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Abstract
We present a sound and complete graphical criterion for reading dependencies from the minimal
undirected independence mapG of a graphoidM that satisfies weak transitivity. Here, complete
means that it is able to read all the dependencies inM that can be derived by applying the graphoid
properties and weak transitivity to the dependencies used in the construction ofG and the inde-
pendencies obtained fromG by vertex separation. We argue that assuming weak transitivity is not
too restrictive. As an intermediate step in the derivation of the graphical criterion, we prove that
for any undirected graphG there exists a strictly positive discrete probability distribution with the
prescribed sample spaces that is faithful toG. We also report an algorithm that implements the
graphical criterion and whose running time is considered tobe at mostO(n2(e+ n)) for n nodes
ande edges. Finally, we illustrate how the graphical criterion can be used within bioinformatics to
identify biologically meaningful gene dependencies.

Keywords: graphical models, vertex separation, graphoids, weak transitivity, bioinformatics

1. Introduction

A minimal undirected independence mapG of an independence modelM is used to read indepen-
dencies that hold inM. Sometimes, however,G can also be used to read dependencies holding inM.
For instance, ifM is a graphoid that is faithful toG then, by definition, lack of vertex separation is
a sound and complete graphical criterion for reading dependencies from G, where complete means
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that it is able to read all the dependencies inM. If M is simply a graphoid, then Bouckaert (1995)
proposes a sound and complete graphical criterion for reading dependencies fromG. In this case,
complete means that it is able to read all the dependencies inM that can be derived by applying
the graphoid properties to the dependencies used in the construction ofG and the independencies
obtained fromG by vertex separation.

In this paper, we introduce a sound and complete graphical criterion for reading dependencies
from G under the assumption thatM is a graphoid that satisfies weak transitivity. Here, complete
means that it is able to read all the dependencies inM that can be derived by applying the graphoid
properties and weak transitivity to the dependencies used in the construction of G and the indepen-
dencies obtained fromG by vertex separation. Our criterion allows reading more dependencies than
the criterion in Bouckaert (1995) when the graphoid at hand satisfies weak transitivity. We show
that there exist important families of probability distributions that are graphoids and satisfy weak
transitivity. These include, for instance, the regular Gaussian probabilitydistributions.

We think that the work presented in this paper can be of great interest forthe machine learning
community. Graphs are one of the most commonly used metaphors for representing knowledge be-
cause they appeal to human intuition (Pearl, 1988). Furthermore, graphsare parsimonious models
because they trade off accuracy for simplicity. Consider, for instance,representing the independence
model induced by a probability distribution as a graph. Though this graph is typically less accurate
than the probability distribution (the graph may not represent all the (in)dependencies and those
that are represented are not quantified), it also requires less space tobe stored and less time to be
communicated than the probability distribution, which may be desirable features insome applica-
tions. Thus, it seems sensible developing tools for reasoning with graphs.Our criterion is one such
a tool: As vertex separation makes the discovery of independencies amenable to human reasoning
by enabling to read independencies offG without numerical calculation (Pearl, 1988), so does our
criterion with respect to the discovery of dependencies. There are fields where discovering depen-
dencies is more important than discovering independencies. It is in these fields where we believe
that our criterion has greater potential. In bioinformatics, for instance, thenodes ofG represent (the
expression levels of) some genes under study. Bioinformaticians are typically more interested in
discovering gene dependencies than independencies, because the former provide contexts in which
the expression level of some genes is informative about that of some othergenes, which may lead to
hypothesize dependencies, functional relations, causal relations, theeffects of manipulation experi-
ments, etc. As we will illustrate at the end of the paper, our criterion can be very helpful in such a
scenario. Our criterion also clarifies a misconception that may exist among some bioinformaticians,
namely that two genes are dependent if there exists a path inG between them. We will see that
there must exist exactly one path to draw such a conclusion. Hence, the importance of developing
a formal criterion like ours to prevent drawing erroneous conclusions.Of course, the conclusions
drawn by our criterion may be misleading ifG is learnt from a sample, which is most likely the case
in bioinformatics. However, this has nothing to do with the correctness of ourcriterion, which we
prove in subsequent sections, but with the fact thatG is an estimate.

The rest of the paper is organized as follows. We start by reviewing someconcepts in Section 2.
We show in Section 3 that assuming weak transitivity is not too restrictive. We prove in Section 4
that for any undirected graphG there exists a strictly positive discrete probability distribution with
the prescribed sample spaces that is faithful toG. This is an important result in itself as well as for
proving the completeness of the graphical criterion that we present in Section 5. An algorithmic im-
plementation of the graphical criterion is described in Section 6. We illustrate in Section 7 how the
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graphical criterion works in practice with a real world example taken from bioinformatics. Finally,
we close with some discussion in Section 8.

2. Preliminaries

The definitions and results in this section are taken from Lauritzen (1996),Pearl (1988) and Studený
(2005). We use the juxtapositionXY to denoteX ∪Y, andX to denote the singleton{X}. We use
upper-case letters to denote random variables and the same letters in lower-case to denote their
states. We useVal(X) to denote the set of possible states of a random variableX. Let U denote
a set of random variables. Unless otherwise stated, all the probability distributions, independence
models and graphs in this paper are defined overU. LetX, Y, Z andW denote four mutually disjoint
subsets ofU. An independence modelM is a set of independencies of the formX is independent of
Y givenZ. We represent that an independence is inM by X⊥⊥Y|Z and that an independence is not
in M by X6⊥⊥Y|Z. In the latter case, we may equivalently say that the dependenceX6⊥⊥Y|Z is in M.
An independence model is a graphoid when it satisfies the following five properties:

• SymmetryX⊥⊥Y|Z⇒ Y⊥⊥X|Z.

• DecompositionX⊥⊥YW |Z⇒ X⊥⊥Y|Z.

• Weak unionX⊥⊥YW |Z⇒ X⊥⊥Y|ZW .

• ContractionX⊥⊥Y|ZW ∧X⊥⊥W|Z⇒ X⊥⊥YW |Z.

• IntersectionX⊥⊥Y|ZW ∧X⊥⊥W|ZY ⇒ X⊥⊥YW |Z.

The independence model induced by any strictly positive probability distribution is a graphoid.
Hereinafter, for the sake of simplicity, we do not make any distinction betweena probability dis-
tribution and the independence model induced by it and, thus, we always refer to the former. For
instance, instead of saying that the independence model of a probability distribution p is a graphoid,
we simply say thatp is a graphoid. In this paper, we pay particular attention to strictly posi-
tive discrete probability distributions and regular Gaussian probability distributions, that is, those
whose covariance matrices are positive definite. For the strictly positive discrete probability dis-
tributions, we assume that each random variable inU has a finite sample space with at least two
possible states. Note that ifp is a strictly positive discrete probability distribution, thenp(X) and
p(X|Y = y) are uniquely defined, strictly positive and discrete. Likewise, ifp is a regular Gaus-
sian probability distribution, thenp(X) andp(X|Y = y) are uniquely determined (by a convention)
and regular Gaussian. Moreover, any regular Gaussian probability distribution satisfies composition
X⊥⊥Y|Z∧X⊥⊥W|Z⇒ X⊥⊥YW |Z.

A path betweenX1 andXn in a graphG is a sequence of distinct nodesX1, . . . ,Xn (1≤ n) such
that there exists an edge inG between every two consecutive nodes in the sequence. Given a path
X1, . . . ,Xn in a directed and acyclic graph (DAG)G, a nodeXi (1 < i < n) is a collider in the path if
Xi−1→ Xi ← Xi+1 in G. Let sep(X,Y|Z) denote thatX is separated fromY givenZ in a graphG.
Specifically,sep(X,Y|Z) holds when every path inG betweenX andY is blocked byZ. If G is an
undirected graph (UG), then a path inG betweenX andY is blocked byZ when there exists some
Z ∈ Z in the path. IfG is a DAG, then a path inG betweenX andY is blocked byZ when there
exists a nodeZ in the path such that
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• eitherZ is not a collider in the path andZ ∈ Z, or

• Z is a collider in the path and neitherZ nor any of its descendants inG is in Z.

An independence modelM is faithful to an UG or DAGG whenX⊥⊥Y|Z iff sep(X,Y|Z). Any
independence model that is faithful to some UG or DAG is a graphoid. An UG (resp. DAG)G
is an undirected (resp. directed) independence map of an independence modelM whenX⊥⊥Y|Z if
sep(X,Y|Z). Moreover, an UGG is a minimal undirected independence (MUI) map ofM when

(i) G is an undirected independence map ofM, and

(ii) no proper subgraph ofG satisfies (i).

A Markov boundary ofX ∈ U in an independence modelM is any subsetMB(X) of U\X such
that

(i) X⊥⊥U\X \MB(X)|MB(X), and

(ii) no proper subset ofMB(X) satisfies (i).

If M is a graphoid, then

(i) MB(X) is unique for eachX ∈ U,

(ii) the MUI mapG of M is unique, and

(iii) two nodesX andY are adjacent inG iff X ∈MB(Y) iff Y ∈MB(X) iff X6⊥⊥Y|U\ (XY).

A Bayesian network (BN) is a pair(G, p) whereG is a DAG andp is a discrete probability
distribution that factorizes asp = ∏X∈U q(X|Pa(X)), whereq(X|Pa(X)) denotes a conditional dis-
crete probability distribution ofX given the parents ofX in G, Pa(X). Recall that a nodeY is called
a parent ofX if Y→ X is in G. We denote byD(G)+ all the strictly positive discrete probability
distributions that can be represented by a BN with DAGG, that is, those that factorize according to
G as indicated.

3. Weak Transitivity Graphoids

Let X, Y andZ denote three mutually disjoint subsets ofU. We define a weak transitivity (WT)
graphoid as a graphoid that satisfies weak transitivityX⊥⊥Y|Z ∧X⊥⊥Y|ZV ⇒ X⊥⊥V|Z ∨V⊥⊥Y|Z
with V ∈ U \ (XYZ ). There exist important families of probability distributions that are WT
graphoids and, thus, we believe that WT graphoids are worth studying: For instance, any proba-
bility distribution that is regular Gaussian or faithful to some UG or DAG is a WT graphoid (Pearl,
1988; Studeńy, 2005). Other interesting families of probability distributions that are WT graphoids
are presented in this section.

We say that a strictly positive discrete probability distributionp has context-specific dependen-
cies if there exists someW ⊆U such thatp(U\W|W = w) does not have the same (in)dependencies
for all w. The theorem below proves that for any DAGG, in a measure-theoretic sense (Hal-
mos, 1966), almost all the probability distributions inD(G)+ have no context-specific depen-
dencies. This result is not only relative to the DAGG, but also to the measure considered, the

1074



AN ALGORITHM FOR READING DEPENDENCIES FROM THEMUI M AP OF A WT GRAPHOID

Lebesgue measure in our case, as well as to the dimension ofD(G)+. For this purpose, we dis-
cuss first how we parameterize the probability distributions inD(G)+. Since each probability
distribution p in D(G)+ factorizes asp = ∏X∈U q(X|Pa(X)), p can be parameterized by param-
eterizing each probability tableq(X|Pa(X)). LetVal(X) = {x1, . . . ,xn(X)} denote then(X) possible
states of the random variableX. Let θxi ,pa (1 ≤ i ≤ n(X)) denote the parameter corresponding
to q(X = xi |Pa(X) = pa) with pa ∈ Val(Pa(X)). Note that the parameters are linearly dependent

because∑n(X)
i=1 q(X = xi |Pa(X) = pa) = 1. In order to introduce properly the parameter space for

D(G)+ and the Lebesgue measure on it, we make the convention thatθxn(X),pa is linearly depen-
dent on the remaining parametersθxi ,pa with 1 ≤ i < n(X). Therefore, the number of linearly
independent parameters forp is n = ∑X∈U(n(X)− 1)(∏Y∈Pa(X) n(Y)). Let ∆d denote the sim-
plex {(s1, . . . ,sd) ∈ R

d : si ≥ 0 (1 ≤ i ≤ d),∑d
i=1si ≤ 1}. The Lebesgue measure of∆d wrt R

d

is 1/d! (Stein, 1966). Let∆+
d denote the set{(s1, . . . ,sd) ∈ R

d : si > 0(1≤ i ≤ d),∑d
i=1si < 1}.

The Lebesgue measure of∆+
d wrt R

d is also 1/d!, because the difference between∆d and∆+
d has

Lebesgue measure zero. Then, the parameter space forD(G)+ is×X∈U ×pa∈Val(Pa(X))∆+
n(X)−1,

whose Lebesgue measure wrtR
n is ∏X∈U ∏pa∈Val(Pa(X)) 1/(n(X)−1)!.

Theorem 1 Let G be a DAG.D(G)+ has non-zero Lebesgue measure wrtR
n, where n is the number

of linearly independent parameters in the parametrization of the probabilitydistributions inD(G)+

described above. The probability distributions inD(G)+ that are not faithful to G or have context-
specific dependencies have zero Lebesgue measure wrtR

n.

Proof First, we prove that there is a one-to-one correspondence between theelements of the pa-
rameter space forD(G)+ and the probability distributions inD(G)+. This will allow us later to
compute the Lebesgue measure wrtR

n of a subset ofD(G)+ as the Lebesgue measure wrtR
n of

the corresponding subset of the parameter space forD(G)+. Obviously, different probability dis-
tributions inD(G)+ must correspond to different elements of the parameter space forD(G)+. On
the other hand, different elements of the parameter space forD(G)+ correspond to different prob-
ability distributions inD(G)+, because the values of the parametersθxi ,pa defining a probability
distribution p coincide with the values of the conditional probabilitiesp(X = xi |Pa(X) = pa) that
are computed fromp (Pearl, 1988).

To prove the first statement in the theorem it suffices to note that, as discussed right before the
theorem, the parameter space forD(G)+ has non-zero Lebesgue measure wrtR

n. This implies that
D(G)+ also has non-zero Lebesgue measure wrtR

n because, as proven above, there is a one-to-
one correspondence between the elements of the parameter space forD(G)+ and the probability
distributions inD(G)+.

To prove the second statement in the theorem, we first prove that the probability distributions
in D(G)+ that have context-specific dependencies have zero Lebesgue measure wrt Rn. The proof
basically proceeds in the same way as that of Theorem 7 in Meek (1995). We start by showing that
for a probability distribution inD(G)+ to have context-specific dependencies, some polynomials in
the parameters in the parametrization of the probability distributions inD(G)+ must be satisfied.
Specifically, these polynomials are real polynomials in real variables that weinterpret as real func-
tions on a real Euclidean space that includes the parameter space forD(G)+. Let W ⊆ U and let
X, Y andZ denote three disjoint subsets ofU\W. SinceG is a directed independence map of any
probability distributionp∈D(G)+ (Neapolitan, 2003), for a constraint such asX⊥⊥Y|Z to be true in
p(U\W|W = w) but false inp(U\W|W = w′), two conditions must be met. First,sep(X,Y|ZW)
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must not hold inG and, second, the following equations must be satisfied:

p(X = x,Y = y,Z = z,W = w)p(Z = z,W = w)−

p(X = x,Z = z,W = w)p(Y = y,Z = z,W = w) = 0 (1)

for all x, y andz. Each equation is a polynomial in the parameters in the parametrization of the
probability distributions inD(G)+, because each termp(V = v) in the equations is a polynomial
in the parameters:p(V = v) = ∑v′ p(V = v,U \V = v′) where each termp(V = v,U \V = v′) is
a polynomial in the parameters, sincep = ∏X∈U q(X|Pa(X)). Let each variable in the polynomials
take values inR. Then, each polynomial in Equation (1) is non-trivial, that is, not all the values of
the variables are solutions to the polynomial. To prove this, it suffices to prove that there exists a
probability distributionp′ ∈D(G)+ for which the polynomial does not hold. Consider the polyno-
mial for x, y andz. Note that there exists a probability distributionp′′ ∈D(G)+ that is faithful toG
(Meek, 1995) and, thus,X6⊥⊥Y|ZW is in p′′ becausesep(X,Y|ZW) does not hold inG. Then, there
is some instantiationx′′y′′z′′w′′ of XYZW such that

p′′(X = x′′,Y = y′′,Z = z′′,W = w′′)p′′(Z = z′′,W = w′′)−

p′′(X = x′′,Z = z′′,W = w′′)p′′(Y = y′′,Z = z′′,W = w′′) 6= 0.

Then, by permuting the states of the random variables inX, Y, Z andW, we can transformp′′ into
the desiredp′. Let V ≡ XYZW , v ≡ xyzw, andv′′ ≡ x′′y′′z′′w′′. One can introduce a permutation
πX on the set of possible states ofX for eachX ∈ U: For X ∈ V, it is the transposition of the states
of X in v andv′′, and the identical mapping forX ∈ U \V. These random variable permutations
together define a permutationπ of the joint sample space ofU. Then, p′′ can be transformed by
π to p′ ≡ p′′ ◦π. Note thatp′ ∈ D(G)+ becausep′′ ∈ D(G)+, and that the parameter values ofp′

are obtained from the parameter values ofp′′ by local permutations. Finally, note thatp′(V = v) =
p′′(V = v′′) and, thus, the polynomial in Equation (1) forx, y andz does not hold forp′.

Let sol(x,y,z,w) denote the set of solutions to the polynomial in Equation (1) forx, y andz.
Then,sol(x,y,z,w) has zero Lebesgue measure wrtR

n because it consists of the solutions to a non-
trivial polynomial in real variables (Okamoto, 1973). Letsol =

S

X,Y,Z,W
S

w
T

x,y,zsol(x,y,z,w)
and recall from above that the outer-most union only involves those cases for whichsep(X,Y|ZW)
does not hold inG. Then,sol has zero Lebesgue measure wrtR

n, because the finite union and
intersection of sets of zero Lebesgue measure has zero Lebesgue measure too. Consequently, the
probability distributions inD(G)+ that have context-specific dependencies correspond to a set of
elements of the parameter space forD(G)+ that has zero Lebesgue measure wrtR

n because it
is contained insol. Since, as proven above, this correspondence is one-to-one, the probability
distributions inD(G)+ that have context-specific dependencies also have zero Lebesgue measure
wrt R

n.
To finish the proof of the second statement, it suffices to note that (i) the probability distributions

in D(G)+ that are not faithful toG have zero Lebesgue measure wrtR
n, because they are a subset

of the probability distributions that factorize according toG but are not faithful toG, and these have
zero Lebesgue measure wrtR

n (Meek, 1995), (ii) the probability distributions inD(G)+ that have
context-specific dependencies have zero Lebesgue measure wrtR

n as proven above, and (iii) the
union of the probability distributions in (i) and (ii) has zero Lebesgue measure wrt Rn, because the
finite union of sets of zero Lebesgue measure has zero Lebesgue measure too.
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Figure 1: Chain graphs in Example 1.

The theorem below proves that the marginals and conditionals of a strictly positive discrete
probability distribution that is a WT graphoid and has no context-specific dependencies are WT
graphoids too.

Theorem 2 Let p be a strictly positive discrete probability distribution that is a WT graphoid.
Then, p(U\W) for anyW ⊆ U is a WT graphoid. If p has no context-specific dependencies, then
p(U\W|W = w) for anyw andW ⊆ U is a WT graphoid.

Proof Let X, Y andZ denote three mutually disjoint subsets ofU\W. Then,X⊥⊥Y|Z is in p(U\W)
iff X⊥⊥Y|Z is in p and, thus,p(U\W) satisfies the WT graphoid properties becausep satisfies them.
Now, note thatp(U\W|W = w) is uniquely defined becausep is strictly positive. Furthermore, if
p has no context-specific dependencies, thenX⊥⊥Y|Z is in p(U\W|W = w) iff X⊥⊥Y|ZW is in p.
Then,p(U\W|W = w) satisfies the WT graphoid properties becausep satisfies them.

In a nutshell, Theorem 1 proves that for any DAGG, in the measure-theoretic sense explained
above, almost all the probability distributions inD(G)+ are faithful toGand, thus, are WT graphoids
(Pearl, 1988). On the other hand, the combination of Theorems 1 and 2 proves that, in the measure-
theoretic sense explained above, all the marginals and conditionals of almostall the probability
distributions inD(G)+ are WT graphoids. Finally, we give an example that shows that not all the
probability distributions that are WT graphoids are either regular Gaussianor faithful to some UG
or DAG.

Example 1 Let p be a strictly positive discrete probability distribution that is faithful to the DAG
in the left-hand side of Figure 1 and that has no context-specific dependencies. Such a probabil-
ity distribution exists due to Theorem 1 and, moreover, it is a WT graphoid (Pearl, 1988). Then,
p(X,Y,Z,V,A,B,C|W = w) for any w, which is uniquely defined because p is strictly positive, is a
WT graphoid by Theorem 2. However, this conditional probability distribution is neither regular
Gaussian nor faithful to any UG or DAG, because it is discrete and faithful to thechain graph in
the right-hand side of Figure 1 (Chickering and Meek, 2002; Peña et al., 2006).

4. Reading Independencies

By definition, sep is sound for reading independencies from the MUI mapG of a WT graphoid
M, that is, it only identifies independencies inM. In the regular Gaussian case,sepin G is also
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PEÑA , NILSSON, BJÖRKEGREN ANDTEGNÉR

complete in the sense that it identifies all the independencies inM that are shared by all the WT
graphoids for whichG is the MUI map, because (i) it is proven in Lněnǐcka and Mat́uš (2007) that
there exist regular Gaussian probability distributions that are faithful toG, and (ii) such probability
distributions are WT graphoids (Studený, 2005),G is their MUI map, and they only have the inde-
pendencies thatsepidentifies fromG. In this section, we extend this result to the case whereU is
discrete. Specifically, we prove that there exist strictly positive discrete probability distributions that
are faithful toG for any sample spaces (with at least two possible states) of the random variables in
U. Again, such probability distributions are WT graphoids (Pearl, 1988),G is their MUI map, and
they only have the independencies thatsepidentifies fromG. Therefore, whenU is discretesepin
G is also complete in the sense that it identifies all the independencies inM that are shared by all
the WT graphoids for whichG is the MUI map. These completeness results, in addition to being
important in themselves, are crucial for reading as many dependencies aspossible fromG, as we
will see in the next section.

Theorem 3 Let G be an UG. Let us assume that the sample space of each random variable in U
is prescribed and has at least two possible states. Then, there exists a strictly positive discrete
probability distribution with the prescribed sample spaces for the random variables inU that is
faithful to G.

Proof Create an extended DAGH of G as follows. For each edgeX−Y in G, create an auxiliary
discrete random variableWXY. Let W denote all the auxiliary random variables created. LetH be
a DAG overUW with no edges. For each edgeX−Y in G addX →WXY← Y to H. No more
edges are added toH. It is easy to see that for any three mutually disjoint subsetsX, Y andZ of U,
sep(X,Y|ZW) in H iff sep(X,Y|Z) in G.

Let p(U,W) denote any strictly positive discrete probability distribution inD(H)+ that is faith-
ful to H and has no context-specific dependencies. Such a probability distributionexists by Theorem
1. Now, fix anyw and note thatp(U|W = w) is uniquely defined becausep(U,W) is strictly posi-
tive. LetX, Y andZ denote three mutually disjoint subsets ofU. Then,X⊥⊥Y|Z is in p(U|W = w)
iff X⊥⊥Y|ZW is in p(U,W) iff sep(X,Y|ZW) in H iff sep(X,Y|Z) in G. Then,p(U|W = w) is
faithful to G. Obviously,p(U|W = w) is strictly positive and discrete.

Note that the theorem above proves that there exists a strictly positive discrete probability dis-
tribution that is faithful toG for any sample spaces (with at least two possible states) of the random
variables inU. This result is therefore stronger than Theorem 11 in Geiger and Pearl(1993), which
proves that there exists a strictly positive discrete probability distribution that isfaithful to G for
some sample spaces (with at least two possible states) of the random variables inU.

The theorem above proves that, whenU is discrete,sepin the MUI mapG of a WT graphoid
M is complete for any sample spaces of the random variables inU, where complete means that it
is able to identify all the independencies inM that are shared by all the WT graphoids for whichG
is the MUI map. However,sepin G is not complete if this is understood as being able to identify
all the independencies inM. Actually, no sound criterion for reading independencies fromG is
complete in the latter sense. An example follows.

Example 2 Let p be a discrete probability distribution that is faithful to the DAG{X→ Z,Y→ Z}.
Such a probability distribution exists (Meek, 1995). Let G denote the MUI map of p, namely the
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complete UG. Note that p is not faithful to G. However, by Theorem 3, there exists a discrete prob-
ability distribution p′ that is faithful to G. As proven in Pearl (1988), p and p′ are WT graphoids.
Let us assume that we are dealing with p. Then, no sound criterion can conclude X⊥⊥Y| /0 by just
studying G because this independence does not hold in p′, and it is impossible to know whether we
are dealing with p or p′ on the sole basis of G.

5. Reading Dependencies

In this section, we propose a sound and complete criterion for reading dependencies from the MUI
mapG of a WT graphoid. Here, complete means that it is able to read all the dependencies that can
be derived by applying the WT graphoid properties to the dependencies used in the construction of
G and the independencies obtained fromG by sep.

We define the dependence base of an independence modelM, denotedbas(M), as the set of
dependenciesX6⊥⊥Y|U \ (XY) with X,Y ∈ U. Recall from Section 2 thatX andY are adjacent in
the MUI map ofM iff X6⊥⊥Y|U \ (XY). If M is a WT graphoid, then additional dependencies in
M can be derived frombas(M) via the WT graphoid properties. For this purpose, we rephrase the
WT graphoid properties as follows. LetX, Y, Z andW denote four mutually disjoint subsets ofU.
SymmetryY6⊥⊥X|Z⇒ X6⊥⊥Y|Z. DecompositionX6⊥⊥Y|Z⇒ X6⊥⊥YW |Z. Weak unionX6⊥⊥Y|ZW ⇒
X6⊥⊥YW |Z. ContractionX6⊥⊥YW |Z ⇒ X6⊥⊥Y|ZW ∨X6⊥⊥W|Z is problematic for deriving new de-
pendencies because it contains a disjunction in the right-hand side and, thus, it should be split into
two properties: Contraction1X6⊥⊥YW |Z∧X⊥⊥Y|ZW ⇒X 6⊥⊥W|Z, and contraction2X6⊥⊥YW |Z∧X
⊥⊥W|Z ⇒ X6⊥⊥Y|ZW . Likewise, intersectionX6⊥⊥YW |Z ⇒ X6⊥⊥Y|ZW ∨X6⊥⊥W|ZY gives rise to
intersection1X6⊥⊥YW |Z ∧X ⊥⊥Y|ZW ⇒ X6⊥⊥W|ZY , and intersection2X6⊥⊥YW |Z ∧X⊥⊥W|ZY ⇒
X6⊥⊥Y|ZW . Note that intersection1 and intersection2 are equivalent and, thus, we refer to them
simply as intersection. Finally, weak transitivityX6⊥⊥V|Z ∧V6⊥⊥Y|Z ⇒ X6⊥⊥Y|Z ∨X6⊥⊥Y|ZV with
V ∈U\(XYZ ) gives rise to weak transitivity1X6⊥⊥V|Z∧V6⊥⊥Y|Z∧X⊥⊥Y|Z⇒X6⊥⊥Y|ZV, and weak
transitivity2X6⊥⊥V|Z∧V6⊥⊥Y|Z∧X⊥⊥Y|ZV⇒ X6⊥⊥Y|Z. The independence in the left-hand side of
any of the properties above holds if the correspondingsepstatement holds in the MUI mapG of
M. This is the best solution we can hope for because, as discussed in Section 4, sepin G is sound
and complete in the sense that it identifies all and only the independencies inM that are shared by
all the WT graphoids for whichG is the MUI map. Moreover, this solution does not require more
information aboutM than what it is available, becauseG can be constructed frombas(M). We
denote bysep(G) all the sepstatements holding in the MUI mapG. We define the WT graphoid

closure ofbas(M) wrt sep(G), denotedWTsep(G)
bas(M) , as the set of dependencies inbas(M) plus those

that can be derived from it andsep(G) by applying the WT graphoid properties. We now introduce
our criterion for reading dependencies from the MUI map of a WT graphoid.

Definition 4 Let X, Y andZ denote three mutually disjoint subsets ofU. Let con(X,Y|Z) denote
that X is connected toY givenZ in an UG G. Specifically, con(X,Y|Z) holds when there exist
some X1 ∈ X and Xn ∈ Y such that there existsexactly one path in G between X1 and Xn that is not
blocked by(X \X1)(Y \Xn)Z.

As an illustrative example ofcon, consider the UG in Figure 2. Someconstatements holding
in that graph arecon(A,B|CD), con(AC,BD| /0), con(A,BCD| /0) andcon(A,BD| /0) because in each
of these statement there exists a single path betweenA andB or D that is not blocked by the rest of
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Figure 2: UG to illustrate the definition ofcon: con(A,B|CD), con(AC,BD| /0), con(A,BCD| /0) and
con(A,BD| /0) hold in the graph, whereascon(A,B| /0) andcon(A,B|D) do not hold.

the nodes in the statement. On the other hand, someconstatements that do not hold in the graph
under consideration arecon(A,B| /0) andcon(A,B|D), because in both cases there exist several paths
betweenA andB that are not blocked by the rest of the nodes in the statement. Note that the place
the nodes take in the statement matters: For instance,con(A,BD| /0) holds butcon(A,B|D) does not.

We now prove thatcon is sound for reading dependencies from the MUI mapG of a WT
graphoidM, that is, it only identifies dependencies inM. Actually, it only identifies dependen-
cies inWTsep(G)

bas(M) . Hereinafter, we abbreviate a pathX1, . . . ,Xn in an UG asX1:n.

Theorem 5 Let M be a WT graphoid and G its MUI map. Then, con in G only identifies dependen-

cies in WTsep(G)
bas(M) .

Proof We first prove that ifX1:n is the only path inG betweenX1 andXn that is not blocked by
Y ⊆U\X1:n, thenX16⊥⊥Xn|Y is inWTsep(G)

bas(M) . In other words, we prove thatX16⊥⊥Xn|Y can be derived
from bas(M) andsep(G) using the WT graphoid properties. We prove it by induction overn. We
first prove it forn = 2. Let W denote all the nodes inU \X1:2\Y that are not separated fromX1

givenX2Y in G. SinceX1 andX2 are adjacent inG, X16⊥⊥X2|U\X1:2 and, thus,X1W6⊥⊥X2(U\X1:2\
Y \W)|Y due to weak union and symmetry. This together withsep(X1W,U \X1:2\Y \W|X2Y),
which follows from the definition ofW, impliesX1W6⊥⊥X2|Y due to contraction1. Note that ifU \
X1:2\Y \W = /0, thenX1W6⊥⊥X2(U\X1:2\Y \W)|Y directly impliesX1W6⊥⊥X2|Y. In any case, this
dependence together withsep(W,X2|X1Y), because otherwise there exist several unblocked paths
in G betweenX1 andX2 which contradicts the definition ofY, impliesX16⊥⊥X2|Y due to contraction1
and symmetry. Note that ifW = /0, thenX1W6⊥⊥X2|Y directly impliesX16⊥⊥X2|Y.

Let us assume as induction hypothesis that the statement that we are provingholds for alln< m.
We now prove it forn= m. Since the pathsX1:2 andX2:m contain less thanmnodes andY blocks all
the other paths inG betweenX1 andX2 and betweenX2 andXm, because otherwise there exist several
unblocked paths inG betweenX1 andXm which contradicts the definition ofY, thenX16⊥⊥X2|Y and
X26⊥⊥Xm|Y due to the induction hypothesis. This together withsep(X1,Xm|YX2), which follows from
the definition ofX1:m andY, impliesX16⊥⊥Xm|Y due to weak transitivity2.

Let X, Y andZ denote three mutually disjoint subsets ofU. If con(X,Y|Z) holds inG, then

there exist someX1 ∈ X andXn ∈ Y such thatX16⊥⊥Xn|(X \X1)(Y \Xn)Z is in WTsep(G)
bas(M) due to the
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paragraph above and, thus,X6⊥⊥Y|Z is also inWTsep(G)
bas(M) due to weak union and symmetry.

We now prove thatcon is complete for reading dependencies from the MUI mapG of a WT
graphoidM, in the sense that it identifies all the dependencies inM that follow from the information
aboutM that is available, namely the dependencies inbas(M), the independencies insep(G), and
the fact thatM is a WT graphoid.

Theorem 6 Let M be a WT graphoid and G its MUI map. Then, con in G identifies all the depen-

dencies in WTsep(G)
bas(M) .

Proof It suffices to prove (i) that all the dependencies inbas(M) are identified bycon in G, and
(ii) that consatisfies the WT graphoid properties. Since the first point is trivial, we onlyprove the
second point. LetX, Y, Z andW denote four mutually disjoint subsets ofU.

• Symmetrycon(Y,X|Z)⇒ con(X,Y|Z). Trivial.

• Decompositioncon(X,Y|Z)⇒ con(X,YW |Z). Trivial if W contains no node in the pathX1:n

in con(X,Y|Z). If W contains some node inX1:n, then letXm denote the closest node toX1 that
is in X1:n andW. Then, the pathX1:m ensurescon(X,YW |Z) because(X \X1)(YW \Xm)Z
blocks all the other paths inG betweenX1 andXm, since(X \X1)(Y \Xn)Z blocks all the
paths inG betweenX1 andXm exceptX1:m because otherwise there exist several unblocked
paths inG betweenX1 andXn, which contradictscon(X,Y|Z).

• Weak unioncon(X,Y|ZW)⇒ con(X,YW |Z). Trivial becauseW contains no node in the
pathX1:n in con(X,Y|ZW).

• Contraction1con(X,YW |Z) ∧ sep(X,Y|ZW) ⇒ con(X,W|Z). SinceZW blocks all the
paths inG betweenX andY, then the pathX1:n in con(X,YW |Z) must be betweenX and
W. To prove thatX1:n ensurescon(X,W|Z), we have to prove that this is the only path inG
betweenX1 andXn that is not blocked by(X\X1)(W \Xn)Z. Assume to the contrary that there
is a second such path inG. This second path cannot contain any node inY for sep(X,Y|ZW)
to hold. Then, this second path is not blocked by(X \X1)Y(W \Xn)Z either. However, this
contradictscon(X,YW |Z), because we have found two paths inG betweenX1 andXn that are
not blocked by(X \X1)Y(W \Xn)Z.

• Contraction2con(X,YW |Z)∧ sep(X,W|Z)⇒ con(X,Y|ZW). SinceZ blocks all the paths
in G betweenX andW, the pathX1:n in con(X,YW |Z) must be betweenX andY and, thus,
it ensurescon(X,Y|ZW).

• Intersectioncon(X,YW |Z)∧ sep(X,Y|ZW) ⇒ con(X,W|ZY). SinceZW blocks all the
paths inG betweenX and Y, the pathX1:n in con(X,YW |Z) must be betweenX and W
and, thus, it ensurescon(X,W|ZY).

• Weak transitivity2con(X,Xm|Z)∧con(Xm,Y|Z)∧sep(X,Y|ZXm)⇒ con(X,Y|Z) with Xm∈
U \ (XYZ ). Let X1:m andXm:n denote the paths incon(X,Xm|Z) andcon(Xm,Y|Z), respec-
tively. Forcon(X,Xm|Z) to hold,X1:m cannot contain any node in(X\X1)Z. Forcon(Xm,Y|Z)
to hold,Xm:n cannot contain any node in(Y \Xn)Z. Forsep(X,Y|ZXm) to hold, neitherX1:m
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Figure 3: UG in Example 4.

can contain a node inY, nor Xm:n can contain a node inX. Consequently, neitherX1:m nor
Xm:n is blocked by(X \X1)(Y \Xn)Z.

Furthermore,X1:m andXm:n only intersect onXm. To see this, assume the contrary. LetXl

(Xl 6= Xm) denote the closest node toX1 that is inX1:m andXm:n. Then, it follows from the
paragraph above that neitherX1:l andXl :n contain a node inZXm. However, this contradicts
sep(X,Y|ZXm). Consequently,X1:m followed byXm:n is a path inG betweenX1 andXn that,
as shown above, is not blocked by(X \X1)(Y \Xn)Z. It remains to prove that this path is
unique. Assume to the contrary that there exists a second such path inG. Forsep(X,Y|ZXm)
to hold, this second path must pass throughXm. However, this implies that either there exists a
second path inG betweenX1 andXm that is not blocked by(X \X1)Z, or there exists a second
path inG betweenXm andXn that is not blocked by(Y \Xn)Z. This contradictscon(X,Xm|Z)
or con(Xm,Y|Z).

• Weak transitivity1con(X,Xm|Z)∧con(Xm,Y|Z)∧sep(X,Y|Z)⇒ con(X,Y|ZXm) with Xm∈
U\ (XYZ ). Trivial because the antecedent involves a contradiction: It follows from the proof
of weak transitivity2 thatcon(X,Xm|Z) andcon(Xm,Y|Z) imply the existence of a path inG
between someX1 ∈ X andXn ∈ Y that is not blocked by(X \X1)(Y \Xn)Z, which contradicts
sep(X,Y|Z).

We devote the rest of this section to some remarks on the two theorems above. Note thatcon in
G is not complete if this is understood as being able to identify all the dependencies inM. Actually,
no sound criterion for reading dependencies fromG alone is complete in this sense. Example 2
illustrates this point. Let us now assume that we are dealing withp′ instead of withp. Then, no
sound criterion can concludeX6⊥⊥Y| /0 by just studyingG because this dependence does not hold in
p, and it is impossible to know whether we are dealing withp or p′ on the sole basis ofG.

It seems natural to expect that assuming further independence properties will result in more de-
pendencies being readable from the MUI map of an independence model and, thus, in the necessity
of developing a new graphical criterion that identifies them. However, this isnot always the case
as the following example shows. First, let us define a weak transitivity and composition (WTC)
graphoid as a WT graphoid that satisfies composition.
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Example 3 The graphical criterion con is still sound and complete for reading dependencies from
the MUI map G of a WTC graphoid M. Here, complete means that it is able to read all the de-
pendencies in M that can be derived from bas(M) and sep(G) by applying the WTC graphoid
properties. The reason is that every dependence that follows from composition also follows from
contraction1. In other words, when rephrased to derive dependencies, composition looks like
X6⊥⊥YW |Z ∧X⊥⊥Y|Z ⇒ X6⊥⊥W|Z. As before, the independence in the left-hand side holds if the
corresponding sep statement holds in G. However, if sep(X,Y|Z) then sep(X,Y|ZW). Thus, when
composition applies so does contraction1, and both imply the same consequent. Any probability dis-
tribution that is regular Gaussian or faithful to some UG or DAG is a WTC graphoid (Pearl, 1988;
Studeńy, 2005). Moreover, similarly to Theorem 2, the marginals and conditionals of a strictly
positive discrete probability distribution that is a WTC graphoid and has no context-specific depen-
dencies are WTC graphoids (Chickering and Meek, 2002; Peña et al., 2006).

A sensible question to ask is whether the definition of complete in Theorem 6 coincides with the
definition of complete as able to identify all the dependencies shared by all theWT graphoids for
which G is the MUI map. Currently, we do not have an answer to this question, thoughwe incline
to think that the definition in the theorem above is weaker than the alternative one. For instance, if
we limit ourselves to WTC graphoids, thencon in G may not identify every dependency shared by
all the WTC graphoids for whichG is the MUI map, as the following example illustrates.

Example 4 Consider any regular Gaussian probability distribution whose MUI map is theUG in
Figure 3. Such probability distributions exist (Lněnǐcka and Mat́uš, 2007). Recall that any regular
Gaussian probability distribution is a WTC graphoid. Then, X6⊥⊥Y| /0 or X6⊥⊥Z| /0 because otherwise
X⊥⊥YZ| /0 by composition, which is a contradiction as con(X,YZ| /0) holds in G and thus X6⊥⊥YZ| /0
by Theorem 5.

Assume X6⊥⊥Y| /0. Furthermore, con(Y,V| /0) holds in G and thus Y6⊥⊥V| /0 by Theorem 5. Fur-
thermore, sep(X,V|Y) holds in G and thus X⊥⊥V|Y. Consequently, X6⊥⊥V| /0 by weak transitivity2.
Likewise, X6⊥⊥W| /0 when assuming X6⊥⊥Z| /0. Then, X6⊥⊥V| /0 or X6⊥⊥W| /0 and, thus, X6⊥⊥VW| /0 by de-
composition. However, con(X,VW| /0) does not hold in G.

At the beginning of this section, we have definedbas(M) as the set of dependenciesX6⊥⊥Y|U\
(XY) with X,Y ∈ U. However, Theorems 5 and 6 remain valid if we redefinebas(M) as the set
of dependenciesX6⊥⊥Y|MB(X)\Y with X ∈ U andY ∈MB(X). A proof follows. Moreover, recall
from Section 2 thatX andY are adjacent in the MUI map ofM iff Y ∈MB(X).
Proof It suffices to prove that, whenbas(M) consists of the dependencies in the first definition,

WTsep(G)
bas(M) includes the dependencies in the second definition, and vice versa. IfX6⊥⊥Y|U \ (XY),

thenX6⊥⊥Y(U\ (XY)\ (MB(X)\Y))|MB(X)\Y due to weak union. This together withsep(X,U\
(XY) \ (MB(X) \Y)|Y(MB(X) \Y)) implies X6⊥⊥Y|MB(X) \Y due to contraction1. On the other
hand, ifX6⊥⊥Y|MB(X) \Y, thenX6⊥⊥Y(U \ (XY) \ (MB(X) \Y))|MB(X) \Y due to decomposition.
This together withsep(X,U \ (XY) \ (MB(X) \Y)|Y(MB(X) \Y)) implies X6⊥⊥Y|U \ (XY) due to
intersection.

It is proven in Becker et al. (2000) that ifM is a WT graphoid whose MUI map is a forestG,
thenM is faithful toG. The soundness ofconallows us to give an alternative proof of this result.
Proof Assume to the contrary thatM is not faithful toG. SinceG is the MUI map ofM, the previ-
ous assumption is equivalent to assume that there exists three mutually disjoint subsets ofU, sayX,
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FirstPath(X,Y,Z,L)

1 CreatePointers(L)
2 for each nodeW in L do
3 if W ∈ Z then
4 C[W] = 0
5 else
6 C[W] = 1
7 P = /0
8 Push(X,P)
9 C[X] = 0

10 while P 6= /0 andTop(P) 6= Y do
11 W = NextAd j(Top(P),L)
12 if W = /0 then
13 Pop(P)
14 else
15 if C[W] = 1 then
16 Push(W,P)
17 C[W] = 0
18 returnP

Table 1:FirstPath(X,Y,Z,L).

Y andZ, such thatX⊥⊥Y|Z is in M but sep(X,Y|Z) does not hold inG. However, ifsep(X,Y|Z)
does not hold inG, then there must exist a path inG between someX1 ∈ X andXn ∈ Y that is not
blocked by(X \X1)(Y \Xn)Z. Furthermore, sinceG is a forest, that must be the only path inG
betweenX1 andXn that is not blocked by(X \X1)(Y \Xn)Z. Consequently,con(X,Y|Z) holds inG
and, thus,X6⊥⊥Y|Z is in M due to Theorem 5. This is a contradiction and, thus,M is faithful toG.

Finally, we note that the following graphical criterion, denotedbouhere, for reading dependen-
cies from the MUI mapG of a graphoidM is introduced in Bouckaert (1995): LetX, Y andZ
denote three mutually disjoint subsets ofU, thenbou(X,Y|Z) holds when there exist someX1 ∈ X
andXn ∈ Y such thatX1 ∈MB(Xn) and eitherMB(X1)\Xn ⊆ (X \X1)(Y \Xn)Z or MB(Xn)\X1 ⊆
(X \X1)(Y \Xn)Z. The criterion is proven to be sound and complete, where complete means thatit
is able to identify all the dependencies inM that can be derived frombas(M) andsep(G) by apply-
ing the graphoid properties. It is clear thatcon identifies a superset of the dependencies identified
by bouwhenM satisfies weak transitivity. In such a case, then,con represents an advantage over
bou. As discussed in Section 3, there are important families of probability distributions that are
graphoids and satisfy weak transitivity.
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6. An Algorithm for Reading (In)Dependencies

In this section, we present an algorithm that jointly implementssepandcon. We first describe in
Table 1 the algorithmFirstPath(X,Y,Z,L) which returns a path in an UGG betweenX andY that
is not blocked byZ, if such a path exists. We assume thatG is represented as a set of adjacency
lists L, that is, each node inG has an associated ordered list containing the nodes that are adjacent
to it in G. In the algorithm, the functionCreatePointers(L) creates a pointer for each adjacency
list in L. Each pointer points to the first element of the corresponding list. If the list isempty, the
pointer is NULL. The functionNextAd j(W,L) returns the element that is pointed by the pointer
created byCreatePointers(L) for the adjacency list associated to the nodeW and, then, moves the
pointer to the next element in the list. If there is no next element, the pointer takesvalue NULL.
NextAd j(W,L) returns /0 if the pointer is NULL. In the algorithm,P is a stack storing the path
currently being explored. The functionTop(P) returns the element on the top ofP. The function
Pop(P) removes the element on the top ofP from P. The functionPush(W,P) adds the nodeW to
the top ofP. Finally,C is an array containing a binary entry for each node inG indicating whether
the node should (1) or should not (0) be considered to extendP. The algorithm setsC[W] to 0 iff
W is in Z or W was considered before and the algorithm already found a path fromX to W that is
not blocked byZ (see lines 4 and 17). A node considered before should not be considered again
because either it is still inP or if it is not in P then it does not lead toY. To see the latter point,
note that the algorithm works in a depth-first fashion: It extendsP with a nodeW that is adjacent to
the top element ofP if W is not in the blocking setZ and has not been considered before (see lines
11, 15 and 16). WhenP cannot be extended further, the algorithm backtracks by removing the top
element ofP from P and exploring an alternative extension (see lines 12 and 13). The algorithm
ends whenP is empty, meaning that all the paths inG starting withX were explored and none of
them reachedY without visiting Z, or when the top element ofP is Y, meaning that a path inG
betweenX andY that is not blocked byZ was found and stored inP.

FirstPath(X,Y,Z,L) is considered to run in at mostO(e+n) time whereeandn are the number
of edges and nodes inG, respectively. To see it, note that thanks to the use ofC each node is pushed
into P at most once. For each nodeV pushed intoP, the algorithm performs as many iterations of
lines 10-17 as adjacent nodesV has plus one last iteration whenW = /0. These iterations need not
be consecutive. So, the number of iterations of lines 10-17 that the algorithm performs is bounded
from above by 2e+n. Additionally, the algorithm performsn iterations of lines 2-6 to initializeC.
As described in the paragraph above,CreatePointers(L) is considered to run inO(n) time whereas
any other operation or function in the algorithm is considered to run inO(1) time. Consequently,
FirstPath(X,Y,Z,L) is considered to require at mostO(e+n) time.

Recall from above that we assume thatG is represented as a set of adjacency listsL and that
each of these lists is ordered. Let us now reverse the order of the elements in each of these lists and
let L′ denote the resulting set of adjacency lists. Our premise is that producingL′ from L takesO(e)
time. Obviously,L′ is also an adjacency list representation ofG. However,FirstPath(X,Y,Z,L)
andFirstPath(X,Y,Z,L′) return the same path iff that is the only path inG betweenX andY that
is not blocked byZ. We formally prove this assertion below, but first we give an example. Let
G, L and L′ be as shown in Table 2. Then,FirstPath(A,B, /0,L) returns the pathA,B whereas
FirstPath(A,B, /0,L′) returns the pathA,D,E,B.

Proof First, we introduce a total order for the paths betweenX andY in G that are not blocked by
Z. For this purpose, we associate to each such path a sequence of lengthn−1 of natural numbers
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A
B

C

D
E

Adjacency listsL

Node Adjacency list
A B, C, D
B A, C, E
C A, B
D A, E
E B, D

Adjacency listsL′

Node Adjacency list
A D, C, B
B E, C, A
C B, A
D E, A
E D, B

Table 2: Example whereFirstPath(A,B, /0,L) andFirstPath(A,B, /0,L′) return different paths.

between 0 andn− 1, wheren is the number of nodes inG. For a pathX = X1, . . . ,Xk = Y, the
sequence is[o1, . . . ,ok−1,0, . . . ,0], whereoi is the position ofXi+1 in the adjacency list associated to
Xi . We order the sequences lexicographically, which results in the desired order.

We now prove that if there exists a path betweenX andY in G that is not blocked byZ, then
FirstPath(X,Y,Z,L) returns the first such a path in the order described above. LetX = X1, . . . ,Xk =
Y denote the first such a path. It suffices to prove that at some pointP contains (from the bottom to
the top) the nodesX1, . . . ,Xj for any 1≤ j ≤ k. We prove the result by induction overj.

The result is immediate forj = 1. Assume as induction hypothesis that the result holds for all
i < j. We now prove the result forj. By the induction hypothesis, at some pointt, P contains (from
the bottom to the top) the nodesX1, . . .Xj−1. Pushing intoP a node that is adjacent toXj−1 and
appears beforeXj in the adjacency list associated toXj−1 cannot lead to a path betweenX1 andXk,
because that would contradict the assumption thatX = X1, . . . ,Xk = Y is the first path betweenX
andY in G that is not blocked byZ. Therefore, the algorithm will eventually pop fromP every
element pushed after timet and, then,Xj will be pushed intoP.

Finally, note that if we reverse the order of the nodes in each adjacency list in L, then we
also reverse the order of the paths described above. Consequently,X = X1, . . . ,Xk = Y is the last
path in the order considered byFirstPath(X,Y,Z,L′). Thus,FirstPath(X,Y,Z,L′) does not return
X = X1, . . . ,Xk = Y unless that is the only path betweenX andY in G that is not blocked byZ.

The algorithm that jointly implementssepandcon is as follows. IfFirstPath(X,Y,(X \X)(Y \
X)Z,L) andFirstPath(X,Y,(X \X)(Y \X)Z,L′) return the same path for someX ∈ X andY ∈ Y,
thencon(X,Y|Z). On the other hand, ifFirstPath(X,Y,(X \X)(Y \X)Z) returns no path for all
X ∈ X andY ∈ Y, thensep(X,Y|Z). Finally, if neither of the two previous conditions is met, then
neithercon(X,Y|Z) nor sep(X,Y|Z). The algorithm is considered to require at mostO(n2(e+n))
time.

7. An Application to Bioinformatics

Our end-goal is to apply the results in this paper to our project on atherosclerosis gene expression
data analysis in order to learn dependencies between genes. We believe that it is not unrealistic
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to assume that the probability distribution underlying our data satisfies strict positivity and weak
transitivity and, thus, that it is a WT graphoid. We base this belief on the following argument. The
cell is the functional unit of all the organisms and includes all the information necessary to regulate
its function. This information is encoded in the DNA of the cell, which is divided into a set of genes,
each coding for one or more proteins. Proteins are required for practically all the functions in the
cell. The amount of protein produced depends on the expression level of the coding gene which, in
turn, depends on the amount of proteins produced by other genes. Therefore, a dynamic BN seems to
be a relatively accurate model of the cell: The nodes represent the genes and proteins, and the edges
and parameters represent the causal relations between the gene expression levels and the protein
amounts. As a matter of fact, dynamic BNs have become very popular models ofgene networks
for the last few years (Bernard and Hartemink, 2005; Friedman et al., 1998; Husmeier, 2003; Kim
et al., 2003; Murphy and Mian, 1999; Ong et al., 2002; Perrin et al., 2003; Zou and Conzen, 2005).
It is important that the BN is dynamic because a gene can regulate some of its regulators and even
itself with some time delay. Since the technology for measuring the state of the protein nodes is not
widely available yet, the data in most projects on gene expression data analysis is a finite sample
of the probability distribution represented by the dynamic BN after marginalizingthe protein nodes
out. The probability distribution with no node marginalized out is, in the measure-theoretic sense
discussed in Section 3, almost surely faithful to the dynamic BN (Meek, 1995) and, thus, it satisfies
weak transitivity (Pearl, 1988) and, thus, so does the probability distribution after marginalizing
the protein nodes out (see Theorem 2). The assumption that the probabilitydistribution sampled
is strictly positive is justified because measuring the state of the gene nodes involves a series of
complex wet-lab and computer-assisted steps that introduces noise in the measurements (Sebastiani
et al., 2003). Obviously, the reasoning above can be extended to includeany other molecules that,
in addition to proteins, regulate gene expression but are not measured.

In the rest of this section we focus on Gaussian graphical models (GGMs)of gene networks,
which have received increasing attention from the bioinformatics community asa means to gain
insight into gene networks (Castelo and Roverato, 2006; Dobra et al., 2004; Kishino and Waddell,
2000; Li and Gui, 2006; Schäfer and Strimmer, 2005a,b; Toh and Horimoto, 2002; Waddell and
Kishino, 2000; Wang et al., 2003; Wu et al., 2003). Assume that each random variable inU rep-
resents (the expression level of) a gene in the network under study. Assume also thatU follows a
regular Gaussian probability distributionN (µ,Σ). This is a ubiquitous assumption in bioinformat-
ics. The GGM of the gene network is nothing else but the MUI map ofN (µ,Σ) (Lauritzen, 1996;
Whittaker, 1990). Therefore, two genesX andY are adjacent in the GGM iffX6⊥⊥Y|U \ (XY) or,
equivalently, iff(Σ−1)XY 6= 0 (Lauritzen, 1996). In practice,Σ is unknown and the only information
about it that is available is a finite sample fromN (µ,Σ). The usual way of proceeding in practice
consists of two steps: First, estimatingΣ from the sample and, then, making two genes adjacent in
the GGM iff the corresponding entry in the inverse of the estimate ofΣ significantly differs from
zero. We refer the interested reader to the works cited above for different solutions to these two
steps. Recall that regular Gaussian probability distributions are WT graphoids and, thus, that the
results obtained in the previous sections of this paper apply to GGMs of genenetworks.

The GGM of a gene network is a powerful tool for discovering gene independencies, because
sepis sound and complete (in the sense discussed in Section 4) for reading independencies from
it. However, bioinformaticians are typically more interested in discovering gene dependencies,
because these provide contexts in which the expression level of some genes is informative about
that of some other genes which, in some cases, can lead to hypothesize dependencies, functional
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relations, causal relations, the effects of manipulation experiments, etc. Thanks tocon, which is
sound and complete (in the sense discussed in Section 5) for reading dependencies from the GGM
of a gene network, such a model is now a powerful tool for discoveringgene dependencies too.
We illustrate this with a real world example. In Dobra et al. (2004), a GGM over 12558 nodes is
learnt from 158 breast cancer samples. Unfortunately, the GGM is neither reported in the paper
nor available from the authors. However, the authors do report in the paper the subgraph of the
GGM that is induced by some genes that are known to be related to the estrogen receptor (ER)
and TFF1 genes. ER is a transcription factor that plays a key role in breast cancer, and TFF1 is a
target of ER. This subgraph, depicted in Figure 4, suffices for our illustrative purposes. Note that
the graph in the figure is not necessarily the GGM over the nodes in the graph. It is also worth
mentioning that the nodes in the subgraph do not correspond to genes butto probe sets. A probe
set is a collection of probes designed to measure the abundance of a particular DNA sequence.
Since this sequence is for technical reasons usually shorter than that ofa gene, a gene may have
several probe sets associated with it, each measuring the abundance of adifferent subsequence of
the gene. This aims at measuring gene expression more accurately. The following genes have
multiple probe sets (nodes) in Figure 4: ER (ESR1, HG3125-HT3301), MYB (U22376, MYBa,
MYBc, MYBd, MYBe, MYBf), AR (AR, ARa), c-MAF (MAF, MAFa), TFF3 (TFF3, TFF3a,
TFF3b), XBP (XBP1, XBP1a), and IGF1R (IGF1R, IGF1Ra). According to Dobra et al. (2004),
it is known that ER regulates TFF1, FOXA1 regulates TFF1, GATA3 possibly regulates TFF1, AR
regulates ER, MAF inhibits MYB, FOXF1 possibly interacts with ER, and AR regulates IGF1R.
Had these relations been unknown, we could have obtained principled clues about them by just
applying con to the subgraph in Figure 4. For instance, ifU denotes all the 12558 probe sets
in the GGM, thencon enables us to conclude that the following gene dependencies hold in the
underlying probability distribution: ER is conditionally dependent on TFF1 since con(HG3125-
HT3301, TFF1|U \ {HG3125-HT3301, U22376, MYBa, XBP1a, TFF3, TFF3b, TFF1}), FOXA1
is conditionally dependent on TFF1 sincecon(FOXA1, TFF1|U\{FOXA1, TFF3, TFF3b, TFF1}),
GATA3 is conditionally dependent on TFF1 sincecon(GATA3, TFF1|U \ {GATA3, CA12, TFF3,
TFF3b, TFF1}), AR is conditionally dependent on ER sincecon(AR, HG3125-HT3301|U \ {AR,
TFF3, CA12, MYBa, U22376, HG3125-HT3301}), MAF is conditionally dependent on MYB since
con(MAF, MYBa|U \ {MAF, FOXA1, TFF3, CA12, MYBa}), FOXF1 is conditionally dependent
on ER sincecon(FOXF1, HG3125-HT3301|U \ {FOXF1, MAFa, MAF, FOXA1, TFF3, CA12,
MYBa, U22376, HG3125-HT3301}), and AR is conditionally dependent on IGF1R sincecon(AR,
IGF1Ra|U \ {AR, TFF3, CA12, MYBa, U22376, IGF1Ra}). Furthermore,conalso enables us to
conclude thatX6⊥⊥Y|U\{X, U22376,Y} with X,Y ∈ {MYBa, MYBc, MYBd, MYBe, MYBf } and
X 6= Y, and that TFF36⊥⊥TFF3a|U \ {TFF3, TFF3b, TFF3a}. These dependencies make sense as
they are between different probe sets of the same gene. Note that none of the dependencies discussed
above was used in the construction of the GGM. Note also that each of the dependencies discussed
above involves a conditioning set of maximum size. It is very likely that these dependencies also
hold for smaller conditioning sets, but we cannot confirm this point without seeing the complete
GGM the subgraph in Figure 4 is part of which, as discussed above, is not available. In any case, it
is clear thatconimproves the current interpretation of GGMs of gene networks by allowing reading
biologically meaningful gene dependencies.
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8. Discussion

The MUI mapG of an independence modelM is typically used to identify independencies that
hold in M via vertex separation. However, lack of vertex separation inG does not necessarily im-
ply dependency inM. In this paper, we have studied when lack of vertex separation does imply
dependency. This should be relevant for those interested in graphicalmodels, as it allows to infer
from MUI maps (i.e., without numerical calculation) not only independenciesbut also dependen-
cies. Specifically, in this paper we have introduced a graphical criterion called con for reading
dependencies fromG whenM is a WT graphoid, that is, a graphoid that satisfies weak transitivity.
Specifically,con(X,Y|Z) holds when there exist someX1 ∈ X andXn ∈ Y such that there exists
exactly one path inG betweenX1 andXn that is not blocked by(X \X1)(Y \Xn)Z. We have proven
that the criterion is sound and complete, where complete means that it is able to read all the depen-
dencies inM that can be derived by applying the WT graphoid properties to the dependencies used
in the construction ofG and the independencies obtained fromG by vertex separation. Note that our
criterion remains inconclusive if there are several unblocked paths between any node inX and any
node inY, thoughX andY may be dependent givenZ in M. However, we have shown in Section 5
that neither our criterion nor any other sound criterion can identify all the dependencies inM.

Note that our criterion is antimonotone in the following sense: If some edges are added toG
then somecon statements may not longer hold, whereas if some edges are removed fromG then
some newconstatements may hold. This antimonotone property should be taken into account ifone
is to remove ”weak” edges fromG to make it sparser, because this may result in false dependencies
being identified. However, this has nothing to do with the correctness of ourcriterion, something
that we have proved, but with the fact that after removing ”weak” edgesG is an approximation
to the true MUI map. One may consider to extend our work with a measure of confidence in the
dependencies identified by our criterion. Such a measure could be a function of the confidence in
the dependencies used in the construction ofG. We have not pursued this idea further.

A work that is closely related to ours is Bouckaert (1995), which introduces the following graph-
ical criterion, denotedbouhere, for reading dependencies from the MUI mapG of a graphoidM:
bou(X,Y|Z) holds when there exist someX1 ∈ X andXn ∈ Y such thatX1 ∈ MB(Xn) and either
MB(X1)\Xn⊆ (X \X1)(Y \Xn)Z or MB(Xn)\X1⊆ (X \X1)(Y \Xn)Z. In other words,bou(X,Y|Z)
holds when there exist two nodes, one inX and the other inY, that are neighbors inG and, more-
over, the rest of the neighbors of one of them are among the rest of the nodes in the statement. The
criterion is proven to be sound and complete, where complete means that it is able to identify all
the dependencies inM that can be derived by applying the graphoid properties to the dependencies
used in the construction ofG and the independencies obtained fromG by vertex separation.

Althoughbou is tailored to the case whereM is a graphoid, it can obviously be applied when
M is a WT graphoid. However, there are two main differences betweenbouand our criterion that
make the latter more powerful whenM is a WT graphoid. First, our criterion does not require that
X1 is adjacent toXn in G, that is, there can be a path of length greater than one betweenX1 andXn.
Second, our criterion does not require than all the nodes adjacent to either X1 or Xn in G are among
XYZ , that is, all the paths betweenX1 andXn but one can be blocked by nodes that are neither ad-
jacent toX1 nor Xn. Consequently, our criterion represents an advantage overbouwhenM is a WT
graphoid, as it allows us to identify a superset of the dependencies identified bybou. Interestingly,
WT graphoids are a rich subclass of graphoids, including any regular Gaussian distribution, any
probability distribution that is faithful to some UG or DAG, and all the marginals and conditionals
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of almost all the strictly positive discrete probability distributions that factorizeaccording to a DAG.
We believe that these probability distributions are encountered in many applications and, thus, that
the work presented in this paper is of interest to the machine learning community.For instance, reg-
ular Gaussian distributions are ubiquitous. Likewise, it is rather usual to assume that the probability
distribution underlying the domain at hand is strictly positive and faithful to someDAG, though one
may be forced to work with a marginal of it because only a subset of the nodes in the DAG are
observable. The strict positivity assumptions is usually justified by measurement errors, whereas
the DAG faithfulness assumption is usually justified by the fact that many domainshave a causality
structure. For a more concrete case example, recall our discussion on bioinformatics applications in
Section 7.

A problem that remains open is whether our criterion is complete in the sense that it identifies
all the dependencies shared by all the WT graphoids for whichG is the MUI map. This is a problem
that we are currently studying though, as we have argued in Section 5, weincline to think that our
criterion only identifies a proper subset of those dependencies. To the best of our knowledge, there
has not been any attempt to solve this problem. As a matter of fact, one can thinkof an analogous
problem forbouand the graphoids for whichG is the MUI map. However, such a problem is not
even mentioned in Bouckaert (1995).

Another problem we are currently working on is the development of a graphical criterion for
reading dependencies from the minimal directed independence maps of WT graphoids. As a first
step, we have derived such a criterion for the case where the minimal directed independence maps
are polytrees (Pẽna, 2007).

Finally, it is worth recalling that, as an intermediate step in the derivation of our criterion, we
have proved that for any UGG there exists a strictly positive discrete probability distribution that
is faithful to G for any sample spaces (with at least two possible states) of the random variables in
U. For any DAG, an analogous result follows from Meek (1995). Both results are subsumed by our
recent work in Pẽna (2009), which proves an analogous result for chain graphs. Notethat such a
result is stronger than Theorem 7.2 in Studený and Bouckaert (1998), which proves the result for
some sample spaces (with at least two possible states) of the random variables in U but not for any
such sample spaces.
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Milan Studeńy and Remco R. Bouckaert. On chain graph models for description of conditional
independence structures.The Annals of Statistics, 26:1434-1495, 1998.

Hiroyuki Toh and Katsuhisa Horimoto. Inference of a genetic network bya combined approach of
cluster analysis and graphical Gaussian modeling.Bioinformatics, 18:287-297, 2002.

Peter J. Waddell and Hirohisa Kishino. Cluster inference methods and graphical models evaluated
on NCI60 microarray gene expression data.Genome Informatics, 11:129-140, 2000.

Junbai Wang, Ola Myklebost and Eivind Hovig. MGraph: Graphical models for microarray analy-
sis.Bioinformatics, 19:2210-2211, 2003.

Joe Whittaker.Graphical Models in Applied Multivariate Statistics. John Wiley & Sons, 1990.

1093
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