggestion of Torgo (2001).
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2.2 Pruning

The final tree could be any subtree of T0. To narrow down the choices, Breiman et al. (1984)
proposed a pruning algorithm which results in a sequence of optimally pruned subtrees by iteratively
truncating the “weakest link” of T0. In the following, we briefly describe an interaction-complexity
pruning procedure, which is analogous to the split-complexity pruning algorithm in LeBlanc and
Crowley (1993). We refer the reader to their paper for a detailed description.

To evaluate the performance of an interaction tree T , we define an interaction-complexity mea-
sure:

Gλ(T ) = G(T )−λ· | T − T̃ |, (3)

where G(T ) = ∑h∈T−T̃ G(h) measures the overall amount of interaction in T ; the total number of

internal nodes |T − T̃ | corresponds to the complexity of the tree; and the complexity parameter
λ≥ 0 acts as a penalty for each added split. Given a fixed λ, a tree with larger Gλ(T ) is preferable.

Start with T0. For any internal node h of T0, calculate g(h) = G(Th)/ | Th − T̃h |, where Th

is the branch with h as root and |Th− T̃h| denotes the number of internal nodes of Th. Then, the
node h? with smallest g(h?) is the “weakest link,” in the sense that h? becomes ineffective first as
λ increases. Next, let T1 be the subtree after pruning off the branch Th? from T0, and subsequently
apply the same procedure to prune T1. Repeating this procedure yields a nested sequence of subtrees
TM ≺ ·· · ≺ Tm≺ Tm−1≺ ·· · ≺ T1≺ T0, where TM is the null tree with the root node only and≺means
“is a subtree of”.

2.3 Selecting the Best-Sized Subtree

The final tree will be selected from the nested subtree sequence {Tm : m = 0,1, . . . ,M}, again, based
on the maximum interaction-complexity measure Gλ(Tm) given in (3). For tree size determination
purposes, λ is suggested to be fixed within the range 2 ≤ λ ≤ 4, where λ = 2 is in the spirit of
the Akaike information criterion (AIC; Akaike, 1973) and λ = 4 corresponds roughly to the 0.05
significance level on the χ2(1) curve. Another choice is λ = ln(n), citing the Bayesian information
criterion (BIC; Schwarz, 1978).

To overcome the over-optimism due to greedy search, an “honest” estimate of the goodness-of-
split measure G(Tm) is needed. This can be achieved by a validation method. If the sample size
is large, G(Tm) can be recalculated using an independent subset of the data (termed the validation
sample). If the sample size is small or moderate, one has to resort to techniques such as v-fold
cross-validation or bootstrapping methods in order to validate G(Tm). The bootstrap method used
in LeBlanc and Crowley (1993), for example, can be readily adapted to interaction trees.

Remark 3: As another alternative, one referee suggested the use of in-sample BIC to determine
the optimally-sized subtree, which can be promising, although further research effort is needed to
determine the effective degrees of freedom (see, e.g., Ye, 1998, and Tibshirani and Knight, 1999)
associated with interaction trees.

2.4 Summarizing the Terminal Nodes

The total number of subgroups, which could be further reduced, corresponds to the automatically
selected best tree size. Existence of the overall interaction between the treatment and the covariates
can be roughly assessed by inspecting whether a null final tree structure is obtained. Unlike con-
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ventional subgroup analysis, the subgroups obtained from the IT procedure are mutually exclusive.
Due to the subjectivity in determining the subgroups and multiplicity emerging from significance
testings across subgroups, it is generally agreed that subgroup analysis should be regarded as ex-
ploratory and hypothesis-generating. As recommended by Lagakos (2006), it is best not to present
p-values for within-subgroup comparisons, but rather to give an estimate of the magnitude of the
treatment difference. To summarize the terminal nodes, one can compute the average responses
for both treatments within each terminal node, as well as their relative differences or ratios and the
associated standard errors. If, however, one would like to perform some formal statistical testings,
then it is important to conduct these tests based on yet another independent sample. To do so, one
partitions the data into three sets: the learning sample L1, the validation sample L2, and the test
sample L3. The best IT structure will be developed using L1 and L2, and then reconfirmed using
the test sample L3.

It happens often that the treatment shows homogeneous effects for entirely different causal rea-
sons in terminal nodes stemming from different branches. In this case, a merging scheme analogous
to the approach of Ciampi et al. (1986) can be useful to further bring down the number of final sub-
groups. A smaller number of subgroups are easier to summarize and comprehend and more efficient
to represent the heterogeneity structure for the treatment effect. It also ameliorates the multiplicity
issue in within-subgroup comparisons. In this scheme, one computes the t statistic in equation (1)
between every pair of the terminal nodes. The pair showing the least heterogeneity in treatment
effect are then merged together. The same procedure is executed iteratively until all the remaining
subgroups display outstanding heterogeneity. In the end, one can sort the final subgroups based on
the strength of the treatment effect, from the most effective to the least effective.

Remark 4: The hierarchical tree structure is appealing mainly because of its easy interpretability.
Apparently the merging scheme would invalidate the tree structure, yet lead to better interpretations.
It is noteworthy that this merging scheme contributes additional optimism to the results. Thus, we
suggest that amalgamation be executed with data (L1 +L2) that pool the learning sample L1 and the
validation sample L2 together, so that the resultant subgroups can be validated using the test sample
L3. We shall illustrate this scheme with an example presented in Section 4.

2.5 Variable Importance Measure via Random Forests

Variable importance measure is another attractive feature offered by recursive partitioning. In the
context of subgroup analysis, a covariate is called an effect-modifier of the treatment if it strongly
interacts with the treatment. Variable importance measure helps answer questions such as which
features or predictors are important in modifying the treatment effect. This issue cannot be fully
addressed by simply examining the splitting variables shown in a single final IT structure, as an im-
portant variable can be completely masked by other correlated ones. While there are many methods
available for extracting variable importance information, we propose an algorithm analogous to the
procedure used in random forests (Breiman, 2001), which is among the newest and most promising
developments in this regards.
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Algorithm 1: Computing Variable Importance Measure via Random Forests.

Initialize all V j’s to 0.
For b = 1,2, . . . ,B, do

• Generate bootstrap sample Lb and obtain the out-of-bag sample L−Lb.
• Based on Lb, grow a large IT tree Tb by searching over m0 randomly selected
covariates at each split.
• Send L−Lb down Tb to compute G(Tb).
• For all covariates X j, j = 1, . . . , p, do

◦ Permute the values of X j in L−Lb.
◦ Send the permuted L−Lb down to Tb to compute G j(Tb).

◦ Update V j←Vj +
G(Tb)−G j(Tb)

G(Tb)
.

• End do.

End do.
Average V j←Vj/B.

Let V j denote the importance measure of the j-th covariate or feature X j for j = 1, . . . , p. We
construct random forests of IT trees by taking B bootstrap samples Lb, b = 1, . . . ,B. This is done
by searching over only a subset of randomly selected m0 covariates at each split. For each IT tree
Tb, the b-th out-of-bag sample (denoted as L −Lb), which contains all observations that are not
in Lb, is sent down Tb to compute the interaction measure G(Tb). Next, the values of the j-th
covariate in L−Lb are randomly permuted. The permuted out-of-bag sample is then sent down Tb

to recompute G j(Tb). The relative difference between G(Tb) and G j(Tb) is recorded. The procedure
is repeated for B bootstrap samples. As a result, the importance measure V j is the average of the
relative differences over all B bootstrap samples. The whole procedure is summarized in Algorithm
1.

The variable importance technique in random forests has been increasingly studied in its own
right and applied as a tool for variable selection in various fields. This method generally belongs
to the “cost-of-exclusion” (Kononenko and Hong, 1997) feature selection category, in which the
importance or relevance of a feature is determined by the difference in some model performance
measure with and without the given feature included in the modeling process. In Algorithm 1,
random forests make available a flexible modeling process while exclusion of a given feature is
carried out by permutating its values.

3. Simulated Studies

This section contains simulated experiments designed to investigate the performance of the IT pro-
cedure. We generate data from six models outlined in Table 1. Each data set consists of a contin-
uous response Y , a binary treatment, and four covariates X1–X4 simulated from a discrete uniform
distribution over (0.02,0.04, . . . ,1.00). However, only a subset of the covariates interact with the
treatment.
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Error
Model Form Distribution

A Y = 2+2 · trt+2Z1 +2Z2 + ε N (0,1)
B Y = 2+2 · trt+2Z1 +2Z2 +2 · trt ·Z1 Z2 + ε N (0,1)
C Y = 2+2 · trt+2Z1 +2Z2 +2 · trt ·Z1 +2 · trt ·Z2 + ε N (0,1)
D Y = 10+10 · trt · exp{(X1−0.5)2 +(X2−0.5)2}+ ε N (0,1)

E Y = 2+2 · trt+2Z1 +2Z2 +2 · trt ·Z1 +2 · trt ·Z2 + ε Unif(−
√

3,
√

3)
F Y = 2+2 · trt+2Z1 +2Z2 +2 · trt ·Z1 +2 · trt ·Z2 + ε exp(1)

Table 1: Models used for assessing the performance of the IT procedure. Note that Z1 = 1{X1≤0.5}
and Z2 = 1{X2≤0.5}.

Specifically, Model A is a plain additive model with no interaction. It helps assess the type I
error or false positive rate when using the IT procedure. Model B involves a second-order interaction
between the treatment and two terms of thresholds, both at 0.5, on X1 and X2. If the IT procedure
works, a tree structure with three terminal nodes should be selected. In Model C, the two thresholds,
each interacting with the treatment, are present in an additive manner. Model D involves interaction
of complex forms other than cross-products. A large tree is expected in order to represent the
interaction structure in this case. Models E and F are similar to Model C, but with different error
distributions. They are useful in evaluating the robustness of the IT procedure to deviations from
normality.

Only one set of sample sizes is reported: 800 observations in the learning sample L1 and 400
observations in the validation sample L2. Each model is examined for 200 simulation runs and four
choices of λ, {2,3,4, ln(400)}, are considered for determining the best tree structure. The relative
frequencies of the final tree sizes selected by the IT procedure are presented in Table 2. The expected
final tree size for each model is highlighted in boldface. Note that both X1 and X2, but neither X3

nor X4, are actually involved in models B-F. To address the variable selection issue, we count the
frequency of “hits” (i.e., the final tree selected by the IT procedure is split by X1 and X2 and only by
them). The results are presented in the last column of Table 2.

We first examine the results for Model A, which involves no interaction. The IT procedure
correctly selects the null tree structure at least 83.5% of the time. When λ = ln(n), the percentage
of correct selections becomes 98.5%. The 98.5% of correct selections yields an empirical size of
100%-98.5% = 1.5%, which is well within the acceptable level. This implies that the chance for the
IT procedure to extract an unsolicited interactions is really small. For models B-F, the IT procedure
also successfully identifies the true final tree structure and selects the desired splitting variables a
majority of the time. Moreover, from results for models E and F, it seems rather robust against
deviations from normality. When comparing different complexity parameters, we see that λ = ln(n)
provides the best selection. This is mainly because of the large sample size and relatively strong
signals considered in our simulation configuration (see, e.g., McQuarrie and Tsai, 1998).

To evaluate the proposed variable importance technique, we generate a data set containing 1,200
observations from each model. Then a total number of 500 random interaction trees with m0 = 1 are
used to compute the variable importance. In Figure 1, graphs A-I, B-I, . . ., F-I display the resultant
importance scores for models A-F, respectively. For comparison, we also apply a simple feature
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Complexity Final Tree Size
Model λ 1 2 3 4 5 6 ≥ 7 Hits

A 2 83.5 5.0 2.5 2.5 2.0 0.5 4.0 83.5
3 94.0 3.5 0.5 0.5 1.0 0.5 0.0 94.0
4 97.5 2.5 0.0 0.0 0.0 0.0 0.0 97.5

ln(n) 98.5 1.5 0.0 0.0 0.0 0.0 0.0 98.5

B 2 0.0 0.0 67.0 9.0 9.0 2.5 12.5 77.5
3 0.0 0.0 83.0 6.5 5.5 1.0 4.0 90.0
4 0.0 0.0 89.0 6.5 3.0 1.0 0.5 95.0

ln(n) 1.0 0.0 91.5 6.5 2.0 0.0 0.0 97.5

C 2 0.0 0.0 0.0 66.5 10.5 9.5 13.5 77.5
3 0.0 0.0 0.0 82.5 7.5 6.0 4.0 90.5
4 0.0 0.0 0.0 88.0 6.5 4.5 1.0 95.0

ln(n) 0.0 0.0 0.0 94.0 4.0 1.5 0.5 98.5

D 2 0.0 0.0 0.0 0.0 13.0 10.5 76.5 66.5
3 0.0 0.0 0.0 0.5 24.5 16.0 59.0 83.5
4 0.0 0.0 0.0 0.5 35.5 18.5 45.5 91.5

ln(n) 0.0 0.0 2.0 3.5 54.0 16.0 24.5 96.0

E 2 0.0 0.0 0.0 74.0 12.0 6.0 8.0 82.0
3 0.0 0.0 0.0 88.5 7.5 3.5 0.5 93.0
4 0.0 0.0 0.0 93.5 5.0 1.0 0.5 97.5

ln(n) 0.0 0.0 0.0 97.0 2.5 0.0 0.5 98.5

F 2 0.0 0.0 0.0 67.5 13.0 8.0 11.5 76.5
3 0.0 0.0 0.0 84.5 7.0 4.5 4.0 91.0
4 0.0 0.0 0.0 90.0 7.5 1.5 1.0 96.5

ln(n) 0.0 0.0 0.0 95.0 4.5 0.5 0.0 99.0

Table 2: Relative frequencies (in percentages) of the final tree size identified by the interaction tree
(IT) procedure in 200 runs.

selection approach, in which the importance of a covariate, say, X , is determined by the p-value for
testing H0 : β3 = 0 in the interaction model y = β0 + β1x + β2 trt + β3 trt · x + ε. In Figure 1, graphs
A-II, B-II, . . ., F-II depict the resulting logworths for models A-F, where the logworth is defined as
minus base 10 logarithm of the p-value. Both methods are able to pick up important variables in
many cases. Nevertheless, the latter approach is focused on cross-product and first-order interac-
tions only, which accounts for its failure in models B and D. In Figure B-II, it fails to identify X1
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Figure 1: Variable Importance via Random Forests and Feature Selection for the Six Simulation
Models. With a data set consisting of 1200 observations generated from Model A, Graph
A-I plots the variable importance score computed from 500 random interaction trees
while Graph A-II plots the logworth of the p-value from the simple feature selection
method. Note that logworth = − log10(p-value). Similar methods were used to make
other graphs.

and mistakenly selects X4. In Figure D-II, none of the covariates are found important.

Remark 5: Comparatively, the random forest approach facilitates better comprehensive evaluation
by automatically taking into consideration interactions of higher orders and complex forms. As
pointed out by an anonymous reviewer, some other feature selection methods such as the wrapper
and/or embedded algorithms can be adopted to detect interactions. It would be interesting in future
research to have a more comprehensive study in comparing various algorithms with the variable
importance measure obtained from random forests.
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Name Type Levels Description
X1 age continuous 70 age
X2 workclass categorical 4 class of worker
X3 education ordinal 16 education levels
X4 marital categorical 7 marital status
X5 industry1 categorical 22 major industry
X6 occupation2 categorical 13 major occupation
X7 race categorical 5 race
X8 union categorical 2 member of a labor union
X9 fulltime categorical 6 full or part time employment
X10 tax.status categorical 6 tax filer status
X11 household.sum3 categorical 7 detailed household summary
X12 n.emplyee ordinal 7 number of persons worked for employer
X13 country.birth categorical 39 country of birth
X14 citizenship categorical 7 US citizen or not
X15 self.employed categorical 3 own business or self employed
X16 weeks.worked continuous 53 weeks worked in year

1The specific levels for industry (X5): 1 - Agriculture; 2 - Business and repair services; 3 -
Communications; 4 - Construction; 5 - Education; 6 - Entertainment; 7 - Finance insurance and
real estate; 8 - Forestry and fisheries; 9 - Hospital services; 10 - Manufacturing-durable goods; 11 -
Manufacturing-nondurable goods; 12 - Medical except hospital; 13 - Mining; 14 - Other professional
services; 15 - Personal services except private HH; 16 - Private household services; 17 - Public
administration; 19 - Retail trade; Social services; 20 - Transportation; 21 - Utilities and sanitary
services; 22 - Wholesale trade.
2The specific levels for occupation (X6): 1- Adm support including clerical; 2 - Executive admin
and managerial; 3 - Farming forestry and fishing; 4 - Handlers equip cleaners etc; 5 - Machine
operators assmblrs & inspctrs; 6 - Other service; 7 - Precision production craft & repair; 8 - Private
household services; 9 - Professional specialty; 10 - Protective services; 11 - Sales; 12 - Technicians
and related support; 13 - Transportation and material moving.
3The specific levels for household.sum (X11): 1 - Child 18 or older; 2 - Child under 18 never
married; 3 - Group Quarters, Secondary individual; 4 - Householder; 5 - Nonrelative of householder;
6 - Other relative of householder; 7 - Spouse of householder.

Table 3: Variable Description for the Census Wage Data.

4. An Example - The CPS Data

Society has long been arguing for pay equality between women and men. Although the pay gap has
narrowed, according to current statistics, gaps between the two sexes still exist. For example, the
Bureau of Labor Statistics of the U.S. Department of Labor, in 2004, the most recent year for which
statistics are available, reported that women’s median weekly earnings were only 80 percent that of
men. This represents an improvement over 1979, when women brought home only 62 percent of
earnings compared to their male counterparts. A public policy advocate would be very interested
in specific subgroups of the working population where the pay gap between sexes is still dominant.
Traditional statistical methods consider simple cross tabulations according to a number of variables.

151



SU, TSAI, WANG, NICKERSON AND LI

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

number of terminal nodes

23
G(2)

10

G(3)9

G(4)9

G(ln(n))

Figure 2: Tree size selection for the CPS data (the plot of Gλ(Tm) vs. tree size).

The quest becomes complicated when there are a large number of classification variables to choose
from, which motivates the IT procedure.

We extract data from the Current Population Survey (CPS) database, which can be accessed at
(http://www.census.gov/cps/). The CPS is a national monthly survey of approximately 60,000
households conducted by the U.S. Census Bureau for the Bureau of Labor Statistics. Information
collected in the survey includes employment status, hours worked and income from work as well
as a number of demographic characteristics of the household members. From the CPS 1995 March
Supplement, we compile a data set, which contains 16,602 individuals with no missing value in-
volved. We use hourly wages in U.S. dollars as a measure of pay. Besides gender, there are a total
of 16 demographical covariates included. A brief description for these covariates is given in Table
3. Several of them are nominal with many levels. We only list detailed codings for those variables
appearing in the final tree structure.

To apply IT, we take a logarithmic transformation on wage. Then, we randomly divide the
entire data (denoted as L) into three sets with a ratio of approximately 2: 1: 1. A large initial tree
with 33 terminal nodes is constructed and pruned using data in L1. Sending the validation sample
L2 down each subtree, Figure 2 depicts the resultant Gλ(Tm) score versus the subtree size. It can
be seen that the four choices of complexity parameter λ = 2,3,4, and ln(n) yield the best tree sizes
of 23, 10, 9, and 9, respectively. For the sake of illustration, the best tree structure with 9 terminal
nodes as well as some related summary statistics are given in Figure 3. To merge those terminal
nodes among which the wage discrepancies due to gender are not significantly different, we run the
amalgamation algorithm with the pooled data (L1 +L2). It results in four final subgroups, which are
then ranked as I-IV according to the ratio of women versus men in terms of average wage. In Group

152



SUBGROUP ANALYSIS VIA RECURSIVE PARTITIONING

19.81 X5 ∈ {1,6,8,9}

IV1,550��
��

0.802

�
�� @

@@
16.34 X11 ∈ {4}

5.52 X1≤ 42

−12.24 X6 ∈ {3,8,13}

I 252��
��

1.612

,
,

, l
l
l

6.98 X6 /∈ {1,5,7,11}

8.99 X5 /∈ {10,11,18}

III 1,395��
��

0.883

�
�� T

TT
II 1,189��

��

1.116

�
�� @

@@
II 3,170��

��

1.150

�
�� @

@@
II 1,896��

��

1.361

����� HHHHH
14.79 X5 /∈ {3,4,10,11,14,15,17,18,20}

II 2,052��
��

1.208

,
,

, l
l
l

13.83 X6 ∈ {2,3,8,10,13}

II 819��
��

1.078

�
�� T

TT
I 4,279��

��

1.509

Figure 3: The best-sized interaction tree for the CPS data selected by BIC. For each internal node
denoted by a box, the splitting rule is given inside the box. Observations satisfying the
condition go to the left node while observations not satisfying the condition go the right
node. To the left of each internal node is the t(s) test statistic recomputed using L3.
Terminal nodes are denoted by circles and ranked with Roman numerals on the left. The
node size (i.e., number of individuals) is given inside the circle and the ratio of average
wages for males versus females is given underneath, both based on the entire data set L .

I, women are most underpaid compared to men. In Group II, women are somewhat underpaid, etc.
This specification was also made available to each terminal node in Figure 3.

Table 4 summarizes the final four subgroups. For each subgroup, the number of men and
women, as well as their average wages, are computed based on the whole data L . The two-sample
t test for comparing the average wages between men and women is also presented. This test was
computed by using the test sample L3. Since there are four tests performed, one may compare the
resultant p-values with 0.05/4 = 0.0125 by applying the Bonferroni-typed adjustment to the joint
significant level α = 0.05. As a result, Groups I, II, and IV, each marked with an asterisk, show
significant differences in wage between men and women.

Figure 3 indicates that the wage disparity between men and women varies with their occupation
(X5), industry of the job (X6), household compositional situation (X11), and age (X1). For both
Groups I and II, which constitute the majority of the population, women are paid significantly less
than men. It is particularly pronounced in Group I, where the average wage of men is $12.29 per
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Figure 4: Variable importance measures for the CPS Data: (a), via random forests of interaction
trees; (b), based on the p-value associated with the interaction terms in an interaction
model that includes the treatment and the covariate only. Note that the logworth is
− log10(p-value). The sixteen covariates are age (X1), workclass (X2), education (X3),
marital (X4), industry (X5), occupation (X6), race (X7), union (X8), fulltime (X9),
tax.status (X10), household.sum (X11), n.employee (X12), country.birth (X13),
citizenship (X14), self.employed (X15), and weeks.worked (X16).

hour while the average wage of women is only $8.03 per hour. Interestingly the IT tree has also
identified a subgroup, Group IV, in which men are underpaid compared to women. This occurs
in the following industries (X5): 1 - Agriculture; 6 - Entertainment; 8 - Forestry and fisheries; 9 -
Hospital services.

Finally, Figure 4(a) displays the computed variance importance scores for each of the 16 covari-
ates. In this calculation, B = 2,000 bootstrap samples are used and the number of randomly selected
variables, m0, is set at 4 when splitting data. It can be seen that industry (X5) and household.sum
(X11) stand out as the most important factors that contribute to the pay gap between males and fe-
males, followed by occupation (X6), tax.status (X10), marital (X4), and then age X1. This find-
ing is consistent with the tree structure in Figure 3, except for that tax.status (X10) and marital
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Male Female Two-Sample t Test
size average size average (computed from the test sample)

Node (n1) wage (ȳ1) (n0) wage (ȳ0) t p-value
I 3220 12.29 1311 8.03 13.449 < 0.0001?

II 3800 10.11 5326 8.25 7.678 < 0.0001?

III 449 8.08 946 9.15 −0.306 0.7598
IV 501 9.43 1049 11.76 −5.560 < 0.0001?

Table 4: Summary statistics for the four final subgroups of the CPS data. Note that (n1, ȳ1,n0, ȳ0)
are computed using the whole data. The two-sample t test statistics are calculated from
the test sample L3. The associated p-values are obtained for two-sided tests.

(X4) have been masked out. The simple feature selection technique is also used to determine the
importance of each covariate. Figure 4(b) depicts the resulting logworths. While both plots show
some similarities, one should keep in mind that evaluation based on the latter approach is rather
restrictive.

5. Discussion

In data analysis, it is important to distinguish two types of interactions. If there is no directional
change in terms of the comparison, that is, (µL

1 − µL
0) · (µR

1 − µR
0 ) > 0, the interaction is said to be

quantitative; otherwise, it is termed as qualitative. The presence of qualitative interactions causes
more concerns than quantitative ones (see, e.g., Gail and Simon, 1985). The results from the IT
procedure can help to address this issue. For instance, the qualitative interaction in the the CPS
example is obviously present among the final four subgroups.

The proposed IT procedure is applicable to a number of different areas. For example, the IT
structure can help identify the most and least effective subgroups for the investigational medicine.
If the new medicine shows an overall effect that is significant, and, if even in the least effective
subgroup under examination, it does not present any harmful side effects, then its release may be
endorsed without reservation. In trials where the proposed compound is not found to be significantly
effective, the tree-structured subgroup analysis may identify sub-populations that contribute to the
failure of the compound. Information gained in this manner could provide the basis for establish-
ing inclusion/exclusion criteria in future trials, and as such, could be of considerable value to the
existing efforts in synthesizing compounds to fight deadly diseases such as cancer and HIV/AIDS.
We believe that efforts along these lines make subgroup analysis an efficient and valuable tool for
research in many application fields.
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Appendix A. Categorical Splits

The following theorem provides motivation and justification for the computationally efficient strat-
egy of “ordinalizing” categorical covariates in interaction trees as discussed in Section 2.1. It is
analogous to Theorem 9.6 of CART (Breiman et al., 1984, pp. 274–278) yet makes a stronger
statement.

Consider splits based on a categorical covariate X , whose possible values range over a finite
set C = {c1, . . . ,cr}. Then any subset A ⊂ C, together with its complement A′ = C−A, induces a
partition of the data into tL = {(yi, trti,xi) : xil ∈ A} and tR = {(yi, trti,xi) : xil ∈ A′} . In the setting
of interaction trees, the splitting rule seeks an optimal partition (A + A′) to maximize the differ-

ence in treatment effect between two child nodes
{
(µL

1−µL
0)− (µR

1 −µR
0 )

}2
, where µL

1 = µA1 =
E (y |xil ∈ A, trti = 1) denotes the treatment mean in the left child node, and a similar definition
applies for the other µ’s. For the sake of convenience, we assume (µL

1 −µL
0) > (µR

1 −µR
0 ) so that an

optimal split maximizes (µL
1−µL

0)− (µR
1 −µR

0 ).

Theorem 1. Let µck = E(y |X = c, trt = k) for any element c ∈C and k = 0,1. If (A + A′) forms
an optimal partition of C, then we have

µc11−µc10 ≥ µc21−µc20,

for any element c1 ∈ A and c2 ∈ A′.

Proof. Define
d1 = min

c∈A
(µc1−µc0) and d2 = max

c∈A′
(µc1−µc0) .

Accordingly, it suffices to show that d1 ≥ d2.
To proceed, let

A1 = {c ∈ A : µc1−µc0 = d1}
A2 =

{
c ∈ A′ : µc1−µc0 = d2

}

A3 = {c ∈ A : µc1−µc0 > d1}
A4 =

{
c ∈ A′ : µc1−µc0 < d2

}
.

Thus A = A1 + A3 and A′ = A2 + A4. We reserve a generic notation d = µ1− µ0 for the treatment
effect. Define

di = ∑
c∈Ai

(µc1−µc0) Pr{X j = c},

di j = ∑
c∈Ai∪A j

(µc1−µc0) Pr{X j = c},

di jk = ∑
c∈Ai∪A j∪Ak

(µc1−µc0) Pr{X j = c}.

for i 6= j 6= k = 1,2,3,4. We also introduce notation Qi = Pr{X j ∈ Ai} for i = 1,2,3,4. It can be
verified that

di j =
diQi +d jQ j

Qi j
with Qi j = Qi +Q j
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and

di jk =
diQi +d jQ j +dkQk

Qi jk
with Qi jk = Qi +Q j +Qk.

Since partition (A + A′) provides an optimal partition, d13 − d24 > 0 reaches the maximum
among all possible partitions. In particular, for partition (A3 + A′3), we have d13−d24 ≥ d3−d124,
which can be shown equivalent to

d1 ≥ (1−Q3)d13 +Q3 d24, (4)

by first plugging in the following two relationships

d3 =
Q13d13−Q1d1

Q3

d124 =
Q24d24 +d1Q1

Q124

and then simplifying. Similarly, for partition (A′4 +A4), we can establish

Q4 d13 +(1−Q4)d24 ≥ d2 (5)

starting with d13−d24 ≥ d123−d4.

Now suppose that d2 ≥ d1. It follows from (5) and (4) that

Q4 d13 +(1−Q4)d24 ≥ d2 ≥ d1 ≥ (1−Q3)d13 +Q3 d24

=⇒ {Q4 d13 +(1−Q4)d24}−{(1−Q3)d13 +Q3 d24} ≥ d2−d1

=⇒ Q12(d24−d13) ≥ d2−d1, since 1−Q3−Q4 = Q1 +Q2 = Q12.

However, 0 > d24−d13 leads to 0 > d2−d1, which contradicts the condition d1 ≤ d2. Thus we must
have d1 > d2.

The theorem also holds in extreme cases such as d1 = d3 or d2 = d4, etc. The proofs are omitted.
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