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Abstract

In recursive linear models, the multivariate normal joint distribution of all variables exhibits a de-
pendence structure induced by a recursive (or acyclic) system of linear structural equations. These
linear models have a long tradition and appear in seemingly unrelated regressions, structural equa-
tion modelling, and approaches to causal inference. They are also related to Gaussian graphical
models via a classical representation known as a path diagram. Despite the models’ long history, a
number of problems remain open. In this paper, we address theproblem of computing maximum
likelihood estimates in the subclass of ‘bow-free’ recursive linear models. The term ‘bow-free’
refers to the condition that the errors for variablesi and j be uncorrelated if variablei occurs in the
structural equation for variablej. We introduce a new algorithm, termed Residual Iterative Condi-
tional Fitting (RICF), that can be implemented using only least squares computations. In contrast to
existing algorithms, RICF has clear convergence properties and yields exact maximum likelihood
estimates after the first iteration whenever the MLE is available in closed form.

Keywords: linear regression, maximum likelihood estimation, path diagram, structural equation
model, recursive semi-Markov model, residual iterative conditional fitting

1. Introduction

A system of linear structural equations determines a linear model for a set of variables by dictating
that, up to a random error term, each variable is equal to a linear combination of some of the re-
maining variables. Traditionally the errors are assumed to have a centered joint multivariate normal
distribution. Presenting a formalism for simultaneously representing causaland statistical hypothe-
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ses (Pearl, 2000; Spirtes et al., 2000), these normal linear models, whichare also calledstructural
equation models, are widely used in the social sciences (Bollen, 1989) and many other contexts.

In seminal work, Wright (1921, 1934) introducedpath diagrams, which are useful graphical
representations of structural equations. A path diagram is a graph with one vertex for each variable
and directed and/or bi-directed edges. A directed edgei → j indicates that variablei appears as
covariate in the equation for variablej. The directed edges are thus in correspondence with the
path coefficients, that is, the coefficients appearing in the linear structural equations. A bi-directed
edgei ↔ j indicates correlation between the errors in the equations for variablesi and j. Graphs
of this kind are also considered by Shpitser and Pearl (2006), who refer to them as recursive semi-
Markovian causal models.

1.1 A Motivating Example

We motivate the normal linear models analyzed here with the following example, which is adapted
from a more complex longitudinal study considered in Robins (2008).

Consider a two-phase sequential intervention study examining the effect of exercise and diet
on diabetes. In the first phase patients are randomly assigned to a number of hours of exercise
per week (Ex) drawn from a log-normal distribution. At the end of this phase blood pressure (BP)
levels are measured. In the second phase patients are randomly assignedto a strict calorie controlled
diet that produces a change in body-mass index (∆BMI). The assigned change in BMI, though
still randomized, is drawn, by design, from a normal distribution with mean depending linearly on
X = log(Ex) and BP. The dependence here is due to practical and ethical considerations. Finally at
the end of the second phase, triglyceride levels (Y) indicating diabetic status are measured.

A question of interest is whether or not there is an effect ofX on the outcomeY that is not
mediated through the dependence of∆BMI on X and BP. In other words, if there had been no
ethical or practical restrictions, and the assignment (∆BMI) in the second phase was completely
randomized and thus independent of BP andX, would there still be any dependence betweenX and
Y? Note that due to underlying confounding factors such as life history andgenetic background, we
would expect to observe dependence between BP andY even if the null hypothesis of no effect of
X onY was true and the second treatment (∆BMI) was completely randomized.

Our model consists of two pieces. First, the design of the study dictates that

X = α0 + εX, (1)

∆BMI = γ0 + γ1X + γ2BP+ ε∆BMI , (2)

whereεX ∼N (0,σ2
X) andε∆BMI ∼N (0,σ2

∆BMI) are independent. This assignment model is comple-
mented by a model describing how BP andY respond to the prior treatments:

BP= β0 +β1X + εBP, (3)

Y = δ0 +δ1X +δ2 ∆BMI + εY, (4)

where(εBP,εY)
t are centered bivariate normal and independent ofεX andε∆BMI . We denote the vari-

ances ofεBP andεY by σ2
BP andσ2

Y, respectively, and writeσBP,Y for the possibly non-zero covariance
of εBP andεY. Figure 1 shows the path diagram for this structural equation model.

Equations (1), (2) and (3) simply specify conditional expectations that can be estimated in re-
gressions. However, this is not the case in general with (4). Instead,

E[Y | X,∆BMI ] = δ̄0 + δ̄1X + δ̄2 ∆BMI
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X BP ∆BMI Y

Figure 1: Path diagram illustrating a two-phase trial with two treatments (X and∆BMI) and two
responses (BP andY). The treatmentX is randomly assigned, and∆BMI is randomized
conditional on BP andX. The bi-directed edge indicates possible dependence due to
unmeasured factors (genetic or environmental).

with

δ̄1 = δ1−
γ2σBP,Y(β1γ2 + γ1)

γ2
2σ2

BP +σ2
∆BMI

,

δ̄2 = δ2 +
γ2σBP,Y

γ2
2σ2

BP +σ2
∆BMI

,

andδ̄0 = δ0+(δ1− δ̄1)E[X]+(δ2− δ̄2)E[∆BMI ]. We see thatδ1 andδ2 would have an interpretation
as regression coefficients if: (i) the assignment of∆BMI did not depend on BP (i.e.,γ2 = 0) and
thus both treatments were completely randomized, or (ii) there were no dependence betweenεY and
εBP (i.e.,σBP,Y = 0). Similarly, in E[Y | X,BP,∆BMI ], the coefficient of∆BMI is equal toδ2 but the
coefficient forX is δ1−β1σBP,Y/σ2

BP.
In this paper we consider likelihood-based methods for fitting a large class of structural equation

models that includes the one given by (1)-(4) and can be used for consistent estimation of parameters
such asδ1. For alternative semi-parametric methods, see Robins (1999) and Gill and Robins (2001).

1.2 Challenges in Structural Equation Modelling

A number of mathematical and statistical problems arise in the normal linear models associated
with systems of structural equations:

1. Different path diagrams may induce the same statistical model, that is, family ofmultivariate
normal distributions. Suchmodel equivalenceoccurs, for example, for the two path diagrams
1→ 2 and 1← 2, which differ substantively by the direction of the cause-effect relationship.
The two associated statistical models, however, are identical, both allowing for correlation
between the two variables.

2. In many important special cases the path coefficient associated with a directed edgei→ j has
a population interpretation as a regression coefficient in a regression ofj on a set of variables
including i. However, as seen already in §1.1, this interpretation is not valid in general.

3. The parameters of the model may not be identifiable, so two different setsof parameter values
may lead to the same population distribution; for an early review of this problem see Fisher
(1966).
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4. The set of parameterized covariance matrices may contain ‘singularities’at which it cannot
be approximated locally by a linear space. At ‘singular’ points,χ2 and normal approximation
to the distribution of likelihood ratio tests and maximum likelihood estimators (MLE) may
not be valid; see, for instance, Drton (2009).

5. Iterative procedures are typically required for maximization of the likelihood function, which
for some models can be multimodal (Drton and Richardson, 2004). Such multimodality typ-
ically occurs in small samples or under model misspecification.

The problems listed may arise in models without unobserved variables and become only more
acute in latent variable models. They are challenging in full generality, but significant progress has
been made in special cases such as recursive linear models with uncorrelated errors, which are also
known as directed acyclic graph (DAG) models or ‘Bayesian’ networks (Lauritzen, 1996; Pearl,
1988). A normal DAG model is equivalent to a series of linear regressions, is always identified and
has standard asymptotics. Under simple sample size conditions, the MLE exists almost surely and is
a rational function of the data. Graphical modelling theory also solves problem 1 by characterizing
all DAGs that induce the same statistical model (Andersson et al., 1997). For more recent progress
on the general equivalence problem see Ali et al. (2009, 2005) and Zhang and Spirtes (2005).

1.3 Contribution of This Work

The requirement of uncorrelated errors may be overly restrictive in manysettings. While arbitrary
correlation patterns over the errors may yield rather ill-behaved statistical models, there are sub-
classes of models with correlated errors in which some of the nice propertiesof DAG models are
preserved; compare McDonald (2002). In this paper we consider pathdiagrams in which there are
no directed cycles and no ‘double’ edges of the formi→↔ j (compare Def. 2 and 3). Since such
double edges have been called ‘bows’, we call this classbow-free acyclic path diagrams(BAPs).
An example of a BAP arose in our motivating example in §1.1; see Figure 1. Whileinstrumental
variable models, which are much studied in economics, contain bows, most modelsin other social
sciences are based on BAPs. For instance, all path diagrams in Bollen (1989) are BAPs.

Bow-free acyclic path diagrams were also considered by Brito and Pearl(2002) who showed that
the associated normal linear models are almost everywhere identifiable; see§2.2 for the definition.
This result and other identification properties of BAP models are reviewed inSection 2. In Section
3 we give details on likelihood equations and Fisher-information of normal structural equation mod-
els. This sets the scene for our main contribution: theResidual Iterative Conditional Fitting(RICF)
algorithm for maximization of the likelihood function of BAP models, which is presented in Section
4. Standard software for structural equation modelling currently employs general-purpose optimiza-
tion routines for this task (Bollen, 1989, Appendix 4C). Many of these algorithms, however, neglect
constraints of positive definiteness on the covariance matrix and suffer from convergence prob-
lems. According to Steiger (2001), failure to converge is ‘not uncommon’ and presents significant
challenges to novice users of existing software. In contrast, our RICF algorithm produces positive
definite covariance matrix estimates during all its iterations and has good convergence properties,
as illustrated in the simulations in Section 5. Further discussion of RICF is provided in Section 6.
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2. Normal Linear Models and Path Diagrams

LetY = (Yi | i ∈V) ∈R
V be a random vector, indexed by the finite setV, that follows a multivariate

normal distributionN (0,Σ) with positive definite covariance matrixΣ. A zero mean vector is
assumed merely to avoid notational overhead. The models we consider subsequently are induced
by linear structural equations as follows.

2.1 Systems of Structural Equations and Path Diagrams

Let {pa(i) | i ∈V} and{sp(i) | i ∈V} be two families of index sets. For reasons explained below, we
refer to these index sets as sets of parents and spouses, respectively. We require thati 6∈ pa(i)∪sp(i)
for all i ∈ V; moreover, let the second family satisfy the symmetry condition thatj ∈ sp(i) if and
only if i ∈ sp( j). These two families determine a system of structural equations

Yi = ∑ j∈pa(i) βi j Yj + εi , i ∈V, (5)

whose zero-mean errorsεi and ε j are uncorrelated ifi 6∈ sp( j), or equivalently, j 6∈ sp(i). The
equations in (5) correspond to apath diagram, that is, a mixed graphG featuring bothdirected(→)
andbi-directed(↔) edges but no edges from a vertexi to itself (see Figures 1 and 2). The vertex
set ofG is the index setV, andG contains the edgej → i if and only if j ∈ pa(i), and the edge
j↔ i if and only if j ∈ sp(i) (or equivalently,i ∈ sp( j)). Subsequently, we exploit the path diagram
representation of (5). Ifi→ j is an edge inG, then we calli a parentof j, and if i↔ j is in G then
i is referred to as aspouseof j. Thus, as remarked above, pa(i), sp(i) are, respectively, the sets of
parents and spouses ofi.

Let G be a path diagram and defineB(G) to be the collection of allV×V matricesB = (βi j )
that satisfy

βi j = 0 wheneverj → i is not an edge inG, (6)

and are such thatI −B is invertible. LetP(V) be the cone of positive definiteV×V matrices and
O(G)⊆ P(V) the set of matricesΩ = (ωi j ) ∈ P(V) that satisfy

ωi j = 0 wheneveri 6= j and j ↔ i is not inG. (7)

(Here and in the sequel, a symbol such asV denotes both a finite set and its cardinality.) The system
(5) associated with the path diagramG can be written compactly asY = BY+ ε. If we assume that
B∈B(G) and that the error covariance matrix Var(ε) = Ω is in O(G), then (5) has a unique solution
Y that is a multivariate normal random vector with covariance matrixΣ = (I −B)−1Ω(I −B)−t .
Here,I is the identity matrix and the superscript ‘−t ’ stands for transposition and inversion.

The above considerations lead to the following definition of a linear model associated with a
path diagram (or equivalently, a system of structural equations).

Definition 1 The normal linear modelN(G) associated with a path diagram G is the family of mul-
tivariate normal distributions N (0,Σ) with covariance matrix in the setP(G) =
{

(I −B)−1Ω(I −B)−t | B∈ B(G), Ω ∈O(G)
}

. We call the mapΦG : B(G)×O(G)→ P(G) given
by

ΦG(B,Ω) = (I −B)−1Ω(I −B)−t

the parameterization map ofN(G).
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Figure 2: Path diagrams that are (a) cyclic, (b) acyclic but not bow-free, (c) acyclic and bow-free.
Only path diagram (c) yields a curved exponential family.

Example 1 The path diagramG in Figure 2(a) depicts the equation system

Y1 = ε1, Y2 = β21Y1 +β24Y4 + ε2,

Y3 = β31Y1 +β32Y2 + ε3, Y4 = β43Y3 + ε4,

whereε1,ε2,ε3,ε4 are pairwise uncorrelated, that is, the matricesΩ ∈ O(G) are diagonal. This
system exhibits a circular covariate-response structure as the path diagram contains the directed
cycle 2→ 3→ 4→ 2. This feedback loop is reflected in the fact that det(I −B) = 1−β24β43β32

for B ∈ B(G). Therefore, the path coefficients need to satisfyβ24β43β32 6= 1 in order to lead to a
positive definite covariance matrix inP(G). This example is considered in more detail in Drton
(2009), where it is shown that the parameter spaceP(G) has singularities that lead to non-standard
behavior of likelihood ratio tests.

The models considered in the remainder of this paper do not have any feedback loops, that is,
they have the following structure.

Definition 2 A path diagram G and its associated normal linear modelN(G) are recursiveor
acyclic if G does not contain directed cycles, that is, there do not exist i, i1, . . . , ik ∈ V such that
G features the edges i→ i1→ i2→ ·· · → ik→ i.

We use the termacyclic rather thanrecursive, as some authors have used the term ‘recursive’
for path diagrams that are acyclicandcontain no bi-directed edges. IfG is acyclic, then the vertices
in V can be ordered such that a matrixB that satisfies (6) is lower-triangular. It follows that

det(I −B) = 1. (8)

In particular, I −B is invertible for any choice of the path coefficientsβi j , j → i in G, and the
parameterization mapΦG is a polynomial map.

2.2 Bow-free Acyclic Path Diagrams (BAPs)

The normal linear modelN(G) associated with a path diagramG is everywhere identifiableif the
parameterization mapΦG is one-to-one, that is, for allB0 ∈ B(G) andΩ0 ∈O(G) it holds that

ΦG(B,Ω) = ΦG(B0,Ω0) =⇒ B = B0 andΩ = Ω0. (9)

If there exists a Lebesgue null setNG⊆ B(G)×O(G) such that (9) holds for all(B0,Ω0) 6∈NG, then
we say thatN(G) is almost everywhere identifiable.
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Acyclic path diagrams may containbows, that is, double edgesi→↔ j. It is easy to see that normal
linear models associated with path diagrams with bows are never everywhereidentifiable. However,
they may sometimes be almost everywhere identifiable as is the case for the nextexample. This
example illustrates that almost everywhere identifiability is not enough to ensure regular behavior
of statistical procedures.

Example 2 The path diagramG in Figure 2(b) features the bow 3→↔4. The associated normal linear
modelN(G) is also known as an instrumental variable model. The 9-dimensional parameterspace
P(G) is part of the hypersurface defined by the vanishing of the so-calledtetradσ13σ24−σ14σ23.
It follows that the modelN(G) lacks regularity because the tetrad hypersurface has singularities at
pointsΣ ∈ P(G) with σ13 = σ14 = σ23 = σ24 = 0. These singularities occur if and only ifβ31 =
β32 = 0, and correspond to points at which the identifiability property in (9) fails to hold. This lack
of smoothness expresses itself statistically, for example, when testing the hypothesisβ31 = β32 = 0
in modelN(G). Using the techniques in Drton (2009), the likelihood ratio statistic for this problem
can be shown to have non-standard behavior with a large-sample limiting distribution that is given
by the larger of the two eigenvalues of a 2×2-Wishart matrix with 2 degrees of freedom and the
identity matrix as scale parameter.

Definition 3 A path diagram G and its associated normal linear modelN(G) are bow-freeif G
contains at most one edge between any pair of vertices. If G is bow-freeand acyclic, we call it a
bow-free acyclic path diagram (BAP).

As stressed in the introduction, BAPs are widespread in applications. Examples are shown
in Figures 1, 2(c) and 6. Contrary to some path diagrams with bows, the normal linear models
associated with BAPs are always at least almost everywhere identifiable.

Theorem 4 (Brito and Pearl, 2002) If G is a BAP, then the normal linear modelN(G) is almost
everywhere identifiable.

Many BAP models are in fact everywhere identifiable.

Theorem 5 (Richardson and Spirtes, 2002)Suppose G is an ancestral BAP, that is, G does not
contain an edge i↔ j such that there is a directed path j→ i1→ ·· ·→ ik→ i that leads from vertex
j to vertex i. Then the normal linear modelN(G) is everywhere identifiable.

The next example shows that the condition in Theorem 5 is sufficient but not necessary for
identification. The characterization of the class of BAPs whose associatednormal linear models are
everywhere identifiable remains an open problem.

Example 3 The BAPG in Figure 2(c) is not ancestral because it contains the edges 4↔ 2→ 3→ 4.
Nevertheless, the associated normal linear modelN(G) is everywhere identifiable, which can be
shown by identifying the parameters inB andΩ row-by-row following the order 1< 2 < 3 < 4.
It is noteworthy that the modelN(G) in this example is not a Markov model, that is, a generic
multivariate normal distribution inN(G) exhibits no conditional independence relations. Instead,
the entries of covariance matricesΣ = (σi j ) ∈ P(G) satisfy

(σ11σ22−σ2
12)(σ14σ33−σ13σ34) = (σ13σ24−σ14σ23)(σ12σ13−σ11σ23). (10)
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1 2 3 4 5

Figure 3: Bow-free acyclic path diagram whose associated normal linearmodel is almost, but not
everywhere, identifiable. The model is not a curved exponential family.

The constraint in (10) has a nice interpretation. Let(Y1, . . . ,Y4) have (positive definite) covariance
matrix Σ = (σi j ), and definee2 = Y2−σ21/σ11Y1 to be the residual in the regression ofY2 on Y1.
Then (10) holds forΣ if and only if Y1 andY4 are conditionally independent givene2 andY3.

The above-stated Theorem 4 was proved in Brito and Pearl (2002), and an inspection of their
proof reveals the following fact.

Lemma 6 If the normal linear modelN(G) associated with a BAP G is everywhere identifiable,
then the (bijective) parameterization mapΦG has an inverse that is a rational map with no pole on
P(G).

By (8), the parameterization mapΦG for a BAP G is polynomial and thus smooth. IfΦ−1
G

is rational and without pole, then the image ofΦG, that is,P(G) is a smooth manifold (see, e.g.,
Edwards, 1994, II.4). This has an important consequence.

Corollary 7 If the normal linear modelN(G) associated with a BAP G is everywhere identifiable,
thenN(G) is a curved exponential family.

The theory of curved exponential families is discussed by Kass and Vos (1997). It implies in par-
ticular that maximum likelihood estimators in curved exponential families are asymptotically nor-
mal, and that likelihood ratio statistics comparing two such families are asymptotically chi-square
regardless of where in the null hypothesis a true parameter is located. Unfortunately, however,
Lemma 6 and Corollary 7 do not hold for every BAP.

Example 4 The normal linear model associated with the BAPG in Figure 3 is not a curved expo-
nential family. In this model the identifiability property in (9) breaks down if andonly if (B,Ω)
satisfy

β21ω14ω24−ω2ω4 +ω2
24 = 0, β32β43ω2 +ω24 = 0.

It can be shown that the covariance matricesΦG(B,Ω) associated with this set of parameters yield
points at which the 13-dimensional setP(G) has more than 13 linearly independent tangent direc-
tions. Hence,P(G) is singular at these covariance matrices.
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3. Likelihood Inference

Suppose a sample of sizeN is drawn from a multivariate normal distributionN (0,Σ) in the linear
modelN(G) associated with a BAPG = (V,E). We group the observed random vectors as columns
in theV ×N matrix Y such thatYin represents the observation of variablei on subjectn. Having
assumed a zero mean vector, we define the empirical covariance matrix as

S= (si j ) =
1
N

YYt ∈ R
V×V .

AssumingN ≥ V, the matrixS is positive definite with probability one. (As before,V here also
denotes the cardinality of the set.) Models with unknown mean vectorµ∈ R

V can be treated by es-
timatingµ by the empirical mean vector and adjusting the empirical covariance matrix accordingly;
N≥V +1 then ensures almost sure positive definiteness of the empirical covariance matrix.

3.1 Likelihood Function and Likelihood Equations

Given observationsY with empirical covariance matrixS, the log-likelihood functionℓ : B(G)×
O(G)→ R of the modelN(G) takes the form

ℓ(B,Ω) =−
N
2

logdet(Ω)−
N
2

tr
[

(I −B)tΩ−1(I −B)S
]

. (11)

Here we ignored an additive constant and used that det(I −B) = 1 if B∈ B(G); compare (8). Let
β = (βi j | i ∈V, j ∈ pa(i)) andω = (ωi j | i ≤ j, j ∈ sp(i) or i = j) be the vectors of unconstrained
elements inB andΩ. LetP andQ be the matrices with entries in{0,1} that satisfy vec(B) = Pβ and
vec(Ω) = Qω, respectively, where vec(A) refers to stacking of the columns of the matrixA. Taking
the first derivatives ofℓ(B,Ω) with respect toβ andω we obtain the likelihood equations.

Proposition 8 The likelihood equations of the normal linear modelN(G) associated with a BAP G
can be written as

Pt vec
(

Ω−1(I −B)S
)

= Pt vec
(

Ω−1S
)

−Pt(S⊗Ω−1)Pβ = 0, (12)

Qt vec
(

Ω−1−Ω−1(I −B)S(I −B)tΩ−1) = 0, (13)

where⊗ denotes the Kronecker product.

In general, the likelihood equations need to be solved iteratively. One possible approach pro-
ceeds by alternately solving (12) and (13) forβ andω, respectively. For fixedω, (12) is a linear
equation inβ and easily solved. For fixedβ, (13) constitutes the likelihood equations of a mul-
tivariate normal covariance model forε = (I −B)Y, which is specified by requiring thatΩi j = 0
whenever the edgei↔ j is not inG. The solution of (13), withβ fixed, requires, in general, another
iterative method. As an alternative to this nesting of two iterative methods, we propose in Section 4
a method that solves (12) and (13) in joint updates ofβ andω.

Remark 9 When proving their identifiability result for BAP models, Brito and Pearl (2002) gave
an algorithm for recovering the parametersβ andω from a population covariance matrix. Applied to
the empirical covariance matrixS, this algorithm produces consistent estimatesβ̃ andω̃. However,
these are generally not the maximum likelihood estimators (MLE) and the error covariance matrix
corresponding tõω may fail to be positive definite.
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3.2 Fisher-Information

Large-sample confidence intervals for(β,ω) can be obtained by approximating the distribution of
the MLE(β̂, ω̂) by the normal distribution with mean vector(β,ω) and covariance matrix1N I(β,ω)−1.
Here,I(β,ω) denotes the Fisher-information, which, as shown in Appendix A, is of the following
form.

Proposition 10 The (expected) Fisher-information of the normal linear modelN(G) associated
with a BAP G is

I(β,ω) =

(

Pt
(

Σ⊗Ω−1
)

P Pt
[

(I −B)−1⊗Ω−1
]

Q
Qt

[

(I −B)−t⊗Ω−1
]

P 1
2 Qt

(

Ω−1⊗Ω−1
)

Q

)

.

The Fisher-information in Proposition 10 need not be block-diagonal, in which case the esti-
mation of the covariancesω affects the asymptotic variance of the MLEβ̂. However, this does not
happen forbi-directed chain graphs, which form one of the model classes discussed by Wermuth
and Cox (2004). A path diagramG is a bi-directed chain graph if its vertex setV can be partitioned
into disjoint subsetsτ1, . . . ,τT , known aschain components, such that all edges in each subgraph
Gτt are bi-directed and edges between two subsetsτs 6= τt are directed, pointing fromτs to τt , if
s< t. Since bi-directed chain graphs are ancestral graphs the associated normal linear models are
everywhere identifiable.

Proposition 11 For a BAP G, the following two statements are equivalent:

(i) For all underlying covariance matricesΣ ∈ P(G), the MLEs of the parameter vectorsβ and
ω of the normal linear modelN(G) are asymptotically independent.

(ii) The path diagram G is a bi-directed chain graph.

A proof of Proposition 11 is given in Appendix A. This result is an instanceof the asymptotic
independence of mean and natural parameters in mixed parameterizations ofexponential families
(Barndorff-Nielsen, 1978).

4. Residual Iterative Conditional Fitting

We now present an algorithm for computing the MLE in the normal linear modelN(G) associated
with a BAP. The algorithm extends theiterative conditional fitting(ICF) procedure of Chaudhuri
et al. (2007), which is for path diagrams with exclusively bi-directed edges.

Let Yi ∈ R
N denote thei-th row of the observation matrixY andY−i = YV\{i} the(V \ {i})×N

submatrix ofY. The ICF algorithm proceeds by repeatedly iterating through all verticesi ∈V and
carrying out three steps: (i) fix the marginal distribution ofY−i , (ii) fit the conditional distribution
of Yi givenY−i under the constraints implied by the modelN(G), and (iii) obtain a new estimate of
Σ by combining the estimated conditional distribution(Yi |Y−i) with the fixed marginal distribution
of Y−i . The crucial point is then that for path diagrams containing only bi-directededges, the
problem of fitting the conditional distribution for(Yi |Y−i) under the constraints of the model can be
rephrased as a least squares regression problem. Unfortunately, theconsideration of the conditional
distribution of(Yi |Y−i) is complicated for path diagrams that contain also directed edges. However,
as we show below, the directed edges can be ‘removed’ by considerationof residuals, which here
refers to estimates of the error termsε = (I −B)Y. Since it is based on this idea, we give our new
extended algorithm the nameResidual Iterative Conditional Fitting(RICF).
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4.1 The RICF Algorithm

The main building block of the new algorithm is the following decomposition of the log-likelihood
function. We adopt the shorthand notationXC for theC×N submatrix of aD×N matrix X, where
C⊆ D.

Theorem 12 Let G be a BAP and i∈V. Let‖x‖2 = xtx and define

ωii .−i = ωii −Ωi,−iΩ−1
−i,−iΩ−i,i (14)

to be the conditional variance ofεi given ε−i ; recall that Ω−1
−i,−i = (Ω−i,−i)

−1. Then the log-
likelihood functionℓ(B,Ω) of the modelN(G) can be decomposed as

ℓ(B,Ω) =−
N
2

logωii .−i−
1

2ωii .−i

∥

∥Yi−Bi,pa(i)Ypa(i)−Ωi,sp(i)(Ω−1
−i,−i ε−i)sp(i)

∥

∥

2

−
N
2

logdet(Ω−i,−i)−
1
2

tr
(

Ω−1
−i,−iε−iεt

−i

)

. (15)

Proof Formingε = (I −B)Y, we rewrite (11) as

ℓ(B,Ω) =−
N
2

logdet(Ω)−
1
2

tr
(

Ω−1εεt) =: ℓ(Ω | ε). (16)

Using the inverse variance lemma (Whittaker, 1990, Prop. 5.7.3), we partitionΩ−1 as

(

ωii Ωi,−i

Ω−i,i Ω−i,−i

)−1

=

(

ω−1
ii .−i −ω−1

ii .−iΩi,−iΩ−1
−i,−i

−Ω−1
−i,−iΩ−i,iω−1

ii .−i Ω−1
−i,−i +Ω−1

−i,−iΩ−i,iω−1
ii .−iΩi,−iΩ−1

−i,−i

)

.

We obtain that the log-likelihood function in (16) equals

ℓ(Ω | ε) =−
N
2

logωii .−i−
1

2ωii .−i

∥

∥εi−Ωi,−iΩ−1
−i,−iε−i

∥

∥

2

−
N
2

logdet(Ω−i,−i)−
1
2

tr
(

Ω−1
−i,−iε−iεt

−i

)

.

By definition,εi = Yi−Bi,pa(i)Ypa(i). Moreover, under the restrictions (7),

Ωi,−iΩ−1
−i,−iε−i = Ωi,sp(i)(Ω−1

−i,−i ε−i)sp(i),

which yields the claimed decomposition.

The log-likelihood decomposition (15) is essentially based on the decompositionof the joint
distribution ofε into the marginal distribution ofε−i and the conditional distribution(εi | ε−i). This
leads to the idea of building an iterative algorithm whose steps are based on fixing the marginal
distribution ofε−i and estimating a conditional distribution. In order to fix the marginal distribution
ε−i we need to fix the submatrixΩ−i,−i comprising all but thei-th row and column ofΩ as well as
the submatrixB−i,V , which comprises all but thei-th row of B. With Ω−i,−i andB−i,V fixed we can
computeε−i as well as thepseudo-variables, defined by

Z−i = Ω−1
−i,−i ε−i . (17)
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Figure 4: Illustration of the RICF update steps in Example 5. The structure ofeach least squares
regression is indicated by directed edges pointing from the predictor variables to the re-
sponse variable depicted by a square node. (See text for details.)

From (15), it now becomes apparent that, for fixedΩ−i,−i andB−i,V , the maximization of the log-
likelihood functionℓ(B,Ω) can be solved by maximizing the function

(

(βi j ) j∈pa(i),(ωik)k∈sp(i),ωii .−i) 7→

−
N
2

logωii .−i−
1

2ωii .−i

∥

∥Yi− ∑
j∈pa(i)

βi jYj − ∑
k∈sp(i)

ωikZk
∥

∥

2
(18)

overRpa(i)×R
sp(i)× (0,∞). The maximizers of (18), however, are the least squares estimates in the

regression ofYi on both(Yj | j ∈ pa(i)) and(Zk | k∈ sp(i)).
Employing the above observations, theRICF algorithmfor computing the MLE(B̂,Ω̂) repeats

the following steps for eachi ∈V:

1. Fix Ω−i,−i andB−i,V , and compute residualsε−i and pseudo-variablesZsp(i);

2. Obtain least squares estimates ofβi j , j ∈ pa(i), ωik, k∈ sp(i), andωii .−i by regressing response
variableYi on the covariatesYj , j ∈ pa(i) andZk, k∈ sp(i);

3. Compute an estimate ofωii = ωii .−i +Ωi,−iΩ−1
−i,−iΩ−i,i using the new estimates and the fixed

parameters; compare (14).

After steps 1 to 3, we move on to the next vertex inV. After the last vertex inV we return to consider
the first vertex. The procedure is continued until convergence.

Example 5 For illustration of the regressions performed in RICF, we consider the normal linear
model associated with the BAPG in Figure 2(c). The parameters to be estimated in this model are
β21, β31, β32, β43 andω11, ω22, ω33, ω44, ω24.

Vertex 1 in Figure 2(c) has no parents or spouses, and its RICF update step consists of a trivial
regression. In other words, the varianceω11 is the unconditional variance ofY1 with MLE ω̂11 = s11.
For the remaining vertices, the corresponding RICF update steps are illustrated in Figure 4, where
the response variableYi in the i-th update step is shown as a square node while the remaining
variables are depicted as circles. Directed edges indicate variables actingas covariates in the least
squares regression. These covariates are labelled according to whether the random variableYj , or
the pseudo-variableZ j defined in (17), is used in the regression. Note that since sp(3) = /0, repetition
of steps 1-3 in §4.1 is required only fori ∈ {2,4}.
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In RICF, the log-likelihood functionℓ(B,Ω) from (11) is repeatedly maximized over sections in
the parameter space defined by fixing the parametersΩ−i,−i , andB−i,V . RICF thus is an iterative
partial maximization algorithm and has the following convergence properties.

Theorem 13 If G is a BAP and the empirical covariance matrix S is positive definite, then the
following holds:

(i) For any starting value(B̂0,Ω̂0) ∈ B(G)×O(G), RICF constructs a sequence of estimates
(B̂s,Ω̂s)s in B(G)×O(G) whose accumulation points are local maxima or saddle points
of the log-likelihood functionℓ(B,Ω). Moreover, evaluating the log-likelihood function at
different accumulation points yields the same value.

(ii) If the normal linear modelN(G) is everywhere identifiable and the likelihood equations have
only finitely many solutions then the sequence(B̂s,Ω̂s)s converges to one of these solutions.

Proof Let ℓ(Σ) be the log-likelihood function for the model of all centered multivariate normaldis-
tributions onR

V . If S is positive definite then the setC that comprises all positive definite matrices
Σ ∈R

V×V at whichℓ(Σ)≥ ℓ(B̂0,Ω̂0) is compact. In particular, the log-likelihood function in (11) is
bounded, and claim (i) can be derived from general results about iterative partial maximization al-
gorithms; see for example, Drton and Eichler (2006). For claim (ii) note thatif N(G) is everywhere
identifiable, then the compact setC has compact preimageφ−1

G (C) under the model parameterization
map; recall Lemma 6.

Remark 14 If the normal linear modelN(G) associated with a BAPG is not everywhere identifi-
able, then it is possible that a sequence of estimates(B̂s,Ω̂s)s produced by RICF diverges and does
not have any accumulation points. In these cases, however, the corresponding sequence of covari-
ance matricesΦG(B̂s,Ω̂s)s still has at least one accumulation point because it ranges in the compact
setC exhibited in the proof of Theorem 13. Divergence of(B̂s,Ω̂s)s occurs in two instances in the
simulations in §5; compare Table 1. In both cases, the sequenceΦG(B̂s,Ω̂s)s converges to a positive
definite covariance matrix.

4.2 Computational Savings in RICF

If G is a DAG, that is, an acyclic path diagram without bi-directed edges, then theMLE (B̂,Ω̂) in
N(G) can be found in a finite number of regressions (e.g., Wermuth, 1980). However, we can also
run RICF. Since in a DAG, sp(i) = /0 for all i ∈ V, step 2 of RICF regresses variableYi solely on
its parentsYj , j ∈ pa(i). Not involving pseudo-variables that could change from one iteration to the
other, this regression remains the same throughout different iterations, and RICF converges in one
step.

Similarly, for a general BAPG, if vertex i ∈ V has no spouses, sp(i) = /0, then the MLE of
Bi,pa(i) and ωii can be determined by a single iteration of the algorithm. In other words, RICF
reveals these parameters as being estimable in closed form, namely as rationalfunctions of the data.
(This occurred for vertexi = 3 in Example 5.) It follows that, to estimate the remaining parameters,
the iterations need only be continued over verticesj with sp( j) 6= /0.
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For further computational savings note thatΩdis(i),V\(dis(i)∪{i}) = 0, where dis(i) = { j | j↔·· ·↔
i, j 6= i} is the district ofi ∈V. Hence, since sp(i)⊆ dis(i),

(Ω−1
−i,−iε−i)sp(i) = (Ω−1

dis(i),dis(i)εdis(i))sp(i);

see Koster (1999, Lemma 3.1.6) and Richardson and Spirtes (2002, Lemma 8.10). Sinceεdis(i) =
Ydis(i)−Bdis(i),pa(dis(i))Ypa(dis(i)), it follows that in the RICF update step for vertexi attention can be
restricted to the variables in{i}∪pa(i)∪dis(i)∪pa(dis(i)).

Finally, note that while the RICF algorithm is described in terms of the entire data matrix Y, the
least squares estimates computed in its iterations are clearly functions of the empirical covariance
matrix, which is a sufficient statistic.

5. Simulation Studies

In order to evaluate the performance of the RICF algorithm we consider twoscenarios. First, we fit
linear models based on randomly generated BAPs to gene expression data.This scenario is relevant
for model selection tasks, and we compare RICF’s performance in this problem to that of algorithms
implemented in software for structural equation modelling. Second, we study how RICF behaves
when it is used to fit larger models to data simulated from the respective model. In contrast to the
first scenario, the second scenario involves models that generally fit theconsidered data well.

5.1 Gene Expression Data

We consider data on gene expression inArabidopsis thalianafrom Wille et al. (2004). We restrict
attention to 13 genes that belong to one pathway: DXPS1-3, DXR, MCT, CMK, MECPS, HDS,
HDR, IPPI1, GPPS, PPDS1-2. Data fromn = 118 microarray experiments are available. We fit
randomly generated BAP models to these data using RICF and two alternative methods.

The BAP models are generated as follows. For each of the 78 possible pairs of verticesi <
j in V = {1, . . . ,13} we draw from a multinomial distribution to generate a possible edge. The
probability for drawing the edgei→ j is d, and the probability for drawingi↔ j is b so that with
probability 1−d−b there is no edge betweeni and j. We then apply a random permutation to the
vertices to obtain the final BAP. For each of twelve combinations(d,b) with d = 0.05,0.1,0.2,0.3
andb = 0.05,0.1,0.2, we simulate 1000 BAPs. The expected number of edges thus varies between
7.8 and 39.

For fitting the simulated BAPs to the gene expression data, we implemented RICF in the statis-
tical programming environment R (R Development Core Team, 2007). As alternatives, we consider
the R package ‘sem’ (Fox, 2006) and the widely used software LISREL (Jöreskog and S̈orbom,
1997) in its student version 8.7 for Linux (student versions are free but limited to 15 variables).
Both these programs employ general purpose optimizers, for example, ‘sem’ makes a call to the R
function ‘nlm’.

Our simulation results are summarized in Table 1. Each row in the table corresponds to a choice
of the edge probabilitiesd andb. The first three columns count how often, in 1000 simulations, the
three considered fitting routines failed to converge. The starting values ofLISREL and ‘sem’ were
set according to program defaults, and RICF was started by settingB̂(0) andΩ̂(0) equal to the MLE
in the DAG model associated with the DAG obtained by removing all bi-directed edges from the
considered BAP.
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No convergence All All Running time
d b RICF LIS SEM converge agree RICF LIS SEM

0.05 0.05 0 36 47 941 940 0.03 0.02 1.15
0.1 0 177 221 746 739 0.09 0.03 1.58
0.2 0 499 599 347 333 0.21 0.04 2.71

0.1 0.05 0 32 36 951 949 0.04 0.03 1.58
0.1 0 137 193 786 780 0.09 0.03 2.09
0.2 0 440 610 364 354 0.25 0.04 3.43

0.2 0.05 0 19 39 958 954 0.05 0.03 2.67
0.1 0 91 176 815 808 0.13 0.04 3.34
0.2 1 326 520 461 452 0.33 0.05 5.03

0.3 0.05 0 16 38 960 957 0.06 0.04 4.04
0.1 0 59 136 859 850 0.17 0.04 4.96
0.2 1 225 471 519 490 0.40 0.06 6.97

Table 1: Fitting simulated BAPs to gene expression data using RICF, LISREL and ‘sem’. Each row
is based on 1000 simulations. Running time is average CPU time (in sec.) for the cases in
which all three algorithms converged. (See text for details.)

LISREL and ‘sem’ failed to converge for a rather large number of models. The LISREL output
explained why convergence failed, and virtually all failures were due to the optimizer converging to
matrices that were not positive definite. The remedy would be to try new starting values but doing
this successfully in an automated fashion is a challenging problem in itself. ForRICF convergence
failure arose in only two cases. In both cases the RICF estimates(B̂,Ω̂) had some diverging entries.
Despite the divergence in(B,Ω)-space, the sequence of associated covariance matricesΦG(B̂,Ω̂)
computed by RICF converged, albeit very slowly. Recall that this phenomenon is possible in models
that are almost, but not everywhere, identifiable (Remark 14). In these examples LISREL produced
similarly divergent sequences with approximately the same likelihood, and ‘sem’ reported conver-
gence in one case but gave an estimate whose likelihood was nearly 40 pointssmaller than the
intermediate estimates computed by LISREL and RICF.

The columns labelled ‘All converge’ and ‘All agree’ in Table 1 show how often all methods
converged, and when this occurred, how often the three computed maxima of the log-likelihood
function were the same up to one decimal place. Since all methods are for local maximization, sub-
stantial disagreements in the computed maxima can occur if the likelihood function ismultimodal.

Finally, the last three columns give average CPU time use for the cases in which all three al-
gorithms converge. These are quoted to show that RICF is competitive in termsof computational
efficiency, but for the following reasons the precise times should not be used for a formal compar-
ison. On the one hand, LISREL is fast because it is compiled code. This is not the case for the
R-based ‘sem’ and RICF. On the other hand, the fitting routines in LISREL and ‘sem’ not only
compute the MLE but also produce various other derived quantities of interest. This is in contrast
to our RICF routine, which only computes the MLE.
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Figure 5: Boxplots of CPU times (in sec. on log10-scale) used by RICF when fitting BAP models
to simulated data. Each boxplot summarizes 500 simulations. The number of variables is
denoted byp, the sample size isn, and the parameterd determines the expected number
of edges of the simulated BAPs (see text for details).

5.2 Simulated Data

In order to demonstrate how RICF behaves when fitting larger models we usethe algorithm on
simulated data. We consider different choices for the number of variablesp and generate random
BAPs according to the procedure used in §5.1. We limit ourselves to two different settings for
the expected number of edges, choosingd = 0.1 or d = 0.2 and settingb = d/2 in each case.
For each BAPG, we simulate a covariance matrixΣ = (I −B)−1Ω(I −B)−t ∈ P(G) as follows.
The free entries inB ∈ B(G) and the free off-diagonal entries inΩ ∈ O(G) are drawn from a
N (0,1) distribution. The diagonal entriesωii are obtained by adding a draw from aχ2

1-distribution
to the sum of the absolute values of the off-diagonal entries in thei-th row of Ω. This makes
Ω diagonally dominant and thus positive definite. Finally, we draw a sample of size n from the
resulting multivariate normal distributionN(G). For each distribution two cases, namelyn = 3p/2
andn = 10p, are considered to illustrate sample size effects. For each combination ofp, d andn,
we simulate 500 BAPs and associated data sets.

Figure 5 summarizes the results of our simulations in boxplots. As could be expected, the
running time for RICF increases with the number of variablesp and the expected number of edges
in the BAP (determined byd). Moreover, the running time decreases for increased sample sizen,
which is plausible because the empirical covariance matrix of a larger sample tends to be closer
to the underlying parameter spaceP(G). The boxplots show that even withp = 50 variables the
majority of the RICF computations terminate within a few seconds. However, there are also a
number of computations in which the running time is considerably longer, though still under two
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Figure 6: Path diagram for seemingly unrelated regressions.

minutes. This occurs in particular for the denser case with smaller sample size (d = 0.2 andn =
3p/2).

6. Discussion

As mentioned in the introduction, normal linear models associated with path diagrams are employed
in many applied disciplines. The models, also known as structural equation models, have a long
tradition but remain of current interest in particular due to the more recent developments in causal
inference; compare, for example, Pearl (2000) and Spirtes et al. (2000). Despite their long tradition,
however, many mathematical, statistical and computational problems about thesemodels remain
open.

The new contribution of this paper is the Residual Iterative Conditional Fitting(RICF) algorithm
for maximum likelihood estimation in BAP models. Software for computation of MLEs instructural
equation models often employs optimization methods that are not designed to dealwith positive
definiteness constraints on covariance matrices. This can be seen in particular in Table 1 which
shows that two available programs, LISREL (Jöreskog and S̈orbom, 1997) and the R package ‘sem’
(Fox, 2006), fail to converge in a rather large number of problems. Thisis in line with previous
experience by other authors; see, for example, Steiger (2001). Our new RICF algorithm, on the
other hand, does not suffer from these problems. It has clear convergence properties (Theorem 13)
and can handle problems with several tens of variables (see Figure 5). In addition, RICF has the
desirable feature that it estimates parameters in closed form (in a single cycleof its iterations) if this
is possible. If applied to a model based on a directed acyclic graph (DAG),the algorithm converges
in a single cycle and performs exactly the regressions commonly used for fitting multivariate normal
DAG models. This feature and the fact that RICF can be implemented using nothing but least
squares computations make it an attractive alternative to less specialized optimization methods.

In another special case, namely seemingly unrelated regressions, RICFreduces to the algorithm
of Telser (1964). A path diagram representing seemingly unrelated regressions is shown in Figure
6. The variablesY1, Y2 andY3 are then commonly thought of as covariates. Since they have no
spouses, the MLEs of the variancesω11, ω22 andω33 are equal to the empirical variancess11, s22

ands33. For the remaining variablesYi , i = 4,5, RICF performs regressions on both the “covariates”
Ypa(i) and the residualε j , j ∈ {4,5}\{i}. These are precisely the steps performed by Telser.

Existing structural equation modelling software also fits models with latent variables, whereas
the RICF algorithm applies only to BAP models without latent variables. However, RICF could
be used to implement the M-step in the EM algorithm (Kiiveri, 1987) in order to fitlatent variable
models. This EM-RICF approach would yield an algorithm with theoretical convergence properties.

Finally, we emphasize that the RICF algorithm is determined by the path diagram. However,
different path diagrams may induce the same statistical model; recall point (1) in§1.2 in the intro-
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duction. This model equivalence of path diagrams may be exploited to find a diagram for which
the running time of RICF is short. For example, for every BAP that is equivalent to a DAG model,
parameter estimates could be computed in closed form and hence in finitely many steps. Relevant
graphical constructions for this problem are described in Drton and Richardson (2008) and Ali et al.
(2005).
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Appendix A. Proofs

Proof [Proof of Proposition 10] Letβ andω be the vectors of unconstrained elements inB andΩ,
respectively. The second derivatives of the log-likelihood function withrespect toβ andω are:

∂2ℓ(B,Ω)

∂β∂βt =−N ·Pt(S⊗Ω−1)P, (19)

∂2ℓ(B,Ω)

∂β∂ωt =−N ·Pt[S(I −B)tΩ−1⊗Ω−1]Q, (20)

∂2ℓ(B,Ω)

∂ω∂ωt =−
N
2

Qt{[

Ω−1⊗Ω−1(I −B)S(I −B)tΩ−1] (21)

+
[

Ω−1(I −B)S(I −B)tΩ−1⊗Ω−1]}Q.

ReplacingSby E[S] = (I −B)−1Ω(I −B)−t in (19)-(21) yields the claim.

Proof [Proof of Proposition 11] IfG is a bi-directed chain graph, then the submatrixBτt ,τt = 0 for
all t, while for s 6= t we haveΩτs,τt = 0. In this case the second derivative of the log-likelihood
function with respect toβi j andωkl is equal to∂2ℓ(B,Ω)/∂βi j ∂ωkl = [(I −B)−1] jl (Ω−1)ik. Now
[(I −B)−1] jl may only be non-zero ifj = l or l is an ancestor ofj, that is, if there exists a directed
pathl → j1→ ·· · → jm→ j in G. On the other hand,(Ω−1)ik = 0 wheneveri andk are not in the
same chain component. Therefore, the second derivative in (20) is equal to zero.

Conversely, it follows that the second derivative in (20) vanishes forall parameters only if the
graph belongs to the class of bi-directed chain graphs.
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